JP4530843B2 - Nonaqueous electrolyte secondary battery and charging method thereof - Google Patents

Nonaqueous electrolyte secondary battery and charging method thereof Download PDF

Info

Publication number
JP4530843B2
JP4530843B2 JP2004379301A JP2004379301A JP4530843B2 JP 4530843 B2 JP4530843 B2 JP 4530843B2 JP 2004379301 A JP2004379301 A JP 2004379301A JP 2004379301 A JP2004379301 A JP 2004379301A JP 4530843 B2 JP4530843 B2 JP 4530843B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
secondary battery
electrolyte secondary
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004379301A
Other languages
Japanese (ja)
Other versions
JP2006185792A (en
Inventor
伸道 西田
英俊 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004379301A priority Critical patent/JP4530843B2/en
Publication of JP2006185792A publication Critical patent/JP2006185792A/en
Application granted granted Critical
Publication of JP4530843B2 publication Critical patent/JP4530843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、放電容量及びサイクル特性の向上を目的とする非水電解質二次電池の改良に関する。   The present invention relates to an improvement in a non-aqueous electrolyte secondary battery intended to improve discharge capacity and cycle characteristics.

携帯電話、ノートパソコン、PDA等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源として、高いエネルギー密度を有し、高容量である非水電解質二次電池が広く利用されている。   Mobile information terminals such as mobile phones, notebook computers, and PDAs are rapidly becoming smaller and lighter, and non-aqueous electrolyte secondary batteries with high energy density and high capacity are widely used as drive power sources. Has been.

近年では電池のさらなる高容量化が求められており、正極活物質をより高い電位となるまで充電して使用することにより、活物質利用率を高めることが試みられている。   In recent years, there has been a demand for higher capacity of batteries, and attempts have been made to increase the active material utilization rate by charging and using the positive electrode active material to a higher potential.

しかし、従来より正極活物質として用いられているコバルト酸リチウム(リチウム含有コバルト複合酸化物)を、リチウム基準で4.3Vよりも高い電位まで充電すると、化合物としての安定性の低下を招き、化合物が劣化し、サイクル特性が低下するという問題がある。   However, when lithium cobaltate (lithium-containing cobalt composite oxide) conventionally used as a positive electrode active material is charged to a potential higher than 4.3 V on the basis of lithium, the stability as a compound is reduced. Deteriorates and the cycle characteristics deteriorate.

この問題を解決するため、ジルコニウム、マグネシウム等の異種金属をコバルト酸リチウムに添加することにより、化合物の高い電位での安定性を高めることが提案されている。しかし、この技術は、高電位での熱安定性が十分ではなく、また充放電サイクルにより電解液(液状非水電解質)が正極に含まれる導電剤上で分解して、サイクル劣化を引き起こすという問題がある。   In order to solve this problem, it has been proposed to increase the stability of a compound at a high potential by adding a different metal such as zirconium or magnesium to lithium cobalt oxide. However, this technique has a problem that thermal stability at a high potential is not sufficient, and the electrolytic solution (liquid non-aqueous electrolyte) is decomposed on the conductive agent contained in the positive electrode by a charge / discharge cycle, causing cycle deterioration. There is.

このような非水電解質二次電池に関する技術としては、特許文献1〜7が提案されている。   Patent Documents 1 to 7 have been proposed as techniques relating to such a non-aqueous electrolyte secondary battery.

特開2001−102055号公報(請求項1、段落0003−0006)JP 2001-102055 A (Claim 1, paragraphs 0003-0006) 特開2001−283860号公報(請求項1、段落0006−0009)JP 2001-283860 A (Claim 1, paragraphs 0006-0009) 特開2003−86174号公報(請求項1、段落0015、0016)JP 2003-86174 A (Claim 1, paragraphs 0015 and 0016) 特開2004−207034号公報(請求項1、段落0007−0011)JP 2004-207034 A (Claim 1, paragraphs 0007-0011) 特開2004−71518号公報(請求項1、段落0008、0009)Japanese Patent Laying-Open No. 2004-71518 (Claim 1, paragraphs 0008 and 0009) 特開平10−233205号公報(請求項1、段落0006−0008)JP-A-10-233205 (Claim 1, paragraphs 0006-0008) 特開平10−284056号公報(請求項1、段落0006−0014)JP-A-10-284056 (Claim 1, paragraphs 0006-0014)

特許文献1は、比表面積が500m2/g以下、P=DSEM /DBET〔DSEM :走査型電子顕微鏡(SEM)で観察される粒子径、DBET =6/(S×ρ)、DBET :比表面積換算粒子径、S:比表面積ρ:密度〕で示される、表面凹凸度(P)が1≦P≦3である導電剤を用いる技術であり、この技術によると、電解液の分解を抑制し得るとされる。 Patent Document 1 has a specific surface area of 500 m 2 / g or less, P = D SEM / D BET [D SEM : particle diameter observed with a scanning electron microscope (SEM), D BET = 6 / (S × ρ), D BET : specific surface area converted particle diameter, S: specific surface area ρ: density], and a technique using a conductive agent having a surface irregularity (P) of 1 ≦ P ≦ 3. It is said that the decomposition of can be suppressed.

特許文献2は、SEMにより測定した平均粒子径が60〜100nmで、BET法により測定した比表面積が20〜30m2 /gのカーボンブラックを導電剤として用いる技術であり、この技術によると、正極活物質と正極集電体との密着性の低下を抑制し、負極側の電解液が徐々に正極側に移動することによる充放電反応の不均一化を防止し、サイクル特性を向上させ、負荷特性の低下を抑制できるとされる。 Patent Document 2 is a technique using carbon black having an average particle diameter measured by SEM of 60 to 100 nm and a specific surface area measured by BET method of 20 to 30 m 2 / g as a conductive agent. Suppresses the decrease in adhesion between the active material and the positive electrode current collector, prevents the electrolyte solution on the negative electrode side from gradually moving to the positive electrode side, prevents uneven charge / discharge reactions, improves cycle characteristics, It is said that deterioration of characteristics can be suppressed.

特許文献3は、BET比表面積が29m2/g以上の炭素材0.5〜6wt%を正極活物質の表面に付着させる技術であり、この技術によると、炭素材を正極活物質間に均等に介在させ、活物質間の電子の授受を円滑に行わせることができるとされる。 Patent Document 3 is a technology for adhering 0.5 to 6 wt% of a carbon material having a BET specific surface area of 29 m 2 / g or more to the surface of the positive electrode active material. According to this technology, the carbon material is evenly distributed between the positive electrode active materials. It is said that the transfer of electrons between the active materials can be performed smoothly.

特許文献4は、導電助剤として比表面積が35m2/g以上で45m2/g以下の第1アセチレンブラックと、比表面積が65m2/g以上で75m2/g以下の第2アセチレンブラックとを、正極活物質の質量に対してそれぞれ1質量%以上で2質量%以下含有させる技術であり、この技術によると、電子伝導性や電解液の吸液性を改善して、充分な負荷性能およびサイクル性能を有する非水電解質二次電池を提供できるとされる。 Patent Document 4 discloses a first acetylene black having a specific surface area of 35 m 2 / g or more and 45 m 2 / g or less as a conductive additive, and a second acetylene black having a specific surface area of 65 m 2 / g or more and 75 m 2 / g or less. Is a technology for containing 1% by mass to 2% by mass with respect to the mass of the positive electrode active material. According to this technology, the electron conductivity and the liquid absorbency of the electrolyte are improved, and sufficient load performance In addition, a nonaqueous electrolyte secondary battery having cycle performance can be provided.

特許文献5は、比面積30m2/g以上300m2/gを有する微粉グラファイトの導電助剤を用いる技術であり、この技術によると、スラリーやペーストを調製する際に、分散性がよく、また電池に組み込まれる際、粒子表面での電解液の保持を良好とすることができるとされる。 Patent Document 5 is a technique that uses a conductive assistant of fine graphite having a specific area of 30 m 2 / g or more and 300 m 2 / g. According to this technique, when preparing a slurry or paste, dispersibility is good, When incorporated into a battery, it is said that the electrolyte solution can be held well on the particle surface.

特許文献6は、平均粒径1〜50μmおよび比表面積5〜50m2/gの黒鉛粉末を厚さ1μm以下の薄片状に形成した薄片状黒鉛粉末を、導電性物質として正極合剤に対して0.5〜9.5重量%の範囲内で添加する技術であり、この技術によると、非水電解質二次電池の電池容量およびサイクル特性を大幅に改善できるとされる。 Patent Document 6 discloses that a flaky graphite powder in which a graphite powder having an average particle diameter of 1 to 50 μm and a specific surface area of 5 to 50 m 2 / g is formed into a flaky shape having a thickness of 1 μm or less is used as a conductive substance for a positive electrode mixture. It is a technique to be added within the range of 0.5 to 9.5% by weight, and according to this technique, it is said that the battery capacity and cycle characteristics of the nonaqueous electrolyte secondary battery can be greatly improved.

特許文献7は、正極または負極の少なくともいづれか一方の電極に、電極活物質と共に比表面積(BET法)が5〜50m2/g、平均粒径が1〜50μmの範囲、X線回折における面間隔d(002)が0.333〜0.340nm、結晶子の大きさがc軸方向(Lc)で40〜500nm、a軸方向(La)で40〜500nmである天然鱗片状黒鉛または膨張化黒鉛を用いる技術であり、この技術によると、電極活物質の体積変化が生じた場合でも電極活物質と集電材との間に電子伝導性を確保でき、かつ炭素質材料表面で電解質が分解して、炭酸ガスや炭化水素類等のガスが発生することや、これに伴い炭素質材料表面に炭化水素等被膜が生成することを抑制できるとされる。 Patent Document 7 discloses that at least one of a positive electrode and a negative electrode has an electrode active material and a specific surface area (BET method) of 5 to 50 m 2 / g, an average particle diameter of 1 to 50 μm, and an interplanar spacing in X-ray diffraction. Technology using natural scaly graphite or expanded graphite having d (002) of 0.333 to 0.340 nm, crystallite size of 40 to 500 nm in the c-axis direction (Lc), and 40 to 500 nm in the a-axis direction (La) According to this technique, even when the volume change of the electrode active material occurs, the electron conductivity can be secured between the electrode active material and the current collector, and the electrolyte decomposes on the surface of the carbonaceous material, so that carbon dioxide gas It can be said that generation of gas such as hydrocarbons and hydrocarbons and generation of a film such as hydrocarbons on the surface of the carbonaceous material can be suppressed.

しかし、この上記特許文献1〜7に係る技術は、いずれも正極活物質を高い電位で使用することを考慮しておらず、この点でさらなる改良が求められる。   However, none of the techniques according to Patent Documents 1 to 7 consider use of the positive electrode active material at a high potential, and further improvements are required in this respect.

本発明は、以上に鑑みなされたものであって、高容量で且つサイクル特性に優れた非水電解質二次電池を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the high capacity | capacitance and the nonaqueous electrolyte secondary battery excellent in cycling characteristics.

上記課題を解決するための非水電解質二次電池に係る本発明は、正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩とを有する非水電解質と、を備える非水電解質二次電池において、前記正極活物質が、LiCo1−x−y−zZrMg(MはAl,Ti,Snの少なくとも一種であり、0a≦1.1、0.0001≦x、0.0001≦y、x+y+z≦0.03)で表されるジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物と、LiMnNiCo(XはZr,Mg,Al,Ti,Snの少なくとも一種、0b≦1.1、0.1≦s≦0.5、0.1≦t≦0.5、0.95≦s/t≦1.05、v=0または0.0001≦v≦0.03、s+t+u+v=1)で表される層状構造を有するリチウムニッケルマンガン複合酸化物と、が質量比で51:49〜90:10の割合で混合されてなり、前記正極活物質の電位がリチウム基準で4.4〜4.6Vであり、前記正極が更に、導電剤として比表面積が2〜50m2/gの炭素材料を0.1〜5質量%有することを特徴とする。
The present invention related to a non-aqueous electrolyte secondary battery for solving the above problems includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte having a non-aqueous solvent and an electrolyte salt. In the non-aqueous electrolyte secondary battery provided, the positive electrode active material is Li a Co 1-xy- Zr x Mg y M z O 2 (M is at least one of Al, Ti, and Sn, and 0 < a ≦ 1.1, 0.0001 ≦ x, 0.0001 ≦ y, x + y + z ≦ 0.03), a lithium cobalt composite oxide to which zirconium and magnesium are added, and Li b Mn s Ni t Co u X v O 2 (X is at least one of Zr, Mg, Al, Ti, Sn, 0 < b ≦ 1.1, 0.1 ≦ s ≦ 0.5, 0.1 ≦ t ≦ 0.5, 0. 95 ≦ s / t ≦ 1.05, v = 0 or 0.0001 ≦ v 0.03, s + t + u + v = 1) and the lithium-nickel-manganese composite oxide having a layered structure represented by, but a weight ratio 51: 49 to 90: is mixed at 10 a rate of result, the potential of the positive electrode active material It is 4.4-4.6V on lithium basis, The said positive electrode further has 0.1-5 mass% of carbon materials whose specific surface area is 2-50 m < 2 > / g as a electrically conductive agent, It is characterized by the above-mentioned.

上記構成では、正極活物質としてジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物を有しており、この化合物は高電位(リチウム基準で4.4〜4.6V)での安定性に優れる。さらに、この化合物とともに、高電位での熱安定性に優れた層状構造を有するリチウムニッケルマンガン複合酸化物が配合されているため、高電位での熱安定性にも優れる。   In the said structure, it has lithium cobalt complex oxide with which zirconium and magnesium were added as a positive electrode active material, and this compound is excellent in stability in high potential (4.4-4.6V on lithium basis). . Furthermore, since the lithium nickel manganese composite oxide having a layered structure excellent in thermal stability at high potential is blended with this compound, thermal stability at high potential is also excellent.

上記ジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物は、LiaCo1−x−y−zZrMg2(MはAl,Ti,Snの少なくとも一種であり、0a≦1.1、0.0001≦x、0.0001≦y、x+y+z≦0.03)で示されるものである。また、層状リチウムニッケルマンガン複合酸化物は、LiMnNiCo(XはZr,Mg,Al,Ti,Snの少なくとも一種、01.1、0.1≦s≦0.5、0.1≦t≦0.5、0.95≦s/t≦1.05、v=0または0.0001≦v≦0.03、s+t+u+v=1)で示されるものである。これらの化合物には、コバルト・ニッケル・マンガン等の合計モル数に対するリチウムのモル数を大きくできるので、充放電に寄与するリチウム量を十分に大きくすることができる。
The lithium cobalt composite oxide to which zirconium and magnesium are added is Li a Co 1-xyz Zr x Mg y M z O 2 (M is at least one of Al, Ti, Sn, and 0 < a ≦ 1.1, 0.0001 ≦ x, 0.0001 ≦ y, x + y + z ≦ 0.03). Further, the layered lithium-nickel-manganese composite oxide, Li b Mn s Ni t Co u X v O 2 (X is Zr, Mg, Al, Ti, at least one of Sn, 0 <b <1.1,0.1 ≦ s ≦ 0.5, 0.1 ≦ t ≦ 0.5, 0.95 ≦ s / t ≦ 1.05, v = 0 or 0.0001 ≦ v ≦ 0.03, s + t + u + v = 1) Is. Since these compounds can increase the number of moles of lithium relative to the total number of moles of cobalt, nickel, manganese, etc., the amount of lithium contributing to charge / discharge can be sufficiently increased.

また、上記構成では、正極が導電剤として比表面積が2〜50m2/gの炭素材料を0.1〜5質量%含む。導電剤の比表面積が2m2/g未満であると、正極の導電パスが良好に形成されない。他方、比表面積が50m2/gより大きいと、高電位での充放電サイクルによる導電剤上での電解液の分解を十分に抑制できない。上記範囲に比表面積が規制された炭素材料からなる導電剤を用いることにより、正極導電剤上での電解液の分解反応を抑制でき、且つ活物質間の導電パスを良好に保つことができるので、サイクル特性に優れた電池を実現することができる。 Moreover, in the said structure, a positive electrode contains 0.1-5 mass% of carbon materials whose specific surface area is 2-50 m < 2 > / g as a electrically conductive agent. When the specific surface area of the conductive agent is less than 2 m 2 / g, the conductive path of the positive electrode is not satisfactorily formed. On the other hand, when the specific surface area is larger than 50 m 2 / g, decomposition of the electrolytic solution on the conductive agent due to a charge / discharge cycle at a high potential cannot be sufficiently suppressed. By using a conductive agent made of a carbon material whose specific surface area is regulated within the above range, the decomposition reaction of the electrolytic solution on the positive electrode conductive agent can be suppressed, and the conductive path between the active materials can be kept good. A battery having excellent cycle characteristics can be realized.

また、導電剤の含有量が0.1質量%未満であると、導電パスが粗となるので、サイクル特性が低下する。他方、導電剤の含有量が5質量%より多いと、正極活物質量が減少するため、放電容量が低下する。このため、導電剤の含有量が、上記範囲内に規制されていることが好ましい。   On the other hand, if the content of the conductive agent is less than 0.1% by mass, the conductive path becomes rough, so that the cycle characteristics are deteriorated. On the other hand, when the content of the conductive agent is more than 5% by mass, the amount of the positive electrode active material is decreased, so that the discharge capacity is decreased. For this reason, it is preferable that the content of the conductive agent is regulated within the above range.

上記炭素材料としては、アセチレンブラック、サーマルブラック、ファーネスブラック、天然黒鉛、人造黒鉛の一種あるいは複数種混合したものが使用できる。   As the carbon material, acetylene black, thermal black, furnace black, natural graphite, artificial graphite, or a mixture of plural kinds thereof can be used.

なお、本願発明の効果を十分に得るためには、ジルコニウムの添加量、LiaCo1−x−y−zZrMgにおいて、0.0001≦xとする。また、本願発明の効果を十分に得るためには、マグネシウムの添加量は、0.0001≦yでとする。また、ジルコニウム、マグネシウム以外に、Al,Ti,Snが0.0002≦zの割合で添加されていてもよいが、添加金属の合計x+y+zが0.03より大きくなると、電池容量が低下するため好ましくない。
In order to obtain the effect of the present invention sufficiently, the addition amount of zirconium, in Li a Co 1-x-y -z Zr x Mg y M z O 2, and 0.0001 ≦ x. Further, in order to obtain the effect of the present invention sufficiently, the addition amount of magnesium, and at 0.0001 ≦ y. Further, in addition to zirconium and magnesium, Al, Ti, and Sn may be added in a ratio of 0.0002 ≦ z. However, if the total x + y + z of the added metals is larger than 0.03, the battery capacity is decreased, which is preferable. Absent.

また、本願発明の効果を十分に得るためには、LiMnNiCoにおいて、ニッケルの含有量0.1≦s≦0.5とし、マンガンの含有量0.1≦t≦0.5とする。また、高い熱安定性を得るためには、ニッケルとマンガンとの比s/t0.95〜1.05の範囲内とする。また、化合物の熱安定性をさらに高めるために、Zr,Mg,Al,Ti,Sn等の異種元素が、0.0001≦v≦0.03の割合で添加されていてもよい。
Further, in order to obtain the effect of the present invention sufficiently, Li b Mn s Ni t Co u X v in O 2, the nickel content was set to 0.1 ≦ s ≦ 0.5, the manganese content is 0 and .1 ≦ t ≦ 0.5. In order to obtain high thermal stability, the ratio s / t of nickel and manganese in the range of 0.95 to 1.05. Further, in order to further increase the thermal stability of the compound, a different element such as Zr, Mg, Al, Ti, or Sn may be added at a ratio of 0.0001 ≦ v ≦ 0.03.

また、正極活物質中のリチウムコバルト複合酸化物の含有量が51質量%より少ないと、電池容量、サイクル特性、保存特性が低下するおそれがあり、また、層状構造のリチウムニッケルマンガン複合酸化物の含有量が10質量%未満であると、正極活物質の高電位での熱安定性の向上効果が十分に得られない。このため、リチウムコバルト複合酸化物と、層状リチウムニッケルマンガン複合酸化物の質量比は、51:49〜90:10とし、より好ましくは70:30〜80:20とする。
In addition, when the content of the lithium cobalt composite oxide in the positive electrode active material is less than 51% by mass, the battery capacity, cycle characteristics, and storage characteristics may be deteriorated, and the lithium nickel manganese composite oxide having a layered structure may be deteriorated. When the content is less than 10% by mass, the effect of improving the thermal stability of the positive electrode active material at a high potential cannot be sufficiently obtained. For this reason, the mass ratio of the lithium cobalt composite oxide and the layered lithium nickel manganese composite oxide is 51:49 to 90:10, and more preferably 70:30 to 80:20.

ここで、上記構成において、前記炭素材料の比表面積が20m2/g以上とすることができる。 Here, in the above configuration, the specific surface area of the carbon material can be 20 m 2 / g or more.

炭素材料の比表面積が20m2/g以上であると、正極の導電性向上効果が大きく、負荷特性が向上する点で好ましい。 When the specific surface area of the carbon material is 20 m 2 / g or more, it is preferable in that the positive electrode has a large effect of improving the conductivity and the load characteristics are improved.

上記構成においては、前記負極活物質が、炭素質物からなるもの、とすることができる。   In the above configuration, the negative electrode active material may be made of a carbonaceous material.

電池電圧は、正極の電位と負極の電位との差で示されるが、電池電圧を大きくすることにより、電池の容量を大きくすることができるが、負極活物質として電位の低い炭素質物(リチウム基準で約0.1V)を用いると、電池電圧が高く、正極活物質の利用率の高い電池が得られる。   The battery voltage is indicated by the difference between the positive electrode potential and the negative electrode potential. By increasing the battery voltage, the battery capacity can be increased, but the negative electrode active material is a low-potential carbonaceous material (lithium reference). About 0.1 V), a battery having a high battery voltage and a high utilization rate of the positive electrode active material can be obtained.

上記炭素質物としては、天然黒鉛、人造黒鉛、カーボンブラック、コークス、ガラス状炭素、炭素繊維、またはこれらの焼成体の一種あるいは複数種混合したものが使用できる。   As the carbonaceous material, natural graphite, artificial graphite, carbon black, coke, glassy carbon, carbon fiber, or one or a mixture of these fired bodies can be used.

また、上記構成においては、前記非水電解質にさらに、ビニレンカーボネートを0.5〜5質量%含めることができる。   Moreover, in the said structure, 0.5-5 mass% of vinylene carbonate can further be included in the said nonaqueous electrolyte.

ビニレンカーボネートを非水電解質に添加すると、サイクル特性が向上する。しかし、添加量が過小であると十分な効果が得られない一方、過大であると初期容量の低下と高温時に、特に角形電池で電池厚みの膨れをまねく。このため、添加量は非水電解質全質量に対し、好ましくは0.5〜5質量%とし、より好ましくは1〜3質量%とする   When vinylene carbonate is added to the nonaqueous electrolyte, cycle characteristics are improved. However, if the added amount is too small, a sufficient effect cannot be obtained. On the other hand, if the added amount is too large, the initial capacity decreases and the battery thickness swells particularly at a high temperature at a high temperature. For this reason, the addition amount is preferably 0.5 to 5% by mass, more preferably 1 to 3% by mass with respect to the total mass of the nonaqueous electrolyte.

また、上記構成においては、前記リチウムニッケルマンガン複合酸化物が、その結晶構造中にコバルトを含むものとすることができる。   Moreover, in the said structure, the said lithium nickel manganese complex oxide shall contain cobalt in the crystal structure.

リチウムニッケルマンガン複合酸化物の結晶構造中にコバルトが含まれると、このコバルトが放電特性を向上させるように作用する点で好ましい。その添加量は、上記化学式において好ましくは0.1≦u≦0.8とする。   When cobalt is contained in the crystal structure of the lithium nickel manganese composite oxide, this cobalt is preferable in that it acts to improve discharge characteristics. The amount added is preferably 0.1 ≦ u ≦ 0.8 in the above chemical formula.

また、上記課題を解決するための非水電解質二次電池の充電方法に係る本発明は、正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩とを有する非水電解質と、を備え、前記正極活物質が、LiCo1−x−y−zZrMg(MはAl,Ti,Snの少なくとも一種であり、0a≦1.1、0.0001≦x、0.0001≦y、x+y+z≦0.03)で表されるジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物と、LiMnNiCo(XはZr,Mg,Al,Ti,Snの少なくとも一種、0b≦1.1、0.1≦s≦0.5、0.1≦t≦0.5、0.95≦s/t≦1.05、v=0または0.0001≦v≦0.03、s+t+u+v=1)で表される層状構造を有するリチウムニッケルマンガン複合酸化物と、が質量比で51:49〜90:10の割合で混合されてなり、前記正極が更に、導電剤として比表面積が2〜50m2/gの炭素材料を0.1〜5質量%有する非水電解質二次電池の充電方法であって、前記正極活物質の電位がリチウム基準で4.4〜4.6Vとなるまで充電することを特徴とする。 Further, the present invention relating to a method for charging a non-aqueous electrolyte secondary battery for solving the above-described problem is a non-aqueous electrolyte having a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, a non-aqueous solvent, and an electrolyte salt. A positive electrode active material, wherein Li a Co 1-xy- Zr x Mg y M z O 2 (M is at least one of Al, Ti, and Sn, and 0 < a ≦ 1) .1, 0.0001 ≦ x, 0.0001 ≦ y, x + y + z ≦ 0.03), and a lithium cobalt composite oxide to which zirconium and magnesium are added, and Li b Mn s N t Co u X v O 2 (X is at least one of Zr, Mg, Al, Ti, Sn, 0 < b ≦ 1.1, 0.1 ≦ s ≦ 0.5, 0.1 ≦ t ≦ 0.5, 0.95 ≦ s / t ≦ 1.05, v = 0 or 0.0001 ≦ v ≦ 0.03, + T + u + v = 1) and a lithium nickel manganese composite oxide having a layered structure represented by a mass ratio of 51:49 to 90:10, and the positive electrode further has a specific surface area as a conductive agent. A method for charging a non-aqueous electrolyte secondary battery having 0.1 to 5% by mass of a carbon material of 2 to 50 m 2 / g, wherein the potential of the positive electrode active material is 4.4 to 4.6 V based on lithium. It is characterized by charging up to.

上記方法を採用することにより、容量が高く、高電位での放電性能に優れた非水電解質二次電池を提供することができる。   By adopting the above method, it is possible to provide a nonaqueous electrolyte secondary battery having a high capacity and excellent discharge performance at a high potential.

上記本発明によると、高電位での正極活物質の安定性が高く、且つ高電位での電解液の分解を抑制できるので、高容量でサイクル特性に優れた非水電解質二次電池を実現することができる。   According to the present invention, the stability of the positive electrode active material at a high potential is high, and the decomposition of the electrolyte solution at a high potential can be suppressed, thereby realizing a non-aqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics. be able to.

本発明を実施するための最良の形態を、実施例を用いて詳細に説明する。なお、本発明は下記の形態に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。   The best mode for carrying out the present invention will be described in detail with reference to examples. In addition, this invention is not limited to the following form, In the range which does not change the summary, it can change suitably and can implement.

(実施例1)
〈正極の作製〉
コバルト(Co)に対して0.2mol%のジルコニウム(Zr)と、コバルトに対して0.5mol%のマグネシウム(Mg)とを共沈させ、熱分解反応させて、ジルコニウム、マグネシウム含有四酸化三コバルトを得た。この四酸化三コバルトと炭酸リチウムとを混合し、空気雰囲気中で850℃で24時間焼成し、その後乳鉢で平均粒径が14μmとなるまで粉砕して、ジルコニウム、マグネシウム含有リチウムコバルト複合酸化物(正極活物質A)を得た。
Example 1
<Preparation of positive electrode>
Co-precipitation of 0.2 mol% of zirconium (Zr) with respect to cobalt (Co) and 0.5 mol% of magnesium (Mg) with respect to cobalt, followed by thermal decomposition reaction, gave zirconium and magnesium-containing trioxide. Cobalt was obtained. This tricobalt tetroxide and lithium carbonate are mixed, calcined in an air atmosphere at 850 ° C. for 24 hours, and then pulverized in a mortar until the average particle size becomes 14 μm. A positive electrode active material A) was obtained.

炭酸リチウムと、Ni0.33Mn0.33Co0.34(OH)2で示される共沈水酸化物とを混合し、空気雰囲気中で1000℃で20時間焼成し、その後乳鉢で平均粒径が5μmとなるまで粉砕して、コバルト含有リチウムニッケルマンガン複合酸化物(正極活物質B)を得た。なお、この正極活物質BのX線結晶構造回析を行ったところ、層状構造であることが確認された。 Lithium carbonate and a coprecipitated hydroxide represented by Ni 0.33 Mn 0.33 Co 0.34 (OH) 2 are mixed, baked at 1000 ° C. for 20 hours in an air atmosphere, and then ground in an mortar until the average particle size becomes 5 μm. Thus, a cobalt-containing lithium nickel manganese composite oxide (positive electrode active material B) was obtained. In addition, when the X-ray crystal structure diffraction of this positive electrode active material B was performed, it was confirmed that it is a layered structure.

正極活物質Aと正極活物質Bとを質量比7:3で混合した正極活物質94質量部と、導電剤としての比表面積が40m2/gであるアセチレンブラック3質量部と、結着剤としてのポリフッ化ビニリデン(PVdF)3質量部と、N−メチルピロリドンとを混合して正極活物質スラリーとした。この正極活物質スラリーをアルミニウム製の正極集電体(厚み15μm)の両面に塗布し、乾燥・圧延して正極を作製した。 94 parts by mass of a positive electrode active material obtained by mixing the positive electrode active material A and the positive electrode active material B at a mass ratio of 7: 3, 3 parts by mass of acetylene black having a specific surface area of 40 m 2 / g as a conductive agent, and a binder As a positive electrode active material slurry, 3 parts by mass of polyvinylidene fluoride (PVdF) and N-methylpyrrolidone were mixed. This positive electrode active material slurry was applied on both sides of an aluminum positive electrode current collector (thickness 15 μm), dried and rolled to produce a positive electrode.

〈負極の作製〉
負極活物質としての黒鉛95質量部と、増粘剤としてのカルボキシメチルセルロース3質量部と、結着剤としてのスチレンブタジエンゴム2質量部と、水とを混合して負極活物質スラリーとした。この負極活物質スラリーを銅製の負極集電体(厚み8μm)の両面に塗布し、乾燥・圧延して負極を作製した。
<Preparation of negative electrode>
A negative electrode active material slurry was prepared by mixing 95 parts by mass of graphite as a negative electrode active material, 3 parts by mass of carboxymethyl cellulose as a thickener, 2 parts by mass of styrene butadiene rubber as a binder, and water. This negative electrode active material slurry was applied to both sides of a copper negative electrode current collector (thickness 8 μm), dried and rolled to produce a negative electrode.

なお、黒鉛の電位はリチウム基準で0.1Vである。また、正極及び負極の活物質充填量は、設計基準となる正極活物質の電位(本実施例ではリチウム基準で4.4Vであり、電池電圧は4.3V)において、正極と負極の充電容量比(負極充電容量/正極充電容量)を1.1となるように調整した。   The potential of graphite is 0.1 V with respect to lithium. The positive electrode and negative electrode active material filling amounts are the positive electrode active material potential (designated as 4.4 V on the lithium basis and 4.3 V battery voltage in this example), and the positive and negative electrode charge capacities. The ratio (negative electrode charge capacity / positive electrode charge capacity) was adjusted to 1.1.

〈電極体の作製〉
上記正極及び負極を、ポリプロピレン製微多孔膜からなるセパレータを介して巻回することにより、電極体を作製した。
<Production of electrode body>
The positive electrode and the negative electrode were wound through a separator made of a polypropylene microporous film to produce an electrode body.

〈電解液の調整〉
非水溶媒としてのエチレンカーボネート(EC)とジエチルカーボネート(DEC)とメチルエチルカーボネート(MEC)とを体積比20:30:50(25℃)で混合し、電解質塩としてのLiPF6を1M(モル/リットル)となるように溶解して、電解液となした。
<Adjustment of electrolyte>
Ethylene carbonate (EC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) as a nonaqueous solvent are mixed at a volume ratio of 20:30:50 (25 ° C.), and LiPF 6 as an electrolyte salt is mixed with 1 M (mol). / Liter) to obtain an electrolytic solution.

〈電池の組み立て〉
外装缶に上記電極体を挿入した後、上記電解液を注液し、外装缶の開口部を封口することにより、実施例1に係る非水電解質二次電池(幅34mm×高さ43mm×厚み5mm)を作製した。
<Assembly of battery>
After the electrode body is inserted into the outer can, the electrolyte solution is injected, and the opening of the outer can is sealed, whereby the nonaqueous electrolyte secondary battery according to Example 1 (width 34 mm × height 43 mm × thickness). 5 mm).

(実施例2)
設計基準となる正極活物質の電位を4.5Vに変更し、正極と負極の充電容量比が1.1となるように正極及び負極の活物質充填量を調整したこと以外は、上記実施例1と同様にして、実施例2に係る非水電解質二次電池を作製した。
(Example 2)
The above examples except that the potential of the positive electrode active material as a design standard was changed to 4.5 V, and the active material filling amount of the positive electrode and the negative electrode was adjusted so that the charge capacity ratio of the positive electrode and the negative electrode was 1.1. In the same manner as in Example 1, a nonaqueous electrolyte secondary battery according to Example 2 was produced.

(実施例3)
設計基準となる正極活物質の電位を4.6Vに変更し、正極と負極の充電容量比が1.1となるように正極及び負極の活物質充填量を調整したこと以外は、上記実施例1と同様にして、実施例3に係る非水電解質二次電池を作製した。
(Example 3)
The above examples except that the potential of the positive electrode active material serving as the design standard is changed to 4.6 V and the active material filling amount of the positive electrode and the negative electrode is adjusted so that the charge capacity ratio between the positive electrode and the negative electrode is 1.1. In the same manner as in Example 1, a nonaqueous electrolyte secondary battery according to Example 3 was produced.

(実施例4)
導電剤として、比表面積が15m2/gであるアセチレンブラックを用いたこと以外は、上記実施例2と同様にして、実施例4に係る非水電解質二次電池を作製した。
Example 4
A nonaqueous electrolyte secondary battery according to Example 4 was produced in the same manner as in Example 2 except that acetylene black having a specific surface area of 15 m 2 / g was used as the conductive agent.

(実施例5)
導電剤として、比表面積が18m2/gであるアセチレンブラックを用いたこと以外は、上記実施例2と同様にして、実施例5に係る非水電解質二次電池を作製した。
(Example 5)
A nonaqueous electrolyte secondary battery according to Example 5 was produced in the same manner as in Example 2 except that acetylene black having a specific surface area of 18 m 2 / g was used as the conductive agent.

(実施例6)
導電剤として、比表面積が20m2/gであるアセチレンブラックを用いたこと以外は、上記実施例2と同様にして、実施例6に係る非水電解質二次電池を作製した。
(Example 6)
As a conductive agent, except that the specific surface area of acetylene black was used a 20 m 2 / g, in the same manner as in Example 2, was used to fabricate a non-aqueous electrolyte secondary cell according to example 6.

(実施例7)
導電剤として、比表面積が32m2/gであるアセチレンブラックを用いたこと以外は、上記実施例2と同様にして、実施例7に係る非水電解質二次電池を作製した。
(Example 7)
A nonaqueous electrolyte secondary battery according to Example 7 was produced in the same manner as in Example 2 except that acetylene black having a specific surface area of 32 m 2 / g was used as the conductive agent.

(実施例8)
導電剤として、比表面積が50m2/gであるアセチレンブラックを用いたこと以外は、上記実施例2と同様にして、実施例8に係る非水電解質二次電池を作製した。
(Example 8)
A nonaqueous electrolyte secondary battery according to Example 8 was produced in the same manner as in Example 2 except that acetylene black having a specific surface area of 50 m 2 / g was used as the conductive agent.

(比較例1)
導電剤として、比表面積が53m2/gであるアセチレンブラックを用いたこと以外は、上記実施例2と同様にして、比較例1に係る非水電解質二次電池を作製した。
(Comparative Example 1)
A nonaqueous electrolyte secondary battery according to Comparative Example 1 was produced in the same manner as in Example 2 except that acetylene black having a specific surface area of 53 m 2 / g was used as the conductive agent.

(比較例2)
導電剤として、比表面積が67m2/gであるアセチレンブラックを用いたこと以外は、上記実施例2と同様にして、比較例2に係る非水電解質二次電池を作製した。
(Comparative Example 2)
As a conductive agent, the specific surface area, except for using acetylene black as a 67m 2 / g, in the same manner as in Example 2, was used to fabricate a non-aqueous electrolyte secondary cell according to comparative example 2.

(比較例3)
設計基準となる正極活物質の電位を4.3Vに変更し、正極と負極の充電容量比が1.1となるように正極及び負極の活物質充填量を調整したこと以外は、上記実施例1と同様にして、比較例3に係る非水電解質二次電池を作製した。
(比較例4)
設計基準となる正極活物質の電位を4.7Vに変更し、正極と負極の充電容量比が1.1となるように正極及び負極の活物質充填量を調整したこと以外は、上記実施例1と同様にして、比較例4に係る非水電解質二次電池を作製した。
(Comparative Example 3)
Except that the positive electrode active material potential as a design standard was changed to 4.3 V and the active material filling amount of the positive electrode and the negative electrode was adjusted so that the charge capacity ratio between the positive electrode and the negative electrode was 1.1. In the same manner as in Example 1, a nonaqueous electrolyte secondary battery according to Comparative Example 3 was produced.
(Comparative Example 4)
Except that the positive electrode active material potential as a design standard was changed to 4.7 V and the active material filling amount of the positive electrode and the negative electrode was adjusted so that the charge capacity ratio between the positive electrode and the negative electrode was 1.1. In the same manner as in Example 1, a nonaqueous electrolyte secondary battery according to Comparative Example 4 was produced.

なお、導電剤の比表面積は、平均粒径の変更や表面改質により制御した。   The specific surface area of the conductive agent was controlled by changing the average particle size or modifying the surface.

〔電位と正極活物質1gあたりの充電容量との関係〕
上記実施例1で作製した正極を用いた三極式セル(対極:リチウム金属、参照極:リチウム金属)を作製し、25℃における各充電電位における活物質1gあたりの正極充電容量を測定した。この結果を下記表1に示す。
[Relationship between potential and charge capacity per gram of positive electrode active material]
A tripolar cell (counter electrode: lithium metal, reference electrode: lithium metal) using the positive electrode prepared in Example 1 was prepared, and the positive electrode charge capacity per gram of active material at each charging potential at 25 ° C. was measured. The results are shown in Table 1 below.

Figure 0004530843
Figure 0004530843

上記実施例1〜8、比較例1〜4において、設計基準となる電位における正極充電容量は上記表1から算出し、負極充電容量は黒鉛の理論容量から算出した。   In the said Examples 1-8 and Comparative Examples 1-4, the positive electrode charge capacity in the electric potential used as a design standard was computed from the said Table 1, and the negative electrode charge capacity was computed from the theoretical capacity | capacitance of graphite.

〈電池特性試験〉
上記各電池に対し、下記条件で電池特性の試験を行った。この結果を下記表2に示す。
<Battery characteristics test>
The above battery was tested for battery characteristics under the following conditions. The results are shown in Table 2 below.

〔高温保存試験〕
充電条件:定電流 1It(電池容量÷1時間で表される値)、定電圧(各電池の電池電圧)、合計3時間、25℃
保存条件:100℃、72時間
放電条件:定電流 1It、終止電圧 3.0V、25℃
保存特性(%):(保存後放電容量/保存前放電容量)×100
[High temperature storage test]
Charging conditions: constant current 1 It (battery capacity divided by 1 hour), constant voltage (battery voltage of each battery), total 3 hours, 25 ° C
Storage conditions: 100 ° C., 72 hours Discharge conditions: constant current 1 It, final voltage 3.0 V, 25 ° C.
Storage characteristics (%): (discharge capacity after storage / discharge capacity before storage) × 100

〔サイクル特性試験〕
充電条件:定電流 1It(電池容量÷1時間で表される値)、定電圧(各電池の電池電圧)、合計3時間、25℃
放電条件:定電流 1It、終止電圧 3.0V、25℃
サイクル特性(%):(300サイクル目放電容量/1サイクル目放電容量)×100
[Cycle characteristic test]
Charging conditions: constant current 1 It (battery capacity divided by 1 hour), constant voltage (battery voltage of each battery), total 3 hours, 25 ° C
Discharge conditions: constant current 1 It, final voltage 3.0 V, 25 ° C.
Cycle characteristics (%): (300th cycle discharge capacity / first cycle discharge capacity) × 100

〔負荷特性試験〕
負荷放電条件:定電流 2.5It(電池容量÷1時間×2.5で表される値)、終止電圧 3.0V、25℃
負荷特性(%):(負荷放電容量/1It放電容量)×100
[Load characteristic test]
Load discharge conditions: constant current 2.5 It (battery capacity / value expressed by 1 hour × 2.5), final voltage 3.0 V, 25 ° C.
Load characteristics (%): (Load discharge capacity / 1 It discharge capacity) × 100

Figure 0004530843
Figure 0004530843

上記表2から、電池電圧が4.3〜4.5Vである実施例1〜3では、電池容量が820〜910mAhと、電池電圧が4.2Vである比較例3の770mAhに比べて電池容量が50〜140mAh大きくなっていることがわかる。   From Table 2 above, in Examples 1 to 3 where the battery voltage is 4.3 to 4.5 V, the battery capacity is 820 to 910 mAh, compared to 770 mAh of Comparative Example 3 where the battery voltage is 4.2 V. It can be seen that is increased by 50 to 140 mAh.

このことは、次のように考えられる。実施例1〜3では、正極が比較例3よりも高い電位まで正極が充電されており、正極活物質の利用率が高くなるため、電池容量が大きくなる。   This is considered as follows. In Examples 1 to 3, since the positive electrode is charged to a higher potential than that of Comparative Example 3, and the utilization rate of the positive electrode active material is increased, the battery capacity is increased.

また、電池電圧が4.6Vである比較例4では、サイクル特性が68%と、電池電圧が4.3〜4.5Vである実施例1〜3の84〜85%よりも大きく劣化していることがわかる。   Moreover, in the comparative example 4 whose battery voltage is 4.6V, cycling characteristics are 68% and deteriorated much more than 84-85% of Examples 1-3 whose battery voltage is 4.3-4.5V. I understand that.

このことは次のように考えられる。電池電圧が4.6Vと高くなると、正極活物質の安定性が低下し、活物質の劣化が生じる。このため、サイクル劣化が大きくなる。他方、電池電圧が4.3〜4.5Vの範囲内では、活物質の劣化が生じない。なお、サイクル特性試験後の各電池を分解したところ、実施例1〜3においては活物質の劣化は見られなかったが、比較例4では活物質が大きく劣化していることが確認された。   This is considered as follows. When the battery voltage is as high as 4.6 V, the stability of the positive electrode active material is lowered and the active material is deteriorated. For this reason, cycle deterioration becomes large. On the other hand, when the battery voltage is in the range of 4.3 to 4.5 V, the active material does not deteriorate. In addition, when each battery after a cycle characteristic test was decomposed | disassembled, although deterioration of the active material was not seen in Examples 1-3, it was confirmed in Comparative Example 4 that the active material has deteriorated greatly.

また、導電剤の比表面積が53〜67m2/gである比較例1、比較例2では、保存特性が72%、73%、サイクル特性が74%、63%と、導電剤の比表面積が15〜50m2/gである実施例2、実施例4〜8の83〜85%、88〜92%よりも大きく劣化していることがわかる。 In Comparative Examples 1 and 2 where the specific surface area of the conductive agent is 53 to 67 m 2 / g, the storage characteristics are 72% and 73%, the cycle characteristics are 74% and 63%, and the specific surface area of the conductive agent is It turns out that it is deteriorated more than 83-85% of Example 2 and Examples 4-8 which are 15-50 m < 2 > / g, 88-92%.

このことは次のように考えられる。導電剤の比表面積が50m2/gより大きいと、導電剤上での電解液の分解反応を抑制できないため、サイクル劣化が大きくなる。他方、導電剤の比表面積が50m2/g以下であると、電解液の分解反応を十分に抑制できるので、サイクル劣化が生じない。なお、サイクル特性試験後の各電池を分解したところ、実施例2、実施例4〜7においては電解液の劣化は見られなかったが、比較例1、比較例2では電解液が分解していることが確認された。 This is considered as follows. If the specific surface area of the conductive agent is larger than 50 m 2 / g, the decomposition reaction of the electrolytic solution on the conductive agent cannot be suppressed, so that the cycle deterioration becomes large. On the other hand, when the specific surface area of the conductive agent is 50 m 2 / g or less, the decomposition reaction of the electrolytic solution can be sufficiently suppressed, so that cycle deterioration does not occur. In addition, when each battery after the cycle characteristic test was disassembled, in Examples 2 and 4 to 7, the electrolyte solution was not deteriorated, but in Comparative Examples 1 and 2, the electrolyte solution was decomposed. It was confirmed that

また、導電剤の比表面積が15〜18m2/gである実施例4、実施例5では、負荷特性が75%、78%と、導電剤の比表面積が20〜50m2/gである実施例2、実施例6〜8の83〜85%よりも僅かに劣化していることがわかる。 In Examples 4 and 5 where the specific surface area of the conductive agent is 15 to 18 m 2 / g, the load characteristics are 75% and 78%, and the specific surface area of the conductive agent is 20 to 50 m 2 / g. It turns out that it deteriorates slightly from 83-85% of Example 2 and Examples 6-8.

このことは、導電剤の比表面積が20m2/g未満であると、正極の導電性向上効果が小さくなり、負荷特性を低下させるためと考えられる。 This is considered to be because when the specific surface area of the conductive agent is less than 20 m 2 / g, the effect of improving the conductivity of the positive electrode is reduced and the load characteristics are reduced.

(その他の事項)
本発明においては、電池形状は限定されないので、角型外装缶以外に、円筒型外装缶、コイン型外装体、ラミネート外装体を用いることができる。
(Other matters)
In the present invention, since the battery shape is not limited, a cylindrical outer can, a coin outer body, and a laminated outer body can be used in addition to the rectangular outer can.

また、非水溶媒としてはジエチルカーボネート、エチレンカーボネート、メチルエチルカーボネート、プロピレンカーボネート、γ−ブチロラクトン、ジメチルカーボネート、テトラヒドロフラン、1,2−ジメトキシエタン、1,3−ジオキソラン、2−メトキシテトラヒドロフラン、ジエチルエーテル等を用いることができる。   Nonaqueous solvents include diethyl carbonate, ethylene carbonate, methyl ethyl carbonate, propylene carbonate, γ-butyrolactone, dimethyl carbonate, tetrahydrofuran, 1,2-dimethoxyethane, 1,3-dioxolane, 2-methoxytetrahydrofuran, diethyl ether, etc. Can be used.

また、電解質塩としては、上記LiPF6以外に、LiN(C25SO22、LiN(CF3SO22、LiClO4、LiBF4等の一種または複数種の混合物が使用できる。 As the electrolyte salt, in addition to the above LiPF 6 , one or a mixture of plural kinds such as LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiClO 4 , LiBF 4 can be used.

以上に説明したように、本発明によれば、リチウム基準で4.4〜4.6Vの高い電位で安定的に機能し、且つ高い電位においても電解液の分解を抑制でき得た、高容量でサイクル特性に優れた非水電解質二次電池を提供できる。よって、産業上の利用可能性は大きい。

As described above, according to the present invention, the high capacity capable of stably functioning at a high potential of 4.4 to 4.6 V on the basis of lithium and suppressing the decomposition of the electrolytic solution even at a high potential. Thus, a non-aqueous electrolyte secondary battery having excellent cycle characteristics can be provided. Therefore, industrial applicability is great.

Claims (6)

正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩とを有する非水電解質と、を備える非水電解質二次電池において、
前記正極活物質が、LiCo1−x−y−zZrMg(MはAl,Ti,Snの少なくとも一種であり、0a≦1.1、0.0001≦x、0.0001≦y、x+y+z≦0.03)で表されるジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物と、
LiMnNiCo(XはZr,Mg,Al,Ti,Snの少なくとも一種、0b≦1.1、0.1≦s≦0.5、0.1≦t≦0.5、0.95≦s/t≦1.05、v=0または0.0001≦v≦0.03、s+t+u+v=1)で表される層状構造を有するリチウムニッケルマンガン複合酸化物と、
が質量比で51:49〜90:10の割合で混合されてなり、
前記正極活物質の電位がリチウム基準で4.4〜4.6Vであり、
前記正極が更に、導電剤として比表面積が2〜50m2/gの炭素材料を0.1〜5質量%有する、
ことを特徴とする非水電解質二次電池。
In a nonaqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a nonaqueous electrolyte having a nonaqueous solvent and an electrolyte salt,
The positive electrode active material is Li a Co 1-xyz Zr x Mg y M z O 2 (M is at least one of Al, Ti, Sn, and 0 < a ≦ 1.1, 0.0001 ≦ x, 0.0001 ≦ y, x + y + z ≦ 0.03), a lithium cobalt composite oxide to which zirconium and magnesium are added,
Li b Mn s Ni t Co u X v O 2 (X is Zr, Mg, Al, Ti, at least one of Sn, 0 <b ≦ 1.1,0.1 ≦ s ≦ 0.5,0.1 ≦ lithium nickel manganese composite oxide having a layered structure represented by t ≦ 0.5, 0.95 ≦ s / t ≦ 1.05, v = 0 or 0.0001 ≦ v ≦ 0.03, and s + t + u + v = 1) When,
Are mixed at a mass ratio of 51:49 to 90:10,
The positive electrode active material has a potential of 4.4 to 4.6 V based on lithium,
The positive electrode further has 0.1 to 5% by mass of a carbon material having a specific surface area of 2 to 50 m 2 / g as a conductive agent.
A non-aqueous electrolyte secondary battery.
請求項1に記載の非水電解質二次電池において、
前記炭素材料の比表面積が20m/g以上である、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1,
The specific surface area of the carbon material is 20 m 2 / g or more,
A non-aqueous electrolyte secondary battery.
請求項1または2に記載の非水電解質二次電池において、
前記負極活物質が、炭素質物からなる、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1 or 2,
The negative electrode active material is made of a carbonaceous material,
A non-aqueous electrolyte secondary battery.
請求項1、2または3に記載の非水電解質二次電池において、
前記非水電解質はさらに、ビニレンカーボネートを0.5〜5質量%含む、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1, 2 or 3,
The non-aqueous electrolyte further includes 0.5 to 5% by mass of vinylene carbonate.
A non-aqueous electrolyte secondary battery.
請求項1、2、3または4に記載の非水電解質二次電池において、
前記リチウムニッケルマンガン複合酸化物が、その結晶構造中にコバルトを含む、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1, 2, 3 or 4,
The lithium nickel manganese composite oxide contains cobalt in its crystal structure,
A non-aqueous electrolyte secondary battery.
正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩とを有する非水電解質と、を備え、
前記正極活物質が、LiCo1−x−y−zZrMg(MはAl,Ti,Snの少なくとも一種であり、0a≦1.1、0.0001≦x、0.0001≦y、x+y+z≦0.03)で表されるジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物と、
LiMnNiCo(XはZr,Mg,Al,Ti,Snの少なくとも一種、0b≦1.1、0.1≦s≦0.5、0.1≦t≦0.5、0.95≦s/t≦1.05、v=0または0.0001≦v≦0.03、s+t+u+v=1)で表される層状構造を有するリチウムニッケルマンガン複合酸化物と、
が質量比で51:49〜90:10の割合で混合されてなり、
前記正極が更に、導電剤として比表面積が2〜50m2/gの炭素材料を0.1〜5質量%有する非水電解質二次電池の充電方法であって、
前記正極活物質の電位がリチウム基準で4.4〜4.6Vとなるまで充電する、
ことを特徴とする非水電解質二次電池の充電方法。
A positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte having a non-aqueous solvent and an electrolyte salt,
The positive electrode active material is Li a Co 1-xyz Zr x Mg y M z O 2 (M is at least one of Al, Ti, Sn, and 0 < a ≦ 1.1, 0.0001 ≦ x, 0.0001 ≦ y, x + y + z ≦ 0.03), a lithium cobalt composite oxide to which zirconium and magnesium are added,
Li b Mn s Ni t Co u X v O 2 (X is Zr, Mg, Al, Ti, at least one of Sn, 0 <b ≦ 1.1,0.1 ≦ s ≦ 0.5,0.1 ≦ lithium nickel manganese composite oxide having a layered structure represented by t ≦ 0.5, 0.95 ≦ s / t ≦ 1.05, v = 0 or 0.0001 ≦ v ≦ 0.03, and s + t + u + v = 1) When,
Are mixed at a mass ratio of 51:49 to 90:10,
The positive electrode is a method for charging a non-aqueous electrolyte secondary battery further comprising 0.1 to 5% by mass of a carbon material having a specific surface area of 2 to 50 m 2 / g as a conductive agent,
Charging until the potential of the positive electrode active material is 4.4 to 4.6 V with respect to lithium;
A non-aqueous electrolyte secondary battery charging method.
JP2004379301A 2004-12-28 2004-12-28 Nonaqueous electrolyte secondary battery and charging method thereof Expired - Fee Related JP4530843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004379301A JP4530843B2 (en) 2004-12-28 2004-12-28 Nonaqueous electrolyte secondary battery and charging method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004379301A JP4530843B2 (en) 2004-12-28 2004-12-28 Nonaqueous electrolyte secondary battery and charging method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010095340A Division JP5147891B2 (en) 2010-04-16 2010-04-16 Nonaqueous electrolyte secondary battery and charging method thereof

Publications (2)

Publication Number Publication Date
JP2006185792A JP2006185792A (en) 2006-07-13
JP4530843B2 true JP4530843B2 (en) 2010-08-25

Family

ID=36738744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004379301A Expired - Fee Related JP4530843B2 (en) 2004-12-28 2004-12-28 Nonaqueous electrolyte secondary battery and charging method thereof

Country Status (1)

Country Link
JP (1) JP4530843B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007323977A (en) * 2006-06-01 2007-12-13 Sony Corp Battery
JP5089097B2 (en) * 2006-07-25 2012-12-05 三洋電機株式会社 Non-aqueous electrolyte secondary battery and charging / discharging method thereof
JP2009064602A (en) * 2007-09-05 2009-03-26 Hitachi Maxell Ltd Nonaqueous electrolytic solution secondary battery
JPWO2011132627A1 (en) * 2010-04-23 2013-07-18 株式会社村田製作所 All-solid secondary battery and manufacturing method thereof
KR101181841B1 (en) 2010-07-02 2012-09-11 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery with high voltage and rechargeable lithium battery including same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188993A (en) * 1996-12-24 1998-07-21 Ricoh Co Ltd Non-aqueous electrolyte secondary battery
JP2002358963A (en) * 2001-06-01 2002-12-13 Nippon Chem Ind Co Ltd Lithium cobalt system complex oxide, lithium secondary battery positive electrode active substance and lithium secondary battery
WO2004030126A1 (en) * 2002-09-25 2004-04-08 Seimi Chemical Co., Ltd. Positive electrode material for lithium secondary battery and process for producing the same
JP2004134207A (en) * 2002-10-10 2004-04-30 Sony Corp Positive electrode active material and non-aqueous electrolyte secondary battery
JP2004207034A (en) * 2002-12-25 2004-07-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2004207120A (en) * 2002-12-26 2004-07-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2005093880A1 (en) * 2004-03-29 2005-10-06 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188993A (en) * 1996-12-24 1998-07-21 Ricoh Co Ltd Non-aqueous electrolyte secondary battery
JP2002358963A (en) * 2001-06-01 2002-12-13 Nippon Chem Ind Co Ltd Lithium cobalt system complex oxide, lithium secondary battery positive electrode active substance and lithium secondary battery
WO2004030126A1 (en) * 2002-09-25 2004-04-08 Seimi Chemical Co., Ltd. Positive electrode material for lithium secondary battery and process for producing the same
JP2004134207A (en) * 2002-10-10 2004-04-30 Sony Corp Positive electrode active material and non-aqueous electrolyte secondary battery
JP2004207034A (en) * 2002-12-25 2004-07-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2004207120A (en) * 2002-12-26 2004-07-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2005093880A1 (en) * 2004-03-29 2005-10-06 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2006185792A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4766840B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US9660253B2 (en) Positive electrode active material for sodium battery, and method of producing the same
JP3543437B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using this positive electrode active material
JP4070585B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery using the same
JP3142522B2 (en) Lithium secondary battery
JP4524881B2 (en) Nonaqueous electrolyte secondary battery
JP2003142101A (en) Positive electrode for secondary battery and secondary battery using the same
KR20150100406A (en) Positive active material, preparing method thereof, positive electrode for lithium secondary battery including the same, and lithium secondary battery employing the same
JP2006351378A (en) Lithium-ion secondary battery
JP4813450B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery using the same
JP2006236830A (en) Lithium secondary battery
US20150016024A1 (en) Cathode active material having core-shell structure and producing method thereof
JP2014238960A (en) Metal oxide, negative electrode active material for sodium ion battery, negative electrode for sodium ion battery, and sodium ion battery
JP4731106B2 (en) Nonaqueous electrolyte secondary battery
JP2008115075A5 (en)
WO2020026487A1 (en) Positive electrode active material and secondary battery
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP4794192B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2000200607A (en) Lithium secondary battery
JP2003077534A (en) Nonaqueous secondary battery
JP4224995B2 (en) Secondary battery and current collector for secondary battery
JP5241766B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP4530845B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JPH09120815A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2016157602A (en) Positive electrode active material for sodium secondary battery and production method therefor, and sodium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees