JP4530845B2 - Nonaqueous electrolyte secondary battery and charging method thereof - Google Patents

Nonaqueous electrolyte secondary battery and charging method thereof Download PDF

Info

Publication number
JP4530845B2
JP4530845B2 JP2004379303A JP2004379303A JP4530845B2 JP 4530845 B2 JP4530845 B2 JP 4530845B2 JP 2004379303 A JP2004379303 A JP 2004379303A JP 2004379303 A JP2004379303 A JP 2004379303A JP 4530845 B2 JP4530845 B2 JP 4530845B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
secondary battery
mass
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004379303A
Other languages
Japanese (ja)
Other versions
JP2006185794A (en
Inventor
賢司 浅岡
弘 中川
雅行 寺坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004379303A priority Critical patent/JP4530845B2/en
Publication of JP2006185794A publication Critical patent/JP2006185794A/en
Application granted granted Critical
Publication of JP4530845B2 publication Critical patent/JP4530845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、放電容量及びサイクル特性の向上を目的とする非水電解質二次電池の改良に関する。   The present invention relates to an improvement in a non-aqueous electrolyte secondary battery intended to improve discharge capacity and cycle characteristics.

近年、携帯電話、ノートパソコン、PDA等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源として、高いエネルギー密度を有し、高容量である非水電解質二次電池が広く利用されている。   In recent years, mobile information terminals such as mobile phones, notebook personal computers, and PDAs have been rapidly reduced in size and weight, and non-aqueous electrolyte secondary batteries having high energy density and high capacity have been used as driving power sources. Widely used.

リチウムを挿入・脱離する炭素質物を負極に使用した非水電解質二次電池は、リチウムが金属状態で存在せず、樹枝状(デンドライト状)リチウムの析出が抑制されるので、電池寿命と安全性に優れる。このうち、黒鉛が電池容量を大きくできる点で好ましいが、近年では電池のさらなる高容量化が求められており、より高い電位となるまで充電して使用することにより、正極活物質の利用率を高めることが試みられている。   Non-aqueous electrolyte secondary batteries that use a carbonaceous material that inserts and desorbs lithium as the negative electrode do not exist in a metallic state, and the precipitation of dendritic lithium is suppressed, so battery life and safety Excellent in properties. Of these, graphite is preferable because it can increase the battery capacity, but in recent years, there has been a demand for higher capacity of the battery. There are attempts to increase it.

ところが、従来より正極活物質として用いられているコバルト酸リチウム(リチウム含有コバルト複合酸化物)を、リチウム基準で4.3Vよりも高い電位まで充電すると、化合物としての安定性の低下を招き、化合物が劣化するので、サイクル特性が低下するという問題がある。   However, when lithium cobaltate (lithium-containing cobalt composite oxide), which has been conventionally used as a positive electrode active material, is charged to a potential higher than 4.3 V on the basis of lithium, the stability as a compound is reduced. As a result, the cycle characteristics deteriorate.

この問題を解決するため、ジルコニウム、マグネシウム等の異種金属をコバルト酸リチウムに添加することにより、高い電位での安定性を高めることが提案されている。しかし、この技術によっても、高電位での熱的安定性を十分に高めることができない。   In order to solve this problem, it has been proposed to increase the stability at a high potential by adding a different metal such as zirconium or magnesium to lithium cobalt oxide. However, even this technique cannot sufficiently increase the thermal stability at a high potential.

他方、高電位で充放電サイクルを行うと、電解液(非水電解質)が負極表面で分解して、負極の周囲の電解液が過小となり、負極での充放電反応が阻害される結果、負極活物質として炭素質物を用いた場合においても、リチウムが負極表面に析出するという問題がある。そして、この析出リチウムが電解液の分解反応を更に進行させ、負極の周囲の電解液量を著しく減少させる(電解液の液涸れ)。このため、析出リチウムや電解液分解生成物が負極表面に堆積して、負極を劣化させる。しかし、液涸れを防止するために電解液量を多くすると、電池のエネルギー密度が低下するという問題がある。   On the other hand, when a charge / discharge cycle is performed at a high potential, the electrolyte solution (nonaqueous electrolyte) is decomposed on the negative electrode surface, the electrolyte solution around the negative electrode becomes too small, and the charge / discharge reaction at the negative electrode is hindered. Even when a carbonaceous material is used as the active material, there is a problem that lithium is deposited on the negative electrode surface. The deposited lithium further proceeds the decomposition reaction of the electrolytic solution, and the amount of the electrolytic solution around the negative electrode is remarkably reduced (electrolytic solution dripping). For this reason, deposited lithium and electrolytic solution decomposition products are deposited on the negative electrode surface, and the negative electrode is deteriorated. However, when the amount of the electrolytic solution is increased in order to prevent liquid dripping, there is a problem that the energy density of the battery is lowered.

ここで、非水電解質二次電池の負極活物質の改良に関する技術としては、特許文献1、2が提案されている。   Here, Patent Documents 1 and 2 have been proposed as techniques relating to the improvement of the negative electrode active material of the nonaqueous electrolyte secondary battery.

特開2004−95426号公報(特許請求の範囲、段落0003−0009)JP 2004-95426 A (Claims, paragraphs 0003-0009) 特開平10−236809号公報(特許請求の範囲、段落0004−0009)JP-A-10-236809 (Claims, paragraphs 0004-0009)

特許文献1は、負極材として、比表面積が0.5〜2m2/g、101〜105nmの範囲の細孔の全細孔体積が0.4〜2.0ml/g、タップ密度が0.5〜1.2g/cm3の扁平状の粒子を複数配向面が非平行となるように集合又は結合してなる形状を有する主材黒鉛粒子と、メソフェーズ小球体炭素および気相成長炭素繊維状黒鉛から選ばれた少なくとも一つの配合材とを用いる技術であり、この技術によると、充放電中に負極電極上でのLiF、Li2CO3の化合物の生成、および金属リチウムの生成を抑制でき、高容量で長寿命かつ高安全性な電池が得られるとされる。 Patent Document 1 discloses that the negative electrode material has a specific surface area of 0.5 to 2 m 2 / g, a total pore volume of 0.4 to 2.0 ml / g of pores in the range of 10 1 to 10 5 nm, a tap density. Main particle graphite particles having a shape formed by assembling or bonding flat particles having a particle size of 0.5 to 1.2 g / cm 3 so that a plurality of orientation planes are non-parallel, mesophase microsphere carbon, and vapor phase growth This is a technique using at least one compounding material selected from carbon fiber graphite. According to this technique, the formation of LiF and Li 2 CO 3 compounds on the negative electrode during the charge and discharge, and the formation of metallic lithium It is said that a battery with high capacity, long life and high safety can be obtained.

特許文献2は、負極活物質として、比表面積が8m2/g以下、102〜106Åの範囲の細孔の全細孔体積が0.4〜2.0ml/gである黒鉛を用いる技術であり、この技術によると、電池容量が大きく、自己放電率が小さく、サイクル特性に優れ、充放電効率の高いリチウム二次電池が得られるとされる。 Patent Document 2 uses, as a negative electrode active material, graphite having a specific surface area of 8 m 2 / g or less and a total pore volume of pores in the range of 10 2 to 10 6 Å being 0.4 to 2.0 ml / g. According to this technology, a lithium secondary battery having a large battery capacity, a low self-discharge rate, excellent cycle characteristics, and high charge / discharge efficiency is obtained.

しかし、上記2文献に係る技術は、いずれも正極活物質を高い電位で活用することを考えておらず、この点においてさらなる改良が求められる。   However, none of the techniques according to the above two documents considers utilizing the positive electrode active material at a high potential, and further improvements are required in this respect.

本発明は、以上に鑑みなされたものであって、高容量で且つサイクル特性に優れた非水電解質二次電池を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the high capacity | capacitance and the nonaqueous electrolyte secondary battery excellent in cycling characteristics.

上記課題を解決するための非水電解質二次電池に係る本発明は、正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩とを有する非水電解質と、を備える非水電解質二次電池において、前記正極活物質が、LiCo1−x−y−zZrMg(MはAl,Ti,Snの少なくとも一種であり、0a≦1.1、0.0001≦x、0.0001≦y、x+y+z≦0.03)で表されるジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物と、LiMnNiCo(XはZr,Mg,Al,Ti,Snの少なくとも一種、0b≦1.1、0.1≦s≦0.5、0.1≦t≦0.5、0.95≦s/t≦1.05、v=0または0.0001≦v≦0.03、s+t+u+v=1)で表される層状構造を有するリチウムニッケルマンガン複合酸化物と、が質量比で51:49〜90:10の割合で混合されてなり、前記正極活物質の電位がリチウム基準で4.4〜4.6Vであり、前記負極活物質が、102−106Åの範囲の細孔の全細孔体積が質量当たり0.4〜2.0ml/gであり、比表面積が8m2/g以下である人造黒鉛を負極活物質全質量に対して60質量%以上含むものである。
The present invention relating to a non-aqueous electrolyte secondary battery for solving the above problems includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte having a non-aqueous solvent and an electrolyte salt. In the non-aqueous electrolyte secondary battery provided, the positive electrode active material is Li a Co 1-xy- Zr x Mg y M z O 2 (M is at least one of Al, Ti, and Sn, and 0 < a ≦ 1.1, 0.0001 ≦ x, 0.0001 ≦ y, x + y + z ≦ 0.03), and a lithium cobalt composite oxide to which zirconium and magnesium are added, and Li b Mn s Ni t Co u X v O 2 (X is at least one of Zr, Mg, Al, Ti, Sn, 0 < b ≦ 1.1, 0.1 ≦ s ≦ 0.5, 0.1 ≦ t ≦ 0.5, 0. 95 ≦ s / t ≦ 1.05, v = 0 or 0.0001 ≦ v 0.03, s + t + u + v = 1) and the lithium-nickel-manganese composite oxide having a layered structure represented by, but a weight ratio 51: 49 to 90: is mixed at 10 a rate of result, the potential of the positive electrode active material 4.4 to 4.6 V based on lithium, and the negative electrode active material has a total pore volume of pores in the range of 10 2 to 10 6 0.4 of 0.4 to 2.0 ml / g per mass, 60% by mass or more of artificial graphite having a specific surface area of 8 m 2 / g or less is included with respect to the total mass of the negative electrode active material.

上記構成では、正極活物質としてジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物を有しており、この化合物は高電位(リチウム基準で4.4〜4.6V)での安定性に優れる。さらに、この化合物とともに、高電位での熱安定性に優れた層状構造を有するリチウムニッケルマンガン複合酸化物が配合されているため、高電位での熱安定性にも優れる。   In the said structure, it has lithium cobalt complex oxide with which zirconium and magnesium were added as a positive electrode active material, and this compound is excellent in stability in high potential (4.4-4.6V on lithium basis). . Furthermore, since the lithium nickel manganese composite oxide having a layered structure excellent in thermal stability at high potential is blended with this compound, thermal stability at high potential is also excellent.

更に、負極活物質として、102−106Åの範囲の細孔の全細孔体積が質量当たり0.4〜2.0ml/gであり、且つ比表面積が8m2/g以下である人造黒鉛粒子を有している。この人造黒鉛は、毛細管現象により、102−106Åの範囲の細孔内に電解液を好適に保持するので、高電位での充放電サイクルによっても電解液の液涸れが生じない。よって、負極の劣化が起こらずサイクル特性が向上する。 Furthermore, as the negative electrode active material, the total pore volume of pores in the range of 10 2 -10 6 Å is 0.4 to 2.0 ml / g per mass and the specific surface area is 8 m 2 / g or less. Has graphite particles. This artificial graphite suitably holds the electrolytic solution in pores in the range of 10 2 -10 6 Å by capillary action, so that the electrolytic solution does not spill even during charge / discharge cycles at a high potential. Therefore, the negative electrode does not deteriorate and the cycle characteristics are improved.

ここで、102Å未満の細孔はその大きさが過小であり、106Åより大きい細孔はその大きさが過大であるため、それぞれ電解液を好適に保持できない。 Here, since the size of pores smaller than 10 2過 is too small, and the size of pores larger than 10 6そ れ ぞ れ is too large, the electrolyte solution cannot be suitably held respectively.

また、人造黒鉛粒子の102−106Åの範囲の細孔の全細孔体積が、質量当たり0.4ml/g未満であると、電解液保持性能が十分ではない。一方、全細孔体積が、質量当たり2.0ml/gより大きいと、細孔内に結着剤が取り込まれる現象が生じやすいので結着性能が低下し、充放電サイクルによって活物質が負極集電体から脱離して、サイクル劣化を招く。この場合、結着力を増すために結着剤量を多くすると、結着剤により負極での放電反応が阻害され、放電容量が低下するので好ましくない。 Further, when the total pore volume of the pores in the range of 10 2 -10 6 Å of the artificial graphite particles is less than 0.4 ml / g, the electrolyte solution holding performance is not sufficient. On the other hand, if the total pore volume is larger than 2.0 ml / g per mass, the binder is likely to be taken into the pores, so that the binding performance is lowered and the active material is collected by the charge / discharge cycle. Detach from the electric body, causing cycle deterioration. In this case, if the amount of the binder is increased in order to increase the binding force, the discharge reaction at the negative electrode is inhibited by the binder and the discharge capacity is lowered, which is not preferable.

また、比表面積が過大であると、電池の不可逆容量が大きくなり、また人造黒鉛粒子の表面が結着剤で覆われやすくなるために、放電容量が低下するので好ましくない。また、比表面積が過小であると、負極の導電性が低下するおそれがあるので好ましくない。よって、好ましくは比表面積を1.5〜8m2/gとし、より好ましくは2〜5m2/gとする。 Further, if the specific surface area is excessive, the irreversible capacity of the battery is increased, and the surface of the artificial graphite particles is easily covered with the binder, which is not preferable because the discharge capacity is reduced. Further, if the specific surface area is too small, the conductivity of the negative electrode may be lowered, which is not preferable. Therefore, the specific surface area is preferably 1.5 to 8 m 2 / g, more preferably 2 to 5 m 2 / g.

また、電池電圧は、正極の電位と負極の電位との差で示されるが、電池電圧を大きくすることにより、電池の容量を大きくすることができるが、人造黒鉛はリチウム基準で約0.1Vと電位が低いので、電池電圧が高く、正極活物質の利用率の高い電池が得られる。   The battery voltage is indicated by the difference between the positive electrode potential and the negative electrode potential. By increasing the battery voltage, the capacity of the battery can be increased. Therefore, a battery having a high battery voltage and a high utilization rate of the positive electrode active material can be obtained.

上記ジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物は、LiaCo1−x−y−zZrMg2(MはAl,Ti,Snの少なくとも一種であり、0a≦1.1、0.0001≦x、0.0001≦y、x+y+z≦0.03)で示されるものである。また、層状リチウムニッケルマンガン複合酸化物は、LiMnNiCo(XはZr,Mg,Al,Ti,Snの少なくとも一種、0b≦1.1、0.1≦s≦0.5、0.1≦t≦0.5、0.95≦s/t≦1.05、v=0または0.0001≦v≦0.03、s+t+u+v=1)で示されるものである。これらの化合物には、コバルト・ニッケル・マンガン等の合計モル数に対するリチウムのモル数を大きくできるので、充放電に寄与するリチウム量を十分に大きくすることができる。
The lithium cobalt composite oxide to which zirconium and magnesium are added is Li a Co 1-xyz Zr x Mg y M z O 2 (M is at least one of Al, Ti, Sn, and 0 < a ≦ 1.1, 0.0001 ≦ x, 0.0001 ≦ y, x + y + z ≦ 0.03). Further, the layered lithium-nickel-manganese composite oxide, Li b Mn s Ni t Co u X v O 2 (X is Zr, Mg, Al, Ti, at least one of Sn, 0 <b ≦ 1.1,0.1 ≦ s ≦ 0.5, 0.1 ≦ t ≦ 0.5, 0.95 ≦ s / t ≦ 1.05, v = 0 or 0.0001 ≦ v ≦ 0.03, s + t + u + v = 1) Is. Since these compounds can increase the number of moles of lithium relative to the total number of moles of cobalt, nickel, manganese, etc., the amount of lithium contributing to charge / discharge can be sufficiently increased.

なお、本願発明の効果を十分に得るためには、ジルコニウムの添加量、LiaCo1−x−y−zZrMgにおいて、0.0001≦xとする。また、本願発明の効果を十分に得るためには、マグネシウムの添加量は、0.0001≦yとする。また、ジルコニウム、マグネシウム以外に、Al,Ti,Snが0.0002≦zの割合で添加されていてもよいが、添加金属の合計x+y+zが0.03より大きくなると、電池容量が低下するため好ましくない。
In order to obtain the effect of the present invention sufficiently, the addition amount of zirconium, in Li a Co 1-x-y -z Zr x Mg y M z O 2, and 0.0001 ≦ x. Further, in order to obtain the effect of the present invention sufficiently, the addition amount of magnesium, and 0.0001 ≦ y. Further, in addition to zirconium and magnesium, Al, Ti, and Sn may be added in a ratio of 0.0002 ≦ z. However, if the total x + y + z of the added metals is larger than 0.03, the battery capacity is decreased, which is preferable. Absent.

また、本願発明の効果を十分に得るためには、LiMnNiCoにおいて、ニッケルの含有量0.1≦s≦0.5とし、マンガンの含有量0.1≦t≦0.5とする。また、高い熱安定性を得るためには、ニッケルとマンガンとの比s/t0.95〜1.05の範囲内とする。また、化合物の熱安定性をさらに高めるために、Zr,Mg,Al,Ti,Sn等の異種元素が、0.0001≦v≦0.03の割合で添加されていてもよい。
Further, in order to obtain the effect of the present invention sufficiently, Li b Mn s Ni t Co u X v in O 2, the nickel content was set to 0.1 ≦ s ≦ 0.5, the manganese content is 0 and .1 ≦ t ≦ 0.5. In order to obtain high thermal stability, the ratio s / t of nickel and manganese in the range of 0.95 to 1.05. Further, in order to further increase the thermal stability of the compound, a different element such as Zr, Mg, Al, Ti, or Sn may be added at a ratio of 0.0001 ≦ v ≦ 0.03.

また、正極活物質中のリチウムコバルト複合酸化物の含有量が51質量%より少ないと、電池容量、サイクル特性、保存特性が低下するおそれがあり、また、層状構造のリチウムニッケルマンガン複合酸化物の含有量が10質量%未満であると、正極活物質の高電位での熱安定性の向上効果が十分に得られない。このため、リチウムコバルト複合酸化物と、層状リチウムニッケルマンガン複合酸化物の質量比は、51:49〜90:10とし、より好ましくは70:30〜80:20とする。
In addition, when the content of the lithium cobalt composite oxide in the positive electrode active material is less than 51% by mass, the battery capacity, cycle characteristics, and storage characteristics may be deteriorated, and the lithium nickel manganese composite oxide having a layered structure may be deteriorated. When the content is less than 10% by mass, the effect of improving the thermal stability of the positive electrode active material at a high potential cannot be sufficiently obtained. For this reason, the mass ratio of the lithium cobalt composite oxide and the layered lithium nickel manganese composite oxide is 51:49 to 90:10, and more preferably 70:30 to 80:20.

また、上記構成において、前記人造黒鉛が、黒鉛化可能な骨材及び/又は黒鉛と、黒鉛化可能なバインダとに、焼成温度よりも低い温度で揮発する黒鉛化触媒を添加して混合し、焼成した後に得られるものであるとすることができる。   Further, in the above configuration, the artificial graphite is added to and mixed with a graphitizable aggregate and / or graphite, and a graphitizable binder, and a graphitization catalyst that volatilizes at a temperature lower than the firing temperature. It can be assumed that it is obtained after firing.

上記方法では、黒鉛化可能な骨材及び/又は黒鉛が核となり、黒鉛化触媒を取り込んだ黒鉛化可能なバインダが取り囲む。この後、焼成を行うと、バインダから黒鉛化触媒が揮発脱離するので、黒鉛粒子に細孔を形成することができる。   In the above method, the graphitizable aggregate and / or graphite serves as a nucleus, and the graphitizable binder incorporating the graphitization catalyst surrounds it. Thereafter, when calcination is performed, the graphitization catalyst is volatilized and desorbed from the binder, so that pores can be formed in the graphite particles.

ここで、本明細書中でいう揮発とは、黒鉛化触媒がガスとなり脱離することを意味し、沸騰、昇華、分解等、その具体的反応は問わない。   Here, volatilization in the present specification means that the graphitization catalyst becomes a gas and desorbs, and its specific reaction such as boiling, sublimation, decomposition, etc. is not limited.

また、上記構成においては、前記非水電解質に、ビニレンカーボネートを0.5〜5質量%含めることができる。   Moreover, in the said structure, 0.5-5 mass% of vinylene carbonate can be included in the said nonaqueous electrolyte.

ビニレンカーボネートを非水電解質に添加すると、サイクル特性が向上するが、添加量が過小であると十分な効果が得られない一方、過大であると初期容量の低下と高温時膨れをまねく。このため、添加量は非水電解質全質量に対し、好ましくは0.5〜5質量%とし、より好ましくは1〜3質量%とする。
The addition of vinylene carbonate in the nonaqueous electrolyte, although the cycle characteristics are improved, whereas the addition amount is not obtained a sufficient effect to be too small, leading to swelling during lowering and high temperature in the initial capacity to be excessive. For this reason, the addition amount is preferably 0.5 to 5% by mass, more preferably 1 to 3% by mass with respect to the total mass of the nonaqueous electrolyte.

また、上記構成においては、前記リチウムニッケルマンガン複合酸化物が、その結晶構造中にコバルトを含むものとすることができる。   Moreover, in the said structure, the said lithium nickel manganese complex oxide shall contain cobalt in the crystal structure.

リチウムニッケルマンガン複合酸化物の結晶構造中にコバルトが含まれると、このコバルトが放電特性を向上させるように作用する点で好ましい。その添加量は、上記化学式において好ましくは0.1≦u≦0.8とする。   When cobalt is contained in the crystal structure of the lithium nickel manganese composite oxide, this cobalt is preferable in that it acts to improve discharge characteristics. The amount added is preferably 0.1 ≦ u ≦ 0.8 in the above chemical formula.

また、上記課題を解決するための非水電解質二次電池の充電方法に係る本発明は、正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩とを有する非水電解質と、を備え、前記正極活物質が、LiCo1−x−y−zZrMg(MはAl,Ti,Snの少なくとも一種であり、0a≦1.1、0.0001≦x、0.0001≦y、x+y+z≦0.03)で表されるジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物と、LiMnNiCo(XはZr,Mg,Al,Ti,Snの少なくとも一種、0b≦1.1、0.1≦s≦0.5、0.1≦t≦0.5、0.95≦s/t≦1.05、v=0または0.0001≦v≦0.03、s+t+u+v=1)で表される層状構造を有するリチウムニッケルマンガン複合酸化物と、が質量比で51:49〜90:10の割合で混合されてなり、前記負極活物質が、10−10Åの範囲の細孔の全細孔体積が質量当たり0.4〜2.0ml/gであり、且つ比表面積が8m2/g以下である人造黒鉛を負極活物質全質量に対して60質量%以上含む非水電解質二次電池の充電方法であって、前記正極活物質の電位がリチウム基準で4.4〜4.6Vとなるまで充電する、ことを特徴とする。 Further, the present invention relating to a method for charging a non-aqueous electrolyte secondary battery for solving the above-described problem is a non-aqueous electrolyte having a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, a non-aqueous solvent, and an electrolyte salt. A positive electrode active material, wherein Li a Co 1-xy- Zr x Mg y M z O 2 (M is at least one of Al, Ti, and Sn, and 0 < a ≦ 1) .1, 0.0001 ≦ x, 0.0001 ≦ y, x + y + z ≦ 0.03), and a lithium cobalt composite oxide to which zirconium and magnesium are added, and Li b Mn s N t Co u X v O 2 (X is at least one of Zr, Mg, Al, Ti, Sn, 0 < b ≦ 1.1, 0.1 ≦ s ≦ 0.5, 0.1 ≦ t ≦ 0.5, 0.95 ≦ s / t ≦ 1.05, v = 0 or 0.0001 ≦ v ≦ 0.03, + T + u + v = 1 ) and the lithium-nickel-manganese composite oxide having a layered structure represented by, but a weight ratio 51: 49 to 90: is mixed with 10 ratio of it to the negative electrode active material, 10 2 -10 6 Artificial graphite having a total pore volume of 0.4 to 2.0 ml / g per mass and a specific surface area of 8 m 2 / g or less is 60 masses with respect to the total mass of the negative electrode active material. % Of the nonaqueous electrolyte secondary battery charging method, wherein the positive electrode active material is charged until the potential of the positive electrode active material becomes 4.4 to 4.6 V with respect to lithium.

上記方法を採用することにより、容量が高く、高電位で充放電する高エネルギー密度の非水電解質二次電池を提供することができる。   By adopting the above method, it is possible to provide a high energy density non-aqueous electrolyte secondary battery that has a high capacity and is charged and discharged at a high potential.

以上に説明したように、リチウム基準で4.4〜4.6Vの高い電位で安定的に機能し、且つ高い電位においても負極の劣化や電解液の液涸れを抑制でき得た、高容量でサイクル特性に優れた非水電解質二次電池を実現することができる。   As described above, the high-capacity, which functions stably at a high potential of 4.4 to 4.6 V on the basis of lithium, and can suppress the deterioration of the negative electrode and the electrolyte dripping even at a high potential. A non-aqueous electrolyte secondary battery excellent in cycle characteristics can be realized.

本発明を実施するための最良の形態を、実施例を用いて詳細に説明する。なお、本発明は下記の形態に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することができる。   The best mode for carrying out the present invention will be described in detail with reference to examples. In addition, this invention is not limited to the following form, In the range which does not change the summary, it can change suitably and can implement.

(実施例1)
〈正極の作製〉
コバルト(Co)に対して0.2mol%のジルコニウム(Zr)と、コバルトに対して0.5mol%のマグネシウム(Mg)とを共沈させ、熱分解反応させて、ジルコニウム、マグネシウム含有四酸化三コバルトを得た。この四酸化三コバルトと炭酸リチウムとを混合し、空気雰囲気中で850℃で24時間焼成し、その後乳鉢で平均粒径が14μmとなるまで粉砕して、ジルコニウム、マグネシウム含有リチウムコバルト複合酸化物(正極活物質A)を得た。
Example 1
<Preparation of positive electrode>
Co-precipitation of 0.2 mol% of zirconium (Zr) with respect to cobalt (Co) and 0.5 mol% of magnesium (Mg) with respect to cobalt, followed by thermal decomposition reaction, gave zirconium and magnesium-containing trioxide. Cobalt was obtained. This tricobalt tetroxide and lithium carbonate are mixed, calcined in an air atmosphere at 850 ° C. for 24 hours, and then pulverized in a mortar until the average particle size becomes 14 μm. A positive electrode active material A) was obtained.

炭酸リチウムと、Ni0.33Mn0.33Co0.34(OH)2で示される共沈水酸化物とを混合し、空気雰囲気中で1000℃で20時間焼成し、その後乳鉢で平均粒径が5μmとなるまで粉砕して、コバルト含有リチウムニッケルマンガン複合酸化物(正極活物質B)を得た。なお、この正極活物質BのX線結晶構造回析を行ったところ、層状構造であることが確認された。 Lithium carbonate and a coprecipitated hydroxide represented by Ni 0.33 Mn 0.33 Co 0.34 (OH) 2 are mixed, baked at 1000 ° C. for 20 hours in an air atmosphere, and then ground in an mortar until the average particle size becomes 5 μm. Thus, a cobalt-containing lithium nickel manganese composite oxide (positive electrode active material B) was obtained. In addition, when the X-ray crystal structure diffraction of this positive electrode active material B was performed, it was confirmed that it is a layered structure.

正極活物質Aと正極活物質Bとを質量比7:3で混合した正極活物質94質量部と、導電剤としての炭素粉末3質量部と、結着剤としてのポリフッ化ビニリデン(PVdF)3質量部と、N−メチルピロリドンとを混合して正極活物質スラリーとした。この正極活物質スラリーをアルミニウム製の正極集電体(厚み15μm)の両面に塗布し、乾燥・圧延して正極を作製した。   94 parts by mass of a positive electrode active material obtained by mixing the positive electrode active material A and the positive electrode active material B at a mass ratio of 7: 3, 3 parts by mass of carbon powder as a conductive agent, and polyvinylidene fluoride (PVdF) 3 as a binder Mass parts and N-methylpyrrolidone were mixed to obtain a positive electrode active material slurry. This positive electrode active material slurry was applied on both sides of an aluminum positive electrode current collector (thickness 15 μm), dried and rolled to produce a positive electrode.

(負極の作製)
黒鉛化可能な骨材としてのコークス粉末40質量部(平均粒径5μm)と、黒鉛化可能なバインダとしてのタールピッチ25質量部及びコールタール20質量部とに、黒鉛化触媒としての炭化ケイ素5質量部(平均粒径45μm)を混合し、窒素雰囲気中2800℃で焼成し、その後粉砕して平均粒径が20μmの人造黒鉛を得た。なお、この人造黒鉛粒子は、水銀圧入法を用いた細孔分布測定による102〜106Åの範囲の細孔の全細孔体積が0.7g/mlであり、レーザー回折粒度分布測定装置を用いD50として測定された平均粒径が20μmであり、BET法により測定された比表面積が4.1m2/gであった。
(Preparation of negative electrode)
40 parts by mass of coke powder (average particle size 5 μm) as a graphitizable aggregate, 25 parts by mass of tar pitch and 20 parts by mass of coal tar as a graphitizable binder, and silicon carbide 5 as a graphitization catalyst Mass parts (average particle size 45 μm) were mixed, calcined at 2800 ° C. in a nitrogen atmosphere, and then pulverized to obtain artificial graphite having an average particle size of 20 μm. This artificial graphite particle has a total pore volume of 0.7 g / ml in the range of 10 2 to 10 6に よ る by pore distribution measurement using a mercury intrusion method. The average particle size measured as D50 was 20 μm, and the specific surface area measured by the BET method was 4.1 m 2 / g.

負極活物質としての上記人造黒鉛95質量部と、増粘剤としてのカルボキシメチルセルロース3質量部と、結着剤としてのスチレンブタジエンゴム2質量部と、水とを混合して負極活物質スラリーとした。この負極活物質スラリーを銅製の負極集電体(厚み8μm)の両面に塗布し、乾燥・圧延して負極を作製した。   The negative electrode active material slurry was prepared by mixing 95 parts by mass of the above artificial graphite as a negative electrode active material, 3 parts by mass of carboxymethyl cellulose as a thickener, 2 parts by mass of styrene butadiene rubber as a binder, and water. . This negative electrode active material slurry was applied to both sides of a copper negative electrode current collector (thickness 8 μm), dried and rolled to produce a negative electrode.

なお、人造黒鉛の電位はリチウム基準で0.1Vである。また、正極及び負極の活物質充填量は、設計基準となる充電電圧4.4V(正極電位がリチウム基準で4.5V)において、正極と負極の充電容量比(負極充電容量/正極充電容量)を1.1となるように調整した。   The potential of artificial graphite is 0.1 V with respect to lithium. The active material filling amount of the positive electrode and the negative electrode is a charge capacity ratio of the positive electrode and the negative electrode (negative electrode charge capacity / positive electrode charge capacity) at a design voltage of 4.4 V (positive electrode potential is 4.5 V based on lithium). Was adjusted to 1.1.

〈電極体の作製〉
上記正極及び負極を、ポリプロピレン製微多孔膜からなるセパレータを介して巻回することにより、電極体を作製した。
<Production of electrode body>
The positive electrode and the negative electrode were wound through a separator made of a polypropylene microporous film to produce an electrode body.

〈電解液の調整〉
非水溶媒としてのエチレンカーボネート(EC)とジエチルカーボネート(DEC)とメチルエチルカーボネート(MEC)とを体積比20:30:50(25℃)で混合し、電解質塩としてのLiPF6を1M(モル/リットル)となるように溶解して、電解液となした。
<Adjustment of electrolyte>
Ethylene carbonate (EC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) as a nonaqueous solvent are mixed at a volume ratio of 20:30:50 (25 ° C.), and LiPF 6 as an electrolyte salt is mixed with 1 M (mol). / Liter) to obtain an electrolytic solution.

〈電池の組み立て〉
外装缶に上記電極体を挿入した後、上記電解液を注液し、外装缶の開口部を封口することにより、実施例1に係る非水電解質二次電池(幅34mm×高さ43mm×厚み5mm)を作製した。
<Assembly of battery>
After the electrode body is inserted into the outer can, the electrolyte solution is injected, and the opening of the outer can is sealed, whereby the nonaqueous electrolyte secondary battery according to Example 1 (width 34 mm × height 43 mm × thickness). 5 mm).

(実施例2)
負極活物質として、黒鉛化可能な骨材としてのコークス粉末40質量部(平均粒径5μm)と、黒鉛化可能なバインダとしてのタールピッチ30質量部及びコールタール20質量部とに、黒鉛化触媒としての炭化ケイ素4質量部(平均粒径40μm)を混合し、窒素雰囲気中2800℃で焼成し、その後粉砕して得られた人造黒鉛を用いたこと以外は、上記実施例1と同様にして、実施例2に係る非水電解質二次電池を作製した。なお、この人造黒鉛は、水銀圧入法を用いた細孔分布測定による102〜106Åの範囲の細孔の全細孔体積が0.4g/mlであり、平均粒径が20μmで、BET法により測定された比表面積が4.1m2/gであった。
(Example 2)
As a negative electrode active material, 40 parts by mass of coke powder (average particle size 5 μm) as aggregates capable of graphitization, 30 parts by mass of tar pitch and 20 parts by mass of coal tar as binders that can be graphitized, graphitization catalyst As in Example 1 except that 4 parts by mass of silicon carbide (average particle size 40 μm) was mixed, calcined at 2800 ° C. in a nitrogen atmosphere, and then pulverized artificial graphite was used. A non-aqueous electrolyte secondary battery according to Example 2 was produced. The artificial graphite has a total pore volume of 0.4 g / ml in the range of 10 2 to 10 6 6 by pore distribution measurement using a mercury intrusion method, an average particle diameter of 20 μm, The specific surface area measured by the BET method was 4.1 m 2 / g.

(実施例3)
負極活物質として、黒鉛化可能な骨材としてのコークス粉末50質量部(平均粒径5μm)と、黒鉛化可能なバインダとしてのタールピッチ20質量部及びコールタール20質量部とに、黒鉛化触媒としての炭化ケイ素8質量部(平均粒径45μm)を混合し、窒素雰囲気中2800℃で焼成し、その後粉砕して得られた人造黒鉛を用いたこと以外は、上記実施例1と同様にして、実施例3に係る非水電解質二次電池を作製した。なお、この人造黒鉛は、水銀圧入法を用いた細孔分布測定による102〜106Åの範囲の細孔の全細孔体積2.0g/mlであり、平均粒径が20μmで、BET法により測定された比表面積が4.1m2/gであった。
(Example 3)
As a negative electrode active material, 50 parts by mass of coke powder (average particle size: 5 μm) as aggregates capable of graphitization, 20 parts by mass of tar pitch and 20 parts by mass of coal tar as binders that can be graphitized, and graphitization catalyst As in Example 1 except that 8 parts by mass of silicon carbide (average particle size 45 μm) was mixed, calcined at 2800 ° C. in a nitrogen atmosphere, and then used to obtain artificial graphite obtained by pulverization. A non-aqueous electrolyte secondary battery according to Example 3 was produced. This artificial graphite has a total pore volume of 2.0 g / ml in the range of 10 2 to 10 6 〜10 by pore distribution measurement using a mercury intrusion method, an average particle diameter of 20 μm, and BET The specific surface area measured by the method was 4.1 m 2 / g.

(比較例1)
負極活物質として、平均粒径が20μmの人造黒鉛(メソフェーズ小球体炭素)を用いたこと以外は、上記実施例1と同様にして、比較例1に係る非水電解質二次電池を作製した。なお、メソフェーズカーボンマイクロビーズは、水銀圧入法を用いた細孔分布測定による102〜106Åの範囲の細孔の全細孔体積が0.3g/mlであり、BET法により測定された比表面積が、2.2m2/gであった。
(Comparative Example 1)
A non-aqueous electrolyte secondary battery according to Comparative Example 1 was produced in the same manner as in Example 1 except that artificial graphite (mesophase small spherical carbon) having an average particle size of 20 μm was used as the negative electrode active material. The mesophase carbon microbeads had a total pore volume of 0.3 g / ml in the range of 10 2 to 10 6に よ る measured by pore distribution measurement using a mercury intrusion method, and were measured by the BET method. The specific surface area was 2.2 m 2 / g.

(比較例2)
負極活物質として、平均粒径が20μmの天然黒鉛を用いたこと以外は、上記実施例1と同様にして、比較例2に係る非水電解質二次電池を作製した。この天然黒鉛は、水銀圧入法を用いた細孔分布測定による102〜106Åの範囲の細孔の全細孔体積が2.1ml/gであり、BET法により測定された比表面積が3.2m2/gであった。
(Comparative Example 2)
A nonaqueous electrolyte secondary battery according to Comparative Example 2 was produced in the same manner as in Example 1 except that natural graphite having an average particle size of 20 μm was used as the negative electrode active material. This natural graphite has a total pore volume of 2.1 ml / g in the range of 10 2 to 10 6に よ る by pore distribution measurement using a mercury intrusion method, and has a specific surface area measured by the BET method. It was 3.2 m 2 / g.

(比較例3)
負極活物質として、黒鉛化可能な骨材としてのコークス粉末40質量部(平均粒径5μm)と、黒鉛化可能なバインダとしてのタールピッチ30質量部及びコールタール20質量部とに、黒鉛化触媒としての炭化ケイ素3質量部(平均粒径が45μm)を混合し、窒素雰囲気中2800℃で焼成し、その後粉砕して得られた人造黒鉛を用いたこと以外は、上記実施例1と同様にして、実施例3に係る非水電解質二次電池を作製した。なお、この人造黒鉛は、水銀圧入法を用いた細孔分布測定による102〜106Åの範囲の細孔の全細孔体積が0.9g/mlであり、平均粒径が20μmで、BET法により測定された比表面積が8.3m2/gであった。
(Comparative Example 3)
As a negative electrode active material, 40 parts by mass of coke powder (average particle size 5 μm) as aggregates capable of graphitization, 30 parts by mass of tar pitch and 20 parts by mass of coal tar as binders that can be graphitized, graphitization catalyst As in Example 1 except that 3 parts by mass of silicon carbide (average particle size: 45 μm) was mixed, calcined at 2800 ° C. in a nitrogen atmosphere, and then pulverized artificial graphite was used. Thus, a non-aqueous electrolyte secondary battery according to Example 3 was produced. This artificial graphite has a total pore volume of 0.9 g / ml in the range of 10 2 to 10 6 6 by pore distribution measurement using a mercury intrusion method, an average particle diameter of 20 μm, The specific surface area measured by the BET method was 8.3 m 2 / g.

〔サイクル特性試験〕
上記各電池に対し、下記条件でサイクル特性試験を行った。この結果を下記表1に示す。
[Cycle characteristic test]
A cycle characteristic test was performed on each of the batteries under the following conditions. The results are shown in Table 1 below.

充電条件:定電流 1It(850mA)4.4Vまで、定電圧 4.4Vで1/50It(17mA)まで、25℃
放電条件:定電流 1It、終止電圧 3.0V、25℃
サイクル特性(%):(500サイクル目放電容量/1サイクル目放電容量)×100
Charging conditions: constant current 1 It (850 mA) up to 4.4 V, constant voltage 4.4 V up to 1/50 It (17 mA), 25 ° C.
Discharge conditions: constant current 1 It, final voltage 3.0 V, 25 ° C.
Cycle characteristics (%): (500th cycle discharge capacity / first cycle discharge capacity) × 100

Figure 0004530845
Figure 0004530845

上記表1から、102〜106Åの範囲内の全細孔体積が、0.4〜2.0ml/gである実施例1〜3では、サイクル特性が78.5〜80.2%と、全細孔体積が0.3ml/gである比較例1の30.2%、全細孔体積が2.1ml/gである比較例2の60.5%に比べて、優れていることがわかる。 From Table 1 above, in Examples 1 to 3, in which the total pore volume within the range of 10 2 to 10 6 Å is 0.4 to 2.0 ml / g, the cycle characteristics are 78.5 to 80.2%. Compared with 30.2% of Comparative Example 1 where the total pore volume is 0.3 ml / g and 60.5% of Comparative Example 2 where the total pore volume is 2.1 ml / g I understand that.

このことは、次のように考えられる。全細孔体積が0.4ml/g未満であると、細孔体積が過小であり、黒鉛粒子が保持する電解液量が過小であるので、充放電サイクルによって電解液の液涸れが生じて、サイクル劣化が生じる。また、全細孔体積が2.0ml/gより大きいと、全細孔体積が過大であり、細孔内に結着剤が取り込まれて結着性能が低下する。これにより黒鉛粒子が集電体から脱離してサイクル劣化を招く。   This is considered as follows. If the total pore volume is less than 0.4 ml / g, the pore volume is too small, and the amount of the electrolyte solution retained by the graphite particles is too small. Cycle degradation occurs. On the other hand, if the total pore volume is larger than 2.0 ml / g, the total pore volume is excessive, and the binder is taken into the pores, resulting in a decrease in binding performance. As a result, the graphite particles are detached from the current collector, resulting in cycle deterioration.

他方、全細孔体積が0.4〜2.0ml/gであると、黒鉛粒子が好適に電解液を保持でき、且つ細孔内に結着剤がほとんど取り込まれない。これにより、サイクル特性が向上する。   On the other hand, when the total pore volume is 0.4 to 2.0 ml / g, the graphite particles can suitably hold the electrolytic solution, and the binder is hardly taken into the pores. Thereby, cycle characteristics are improved.

また、比表面積が4.1m2/gである実施例1〜3では、サイクル特性が78.5〜80.2と、比表面積が8.3m2/gである比較例3の62.3%に比べて優れていることがわかる。 In Examples 1 to 3 having a specific surface area of 4.1 m 2 / g, and the cycle characteristics are 78.5 to 80.2 and a specific surface area of Comparative Example 3 is 8.3 m 2 / g 62.3 It turns out that it is excellent compared with%.

このことは、次のように考えられる。比表面積が過大であると、負極活物質の表面を結着剤が覆うようになり、結着性能が低下して黒鉛粒子が集電体から脱離して、サイクル劣化を招く。このため、好ましくは比表面積を8.3m2/g未満とし、より好ましくは8.0m2/g以下とする。 This is considered as follows. When the specific surface area is excessive, the binder covers the surface of the negative electrode active material, the binding performance is lowered, and the graphite particles are detached from the current collector, resulting in cycle deterioration. Therefore, the specific surface area is preferably less than 8.3 m 2 / g, more preferably 8.0 m 2 / g or less.

なお、比較例1〜3に係る電池では、実施例1〜3に係る電池と比較し、サイクル特性試験後の交流法(1kHz)により測定された内部抵抗値が大きく上昇していた。このことは上記考察を裏付けるものである。   In addition, in the battery which concerns on Comparative Examples 1-3, compared with the battery which concerns on Examples 1-3, the internal resistance value measured by the alternating current method (1 kHz) after a cycle characteristic test was rising significantly. This confirms the above consideration.

(その他の事項)
本発明においては、電池形状は限定されないので、角型外装缶以外に、円筒型外装缶、コイン型外装体、ラミネート外装体を用いることができる。
(Other matters)
In the present invention, since the battery shape is not limited, a cylindrical outer can, a coin outer body, and a laminated outer body can be used in addition to the rectangular outer can.

また、本発明の効果を得るために、特定の物性を有する人造黒鉛の含有量は、好ましくは60質量%以上とし、より好ましくは70質量%以上とし、さらに好ましくは80質量%以上とし、最も好ましくは90質量%以上とする。また、上記物性値を満たす人造黒鉛を複数種混合して用いてもよい。さらに、人造黒鉛の平均粒径は、好ましくは10〜50μmとする。   In order to obtain the effects of the present invention, the content of the artificial graphite having specific physical properties is preferably 60% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more. Preferably it is 90 mass% or more. A plurality of artificial graphites satisfying the above physical property values may be mixed and used. Furthermore, the average particle diameter of the artificial graphite is preferably 10 to 50 μm.

また、特定の物性を有する人造黒鉛に、負極活物質として天然黒鉛、上記物性以外の人造黒鉛、カーボンブラック、コークス、ガラス状炭素、炭素繊維、またはこれらの焼成体の一種あるいは複数種混合添加してもよい。中でも、天然黒鉛や人造黒鉛を用いることが好ましい。   In addition, natural graphite as a negative electrode active material, artificial graphite other than the above physical properties, carbon black, coke, glassy carbon, carbon fiber, or one or a mixture of these calcined products are added to artificial graphite having specific physical properties. May be. Among these, it is preferable to use natural graphite or artificial graphite.

また、非水溶媒としてはジエチルカーボネート(DEC)以外に、プロピレンカーボネート、γ−ブチロラクトン、ジメチルカーボネート、テトラヒドロフラン、1,2−ジメトキシエタン、1,3−ジオキソラン、2−メトキシテトラヒドロフラン、ジエチルエーテル等を用いることができる。   In addition to diethyl carbonate (DEC), propylene carbonate, γ-butyrolactone, dimethyl carbonate, tetrahydrofuran, 1,2-dimethoxyethane, 1,3-dioxolane, 2-methoxytetrahydrofuran, diethyl ether and the like are used as the nonaqueous solvent. be able to.

また、電解質塩としては、上記LiPF6以外に、LiN(C25SO22、LiN(CF3SO22、LiClO4、LiBF4等の一種または複数種の混合物が使用できる。 As the electrolyte salt, in addition to the above LiPF 6 , one or a mixture of plural kinds such as LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiClO 4 , LiBF 4 can be used.

〈人造黒鉛作製に関する事項〉
バインダの配合量は、好ましくは黒鉛化可能な骨材と黒鉛との合計質量に対し5〜80質量%とし、より好ましくは10〜80質量%とし、さらに好ましくは15〜80質量%とする。
<Matters related to artificial graphite production>
The blending amount of the binder is preferably 5 to 80% by mass, more preferably 10 to 80% by mass, and further preferably 15 to 80% by mass with respect to the total mass of the graphitizable aggregate and graphite.

黒鉛化触媒の添加量は、得られる人造黒鉛粒子質量に対して、好ましくは1〜50質量%とし、より好ましくは5〜40質量%とし、さらに好ましくは5〜30質量%とする。   The addition amount of the graphitization catalyst is preferably 1 to 50% by mass, more preferably 5 to 40% by mass, and further preferably 5 to 30% by mass with respect to the mass of the resulting artificial graphite particles.

黒鉛化可能な骨材としては、好ましくは黒鉛化できる粉末材料を用い、より好ましくはコークス、樹脂の炭化物粉末を用い、さらに好ましくは、ニードルコークス等の黒鉛化しやすいコークス粉末を用いる。上記黒鉛としては、天然黒鉛粉末、人造黒鉛粉末が使用できる。また、黒鉛化可能な骨材や黒鉛の粒径は、作製する人造黒鉛粒子の粒径よりも小さいことが好ましい。   As the aggregate that can be graphitized, a powder material that can be graphitized is preferably used, more preferably, coke or resin carbide powder is used, and more preferably, coke powder that is easily graphitized such as needle coke is used. As the graphite, natural graphite powder and artificial graphite powder can be used. Further, the particle size of graphitizable aggregate or graphite is preferably smaller than the particle size of the artificial graphite particles to be produced.

また、黒鉛化可能なバインダとしては、タール、ピッチ、熱硬化性樹脂や熱可塑性樹脂等の有機系材料等を用いる。骨材等と、バインダと、触媒との混合は、バインダの軟化点以上の温度で行うことが好ましく、具体的には、バインダがピッチ、タール等の場合には50〜300℃が好ましく、バインダが熱硬化性樹脂の場合には20〜100℃が好ましい。   In addition, as the graphitizable binder, organic materials such as tar, pitch, thermosetting resin and thermoplastic resin are used. The mixing of the aggregate and the like, the binder, and the catalyst is preferably performed at a temperature equal to or higher than the softening point of the binder. Specifically, when the binder is pitch, tar, etc., 50 to 300 ° C. is preferable. When is a thermosetting resin, 20-100 degreeC is preferable.

黒鉛化触媒としては、例えば鉄、ニッケル、チタン、ケイ素、硼素等の金属、これらの炭化物、酸化物などが使用できる。このうち、ケイ素または硼素の炭化物または酸化物が好ましい。また、黒鉛化触媒の揮発温度は、2800℃以下であることが好ましい。   Examples of the graphitization catalyst that can be used include metals such as iron, nickel, titanium, silicon, and boron, and carbides and oxides thereof. Of these, silicon or boron carbides or oxides are preferred. The volatilization temperature of the graphitization catalyst is preferably 2800 ° C. or lower.

焼成雰囲気としては、上記混合物が酸化しない条件で焼成することが好ましく、例えばは窒素雰囲気、アルゴンガス雰囲気または真空中で焼成する。焼成温度は、バインダ等が十分に黒鉛化でき、且つ黒鉛化触媒の揮発温度よりも高い温度であることが好ましい。具体的には、好ましくは2000℃以上とし、より好ましくは2500℃以上とし、さらに好ましくは2800℃〜3200℃とする。なお、焼成温度が高すぎると、黒鉛が昇華して生産性が低下する。   As the firing atmosphere, firing is preferably performed under conditions that do not oxidize the mixture. For example, firing is performed in a nitrogen atmosphere, an argon gas atmosphere, or a vacuum. The firing temperature is preferably a temperature at which the binder or the like can be sufficiently graphitized and higher than the volatilization temperature of the graphitization catalyst. Specifically, it is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher, and further preferably 2800 ° C. to 3200 ° C. If the firing temperature is too high, the graphite sublimates and the productivity is lowered.

なお、上記各材料の変更、粒径の変更、焼成条件を変更することにより、人造黒鉛の物性を調整できる。   In addition, the physical property of artificial graphite can be adjusted by changing each said material, the change of a particle size, and baking conditions.

以上に説明したように、本発明によれば、高電位での充放電サイクル特性に優れた非水電解質二次電池を提供できる。よって、産業上の利用可能性は大きい。

As described above, according to the present invention, a nonaqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics at a high potential can be provided. Therefore, industrial applicability is great.

Claims (5)

正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩とを有する非水電解質と、を備える非水電解質二次電池において、
前記正極活物質が、LiCo1−x−y−zZrMg(MはAl,Ti,Snの少なくとも一種であり、0a≦1.1、0.0001≦x、0.0001≦y、x+y+z≦0.03)で表されるジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物と、
LiMnNiCo(XはZr,Mg,Al,Ti,Snの少なくとも一種、0b≦1.1、0.1≦s≦0.5、0.1≦t≦0.5、0.95≦s/t≦1.05、v=0または0.0001≦v≦0.03、s+t+u+v=1)で表される層状構造を有するリチウムニッケルマンガン複合酸化物と、
が質量比で51:49〜90:10の割合で混合されてなり、
前記正極活物質の電位がリチウム基準で4.4〜4.6Vであり、
前記負極活物質が、102−106Åの範囲の細孔の全細孔体積が質量当たり0.4〜2.0ml/gであり、比表面積が8m2/g以下である人造黒鉛を負極活物質全質量に対して60質量%以上含むものである、
ことを特徴とする非水電解質二次電池。
In a nonaqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a nonaqueous electrolyte having a nonaqueous solvent and an electrolyte salt,
The positive electrode active material is Li a Co 1-xyz Zr x Mg y M z O 2 (M is at least one of Al, Ti, Sn, and 0 < a ≦ 1.1, 0.0001 ≦ x, 0.0001 ≦ y, x + y + z ≦ 0.03), a lithium cobalt composite oxide to which zirconium and magnesium are added,
Li b Mn s Ni t Co u X v O 2 (X is Zr, Mg, Al, Ti, at least one of Sn, 0 <b ≦ 1.1,0.1 ≦ s ≦ 0.5,0.1 ≦ lithium nickel manganese composite oxide having a layered structure represented by t ≦ 0.5, 0.95 ≦ s / t ≦ 1.05, v = 0 or 0.0001 ≦ v ≦ 0.03, and s + t + u + v = 1) When,
Are mixed at a mass ratio of 51:49 to 90:10,
The positive electrode active material has a potential of 4.4 to 4.6 V based on lithium,
Artificial graphite in which the negative electrode active material has a total pore volume of 0.4 to 2.0 ml / g per mass and a specific surface area of 8 m 2 / g or less in a range of 10 2 to 10 6 Å. 60% by mass or more based on the total mass of the negative electrode active material,
A non-aqueous electrolyte secondary battery.
請求項1に記載の非水電解質二次電池において、
前記人造黒鉛は、黒鉛化可能な骨材及び/又は黒鉛と、黒鉛化可能なバインダと、焼成温度よりも低い温度で揮発する黒鉛化触媒と、を混合し、焼成した後に得られたものである、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1,
The artificial graphite is obtained by mixing and calcining a graphitizable aggregate and / or graphite, a graphitizable binder, and a graphitization catalyst that volatilizes at a temperature lower than the firing temperature. is there,
A non-aqueous electrolyte secondary battery.
請求項1または2に記載の非水電解質二次電池において、
前記非水電解質はさらに、ビニレンカーボネートを0.5〜5質量%含む、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1 or 2,
The non-aqueous electrolyte further includes 0.5 to 5% by mass of vinylene carbonate.
A non-aqueous electrolyte secondary battery.
請求項1、2または3に記載の非水電解質二次電池において、
前記リチウムニッケルマンガン複合酸化物が、その結晶構造中にコバルトを含む、
ことを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to claim 1, 2 or 3,
The lithium nickel manganese composite oxide contains cobalt in its crystal structure,
A non-aqueous electrolyte secondary battery.
正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩とを有する非水電解質と、を備え、
前記正極活物質が、LiCo1−x−y−zZrMg(MはAl,Ti,Snの少なくとも一種であり、0a≦1.1、0.0001≦x、0.0001≦y、x+y+z≦0.03)で表されるジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物と、
LiMnNiCo(XはZr,Mg,Al,Ti,Snの少なくとも一種、0b≦1.1、0.1≦s≦0.5、0.1≦t≦0.5、0.95≦s/t≦1.05、v=0または0.0001≦v≦0.03、s+t+u+v=1)で表される層状構造を有するリチウムニッケルマンガン複合酸化物と、
が質量比で51:49〜90:10の割合で混合されてなり、
前記負極活物質が、102−106Åの範囲の細孔の全細孔体積が質量当たり0.4〜2.0ml/gであり、且つ比表面積が8m2/g以下である人造黒鉛を負極活物質全質量に対して60質量%以上含む非水電解質二次電池の充電方法であって、
前記正極活物質の電位がリチウム基準で4.4〜4.6Vとなるまで充電する、
ことを特徴とする非水電解質二次電池の充電方法。
A positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte having a non-aqueous solvent and an electrolyte salt,
The positive electrode active material is Li a Co 1-xyz Zr x Mg y M z O 2 (M is at least one of Al, Ti, Sn, and 0 < a ≦ 1.1, 0.0001 ≦ x, 0.0001 ≦ y, x + y + z ≦ 0.03), a lithium cobalt composite oxide to which zirconium and magnesium are added,
Li b Mn s Ni t Co u X v O 2 (X is Zr, Mg, Al, Ti, at least one of Sn, 0 <b ≦ 1.1,0.1 ≦ s ≦ 0.5,0.1 ≦ lithium nickel manganese composite oxide having a layered structure represented by t ≦ 0.5, 0.95 ≦ s / t ≦ 1.05, v = 0 or 0.0001 ≦ v ≦ 0.03, and s + t + u + v = 1) When,
Are mixed at a mass ratio of 51:49 to 90:10,
Artificial graphite in which the negative electrode active material has a total pore volume of 0.4 to 2.0 ml / g per mass and a specific surface area of 8 m 2 / g or less in the range of 10 2 to 10 6 Å. Is a charging method for a non-aqueous electrolyte secondary battery containing 60% by mass or more based on the total mass of the negative electrode active material,
Charging until the potential of the positive electrode active material is 4.4 to 4.6 V with respect to lithium;
A non-aqueous electrolyte secondary battery charging method.
JP2004379303A 2004-12-28 2004-12-28 Nonaqueous electrolyte secondary battery and charging method thereof Active JP4530845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004379303A JP4530845B2 (en) 2004-12-28 2004-12-28 Nonaqueous electrolyte secondary battery and charging method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004379303A JP4530845B2 (en) 2004-12-28 2004-12-28 Nonaqueous electrolyte secondary battery and charging method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010095342A Division JP5147892B2 (en) 2010-04-16 2010-04-16 Nonaqueous electrolyte secondary battery and charging method thereof

Publications (2)

Publication Number Publication Date
JP2006185794A JP2006185794A (en) 2006-07-13
JP4530845B2 true JP4530845B2 (en) 2010-08-25

Family

ID=36738746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004379303A Active JP4530845B2 (en) 2004-12-28 2004-12-28 Nonaqueous electrolyte secondary battery and charging method thereof

Country Status (1)

Country Link
JP (1) JP4530845B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5089097B2 (en) * 2006-07-25 2012-12-05 三洋電機株式会社 Non-aqueous electrolyte secondary battery and charging / discharging method thereof
JP2008071746A (en) * 2006-08-14 2008-03-27 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP5262119B2 (en) * 2008-01-10 2013-08-14 ソニー株式会社 Negative electrode and battery
JP2009218112A (en) * 2008-03-11 2009-09-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method therefor
CN101546651B (en) * 2009-05-07 2011-04-20 哈尔滨工程大学 Nano graphite sheet/manganese dioxide doped composite material and preparation method thereof
JP5492287B2 (en) * 2010-03-04 2014-05-14 株式会社東芝 Non-aqueous electrolyte battery, battery pack and automobile
JP5573989B2 (en) * 2013-02-19 2014-08-20 ソニー株式会社 Negative electrode active material, negative electrode, battery, and manufacturing method of negative electrode
US9979012B2 (en) 2013-09-02 2018-05-22 Panasonic Intellectual Property Management Co., Ltd. Lithium ion secondary battery and method for manufacturing the same
JP5892200B2 (en) * 2014-07-02 2016-03-23 ソニー株式会社 Electrode, battery, and electrode manufacturing method
JP2019194935A (en) * 2016-08-02 2019-11-07 株式会社村田製作所 Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
CN108101043B (en) * 2017-12-21 2021-05-18 陕西科技大学 Preparation method and application of coal-derived artificial graphite material
WO2019207933A1 (en) * 2018-04-27 2019-10-31 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236809A (en) * 1996-12-26 1998-09-08 Hitachi Chem Co Ltd Graphite grain, its production, graphite paste using graphite grain, negative electrode for lithium secondary battery, its production and lithium secondary battery
JP2002343341A (en) * 1996-12-26 2002-11-29 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery
JP2002358963A (en) * 2001-06-01 2002-12-13 Nippon Chem Ind Co Ltd Lithium cobalt system complex oxide, lithium secondary battery positive electrode active substance and lithium secondary battery
JP2004095426A (en) * 2002-09-02 2004-03-25 Sei Kk Negative electrode and positive electrode for lithium secondary battery and lithium secondary battery
WO2004030126A1 (en) * 2002-09-25 2004-04-08 Seimi Chemical Co., Ltd. Positive electrode material for lithium secondary battery and process for producing the same
JP2004134207A (en) * 2002-10-10 2004-04-30 Sony Corp Positive electrode active material and non-aqueous electrolyte secondary battery
JP2004207120A (en) * 2002-12-26 2004-07-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2005093880A1 (en) * 2004-03-29 2005-10-06 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236809A (en) * 1996-12-26 1998-09-08 Hitachi Chem Co Ltd Graphite grain, its production, graphite paste using graphite grain, negative electrode for lithium secondary battery, its production and lithium secondary battery
JP2002343341A (en) * 1996-12-26 2002-11-29 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery
JP2002358963A (en) * 2001-06-01 2002-12-13 Nippon Chem Ind Co Ltd Lithium cobalt system complex oxide, lithium secondary battery positive electrode active substance and lithium secondary battery
JP2004095426A (en) * 2002-09-02 2004-03-25 Sei Kk Negative electrode and positive electrode for lithium secondary battery and lithium secondary battery
WO2004030126A1 (en) * 2002-09-25 2004-04-08 Seimi Chemical Co., Ltd. Positive electrode material for lithium secondary battery and process for producing the same
JP2004134207A (en) * 2002-10-10 2004-04-30 Sony Corp Positive electrode active material and non-aqueous electrolyte secondary battery
JP2004207120A (en) * 2002-12-26 2004-07-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2005093880A1 (en) * 2004-03-29 2005-10-06 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2006185794A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4070585B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery using the same
JP3543437B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using this positive electrode active material
US8535829B2 (en) Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
JP4524881B2 (en) Nonaqueous electrolyte secondary battery
JP2011233245A (en) Lithium secondary battery
KR20020070495A (en) Nonaqueous electrolyte secondary cell and positive electrode active material
JP2004342500A (en) Non-aqueous electrolyte secondary battery and battery charge/discharge system
KR20210013253A (en) Nonaqueous electrolyte secondary battery
WO2013151209A1 (en) Cathode active material for lithium ion capacitor and method for manufacturing same
KR20130119956A (en) Nonaqueous secondary battery
JP2006236830A (en) Lithium secondary battery
WO2011117992A1 (en) Active material for battery, and battery
JP5031065B2 (en) Lithium ion secondary battery
JP4530845B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP3633223B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP2012169299A (en) Method for manufacturing lithium ion secondary battery
JP2006156230A (en) Nonaqueous electrolyte secondary battery and its charging method
JP2007031233A (en) Method for producing graphite material
JP5566825B2 (en) Lithium secondary battery
JP5241766B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP5147892B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2003017051A (en) Negative electrode active material, manufacturing method of the same, and non-aqueous electrolyte secondary battery
JP2000348724A (en) Lithium nickel composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using it
EP4239720A1 (en) Anode active material comprising silicon composite, preparation method therefor, and lithium secondary battery comprising same
JP4170733B2 (en) Cathode active material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R151 Written notification of patent or utility model registration

Ref document number: 4530845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250