JP5566825B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP5566825B2
JP5566825B2 JP2010206377A JP2010206377A JP5566825B2 JP 5566825 B2 JP5566825 B2 JP 5566825B2 JP 2010206377 A JP2010206377 A JP 2010206377A JP 2010206377 A JP2010206377 A JP 2010206377A JP 5566825 B2 JP5566825 B2 JP 5566825B2
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
positive electrode
battery
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010206377A
Other languages
Japanese (ja)
Other versions
JP2012064376A (en
Inventor
春樹 上剃
至 御書
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2010206377A priority Critical patent/JP5566825B2/en
Publication of JP2012064376A publication Critical patent/JP2012064376A/en
Application granted granted Critical
Publication of JP5566825B2 publication Critical patent/JP5566825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、安全性に優れ、貯蔵時の膨れが抑制されたリチウム二次電池に関するものである。   The present invention relates to a lithium secondary battery that is excellent in safety and has suppressed swelling during storage.

リチウムイオン二次電池をはじめとする非水電解液系のリチウム二次電池は、高電圧・高容量であることから、各種携帯機器の電源として広く採用されている。また、近年では電動工具などのパワーツールや、電気自動車・電動式自転車など、中型・大型サイズでの用途も広がりを見せている。   Non-aqueous electrolyte lithium secondary batteries such as lithium ion secondary batteries are widely used as power sources for various portable devices because of their high voltage and high capacity. In recent years, the use of medium- and large-sized power tools such as electric tools, electric vehicles, and electric bicycles has been spreading.

特に、小型化および多機能化が進んでいる携帯電話やゲーム機などに用いられる電池には、更なる高容量化が求められており、その手段として、高い充放電容量を示す電極活物質の研究・開発が進んでいる。なかでも、負極の活物質材料としては、従来のリチウムイオン二次電池に採用されている黒鉛などの炭素質材料に代えて、シリコン(Si)、スズ(Sn)など、より多くのリチウム(イオン)を吸蔵・放出可能な材料が注目されている、とりわけ、Siの超微粒子がSiO中に分散した構造を持つSiOは、負荷特性に優れるなどの特徴も併せ持つことが報告されている(特許文献1、2参照)。 In particular, batteries used in mobile phones and game machines that are becoming smaller and more multifunctional are required to have higher capacities, and as a means for this, electrode active materials that exhibit high charge / discharge capacity are required. Research and development are progressing. Among them, as the active material material of the negative electrode, more lithium (ion) such as silicon (Si) and tin (Sn) can be used instead of carbonaceous materials such as graphite, which are used in conventional lithium ion secondary batteries. ) Has been attracting attention. In particular, it has been reported that SiO x having a structure in which ultrafine particles of Si are dispersed in SiO 2 has characteristics such as excellent load characteristics ( (See Patent Documents 1 and 2).

ところが、前記SiOは、充放電反応に伴う体積膨張収縮が大きいため、電池の充放電サイクル毎に粒子が粉砕され、表面に析出したSiが非水電解液溶媒と反応して不可逆な容量が増大したり、この反応によって電池内でガスが発生して電池缶が膨れたりするなどの問題が生じることも知られている。また、SiOは微細な形状をしているため、これにより電池の負荷特性の改善に一定の効果は認められるものの、SiO自体は導電性が低い材料である点で、未だ改善の余地が残されていた。 However, since the SiO x has a large volume expansion / contraction due to the charge / discharge reaction, particles are pulverized every charge / discharge cycle of the battery, and Si deposited on the surface reacts with the non-aqueous electrolyte solvent to have an irreversible capacity. It is also known that problems such as an increase or a gas generated in the battery due to this reaction cause the battery can to swell. In addition, since SiO x has a fine shape, a certain effect can be recognized in improving the load characteristics of the battery, but there is still room for improvement in that SiO x itself is a material with low conductivity. It was left.

このような事情を受けて、SiOの利用率を制限して充放電反応に伴う体積膨張収縮を抑制したり、SiOの表面を炭素などの導電質材料で被覆して負荷特性を改善したり、ハロゲン置換された環状カーボネート(例えば4−フルオロ−1,3−ジオキソラン−2−オンなど)などを添加した非水電解液を用いることで、電池の充放電サイクル特性を改善したり、ガス発生に伴う電池缶の膨れを抑制したりする技術も提案がされている(特許文献3参照)。 Under such circumstances, the SiO x utilization rate is limited to suppress volume expansion and contraction associated with charge / discharge reactions, or the surface of SiO x is coated with a conductive material such as carbon to improve load characteristics. Or by using a non-aqueous electrolyte to which a halogen-substituted cyclic carbonate (for example, 4-fluoro-1,3-dioxolan-2-one) is added or the like, A technique for suppressing the swelling of the battery can accompanying the generation has also been proposed (see Patent Document 3).

特開2004−047404号公報Japanese Patent Laid-Open No. 2004-047404 特開2005−259697号公報Japanese Patent Laid-Open No. 2005-259697 特開2008−210618号公報JP 2008-210618A

ところで、リチウム二次電池では、高容量化に伴って安全性の向上も求められる。例えば、特許文献3に記載の電池は、高容量化が達成されており、また、充放電サイクル特性なども優れていることに加えて、安全性も良好であるが、今後予想される更なる高容量化に備えて、従来にも増して高い安全性を確保する技術の開発も求められる。   By the way, in the lithium secondary battery, improvement in safety is also required as capacity is increased. For example, the battery described in Patent Document 3 has a high capacity, and is excellent in charge / discharge cycle characteristics, etc., and has good safety, but further expected in the future. In preparation for higher capacity, the development of technology to ensure higher safety than ever is also required.

更に、リチウム二次電池の高容量化に際しては、例えば、電池電圧を高めることも考えられるが、電圧の上昇に伴って非水電解液溶媒が分解しやすくなり、それによるガス発生に伴う電池の膨れが発生する虞もある。特許文献3に記載の電池は、前記の通り、ガス発生に伴う電池の膨れが良好に抑制されたものであるが、こうした手法によって更なる高容量化を図った際の電池膨れの抑制に関しては、未だ改善の余地もある。   Furthermore, when increasing the capacity of a lithium secondary battery, for example, it is conceivable to increase the battery voltage. However, as the voltage increases, the nonaqueous electrolyte solvent becomes easier to decompose, and as a result, the battery generated due to gas generation. There is also a risk of swelling. As described above, the battery described in Patent Document 3 is a battery in which the expansion of the battery due to gas generation is well suppressed, but regarding the suppression of the battery expansion when further increasing the capacity by such a technique, There is still room for improvement.

本発明は、前記事情に鑑みてなされたものであり、その目的は、安全性に優れ、貯蔵時の膨れが抑制されたリチウム二次電池を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the lithium secondary battery which was excellent in safety | security and the swelling at the time of storage was suppressed.

前記目的を達成し得た本発明のリチウム二次電池は、正極、負極、非水電解液およびセパレータを有しており、前記正極は、リチウム含有複合酸化物を正極活物質として含有する正極合剤層を、集電体の片面または両面に有するものであり、前記負極は、SiとOとを構成元素に含む材料(ただし、Siに対するOの原子比xは、0.5≦x≦1.5である。以下、当該材料を「SiO」と記載する場合がある。)と炭素材料との複合体、および黒鉛質炭素材料を負極活物質として含有する負極合剤層を、集電体の片面または両面に有するものであり、前記負極活物質中におけるSiとOとを構成元素に含む材料と炭素材料との複合体の含有量が、0.01〜20質量%であり、前記非水電解液が、トリフルオロプロピレンカーボネートと鎖状フッ素化カーボネートとを含有することを特徴とするものである。 The lithium secondary battery of the present invention that has achieved the above object has a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator. The positive electrode contains a lithium-containing composite oxide as a positive electrode active material. The negative electrode is made of a material containing Si and O as constituent elements (however, the atomic ratio x of O to Si is 0.5 ≦ x ≦ 1). Hereinafter, the material may be referred to as “SiO x ”) and a carbon material, and a negative electrode mixture layer containing a graphitic carbon material as a negative electrode active material. The content of the composite of the material containing Si and O in the negative electrode active material and the carbon material is 0.01 to 20% by mass, Non-aqueous electrolyte is trifluoropropylene carbonate It is characterized in that it contains a chain fluorinated carbonate.

本発明によれば、安全性に優れ、貯蔵時の膨れが抑制されたリチウム二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is excellent in safety and the lithium secondary battery by which the swelling at the time of storage was suppressed can be provided.

本発明のリチウム二次電池の一例を示す模式図であり、(a)平面図、(b)断面図である。It is a schematic diagram which shows an example of the lithium secondary battery of this invention, (a) Top view, (b) Cross-sectional view. 図1の斜視図である。FIG. 2 is a perspective view of FIG. 1.

本発明のリチウム二次電池では、非水電解液の溶媒に、トリフルオロプロピレンカーボネート(TFPC)と鎖状フッ素化カーボネートとを使用する。これらの溶媒は、リチウム二次電池の非水電解液溶媒として汎用されている通常の有機溶媒に比べて酸化電位が高いために、高電圧下でも分解し難い。よって、電池を充電状態で長時間貯蔵した場合においても、これらの分解によるガス発生を抑えることができ、また、前記電池が電圧を高めて高容量化を図ったものであっても、同様の効果が期待できる。更に、TFPCおよび鎖状フッ素化カーボネートは、電池内で分解し難いために、分解反応に伴う発熱反応を抑制して、電池の内部温度上昇を抑え、電池の安全性を高める作用も有している。   In the lithium secondary battery of the present invention, trifluoropropylene carbonate (TFPC) and chain fluorinated carbonate are used as the solvent of the nonaqueous electrolytic solution. Since these solvents have a higher oxidation potential than ordinary organic solvents that are widely used as non-aqueous electrolyte solvents for lithium secondary batteries, they are difficult to decompose even under high voltages. Therefore, even when the battery is stored in a charged state for a long time, generation of gas due to the decomposition thereof can be suppressed, and even if the battery is designed to increase the voltage to increase the capacity, The effect can be expected. Furthermore, since TFPC and chain fluorinated carbonate are difficult to decompose in the battery, they have an effect of suppressing an exothermic reaction accompanying the decomposition reaction, suppressing an increase in the internal temperature of the battery, and improving the safety of the battery. Yes.

しかも、TFPCおよび鎖状フッ素化カーボネートは、例えば、リチウム二次電池の非水電解液溶媒として汎用されている通常の有機溶媒に比べて難燃性に優れていることから、例えば、電池の熱暴走によって、その内部温度が、通常の非水電解液溶媒が発火に至るような温度にまで上昇しても、発火が抑制され、これによっても電池の安全性が向上する。   Moreover, since TFPC and chain fluorinated carbonate, for example, are superior in flame retardancy compared to ordinary organic solvents that are widely used as non-aqueous electrolyte solvents for lithium secondary batteries, for example, the heat of batteries Even if the internal temperature of the runaway rises to a temperature at which a normal non-aqueous electrolyte solvent ignites, ignition is suppressed, which also improves the safety of the battery.

本発明のリチウム二次電池は、SiOを負極活物質として使用することにより高容量化を図りつつ、高容量の電池において、より高度であることが求められる安全性や貯蔵時における膨れの抑制を、非水電解液溶媒の構成を前記のように特定することで達成している。 The lithium secondary battery of the present invention has a high capacity by using SiO x as a negative electrode active material, and is required to have a higher level of safety in a high-capacity battery and suppression of swelling during storage. Is achieved by specifying the configuration of the non-aqueous electrolyte solvent as described above.

本発明のリチウム二次電池に係る負極には、例えば、負極活物質やバインダなどを含有する負極合剤層を、集電体の片面または両面に有する構造のものを使用する。そして、負極に係る負極活物質には、SiOと炭素材料との複合体、および黒鉛質炭素材料を使用する。 For the negative electrode according to the lithium secondary battery of the present invention, for example, a negative electrode mixture layer containing a negative electrode active material or a binder is used on one side or both sides of the current collector. Then, the negative active material according to the negative electrode, to complex with SiO x and the carbon material, and a graphitic carbon material used.

SiOを負極活物質として使用した電池では、充放電に伴う体積変化に起因して生じるSiO粒子の粉砕によって、高活性なSiが露出し(SiOの構造の詳細については後述する)、これが非水電解液を分解するため、充放電サイクル特性が低下しやすいといった問題がある。 In a battery using SiO x as a negative electrode active material, highly active Si is exposed by grinding of the SiO x particles caused by the volume change caused by charging and discharging (details of the structure of SiO x will be described later), Since this decomposes the non-aqueous electrolyte, there is a problem that the charge / discharge cycle characteristics are likely to deteriorate.

本発明の電池は、負極活物質に、SiOと、活物質として作用しかつ導電助剤としても作用することで導電性に乏しいSiOを含有する負極合剤層中の導電性を高め得る黒鉛質炭素材料とを、特定比率で使用して構成した負極を有しており、これにより充放電に伴うSiOの体積変化に起因する充放電サイクル特性の低下を抑制している。 Cell of the present invention, the negative electrode active material may enhance the SiO x, the conductivity of the negative electrode mixture layer also contains a poor SiO x to conductive by acting as acting as an active material and conductive additive a graphitic carbon material, thereby suppressing a decrease in charge-discharge cycle characteristics has a negative electrode constituted by using, thereby resulting in change in volume of the SiO x due to charge and discharge at a specific ratio.

負極活物質として使用するSiOは、Siの微結晶または非晶質相を含んでいてもよく、この場合、SiとOの原子比は、Siの微結晶または非晶質相のSiを含めた比率となる。すなわち、SiOには、非晶質のSiOマトリックス中に、Si(例えば、微結晶Si)が分散した構造のものが含まれ、この非晶質のSiOと、その中に分散しているSiを合わせて、前記の原子比xが0.5≦x≦1.5を満足していればよい。例えば、非晶質のSiOマトリックス中に、Siが分散した構造で、SiOとSiのモル比が1:1の材料の場合、x=1であるので、構造式としてはSiOで表記される。このような構造の材料の場合、例えば、X線回折分析では、Si(微結晶Si)の存在に起因するピークが観察されない場合もあるが、透過型電子顕微鏡で観察すると、微細なSiの存在が確認できる。 The SiO x used as the negative electrode active material may contain a Si microcrystalline or amorphous phase. In this case, the atomic ratio of Si and O includes Si microcrystalline or amorphous Si. Ratio. That is, SiO x includes a structure in which Si (for example, microcrystalline Si) is dispersed in an amorphous SiO 2 matrix, and this amorphous SiO 2 is dispersed in the SiO 2 matrix. It is sufficient that the atomic ratio x satisfies 0.5 ≦ x ≦ 1.5 in combination with Si. For example, in the case of a material in which Si is dispersed in an amorphous SiO 2 matrix and the material has a molar ratio of SiO 2 to Si of 1: 1, x = 1, so that the structural formula is represented by SiO. The In the case of a material having such a structure, for example, in X-ray diffraction analysis, a peak due to the presence of Si (microcrystalline Si) may not be observed, but when observed with a transmission electron microscope, the presence of fine Si Can be confirmed.

そして、SiOは、炭素材料と複合化した複合体であり、例えば、SiOの表面が炭素材料で被覆されていることが望ましい。前記の通り、SiOは導電性が乏しいため、これを負極活物質として用いる際には、良好な電池特性確保の観点から、導電性材料(導電助剤)を使用し、負極内におけるSiOと導電性材料との混合・分散を良好にして、優れた導電ネットワークを形成する必要がある。SiOを炭素材料と複合化した複合体であれば、例えば、単にSiOと炭素材料などの導電性材料とを混合して得られた材料を用いた場合よりも、負極における導電ネットワークが良好に形成される。 Then, SiO x is a complex complexed with carbon materials, for example, it is desirable that the surface of the SiO x is coated with a carbon material. As described above, since SiO x has poor conductivity, when using it as a negative electrode active material, from the viewpoint of securing good battery characteristics, a conductive material (conductive aid) is used, and SiO x in the negative electrode is used. It is necessary to form an excellent conductive network by mixing and dispersing the material and the conductive material well. If complexes complexed with carbon material SiO x, for example, simply than with a material obtained by mixing a conductive material such as SiO x and the carbon material, good conductive network in the negative electrode Formed.

SiOと炭素材料との複合体としては、前記のように、SiOの表面を炭素材料で被覆したものの他、SiOと炭素材料との造粒体などが挙げられる。 The complex of the SiO x and the carbon material, as described above, other although the surface of the SiO x coated with carbon material, such as granules of SiO x and the carbon material can be cited.

また、前記の、SiOの表面を炭素材料で被覆した複合体を、更に導電性材料(炭素材料など)と複合化して用いることで、負極において更に良好な導電ネットワークの形成が可能となるため、より高容量で、より電池特性(例えば、充放電サイクル特性)に優れたリチウム二次電池の実現が可能となる。炭素材料で被覆されたSiOと炭素材料との複合体としては、例えば、炭素材料で被覆されたSiOと炭素材料との混合物を更に造粒した造粒体などが挙げられる。 In addition, since the composite in which the surface of SiO x is coated with a carbon material is further combined with a conductive material (carbon material or the like), a better conductive network can be formed in the negative electrode. Therefore, it is possible to realize a lithium secondary battery with higher capacity and more excellent battery characteristics (for example, charge / discharge cycle characteristics). The complex of the SiO x and the carbon material coated with a carbon material, for example, like granules the mixture was further granulated with SiO x and the carbon material coated with a carbon material.

また、表面が炭素材料で被覆されたSiOとしては、SiOとそれよりも比抵抗値が小さい炭素材料との複合体(例えば造粒体)の表面が、更に炭素材料で被覆されてなるものも、好ましく用いることができる。前記造粒体内部でSiOと炭素材料とが分散した状態であると、より良好な導電ネットワークを形成できるため、SiOを負極活物質として含有する負極を有するリチウム二次電池において、重負荷放電特性などの電池特性を更に向上させることができる。 Further, as SiO x whose surface is coated with a carbon material, the surface of a composite (for example, a granulated body) of SiO x and a carbon material having a smaller specific resistance value is further coated with a carbon material. Those can also be preferably used. In a state where SiO x and the carbon material are dispersed inside the granulated body, a better conductive network can be formed. Therefore, in a lithium secondary battery having a negative electrode containing SiO x as a negative electrode active material, a heavy load Battery characteristics such as discharge characteristics can be further improved.

SiOとの複合体の形成に用い得る前記炭素材料としては、例えば、低結晶性炭素、カーボンナノチューブ、気相成長炭素繊維などの炭素材料が好ましいものとして挙げられる。 Preferred examples of the carbon material that can be used to form a composite with SiO x include carbon materials such as low crystalline carbon, carbon nanotubes, and vapor grown carbon fibers.

前記炭素材料の詳細としては、繊維状またはコイル状の炭素材料、カーボンブラック(アセチレンブラック、ケッチェンブラックを含む)、人造黒鉛、易黒鉛化炭素および難黒鉛化炭素よりなる群から選ばれる少なくとも1種の材料が好ましい。繊維状またはコイル状の炭素材料は、導電ネットワークを形成し易く、かつ表面積の大きい点において好ましい。カーボンブラック(アセチレンブラック,ケッチェンブラックを含む)、易黒鉛化炭素および難黒鉛化炭素は、高い電気伝導性、高い保液性を有しており、さらに、SiO粒子が膨張収縮しても、その粒子との接触を保持し易い性質を有している点において好ましい。 The details of the carbon material include at least one selected from the group consisting of fibrous or coiled carbon materials, carbon black (including acetylene black and ketjen black), artificial graphite, graphitizable carbon, and non-graphitizable carbon. A seed material is preferred. Fibrous or coil-like carbon materials are preferable in that they easily form a conductive network and have a large surface area. Carbon black (including acetylene black and ketjen black), graphitizable carbon, and non-graphitizable carbon have high electrical conductivity and high liquid retention, and even if SiO x particles expand and contract. This is preferable in that it has a property of easily maintaining contact with the particles.

負極活物質としてSiOと併用される黒鉛質炭素材料を、SiOと炭素材料との複合体に係る炭素材料として使用することもできる。黒鉛質炭素材料も、カーボンブラックなどと同様に、高い電気伝導性、高い保液性を有しており、さらに、SiO粒子が膨張収縮しても、その粒子との接触を保持し易い性質を有しているため、SiOとの複合体形成に好ましく使用することができる。 A graphite carbon material used in combination with SiO x as a negative electrode active material can also be used as a carbon material related to a composite of SiO x and a carbon material. Graphite carbon material, like carbon black, has high electrical conductivity and high liquid retention, and even when SiO x particles expand and contract, they easily maintain contact with the particles. Therefore, it can be preferably used for forming a complex with SiO x .

前記例示の炭素材料の中でも、SiOとの複合体が造粒体である場合に用いるものとしては、繊維状の炭素材料が特に好ましい。繊維状の炭素材料は、その形状が細い糸状であり柔軟性が高いために電池の充放電に伴うSiOの膨張収縮に追従でき、また、嵩密度が大きいために、SiO粒子と多くの接合点を持つことができるからである。繊維状の炭素としては、例えば、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、カーボンナノチューブなどが挙げられ、これらの何れを用いてもよい。 Among the carbon materials exemplified above, a fibrous carbon material is particularly preferable for use when the composite with SiO x is a granulated body. Fibrous carbon material can follow the expansion and contraction of SiO x with the charging and discharging of the battery due to the high shape is thin threadlike flexibility, also because bulk density is large, many and SiO x particles It is because it can have a junction. Examples of the fibrous carbon include polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, and carbon nanotube, and any of these may be used.

なお、繊維状の炭素材料は、例えば、気相法にてSiO粒子の表面に形成することもできる。 The fibrous carbon material can also be formed on the surface of the SiO x particles by, for example, a vapor phase method.

SiOの比抵抗値が、通常、10〜10kΩcmであるのに対して、前記例示の炭素材料の比抵抗値は、通常、10−5〜10kΩcmである。 The specific resistance value of SiO x is usually 10 3 to 10 7 kΩcm, while the specific resistance value of the carbon material exemplified above is usually 10 −5 to 10 kΩcm.

また、SiOと炭素材料との複合体は、粒子表面の炭素材料被覆層を覆う材料層(難黒鉛化炭素を含む材料層)を更に有していてもよい。 The composite of SiO x and the carbon material may further have a material layer (a material layer containing non-graphitizable carbon) that covers the carbon material coating layer on the particle surface.

負極にSiOと炭素材料との複合体を使用する場合、SiOと炭素材料との比率は、炭素材料との複合化による作用を良好に発揮させる観点から、SiO:100質量部に対して、炭素材料が、5質量部以上であることが好ましく、10質量部以上であることがより好ましい。また、前記複合体において、SiOと複合化する炭素材料の比率が多すぎると、負極合剤層中のSiO量の低下に繋がり、高容量化の効果が小さくなる虞があることから、SiO:100質量部に対して、炭素材料は、50質量部以下であることが好ましく、40質量部以下であることがより好ましい。 When a composite of SiO x and a carbon material is used for the negative electrode, the ratio of SiO x and the carbon material is based on SiO x : 100 parts by mass from the viewpoint of satisfactorily exerting the effect of the composite with the carbon material. The carbon material is preferably 5 parts by mass or more, and more preferably 10 parts by mass or more. Further, in the composite, if the ratio of the carbon material to be combined with SiO x is too large, it may lead to a decrease in the amount of SiO x in the negative electrode mixture layer, and the effect of increasing the capacity may be reduced. SiO x: relative to 100 parts by weight, the carbon material, and more preferably preferably not more than 50 parts by weight, more than 40 parts by weight.

前記のSiOと炭素材料との複合体は、例えば下記の方法によって得ることができる。 The composite of the SiO x and the carbon material can be obtained, for example, by the following method.

まず、SiOを複合化する場合の作製方法について説明する。SiOが分散媒に分散した分散液を用意し、それを噴霧し乾燥して、複数の粒子を含む複合粒子を作製する。分散媒としては、例えば、エタノールなどを用いることができる。分散液の噴霧は、通常、50〜300℃の雰囲気内で行うことが適当である。前記の方法以外にも、振動型や遊星型のボールミルやロッドミルなどを用いた機械的な方法による造粒方法においても、同様の複合粒子を作製することができる。 First, a manufacturing method in the case of combining SiO x will be described. A dispersion liquid in which SiO x is dispersed in a dispersion medium is prepared, and sprayed and dried to produce composite particles including a plurality of particles. For example, ethanol or the like can be used as the dispersion medium. It is appropriate to spray the dispersion in an atmosphere of 50 to 300 ° C. In addition to the above method, similar composite particles can be produced also by a granulation method by a mechanical method using a vibration type or planetary type ball mill or rod mill.

なお、SiOと、SiOよりも比抵抗値の小さい炭素材料との造粒体を作製する場合には、SiOが分散媒に分散した分散液中に前記炭素材料を添加し、この分散液を用いて、SiOを複合化する場合と同様の手法によって複合粒子(造粒体)とすればよい。また、前記と同様の機械的な方法による造粒方法によっても、SiOと炭素材料との造粒体を作製することができる。 Incidentally, the SiO x, in the case of manufacturing a granulated body with small carbon material resistivity value than SiO x is adding the carbon material in the dispersion liquid of SiO x are dispersed in a dispersion medium, the dispersion by using a liquid, by a similar method to the case of composite of SiO x may be a composite particle (granule). Further, by granulation process according to the similar mechanical method, it is possible to produce a granular material of the SiO x and the carbon material.

次に、SiO粒子(SiO複合粒子、またはSiOと炭素材料との造粒体)の表面を炭素材料で被覆して複合体とする場合には、例えば、SiO粒子と炭化水素系ガスとを気相中にて加熱して、炭化水素系ガスの熱分解により生じた炭素を、粒子の表面上に堆積させる。このように、気相成長(CVD)法によれば、炭化水素系ガスが複合粒子の隅々にまで行き渡り、粒子の表面や表面の空孔内に、導電性を有する炭素材料を含む薄くて均一な皮膜(炭素材料被覆層)を形成できることから、少量の炭素材料によってSiO粒子に均一性よく導電性を付与できる。 Next, when the surface of SiO x particles (SiO x composite particles or a granulated body of SiO x and a carbon material) is coated with a carbon material to form a composite, for example, the SiO x particles and the hydrocarbon-based material The gas is heated in the gas phase, and carbon generated by pyrolysis of the hydrocarbon-based gas is deposited on the surface of the particles. As described above, according to the vapor deposition (CVD) method, the hydrocarbon-based gas spreads to every corner of the composite particle, and the surface of the particle and the pores in the surface are thin and contain a conductive carbon material. Since a uniform film (carbon material coating layer) can be formed, the SiO x particles can be imparted with good conductivity with a small amount of carbon material.

炭素材料で被覆されたSiOの製造において、気相成長(CVD)法の処理温度(雰囲気温度)については、炭化水素系ガスの種類によっても異なるが、通常、600〜1200℃が適当であり、中でも、700℃以上であることが好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い炭素を含む被覆層を形成できるからである。 In the production of SiO x coated with a carbon material, the processing temperature (atmosphere temperature) of the vapor deposition (CVD) method varies depending on the type of hydrocarbon gas, but usually 600 to 1200 ° C. is appropriate. Among these, the temperature is preferably 700 ° C. or higher, and more preferably 800 ° C. or higher. This is because the higher the treatment temperature, the less the remaining impurities, and the formation of a coating layer containing carbon having high conductivity.

炭化水素系ガスの液体ソースとしては、トルエン、ベンゼン、キシレン、メシチレンなどを用いることができるが、取り扱い易いトルエンが特に好ましい。これらを気化させる(例えば、窒素ガスでバブリングする)ことにより炭化水素系ガスを得ることができる。また、メタンガスやアセチレンガスなどを用いることもできる。   As the liquid source of the hydrocarbon-based gas, toluene, benzene, xylene, mesitylene and the like can be used, but toluene that is easy to handle is particularly preferable. A hydrocarbon-based gas can be obtained by vaporizing them (for example, bubbling with nitrogen gas). Moreover, methane gas, acetylene gas, etc. can also be used.

また、気相成長(CVD)法にてSiO粒子(SiO複合粒子、またはSiOと炭素材料との造粒体)の表面を炭素材料で覆った後に、石油系ピッチ、石炭系のピッチ、熱硬化性樹脂、およびナフタレンスルホン酸塩とアルデヒド類との縮合物よりなる群から選択される少なくとも1種の有機化合物を、炭素材料を含む被覆層に付着させた後、前記有機化合物が付着した粒子を焼成してもよい。 In addition, after the surface of SiO x particles (SiO x composite particles or a granulated body of SiO x and a carbon material) is covered with a carbon material by a vapor deposition (CVD) method, a petroleum-based pitch or a coal-based pitch is used. At least one organic compound selected from the group consisting of a thermosetting resin and a condensate of naphthalene sulfonate and aldehydes is attached to a coating layer containing a carbon material, and then the organic compound is attached. The obtained particles may be fired.

具体的には、炭素材料で被覆されたSiO粒子(SiO複合粒子、またはSiOと炭素材料との造粒体)と、前記有機化合物とが分散媒に分散した分散液を用意し、この分散液を噴霧し乾燥して、有機化合物によって被覆された粒子を形成し、その有機化合物によって被覆された粒子を焼成する。 Specifically, a dispersion liquid in which a SiO x particle (SiO x composite particle or a granulated body of SiO x and a carbon material) coated with a carbon material and the organic compound are dispersed in a dispersion medium is prepared, The dispersion is sprayed and dried to form particles coated with the organic compound, and the particles coated with the organic compound are fired.

前記ピッチとしては等方性ピッチを、熱硬化性樹脂としてはフェノール樹脂、フラン樹脂、フルフラール樹脂などを用いることができる。ナフタレンスルホン酸塩とアルデヒド類との縮合物としては、ナフタレンスルホン酸ホルムアルデヒド縮合物を用いることができる。   An isotropic pitch can be used as the pitch, and a phenol resin, a furan resin, a furfural resin, or the like can be used as the thermosetting resin. As the condensate of naphthalene sulfonate and aldehydes, naphthalene sulfonic acid formaldehyde condensate can be used.

炭素材料で被覆されたSiO粒子と前記有機化合物とを分散させるための分散媒としては、例えば、水、アルコール類(エタノールなど)を用いることができる。分散液の噴霧は、通常、50〜300℃の雰囲気内で行うことが適当である。焼成温度は、通常、600〜1200℃が適当であるが、中でも700℃以上が好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い良質な炭素材料を含む被覆層を形成できるからである。ただし、処理温度はSiOの融点以下であることを要する。 As a dispersion medium for dispersing the SiO x particles coated with the carbon material and the organic compound, for example, water or alcohols (ethanol or the like) can be used. It is appropriate to spray the dispersion in an atmosphere of 50 to 300 ° C. The firing temperature is usually 600 to 1200 ° C., preferably 700 ° C. or higher, and more preferably 800 ° C. or higher. This is because the higher the processing temperature, the less the remaining impurities, and the formation of a coating layer containing a high-quality carbon material with high conductivity. However, the processing temperature needs to be lower than the melting point of SiO x .

前記のSiOと炭素材料との複合体と共に負極活物質として使用する黒鉛質炭素材料としては、例えば、鱗片状黒鉛などの天然黒鉛;熱分解炭素類、MCMB、炭素繊維などの易黒鉛化炭素を2800℃以上で黒鉛化処理した人造黒鉛;などが挙げられる。 Examples of the graphitic carbon material used as the negative electrode active material together with the composite of SiO x and the carbon material include natural graphite such as flake graphite; graphitizable carbon such as pyrolytic carbons, MCMB, and carbon fiber. And artificial graphite obtained by graphitizing at 2800 ° C. or higher.

本発明に係る負極においては、SiOを使用することによる高容量化の効果を良好に確保する観点から、負極活物質中におけるSiOと炭素材料との複合体の含有量は、0.01質量%以上であり、3質量%以上であることが好ましい。また、充放電に伴うSiOの体積変化による問題を良好に回避する観点から、負極活物質中におけるSiOと炭素材料との複合体の含有量は、20質量%以下であり、10質量%以下であることがより好ましい。 In the negative electrode according to the present invention, from the viewpoint of satisfactorily ensuring the effect of the high capacity by using a SiO x, the content of the complex of the SiO x and the carbon material in the anode active material is 0.01 It is preferably at least 3% by mass and more than 3% by mass. Further, from the viewpoint of satisfactorily avoiding the problem due to the volume change of SiO x accompanying charge / discharge, the content of the composite of SiO x and the carbon material in the negative electrode active material is 20% by mass or less, and 10% by mass. The following is more preferable.

負極合剤層に係るバインダには、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などが好適に用いられる。更に、負極合剤層には、導電助剤として、アセチレンブラックなどの各種カーボンブラックやカーボンナノチューブ、炭素繊維などを添加してもよい。   For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), or the like is preferably used for the binder related to the negative electrode mixture layer. Furthermore, you may add various carbon blacks, such as acetylene black, a carbon nanotube, carbon fiber, etc. as a conductive support agent to a negative mix layer.

負極は、例えば、負極活物質およびバインダ、更には必要に応じて導電助剤を、N−メチル−2−ピロリドン(NMP)や水などの溶剤に分散させた負極合剤含有組成物を調製し(ただし、バインダは溶剤に溶解していてもよい)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダー処理を施す工程を経て製造される。ただし、負極の製造方法は、前記の方法に制限される訳ではなく、他の製造方法で製造してもよい。   The negative electrode is prepared, for example, by preparing a negative electrode mixture-containing composition in which a negative electrode active material and a binder and, if necessary, a conductive additive are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) or water. (However, the binder may be dissolved in a solvent), which is applied to one or both sides of the current collector, dried, and then subjected to a calendering process as necessary. However, the manufacturing method of the negative electrode is not limited to the above method, and may be manufactured by other manufacturing methods.

負極合剤層の厚みは、集電体の片面あたり、集電体の片面あたり10〜100μmであることが好ましく、負極合剤層の密度(集電体に積層した単位面積あたりの負極合剤層の質量と、厚みから算出される)は、1.0〜1.9g/cmであることが好ましい。また、負極合剤層の組成としては、例えば、負極活物質の量が80〜95質量%であることが好ましく、バインダの量が1〜20質量%であることが好ましく、導電助剤を使用する場合には、その量が1〜10質量%であることが好ましい。 The thickness of the negative electrode mixture layer is preferably 10 to 100 μm per one side of the current collector, and the density of the negative electrode mixture layer (the negative electrode mixture per unit area laminated on the current collector) (Calculated from the mass and thickness of the layer) is preferably 1.0 to 1.9 g / cm 3 . Moreover, as a composition of a negative mix layer, it is preferable that the quantity of a negative electrode active material is 80-95 mass%, for example, it is preferable that the quantity of a binder is 1-20 mass%, and uses a conductive support agent. When it does, it is preferable that the quantity is 1-10 mass%.

負極の集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、機械的強度を確保するために下限は5μmであることが望ましい。   As the current collector for the negative electrode, a foil made of copper or nickel, a punching metal, a net, an expanded metal, or the like can be used, but a copper foil is usually used. In the negative electrode current collector, when the thickness of the entire negative electrode is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit is 5 μm in order to ensure mechanical strength. Is desirable.

本発明のリチウム二次電池に係る正極には、例えば、正極活物質、バインダおよび導電助剤などを含む正極合剤層を、集電体の片面または両面に有する構造のものが使用できる。   As the positive electrode according to the lithium secondary battery of the present invention, for example, one having a structure having a positive electrode mixture layer containing a positive electrode active material, a binder, a conductive auxiliary agent and the like on one side or both sides of a current collector can be used.

正極活物質としては、従来から知られているリチウム二次電池に使用されているもの、すなわち、Li(リチウム)イオンを吸蔵放出可能なリチウム含有複合酸化物が使用される。本発明のリチウム二次電池に係る正極活物質には、リチウム含有複合酸化物の中でも、高容量であり、かつ熱安定性にも優れていることから、下記一般組成式(1)で表されるものを使用することが好ましい。
Li1+yMO (1)
[ただし、−0.15≦y≦0.15であり、かつ、Mは、少なくともNi、CoおよびMnを含む3種以上の元素群を表し、Mを構成する各元素中で、Ni、CoおよびMnの割合(mol%)を、それぞれa、bおよびcとしたときに、30≦a≦90、5≦b≦35、5≦c≦35および10≦b+c≦70である。]
As a positive electrode active material, what is used for the lithium secondary battery conventionally known, ie, the lithium containing complex oxide which can occlude-release Li (lithium) ion, is used. The positive electrode active material according to the lithium secondary battery of the present invention is represented by the following general composition formula (1) because of its high capacity and excellent thermal stability among lithium-containing composite oxides. It is preferable to use one.
Li 1 + y MO 2 (1)
[However, −0.15 ≦ y ≦ 0.15, and M represents a group of three or more elements including at least Ni, Co, and Mn. In each element constituting M, Ni, Co When the proportions (mol%) of Mn and a are b, c, respectively, 30 ≦ a ≦ 90, 5 ≦ b ≦ 35, 5 ≦ c ≦ 35, and 10 ≦ b + c ≦ 70. ]

前記一般組成式(1)で表されるリチウム含有複合酸化物において、Niは、その容量向上に寄与する成分である。   In the lithium-containing composite oxide represented by the general composition formula (1), Ni is a component that contributes to the capacity improvement.

前記リチウム含有複合酸化物を表す前記一般組成式(1)における元素群Mの全元素数を100mol%としたとき、Niの割合aは、リチウム含有複合酸化物の容量向上を図る観点から、30mol%以上とすることが好ましく、50mol%以上とすることがより好ましい。ただし、元素群M中のNiの割合が多すぎると、例えば、CoやMnの量が減って、これらによる効果が小さくなる虞がある。よって、前記リチウム含有複合酸化物を表す前記一般組成式(1)における元素群Mの全元素数を100mol%としたとき、Niの割合aは、90mol%以下とすることが好ましく、70mol%以下とすることがより好ましい。   When the total number of elements in the element group M in the general composition formula (1) representing the lithium-containing composite oxide is 100 mol%, the Ni ratio a is 30 mol from the viewpoint of improving the capacity of the lithium-containing composite oxide. % Or more, and more preferably 50 mol% or more. However, if the proportion of Ni in the element group M is too large, for example, the amount of Co or Mn is reduced, and the effects of these may be reduced. Therefore, when the total number of elements in the element group M in the general composition formula (1) representing the lithium-containing composite oxide is 100 mol%, the Ni ratio a is preferably 90 mol% or less, and 70 mol% or less. More preferably.

また、Coは前記リチウム含有複合酸化物の容量に寄与し、正極合剤層における充填密度向上にも作用する一方で、多すぎるとコスト増大や安全性低下を引き起こす虞もある。よって、前記リチウム含有複合酸化物を表す前記一般組成式(1)における元素群Mの全元素数を100mol%としたとき、Coの割合bは、5mol%以上35mol%以下とすることが好ましい。   Further, Co contributes to the capacity of the lithium-containing composite oxide and acts to improve the packing density in the positive electrode mixture layer. On the other hand, if it is too much, it may cause an increase in cost and a decrease in safety. Therefore, when the total number of elements in the element group M in the general composition formula (1) representing the lithium-containing composite oxide is 100 mol%, the Co ratio b is preferably 5 mol% or more and 35 mol% or less.

また、前記リチウム含有複合酸化物においては、前記一般組成式(1)における元素群Mの全元素数を100mol%としたとき、Mnの割合cを、5mol%以上35mol%以下とすることが好ましい。前記リチウム含有複合酸化物に前記のような量でMnを含有させ、結晶格子中に必ずMnを存在させることによって、前記リチウム含有複合酸化物の熱的安定性を高めることができ、より安全性の高い電池を構成することが可能となる。   In the lithium-containing composite oxide, when the total number of elements in the element group M in the general composition formula (1) is 100 mol%, the Mn ratio c is preferably 5 mol% or more and 35 mol% or less. . By including Mn in the lithium-containing composite oxide in the amount as described above, and by always allowing Mn to be present in the crystal lattice, the thermal stability of the lithium-containing composite oxide can be improved, and the safety is further improved. It is possible to construct a battery with a high value.

更に、前記リチウム含有複合酸化物において、Coを含有させることによって、電池の充放電でのLiのドープおよび脱ドープに伴うMnの価数変動を抑制し、Mnの平均価数を4価近傍の値に安定させ、充放電の可逆性をより高めることができる。よって、このようなリチウム含有複合酸化物を使用することで、より充放電サイクル特性に優れた電池を構成することが可能となる。   Furthermore, in the lithium-containing composite oxide, by containing Co, fluctuations in the valence of Mn due to Li doping and dedoping during charging and discharging of the battery are suppressed, and the average valence of Mn is set to a value close to tetravalent. The value can be stabilized, and the reversibility of charge / discharge can be further increased. Therefore, by using such a lithium-containing composite oxide, it becomes possible to configure a battery with more excellent charge / discharge cycle characteristics.

また、前記リチウム含有複合酸化物において、CoとMnとを併用することによる前記の効果を良好に確保する観点から、前記一般組成式(1)における元素群Mの全元素数を100mol%としたとき、Coの割合bとMnの割合cとの和b+cを、10mol%以上70mol%以下(より好ましくは50mol%以下)とすることが好ましい。   Moreover, in the lithium-containing composite oxide, from the viewpoint of ensuring the above-described effect by using Co and Mn in combination, the total number of elements in the element group M in the general composition formula (1) is set to 100 mol%. In this case, the sum b + c of the Co ratio b and the Mn ratio c is preferably 10 mol% or more and 70 mol% or less (more preferably 50 mol% or less).

なお、前記リチウム含有複合酸化物を表す前記一般組成式(1)における元素群Mは、Ni、CoおよびMn以外の元素を含んでいてもよく、例えば、Ti、Cr、Fe、Cu、Zn、Al、Ge、Sn、Mg、Ag、Ta、Nb、B、P、Zr、Ca、Sr、Baなどの元素を含んでいても構わない。ただし、前記リチウム含有複合酸化物において、Ni、CoおよびMnを含有させることによる前記の効果を十分に得るためには、元素群Mの全元素数を100mol%としたときの、Ni、CoおよびMn以外の元素の割合(mol%)の合計をfで表すと、fは、15mol%以下とすることが好ましく、3mol%以下とすることがより好ましい。   The element group M in the general composition formula (1) representing the lithium-containing composite oxide may contain elements other than Ni, Co, and Mn. For example, Ti, Cr, Fe, Cu, Zn, It may contain elements such as Al, Ge, Sn, Mg, Ag, Ta, Nb, B, P, Zr, Ca, Sr, and Ba. However, in the lithium-containing composite oxide, in order to sufficiently obtain the above-described effect by including Ni, Co and Mn, Ni, Co and when the total number of elements in the element group M is 100 mol% When the total of the ratio (mol%) of elements other than Mn is expressed by f, f is preferably 15 mol% or less, and more preferably 3 mol% or less.

例えば、前記リチウム含有複合酸化物において、結晶格子中にAlを存在させると、リチウム含有複合酸化物の結晶構造を安定化させることができ、その熱的安定性を向上させ得るため、より安全性の高いリチウム二次電池を構成することが可能となる。また、Alがリチウム含有複合酸化物粒子の粒界や表面に存在することで、その経時安定性や電解液との副反応を抑制することができ、より長寿命のリチウム二次電池を構成することが可能となる。   For example, in the lithium-containing composite oxide, if Al is present in the crystal lattice, the crystal structure of the lithium-containing composite oxide can be stabilized, and the thermal stability thereof can be improved. High lithium secondary battery can be configured. In addition, since Al is present at the grain boundaries and surfaces of the lithium-containing composite oxide particles, the stability over time and side reactions with the electrolytic solution can be suppressed, and a longer-life lithium secondary battery is constructed. It becomes possible.

ただし、Alは充放電容量に関与することができないため、前記リチウム含有複合酸化物中の含有量を多くすると、容量低下を引き起こす虞がある。よって、前記リチウム含有複合酸化物を表す前記一般組成式(1)において、元素群Mの全元素数を100mol%としたときに、Alの割合を10mol%以下とすることが好ましい。なお、Alを含有させることによる前記の効果をより良好に確保するには、前記リチウム含有複合酸化物を表す前記一般組成式(1)において、元素群Mの全元素数を100mol%としたときに、Alの割合を0.02mol%以上とすることが好ましい。   However, since Al cannot participate in the charge / discharge capacity, increasing the content in the lithium-containing composite oxide may cause a decrease in capacity. Therefore, in the general composition formula (1) representing the lithium-containing composite oxide, when the total number of elements in the element group M is 100 mol%, the Al ratio is preferably 10 mol% or less. In addition, in order to ensure the above-mentioned effect by containing Al more favorably, when the total number of elements in the element group M is 100 mol% in the general composition formula (1) representing the lithium-containing composite oxide. In addition, the Al ratio is preferably 0.02 mol% or more.

前記リチウム含有複合酸化物において、結晶格子中にMgを存在させると、リチウム含有複合酸化物の結晶構造を安定化させることができ、その熱的安定性を向上させ得るため、より安全性の高いリチウム二次電池を構成することが可能となる。また、リチウム二次電池の充放電でのLiのドープおよび脱ドープによって前記リチウム含有複合酸化物の相転移が起こる際、MgがLiサイトに転位することによって不可逆反応を緩和し、前記リチウム含有複合酸化物の結晶構造の可逆性を高めることができるため、より充放電サイクル寿命の長いリチウム二次電池を構成することができるようになる。特に、前記リチウム含有複合酸化物を表す前記一般組成式(1)において、y<0として、リチウム含有複合酸化物をLi欠損な結晶構造とした場合には、Liの代わりにMgがLiサイトに入る形でリチウム含有複合酸化物を形成し、安定な化合物とすることができる。   In the lithium-containing composite oxide, when Mg is present in the crystal lattice, the crystal structure of the lithium-containing composite oxide can be stabilized and the thermal stability thereof can be improved, so that the safety is higher. It becomes possible to constitute a lithium secondary battery. In addition, when a phase transition of the lithium-containing composite oxide occurs due to Li doping and dedoping during charging and discharging of a lithium secondary battery, Mg is rearranged to relax the irreversible reaction, and the lithium-containing composite Since reversibility of the crystal structure of the oxide can be increased, a lithium secondary battery having a longer charge / discharge cycle life can be configured. In particular, in the general composition formula (1) representing the lithium-containing composite oxide, when y <0 and the lithium-containing composite oxide has a Li-deficient crystal structure, Mg instead of Li becomes a Li site. A lithium-containing composite oxide can be formed in a form that enters, and a stable compound can be obtained.

ただし、Mgは充放電容量への関与が小さいため、前記リチウム含有複合酸化物中の含有量を多くすると、容量低下を引き起こす虞がある。よって、前記リチウム含有複合酸化物を表す前記一般組成式(1)において、元素群Mの全元素数を100mol%としたときに、Mgの割合を10mol%以下とすることが好ましい。なお、Mgを含有させることによる前記の効果をより良好に確保するには、前記リチウム含有複合酸化物を表す前記一般組成式(1)において、元素群Mの全元素数を100mol%としたときに、Mgの割合を0.02mol%以上とすることが好ましい。   However, since Mg has little influence on the charge / discharge capacity, if the content in the lithium-containing composite oxide is increased, the capacity may be reduced. Therefore, in the general composition formula (1) representing the lithium-containing composite oxide, when the total number of elements in the element group M is 100 mol%, the ratio of Mg is preferably 10 mol% or less. In addition, in order to ensure the above-mentioned effect by containing Mg more satisfactorily, in the general composition formula (1) representing the lithium-containing composite oxide, when the total number of elements in the element group M is 100 mol% Furthermore, it is preferable that the Mg ratio is 0.02 mol% or more.

前記リチウム含有複合酸化物において粒子中にTiを含有させると、LiNiO型の結晶構造において、酸素欠損などの結晶の欠陥部に配置されて結晶構造を安定化させるため、前記リチウム含有複合酸化物の反応の可逆性が高まり、より充放電サイクル特性に優れたリチウム二次電池を構成できるようになる。前記の効果を良好に確保するためには、前記リチウム含有複合酸化物を表す前記一般組成式(1)において、元素群Mの全元素数を100mol%としたときに、Tiの割合を、0.01mol%以上とすることが好ましく、0.1mol%以上とすることがより好ましい。ただし、Tiの含有量が多くなると、Tiは充放電に関与しないために容量低下を引き起こしたり、LiTiOなどの異相を形成しやすくなったりして、特性低下を招く虞がある。よって、前記リチウム含有複合酸化物を表す前記一般組成式(1)において、元素群Mの全元素数を100mol%としたときに、Tiの割合は、10mol%以下とすることが好ましく、5mol%以下とすることがより好ましく、2mol%以下とすることが更に好ましい。 In the lithium-containing composite oxide, when Ti is contained in the particles, the lithium-containing composite oxide stabilizes the crystal structure by being disposed in a defect portion of the crystal such as oxygen deficiency in the LiNiO 2 type crystal structure. The reversibility of the reaction increases, and a lithium secondary battery having more excellent charge / discharge cycle characteristics can be configured. In order to secure the above-described effect satisfactorily, in the general composition formula (1) representing the lithium-containing composite oxide, when the total number of elements in the element group M is 100 mol%, the ratio of Ti is set to 0 It is preferable to set it as 0.01 mol% or more, and it is more preferable to set it as 0.1 mol% or more. However, when the content of Ti increases, Ti does not participate in charging / discharging, so that the capacity may be reduced, or a heterogeneous phase such as Li 2 TiO 3 may be easily formed, leading to deterioration in characteristics. Therefore, in the general composition formula (1) representing the lithium-containing composite oxide, when the total number of elements in the element group M is 100 mol%, the proportion of Ti is preferably 10 mol% or less, preferably 5 mol%. More preferably, it is more preferably 2 mol% or less.

また、前記リチウム含有複合酸化物が、前記一般組成式(1)における元素群Mとして、Ge、Ca、Sr、Ba、B、ZrおよびGaより選ばれる少なくとも1種の元素M’を含有している場合には、それぞれ下記の効果を確保することができる点で好ましい。   Further, the lithium-containing composite oxide contains at least one element M ′ selected from Ge, Ca, Sr, Ba, B, Zr and Ga as the element group M in the general composition formula (1). Are preferable in that the following effects can be secured.

前記リチウム含有複合酸化物がGeを含有している場合には、Liが脱離した後の複合酸化物の結晶構造が安定化するため、充放電での反応の可逆性を高めることができ、より安全性が高く、また、より充放電サイクル特性に優れるリチウム二次電池を構成することが可能となる。特に、リチウム含有複合酸化物の粒子表面や粒界にGeが存在する場合には、界面でのLiの脱離・挿入における結晶構造の乱れが抑制され、充放電サイクル特性の向上に大きく寄与することができる。   When the lithium-containing composite oxide contains Ge, the crystal structure of the composite oxide after Li is destabilized can improve the reversibility of the charge / discharge reaction, It becomes possible to constitute a lithium secondary battery with higher safety and more excellent charge / discharge cycle characteristics. In particular, when Ge is present on the particle surface or grain boundary of the lithium-containing composite oxide, disorder of the crystal structure due to Li desorption / insertion at the interface is suppressed, greatly contributing to improvement of charge / discharge cycle characteristics. be able to.

また、前記リチウム含有複合酸化物がCa、Sr、Baなどのアルカリ土類金属を含有している場合には、一次粒子の成長が促進されて前記リチウム含有複合酸化物の結晶性が向上するため、活性点を低減することができ、正極合剤層を形成するための塗料(後述する正極合剤含有組成物)としたときの経時安定性が向上し、リチウム二次電池の有する非水電解液との不可逆な反応を抑制することができる。更に、これらの元素が、前記リチウム含有複合酸化物の粒子表面や粒界に存在することで、電池内のCOガスをトラップできるため、より貯蔵性に優れ長寿命のリチウム二次電池を構成することが可能となる。特に、前記リチウム含有複合酸化物がMnを含有する場合には、一次粒子が成長し難くなる傾向があるため、Ca、Sr、Baなどのアルカリ土類金属の添加がより有効である。 Moreover, when the lithium-containing composite oxide contains an alkaline earth metal such as Ca, Sr, or Ba, the growth of primary particles is promoted, and the crystallinity of the lithium-containing composite oxide is improved. The non-aqueous electrolysis that the lithium secondary battery has can be achieved by improving the temporal stability of the coating material (positive electrode mixture-containing composition to be described later) that can reduce the active sites and form the positive electrode mixture layer. Irreversible reaction with the liquid can be suppressed. Furthermore, since these elements are present on the particle surfaces and grain boundaries of the lithium-containing composite oxide, the CO 2 gas in the battery can be trapped. It becomes possible to do. In particular, when the lithium-containing composite oxide contains Mn, the primary particles tend to be difficult to grow. Therefore, the addition of an alkaline earth metal such as Ca, Sr, or Ba is more effective.

前記リチウム含有複合酸化物にBを含有させた場合にも、一次粒子の成長が促進されて前記リチウム含有複合酸化物の結晶性が向上するため、活性点を低減することができ、大気中の水分や、正極合剤層の形成に用いるバインダ、電池の有する非水電解液との不可逆な反応を抑制することができる。このため、正極合剤層を形成するための塗料としたときの経時安定性が向上し、電池内でのガス発生を抑制することができ、より貯蔵性に優れ長寿命のリチウム二次電池を構成することが可能となる。特に、前記リチウム含有複合酸化物がMnを含有する場合には、一次粒子が成長し難くなる傾向があるため、Bの添加がより有効である。   Even when B is contained in the lithium-containing composite oxide, the growth of primary particles is promoted and the crystallinity of the lithium-containing composite oxide is improved. Therefore, active sites can be reduced, Irreversible reactions with moisture, the binder used for forming the positive electrode mixture layer, and the non-aqueous electrolyte of the battery can be suppressed. For this reason, stability over time when it is used as a coating material for forming the positive electrode mixture layer is improved, gas generation in the battery can be suppressed, and a lithium secondary battery having better storage and a longer life can be obtained. It can be configured. In particular, when the lithium-containing composite oxide contains Mn, the addition of B is more effective because primary particles tend to be difficult to grow.

前記リチウム含有複合酸化物にZrを含有させた場合には、前記リチウム含有複合酸化物の粒子の粒界や表面にZrが存在することにより、前記リチウム含有複合酸化物の電気化学特性を損なうことなく、その表面活性を抑制するため、より貯蔵性に優れ長寿命のリチウム二次電池を構成することが可能となる。   When Zr is contained in the lithium-containing composite oxide, the electrochemical properties of the lithium-containing composite oxide are impaired due to the presence of Zr at the grain boundaries and surfaces of the particles of the lithium-containing composite oxide. In addition, since the surface activity is suppressed, it is possible to construct a lithium secondary battery having a better shelf life and a longer life.

前記リチウム含有複合酸化物にGaを含有させた場合には、一次粒子の成長が促進されて前記リチウム含有複合酸化物の結晶性が向上するため、活性点を低減することができ、正極合剤層を形成するための塗料としたときの経時安定性が向上し、非水電解液との不可逆な反応を抑制することができる。また、前記リチウム含有複合酸化物の結晶構造内にGaを固溶することにより、結晶格子の層間隔を拡張し、Liの挿入および脱離による格子の膨張収縮の割合を低減することができる。このため、結晶構造の可逆性を高めることができ、より充放電サイクル寿命の高いリチウム二次電池を構成することが可能となる。特に、前記リチウム含有複合酸化物がMnを含有する場合には、一次粒子が成長し難くなる傾向があるため、Gaの添加がより有効である。   When Ga is contained in the lithium-containing composite oxide, the growth of primary particles is promoted and the crystallinity of the lithium-containing composite oxide is improved, so that the active sites can be reduced, and the positive electrode mixture Stability over time when a coating for forming a layer is improved, and an irreversible reaction with a non-aqueous electrolyte can be suppressed. Moreover, by dissolving Ga in the crystal structure of the lithium-containing composite oxide, the layer spacing of the crystal lattice can be expanded, and the rate of expansion and contraction of the lattice due to insertion and desorption of Li can be reduced. For this reason, the reversibility of a crystal structure can be improved and it becomes possible to comprise a lithium secondary battery with a longer charge-discharge cycle life. In particular, when the lithium-containing composite oxide contains Mn, the addition of Ga is more effective because primary particles tend to be difficult to grow.

前記Ge、Ca、Sr、Ba、B、ZrおよびGaより選ばれる元素M’の効果を得られやすくするためには、その割合は、元素群Mの全元素中で0.1mol%以上であることが好ましい。また、これら元素M’の元素群Mの全元素中における割合は、10mol%以下であることが好ましい。   In order to easily obtain the effect of the element M ′ selected from Ge, Ca, Sr, Ba, B, Zr, and Ga, the ratio is 0.1 mol% or more in all elements of the element group M. It is preferable. Further, the ratio of these elements M ′ in all elements of the element group M is preferably 10 mol% or less.

元素群MにおけるNi、CoおよびMn以外の元素は、前記リチウム含有複合酸化物中に均一に分布していてもよく、また、粒子表面などに偏析していてもよい。   Elements other than Ni, Co and Mn in the element group M may be uniformly distributed in the lithium-containing composite oxide, or may be segregated on the particle surface or the like.

また、前記リチウム含有複合酸化物を表す前記一般組成式(1)において、元素群M中のCoの割合bとMnの割合cとの関係をb>cとした場合には、前記リチウム含有複合酸化物の粒子の成長を促して、正極(その正極合剤層)での充填密度が高く、より可逆性の高いリチウム含有複合酸化物とすることができ、かかる正極を用いた電池の容量の更なる向上が期待できる。   In the general composition formula (1) representing the lithium-containing composite oxide, when the relation between the Co ratio b and the Mn ratio c in the element group M is b> c, the lithium-containing composite oxide is used. By promoting the growth of the oxide particles, the lithium-containing composite oxide having a high packing density at the positive electrode (the positive electrode mixture layer) and a higher reversibility can be obtained. Further improvement can be expected.

他方、前記リチウム含有複合酸化物を表す前記一般組成式(1)において、元素群M中のCoの割合bとMnの割合cとの関係をb≦cとした場合には、より熱安定性の高いリチウム含有複合酸化物とすることができ、これを用いた電池の安全性の更なる向上が期待できる。   On the other hand, in the general composition formula (1) representing the lithium-containing composite oxide, when the relationship between the Co ratio b and the Mn ratio c in the element group M is b ≦ c, more thermal stability is obtained. The lithium-containing composite oxide can be made high, and further improvement in the safety of the battery using this can be expected.

前記の組成を有するリチウム含有複合酸化物は、その真密度が4.55〜4.95g/cmと大きな値になり、高い体積エネルギー密度を有する材料となる。なお、Mnを一定範囲で含むリチウム含有複合酸化物の真密度は、その組成により大きく変化するが、前記のような狭い組成範囲では構造が安定化され、均一性を高めることができるため、例えばLiCoOの真密度に近い大きな値となるものと考えられる。また、リチウム含有複合酸化物の質量当たりの容量を大きくすることができ、可逆性に優れた材料とすることができる。 The lithium-containing composite oxide having the above composition has a large true density of 4.55 to 4.95 g / cm 3 and is a material having a high volume energy density. Note that the true density of the lithium-containing composite oxide containing Mn in a certain range varies greatly depending on the composition, but the structure is stabilized and the uniformity can be improved in the narrow composition range as described above. It is considered to be a large value close to the true density of LiCoO 2 . Moreover, the capacity | capacitance per mass of lithium containing complex oxide can be enlarged, and it can be set as the material excellent in reversibility.

前記リチウム含有複合酸化物は、特に化学量論比に近い組成のときに、その真密度が大きくなるが、具体的には、前記一般組成式(1)において、−0.15≦y≦0.15とすることが好ましく、yの値をこのように調整することで、真密度および可逆性を高めることができる。yは、−0.05以上0.05以下であることがより好ましく、この場合には、リチウム含有複合酸化物の真密度を4.6g/cm以上と、より高い値にすることができる。 The lithium-containing composite oxide has a higher true density especially when the composition is close to the stoichiometric ratio. Specifically, in the general composition formula (1), −0.15 ≦ y ≦ 0. .15 is preferable, and the true density and reversibility can be improved by adjusting the value of y in this way. y is more preferably −0.05 or more and 0.05 or less. In this case, the true density of the lithium-containing composite oxide can be set to a higher value of 4.6 g / cm 3 or more. .

前記一般組成式(1)で表されるリチウム含有複合酸化物は、Li含有化合物(水酸化リチウム・一水和物など)、Ni含有化合物(硫酸ニッケルなど)、Co含有化合物(硫酸コバルトなど)、Mn含有化合物(硫酸マンガンなど)、および元素群Mに含まれるその他の元素を含有する化合物(硫酸アルミニウム、硫酸マグネシウムなど)を混合し、焼成するなどして製造することができる。また、より高い純度で前記リチウム含有複合酸化物を合成するには、元素群Mに含まれる複数の元素を含む複合化合物(水酸化物、酸化物など)とLi含有化合物とを混合し、焼成することが好ましい。   The lithium-containing composite oxide represented by the general composition formula (1) includes Li-containing compounds (such as lithium hydroxide monohydrate), Ni-containing compounds (such as nickel sulfate), and Co-containing compounds (such as cobalt sulfate). Mn-containing compounds (such as manganese sulfate) and compounds containing other elements contained in element group M (such as aluminum sulfate and magnesium sulfate) can be mixed and fired. Further, in order to synthesize the lithium-containing composite oxide with higher purity, a composite compound (hydroxide, oxide, etc.) containing a plurality of elements contained in the element group M and a Li-containing compound are mixed and fired. It is preferable to do.

焼成条件は、例えば、800〜1050℃で1〜24時間とすることができるが、一旦焼成温度よりも低い温度(例えば、250〜850℃)まで加熱し、その温度で保持することにより予備加熱を行い、その後に焼成温度まで昇温して反応を進行させることが好ましい。予備加熱の時間については特に制限はないが、通常、0.5〜30時間程度とすればよい。また、焼成時の雰囲気は、酸素を含む雰囲気(すなわち、大気中)、不活性ガス(アルゴン、ヘリウム、窒素など)と酸素ガスとの混合雰囲気、酸素ガス雰囲気などとすることができるが、その際の酸素濃度(体積基準)は、15%以上であることが好ましく、18%以上であることが好ましい。   Firing conditions can be, for example, 800 to 1050 ° C. for 1 to 24 hours, but once heated to a temperature lower than the firing temperature (for example, 250 to 850 ° C.) and maintained at that temperature, preheating is performed. After that, it is preferable to raise the temperature to the firing temperature to advance the reaction. Although there is no restriction | limiting in particular about the time of preheating, Usually, what is necessary is just to be about 0.5 to 30 hours. The atmosphere during firing can be an atmosphere containing oxygen (that is, in the air), a mixed atmosphere of an inert gas (such as argon, helium, or nitrogen) and oxygen gas, or an oxygen gas atmosphere. The oxygen concentration (volume basis) is preferably 15% or more, and more preferably 18% or more.

また、正極活物質には、前記一般組成式(1)で表されるリチウム含有複合酸化物以外のリチウム含有複合酸化物を用いてもよい。このようなリチウム含有複合酸化物としては、例えば、LiCoOなどのリチウムコバルト酸化物;LiMnO、LiMnOなどのリチウムマンガン酸化物;LiNiOなどのリチウムニッケル酸化物;LiCo1−xNiOなどの層状構造のリチウム含有複合酸化物;LiMn、Li4/3Ti5/3などのスピネル構造のリチウム含有複合酸化物;LiFePOなどのオリビン構造のリチウム含有複合酸化物;前記の酸化物を基本組成とし各種元素で置換した酸化物;などが挙げられる。 Further, as the positive electrode active material, a lithium-containing composite oxide other than the lithium-containing composite oxide represented by the general composition formula (1) may be used. Examples of such lithium-containing composite oxides include lithium cobalt oxides such as LiCoO 2 ; lithium manganese oxides such as LiMnO 2 and Li 2 MnO 3 ; lithium nickel oxides such as LiNiO 2 ; LiCo 1-x NiO Lithium-containing composite oxide having a layered structure such as 2 ; Lithium-containing composite oxide having a spinel structure such as LiMn 2 O 4 and Li 4/3 Ti 5/3 O 4 ; Lithium-containing composite oxide having an olivine structure such as LiFePO 4 And oxides having the above-described oxide as a basic composition and substituted with various elements.

正極活物質には、前記一般組成式(1)で表されるリチウム含有複合酸化物も含めた前記例示のものを、それぞれ1単独で使用してもよく、2種以上を併用してもよいが、前記の通り、少なくとも、前記一般組成式(1)で表されるリチウム含有複合酸化物を使用することが好ましく、前記一般組成式(1)で表されるリチウム含有複合酸化物のみを使用するか、または、前記一般組成式(1)で表されるリチウム含有複合酸化物とLiCoOとを併用することがより好ましい。 As the positive electrode active material, those exemplified above including the lithium-containing composite oxide represented by the general composition formula (1) may be used alone or in combination of two or more. However, as described above, it is preferable to use at least the lithium-containing composite oxide represented by the general composition formula (1), and use only the lithium-containing composite oxide represented by the general composition formula (1). or, or, it is more preferred to use a lithium-containing composite oxide and LiCoO 2 represented by the general formula (1).

なお、前記一般組成式(1)で表されるリチウム含有複合酸化物を他のリチウム含有複合酸化物と併用する場合には、前記一般組成式(1)で表されるリチウム含有複合酸化物の使用による効果をより良好に確保する観点から、他のリチウム含有複合酸化物の割合は活物質全体の80質量%以下とすることが望ましい。   When the lithium-containing composite oxide represented by the general composition formula (1) is used in combination with another lithium-containing composite oxide, the lithium-containing composite oxide represented by the general composition formula (1) From the viewpoint of ensuring a better effect by use, the proportion of the other lithium-containing composite oxide is desirably 80% by mass or less of the entire active material.

正極合剤層に係るバインダには、負極合剤層用のバインダとして先に例示した各種バインダと同じものが使用できる。また、正極合剤層に係る導電助剤としては、例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などの黒鉛(黒鉛質炭素材料);アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ−ボンブラック;炭素繊維;などの炭素材料などが挙げられる。   As the binder for the positive electrode mixture layer, the same binders as those exemplified above as the binder for the negative electrode mixture layer can be used. In addition, as the conductive auxiliary agent related to the positive electrode mixture layer, for example, graphite (graphite carbon material) such as natural graphite (flaky graphite), artificial graphite; acetylene black, ketjen black, channel black, furnace black, Carbon materials such as carbon black such as lamp black and thermal black; carbon fiber;

正極は、例えば、正極活物質、バインダおよび導電助剤を、N−メチル−2−ピロリドン(NMP)などの溶剤に分散させたペースト状やスラリー状の正極合剤含有組成物を調製し(ただし、バインダは溶剤に溶解していてもよい)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダー処理を施す工程を経て製造される。ただし、正極の製造方法は、前記の方法に制限される訳ではなく、他の製造方法で製造してもよい。   For the positive electrode, for example, a paste-like or slurry-like positive electrode mixture-containing composition in which a positive electrode active material, a binder, and a conductive additive are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) is prepared. The binder may be dissolved in a solvent), and this is applied to one or both sides of the current collector, dried, and then subjected to a calendering process as necessary. However, the manufacturing method of the positive electrode is not limited to the above method, and may be manufactured by other manufacturing methods.

正極合剤層の厚みは、例えば、集電体の片面あたり10〜100μmであることが好ましく、正極合剤層の密度(集電体に積層した単位面積あたりの正極合剤層の質量と、厚みから算出される)は、3.0〜4.5g/cmであることが好ましい。また、正極合剤層の組成としては、例えば、正極活物質の量が60〜95質量%であることが好ましく、バインダの量が1〜15質量%であることが好ましく、導電助剤の量が3〜20質量%であることが好ましい。 The thickness of the positive electrode mixture layer is preferably, for example, 10 to 100 μm per side of the current collector, and the density of the positive electrode mixture layer (the mass of the positive electrode mixture layer per unit area laminated on the current collector, (Calculated from the thickness) is preferably 3.0 to 4.5 g / cm 3 . Moreover, as a composition of a positive mix layer, it is preferable that the quantity of a positive electrode active material is 60-95 mass%, for example, it is preferable that the quantity of a binder is 1-15 mass%, and the quantity of a conductive support agent. Is preferably 3 to 20% by mass.

集電体は、従来から知られているリチウム二次電池の正極に使用されているものと同様のものが使用でき、例えば、厚みが10〜30μmのアルミニウム箔が好ましい。   The current collector can be the same as that used for the positive electrode of a conventionally known lithium secondary battery. For example, an aluminum foil having a thickness of 10 to 30 μm is preferable.

本発明のリチウム二次電池においては、正極活物質の質量Pと、負極活物質の質量Nとの比P/Nを、3.6以下とすることが好ましい。これにより負極活物質の利用率を下げて充電電気容量を制限することで、充放電に伴うSiOの体積変化を抑制して、活物質粒子の粉砕などによる電池の充放電サイクル特性低下を、より良好に抑制できる。ただし、前記P/Nは、小さくしすぎると電池の容量が小さくなる虞があることから、1.0以上とすることが好ましい。 In the lithium secondary battery of the present invention, the ratio P / N between the mass P of the positive electrode active material and the mass N of the negative electrode active material is preferably 3.6 or less. Thus, by reducing the utilization rate of the negative electrode active material and limiting the charge electric capacity, the volume change of SiO x accompanying charge / discharge is suppressed, and the charge / discharge cycle characteristics of the battery due to pulverization of the active material particles are reduced. It can be better controlled. However, if the P / N is too small, the battery capacity may be reduced.

正極活物質の質量Pは、任意の寸法に切り出した正極の質量から、その寸法に相当する集電体(アルミニウム箔など)の質量を差し引くことで正極合剤層の質量を求め、この質量に正極合剤層中に含まれる正極活物質の組成比率を乗ずることにより算出することができる。また、負極活物質の質量Nも同様に算出することができる。なお、負極活物質の質量Nの算出にあたっては、前記のSiOと炭素材料との複合体に含まれる炭素材料量も含める。 The mass P of the positive electrode active material is obtained by subtracting the mass of the current collector (aluminum foil or the like) corresponding to the size from the mass of the positive electrode cut into an arbitrary size, It can be calculated by multiplying the composition ratio of the positive electrode active material contained in the positive electrode mixture layer. Further, the mass N of the negative electrode active material can be calculated in the same manner. In calculating the mass N of the negative electrode active material, the amount of carbon material contained in the composite of SiO x and carbon material is also included.

本発明のリチウム二次電池に係る非水電解液には、リチウム塩を有機溶媒に溶解した溶液であって、トリフルオロエチレンカーボネート(TFPC)と鎖状フッ素化カーボネートとを含有するものを使用する。   As the non-aqueous electrolyte solution according to the lithium secondary battery of the present invention, a solution in which a lithium salt is dissolved in an organic solvent and containing trifluoroethylene carbonate (TFPC) and a chain fluorinated carbonate is used. .

リチウム二次電池の非水電解液には、溶媒としてエチレンカーボネートなどの環状カーボネートや、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネートなどの有機溶媒が使用されることが多いが、このようなフッ素を含有しない有機溶媒(以下、「非フッ素化溶媒」という)に比べて、TFPCおよび鎖状フッ素化カーボネートは、酸化電位が高いため、充電状態の電池内において分解反応が生じ難く、この分解反応に伴う電池内でのガス発生や電池内の温度上昇が抑制される。また、TFPCおよび鎖状フッ素化カーボネートは、前記のような非フッ素化溶媒に比べて、難燃性が優れている。そのため、TFPCおよび鎖状フッ素化カーボネートを溶媒に使用した非水電解液を有する本発明の電池は、充電状態で長期間貯蔵しても膨れが生じ難く、また、安全性が良好となる。   In non-aqueous electrolytes for lithium secondary batteries, organic solvents such as cyclic carbonates such as ethylene carbonate and chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are often used as solvents. Compared to such an organic solvent containing no fluorine (hereinafter referred to as “non-fluorinated solvent”), TFPC and chain fluorinated carbonate have a high oxidation potential, so that a decomposition reaction hardly occurs in a charged battery. Gas generation in the battery and temperature rise in the battery due to this decomposition reaction are suppressed. In addition, TFPC and chain fluorinated carbonate are superior in flame retardancy as compared to the above non-fluorinated solvents. Therefore, the battery of the present invention having a nonaqueous electrolytic solution using TFPC and chain fluorinated carbonate as a solvent is hardly swelled even when stored for a long time in a charged state, and the safety is improved.

本発明の電池に係る非水電解液に使用し得る鎖状フッ素化カーボネートとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネートのC−H結合の少なくとも一部において、HをFに置き換えてC−F結合とした構造のもの、具体的には、CFOCOOCF(トリフルオロジメチルカーボネート、TFDMC)、CFCHOCOOCHCF(トリフルオロジエチルカーボネート、TFDEC)、CFCHOCOOCF(トリフルオロエチルメチルカーボネート、TFEMC)などが挙げられる。これらの鎖状フッ素化カーボネートは、1種単独で使用してもよく、2種以上を併用してもよい。 Examples of the chain fluorinated carbonate that can be used for the non-aqueous electrolyte according to the battery of the present invention include, for example, at least a part of C—H bonds of chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Is replaced with F to form a C—F bond, specifically, CF 3 OCOOCF 3 (trifluorodimethyl carbonate, TFDMC), CF 3 CH 2 OCOOCH 2 CF 3 (trifluorodiethyl carbonate, TFDEC), CF 3 CH 2 OCOOCF 3 (trifluoroethyl methyl carbonate, TFEMC) and the like can be mentioned. These chain fluorinated carbonates may be used alone or in combination of two or more.

本発明の電池に係る非水電解液においては、全溶媒中におけるTFPCの含有量を、1体積%以上とすることが好ましく、10体積%以上とすることが好ましい。TFPCは鎖状フッ素化カーボネートに比べてリチウムイオンと配位する機能が優れているため、全溶媒中におけるTFPCの含有量を前記のようにすることで、非水電解液におけるリチウムイオン伝導性をより高めることができる。ただし、非水電解液中におけるTFPCの量が多すぎると、他の成分(例えば、鎖状フッ素化カーボネート)の量が少なくなりすぎて、前記他の成分による効果が小さくなる虞がある。よって、非水電解液の全溶媒中におけるTFPCの含有量は、50体積%以下であることが好ましく、35体積%以下であることがより好ましい。   In the nonaqueous electrolytic solution according to the battery of the present invention, the content of TFPC in all the solvents is preferably 1% by volume or more, and more preferably 10% by volume or more. Since TFPC has an excellent function of coordinating with lithium ions as compared with chain fluorinated carbonates, the lithium ion conductivity in the non-aqueous electrolyte can be improved by setting the content of TFPC in all the solvents as described above. Can be increased. However, if the amount of TFPC in the non-aqueous electrolyte is too large, the amount of other components (for example, chain fluorinated carbonate) is too small, and the effects of the other components may be reduced. Therefore, the content of TFPC in the total solvent of the nonaqueous electrolytic solution is preferably 50% by volume or less, and more preferably 35% by volume or less.

また、本発明の電池に係る非水電解液においては、全溶媒中における鎖状フッ素化カーボネートの含有量を、10体積%以上とすることが好ましく、30体積%以上とすることがより好ましい。鎖状フッ素化カーボネートはTFPCよりも低粘度であるため、全溶媒中における鎖状フッ素化カーボネートの含有量を前記のようにすることで、非水電解液の流動性を高めて、そのリチウムイオン伝導性をより高めることができる。ただし、非水電解液中における鎖状フッ素化カーボネートの量が多すぎると、他の成分(例えば、TFPC)の量が少なくなりすぎて、前記他の成分による効果が小さくなる虞がある。よって、非水電解液の全溶媒中における鎖状フッ素化カーボネートの含有量は、90体積%以下であることが好ましく、75体積%以下であることがより好ましい。   In the nonaqueous electrolytic solution according to the battery of the present invention, the content of the chain fluorinated carbonate in all the solvents is preferably 10% by volume or more, and more preferably 30% by volume or more. Since the chain fluorinated carbonate has a lower viscosity than TFPC, the content of the chain fluorinated carbonate in all the solvents is set as described above, thereby improving the fluidity of the non-aqueous electrolyte and its lithium ion. The conductivity can be further increased. However, if the amount of the chain fluorinated carbonate in the non-aqueous electrolyte is too large, the amount of other components (for example, TFPC) becomes too small, and the effects of the other components may be reduced. Therefore, the content of the chain fluorinated carbonate in the entire solvent of the nonaqueous electrolytic solution is preferably 90% by volume or less, and more preferably 75% by volume or less.

本発明の電池に係る非水電解液の溶媒には、TFPCと鎖状フッ素化カーボネートのみを用いてもよいが、これらの溶媒と共に他の有機溶媒(非フッ素化溶媒)を使用してもよい。このような他の有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート(非フッ素化環状カーボネート)、ジメチルカーボネート、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)などの鎖状カーボネート(非フッ素化鎖状カーボネート);プロピオン酸メチルなどの鎖状エステル;γ−ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3−ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられ、これらは2種以上混合して用いることもできる。   As the solvent of the nonaqueous electrolytic solution according to the battery of the present invention, only TFPC and chain fluorinated carbonate may be used, but other organic solvents (nonfluorinated solvents) may be used together with these solvents. . Examples of such other organic solvents include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate, and butylene carbonate (non-fluorinated cyclic carbonates), dimethyl carbonate, diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). Chain carbonates such as non-fluorinated chain carbonates; chain esters such as methyl propionate; cyclic esters such as γ-butyrolactone; dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme, tetraglyme, etc. Linear ethers of dioxane, tetrahydrofuran, 2-methyltetrahydrofuran, etc .; nitriles such as acetonitrile, propionitrile, methoxypropionitrile, etc .; Sulfites such as glycol sulfite; and the like, they can also be used as a mixture of two or more.

なお、非水電解液の溶媒には、TFPCおよび鎖状フッ素化カーボネートと共に、前記例示の環状カーボネート(非フッ素化環状カーボネート)や前記例示の鎖状カーボネート(非フッ素化鎖状カーボネート)を使用することがより好ましく、TFPC、鎖状フッ素化カーボネート、環状カーボネート(非フッ素化環状カーボネート)および鎖状カーボネート(非フッ素化鎖状カーボネート)を使用することが特に好ましい。   As the solvent of the non-aqueous electrolyte, the above-mentioned cyclic carbonate (non-fluorinated cyclic carbonate) and the above-mentioned chain carbonate (non-fluorinated chain carbonate) are used together with TFPC and chain fluorinated carbonate. It is more preferable to use TFPC, chain fluorinated carbonate, cyclic carbonate (non-fluorinated cyclic carbonate) and chain carbonate (non-fluorinated chain carbonate).

非フッ素化環状カーボネートは、難燃性やガス発生抑制機能がTFPCよりも劣っている一方で、リチウムイオンと配位する機能がTFPCよりも優れているため、非水電解液溶媒に、TFPCと非フッ素化環状カーボネートとを併用することで、非水電解液の難燃性やガス発生抑制機能を高めつつ、リチウムイオン伝導性も高く維持することが可能となる。また、非フッ素化鎖状カーボネートは、難燃性やガス発生抑制機能が鎖状フッ素化カーボネートよりも劣っている一方で、非水電解液の流動性を高める作用が鎖状フッ素化カーボネートよりも優れているため、非水電解液溶媒に、鎖状フッ素化カーボネートと非フッ素化鎖状カーボネートとを併用することによっても、非水電解液の難燃性やガス発生抑制機能を高めつつ、リチウムイオン伝導性も高く維持することが可能となる。   The non-fluorinated cyclic carbonate is inferior to TFPC in flame retardancy and gas generation suppression function, but has a function to coordinate with lithium ions better than TFPC. By using in combination with a non-fluorinated cyclic carbonate, it is possible to maintain high lithium ion conductivity while enhancing the flame retardancy and gas generation suppressing function of the non-aqueous electrolyte. In addition, the non-fluorinated chain carbonate is inferior to the chain fluorinated carbonate in flame retardancy and gas generation suppression function, but has the effect of improving the fluidity of the non-aqueous electrolyte than the chain fluorinated carbonate. Because of its superiority, the combined use of a chain fluorinated carbonate and a non-fluorinated chain carbonate in a nonaqueous electrolyte solvent also improves the flame retardancy and gas generation suppression function of the nonaqueous electrolyte while It is possible to maintain high ion conductivity.

ただし、非水電解液中の非フッ素化溶媒量が多くなりすぎると、TFPCや鎖状フッ素化カーボネートを使用することによる電池の安全性向上効果や貯蔵時の膨れ抑制効果が小さくなる虞があることから、全溶媒中における非フッ素化溶媒の合計量は、40体積%以下であることが好ましく、30体積%以下であることがより好ましい。   However, if the amount of the non-fluorinated solvent in the non-aqueous electrolyte is too large, there is a risk that the effect of improving the battery safety and the effect of suppressing swelling during storage by using TFPC or chain fluorinated carbonate may be reduced. Therefore, the total amount of the non-fluorinated solvent in all the solvents is preferably 40% by volume or less, and more preferably 30% by volume or less.

また、非水電解液溶媒に非フッ素化環状カーボネートを使用する場合、非フッ素化環状カーボネートによる前記の効果を良好に確保する観点から、非水電解液の含有する全環状カーボネート(TFPCと非フッ素化環状カーボネートとの合計。以下同じ。)中におけるTFPCの含有量を、90体積%以下とすることが好ましく、80体積%以下とすることがより好ましく、50体積%以下とすることが更に好ましい。また、非水電解液溶媒に非フッ素化環状カーボネートを使用する場合、TFPCによる前記の効果を良好に確保する観点から、非水電解液の含有する全環状カーボネート中におけるTFPCの含有量を、10体積%以上とすることが好ましく、20体積%以上とすることがより好ましく、30体積%以上とすることが更に好ましい。   In addition, when non-fluorinated cyclic carbonate is used for the non-aqueous electrolyte solvent, from the viewpoint of ensuring the above-described effects of the non-fluorinated cyclic carbonate satisfactorily, the total cyclic carbonate (TFPC and non-fluorine contained in the non-aqueous electrolyte) is used. The content of TFPC is preferably 90% by volume or less, more preferably 80% by volume or less, and still more preferably 50% by volume or less. . Moreover, when using a non-fluorinated cyclic carbonate as the non-aqueous electrolyte solvent, the content of TFPC in the total cyclic carbonate contained in the non-aqueous electrolyte is set to 10 from the viewpoint of ensuring the above-mentioned effect by TFPC. It is preferable to set it as volume% or more, It is more preferable to set it as 20 volume% or more, It is still more preferable to set it as 30 volume% or more.

非水電解液溶媒に非フッ素化鎖状カーボネートを使用する場合、非フッ素化鎖状カーボネートによる前記の効果を良好に確保する観点から、非水電解液の含有する全鎖状カーボネート(鎖状フッ素化カーボネートと非フッ素化鎖状カーボネートとの合計。以下同じ。)中における鎖状フッ素化カーボネートの含有量を、90体積%以下とすることが好ましく、70体積%以下とすることがより好ましく、50体積%以下とすることが更に好ましい。また、非水電解液溶媒に非フッ素化鎖状カーボネートを使用する場合、鎖状フッ素化カーボネートによる前記の効果を良好に確保する観点から、非水電解液の含有する全鎖状カーボネート中における鎖状フッ素化カーボネートの含有量を、10体積%以上とすることが好ましく、20体積%以上とすることがより好ましく、30体積%以上とすることが更に好ましい。   When non-fluorinated chain carbonate is used for the non-aqueous electrolyte solvent, from the viewpoint of ensuring the above-mentioned effect by the non-fluorinated chain carbonate satisfactorily, all the chain carbonate (chain fluorine) contained in the non-aqueous electrolyte is used. The total content of the fluorinated carbonate and the non-fluorinated chain carbonate. The same shall apply hereinafter.) The content of the chain fluorinated carbonate is preferably 90% by volume or less, more preferably 70% by volume or less. More preferably, it is 50 volume% or less. Further, when non-fluorinated chain carbonate is used for the non-aqueous electrolyte solvent, the chain in the all-chain carbonate contained in the non-aqueous electrolyte is from the viewpoint of ensuring the above-mentioned effect by the chain fluorinated carbonate. The content of the fluorinated carbonate is preferably 10% by volume or more, more preferably 20% by volume or more, and further preferably 30% by volume or more.

非水電解液に用いるリチウム塩としては、溶媒中で解離してLiイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限はない。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbFなどの無機リチウム塩、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などの有機リチウム塩などを用いることができる。 The lithium salt used in the non-aqueous electrolyte is not particularly limited as long as it is dissociated in a solvent to form Li + ions and hardly causes a side reaction such as decomposition in a voltage range used as a battery. For example, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 and other inorganic lithium salts, LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] and the like can be used. .

このリチウム塩の非水電解液中の濃度としては、0.5〜1.5mol/lとすることが好ましく、0.9〜1.25mol/lとすることがより好ましい。   The concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / l, and more preferably 0.9 to 1.25 mol / l.

また、電池に使用する非水電解液には、充放電サイクル特性の更なる改善や、高温貯蔵性や過充電防止などの安全性を向上させる目的で、無水酸、スルホン酸エステル、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビニレンカーボネート(VC)、ビフェニル、フルオロベンゼン、t−ブチルベンゼンなどの添加剤(これらの誘導体も含む)を適宜加えることもできる。   In addition, non-aqueous electrolytes used in batteries include acid anhydrides, sulfonic acid esters, 1, 3 for the purpose of further improving charge / discharge cycle characteristics and improving safety such as high-temperature storage and prevention of overcharge. -Additives (including these derivatives) such as propane sultone, diphenyl disulfide, cyclohexylbenzene, vinylene carbonate (VC), biphenyl, fluorobenzene, and t-butylbenzene can be added as appropriate.

本発明のリチウム二次電池に係るセパレータには、80℃以上(より好ましくは100℃以上)170℃以下(より好ましくは150℃以下)において、その孔が閉塞する性質(すなわちシャットダウン機能)を有していることが好ましく、通常のリチウム二次電池などで使用されているセパレータ、例えば、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン製の微多孔膜を用いることができる。セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。   The separator according to the lithium secondary battery of the present invention has a property that the pores are closed at 80 ° C. or higher (more preferably 100 ° C. or higher) and 170 ° C. or lower (more preferably 150 ° C. or lower) (that is, shutdown function). It is preferable that a separator used in a normal lithium secondary battery, for example, a microporous film made of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used. The microporous film constituting the separator may be, for example, one using only PE or one using PP, or a laminate of a PE microporous film and a PP microporous film. There may be.

なお、本発明の電池に係るセパレータには、融点が140℃以下の樹脂を主体とした多孔質層(I)と、150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)とを有する積層型のセパレータを使用することが好ましい。ここで、「融点」とはJIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度を意味している。また、「150℃以下の温度で溶融しない」とは、JIS K 7121の規定に準じて、DSCを用いて測定される融解温度が150℃を超えているなど、前記融解温度測定時に150℃以下の温度で融解挙動を示さないことを意味している。更に、「耐熱温度が150℃以上」とは、少なくとも150℃において軟化などの変形が見られないことを意味している。   The separator according to the battery of the present invention includes a porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or less, a resin that does not melt at a temperature of 150 ° C. or less, or an inorganic filler having a heat resistant temperature of 150 ° C. or more. It is preferable to use a laminated separator having a porous layer (II) containing as a main component. Here, the “melting point” means a melting temperature measured using a differential scanning calorimeter (DSC) in accordance with JIS K 7121. In addition, “does not melt at a temperature of 150 ° C. or lower” means that the melting temperature measured using DSC exceeds 150 ° C. according to the provisions of JIS K 7121. This means that the melting behavior is not exhibited at the temperature. Furthermore, “the heat resistant temperature is 150 ° C. or higher” means that deformation such as softening is not observed at least at 150 ° C.

前記積層型のセパレータに係る多孔質層(I)は、主にシャットダウン機能を確保するためのものであり、リチウム二次電池が多孔質層(I)の主体となる成分である樹脂の融点以上に達したときには、多孔質層(I)に係る樹脂が溶融してセパレータの空孔を塞ぎ、電気化学反応の進行を抑制するシャットダウンを生じる。   The porous layer (I) according to the multilayer separator is mainly for ensuring a shutdown function, and the melting point of the resin, which is a component in which the lithium secondary battery is the main component of the porous layer (I) When the temperature reaches the value, the resin related to the porous layer (I) melts to close the pores of the separator, thereby causing a shutdown that suppresses the progress of the electrochemical reaction.

多孔質層(I)の主体となる融点が140℃以下の樹脂としては、例えばPEが挙げられ、その形態としては、前述のリチウム二次電池に用いられる微多孔膜や、不織布などの基材にPEの粒子を含む分散液を塗布し、乾燥するなどして得られるものが挙げられる。ここで、多孔質層(I)の全構成成分中において、主体となる融点が140℃以下の樹脂の体積は、50体積%以上であり、70体積%以上であることがより好ましい。なお、例えば多孔質層(I)を前記PEの微多孔膜で形成する場合は、融点が140℃以下の樹脂の体積が100体積%となる。   Examples of the resin having a melting point of 140 ° C. or lower, which is the main component of the porous layer (I), include PE, and the form thereof is a substrate such as a microporous film used in the above-described lithium secondary battery or a nonwoven fabric. And a dispersion obtained by applying a dispersion containing PE particles and drying. Here, in all the constituent components of the porous layer (I), the volume of the resin having a main melting point of 140 ° C. or less is 50% by volume or more, and more preferably 70% by volume or more. For example, when the porous layer (I) is formed of the microporous film of PE, the volume of the resin having a melting point of 140 ° C. or lower is 100% by volume.

前記積層型のセパレータに係る多孔質層(II)は、リチウム二次電池の内部温度が上昇した際にも正極と負極との直接の接触による短絡を防止する機能を備えたものであり、150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラーによって、その機能を確保している。すなわち、電池が高温となった場合には、喩え多孔質層(I)が収縮しても、収縮し難い多孔質層(II)によって、セパレータが熱収縮した場合に発生し得る正負極の直接の接触による短絡を防止することがでる。また、この耐熱性の多孔質層(II)がセパレータの骨格として作用するため、多孔質層(I)の熱収縮、すなわちセパレータ全体の熱収縮自体も抑制できる。   The porous layer (II) according to the multilayer separator has a function of preventing a short circuit due to direct contact between the positive electrode and the negative electrode even when the internal temperature of the lithium secondary battery is increased. The function is secured by a resin that does not melt at a temperature of ℃ or less or an inorganic filler with a heat resistant temperature of 150 ℃ or more. That is, when the battery becomes hot, even if the porous layer (I) shrinks, the porous layer (II) that does not easily shrink can cause the positive and negative electrodes directly when the separator is thermally contracted. It is possible to prevent a short circuit due to the contact of. Moreover, since this heat-resistant porous layer (II) acts as a skeleton of the separator, the thermal contraction of the porous layer (I), that is, the thermal contraction of the entire separator itself can be suppressed.

多孔質層(II)を150℃以下の温度で溶融しない樹脂を主体として形成する場合、例えば、150℃以下の温度で溶融しない樹脂で形成された微多孔膜(例えば前述のPP製の電池用微多孔膜)を多孔質層(I)に積層させる形態、150℃以下の温度で溶融しない樹脂の粒子などを含む分散液を多孔質層(I)に塗布し、乾燥して多孔質層(I)の表面に多孔質層(II)を形成する塗布積層型の形態が挙げられる。   When the porous layer (II) is mainly formed of a resin that does not melt at a temperature of 150 ° C. or lower, for example, a microporous film formed of a resin that does not melt at a temperature of 150 ° C. or lower (for example, for the aforementioned PP battery) A mode of laminating a microporous membrane) on the porous layer (I), a dispersion containing resin particles that do not melt at a temperature of 150 ° C. or less is applied to the porous layer (I) and dried to form a porous layer ( Examples thereof include a coating lamination type in which a porous layer (II) is formed on the surface of I).

150℃以下の温度で溶融しない樹脂としては、PP;架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン−ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン−ホルムアルデヒド縮合物などの各種架橋高分子微粒子;ポリスルフォン;ポリエーテルスルフォン;ポリフェニレンスルフィド;ポリテトラフルオロエチレン;ポリアクリロニトリル;アラミド;ポリアセタールなどが挙げられる。   Examples of resins that do not melt at a temperature of 150 ° C. or less include PP; crosslinked polymethyl methacrylate, crosslinked polystyrene, crosslinked polydivinylbenzene, styrene-divinylbenzene copolymer crosslinked product, polyimide, melamine resin, phenol resin, benzoguanamine-formaldehyde condensation And various crosslinked polymer fine particles; polysulfone; polyether sulfone; polyphenylene sulfide; polytetrafluoroethylene; polyacrylonitrile; aramid; polyacetal and the like.

150℃以下の温度で溶融しない樹脂の粒子を使用する場合、その粒径は、平均粒子径で、例えば、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましく、また、10μm以下であることが好ましく、2μm以下であることがより好ましい。なお、本明細書でいう各種粒子の平均粒子径は、例えば、レーザー散乱粒度分布計(例えば、堀場製作所製「LA−920」)を用い、樹脂を溶解しない媒体に、これら微粒子を分散させて測定した平均粒子径D50%である。 When using resin particles that do not melt at a temperature of 150 ° C. or lower, the average particle size is, for example, preferably 0.01 μm or more, more preferably 0.1 μm or more, It is preferably 10 μm or less, and more preferably 2 μm or less. In addition, the average particle diameter of the various particles referred to in the present specification is determined by, for example, using a laser scattering particle size distribution meter (for example, “LA-920” manufactured by HORIBA, Ltd.) and dispersing these fine particles in a medium that does not dissolve the resin. The measured average particle diameter D is 50% .

多孔質層(II)を耐熱温度が150℃以上の無機フィラーを主体として形成する場合、例えば、耐熱温度が150℃以上の無機フィラーなどを含む分散液を、多孔質層(I)に塗布し、乾燥して多孔質層(II)を形成する塗布積層型の形態が挙げられる。   When the porous layer (II) is formed mainly of an inorganic filler having a heat resistant temperature of 150 ° C. or higher, for example, a dispersion containing an inorganic filler having a heat resistant temperature of 150 ° C. or higher is applied to the porous layer (I). Examples of the coating laminated type in which the porous layer (II) is formed by drying.

多孔質層(II)に係る無機フィラーは、耐熱温度が150℃以上で、電池の有する非水電解液に対して安定であり、更に電池の作動電圧範囲において酸化還元されにくい電気化学的に安定なものであればよいが、分散などの点から微粒子であることが好ましく、また、アルミナ、シリカ、ベーマイトが好ましい。アルミナ、シリカ、ベーマイトは、耐酸化性が高く、粒径や形状を所望の数値などに調整することが可能であるため、多孔質層(II)の空孔率を精度よく制御することが容易となる。なお、耐熱温度が150℃以上の無機フィラーは、例えば前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。また、耐熱温度が150℃の無機フィラーを、前述の150℃以下の温度で溶融しない樹脂と併用しても差し支えない。   The inorganic filler related to the porous layer (II) has a heat-resistant temperature of 150 ° C. or higher, is stable to the non-aqueous electrolyte of the battery, and is electrochemically stable to be hardly oxidized or reduced in the battery operating voltage range. However, fine particles are preferable from the viewpoint of dispersion, and alumina, silica, and boehmite are preferable. Alumina, silica, and boehmite have high oxidation resistance, and the particle size and shape can be adjusted to the desired numerical values, making it easy to accurately control the porosity of the porous layer (II). It becomes. In addition, as for the inorganic filler whose heat-resistant temperature is 150 degreeC or more, the thing of the said illustration may be used individually by 1 type and may use 2 or more types together, for example. In addition, an inorganic filler having a heat resistant temperature of 150 ° C. may be used in combination with a resin that does not melt at a temperature of 150 ° C. or lower.

多孔質層(II)に係る耐熱温度が150℃以上の無機フィラーの形状については特に制限はなく、略球状(真球状を含む)、略楕円体状(楕円体状を含む)、板状などの各種形状のものを使用できる。   The shape of the inorganic filler having a heat resistant temperature of 150 ° C. or higher related to the porous layer (II) is not particularly limited, and is substantially spherical (including true spherical), substantially elliptical (including elliptical), plate-like, etc. Various shapes can be used.

また、多孔質層(II)に係る耐熱温度が150℃以上の無機フィラーの平均粒子径は、小さすぎるとイオンの透過性が低下することから、0.3μm以上であることが好ましく、0.5μm以上であることがより好ましい。また、耐熱温度が150℃以上の無機フィラーが大きすぎると、電気特性が劣化しやすくなることから、その平均粒子径は、5μm以下であることが好ましく、2μm以下であることがより好ましい。   Further, the average particle diameter of the inorganic filler having a heat resistant temperature of 150 ° C. or higher related to the porous layer (II) is preferably 0.3 μm or more because the ion permeability is lowered if it is too small. More preferably, it is 5 μm or more. In addition, if the inorganic filler having a heat resistant temperature of 150 ° C. or higher is too large, the electrical characteristics are likely to be deteriorated. Therefore, the average particle diameter is preferably 5 μm or less, and more preferably 2 μm or less.

多孔質層(II)において、150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーは、多孔質層(II)に主体として含まれるものであるため、これらの多孔質層(II)における量[多孔質層(II)が150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーのうちのいずれか一方のみを含有する場合は、その量であり、両者を含有する場合は、それらの合計量。150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーの多孔質層(II)における量について、以下同じ。]は、多孔質層(II)の構成成分の全体積中、50体積%以上であり、70体積%以上であることが好ましく、80体積%以上であることがより好ましく、90体積%以上であることが更に好ましい。多孔質層(II)中の無機フィラーを前記のように高含有量とすることで、リチウム二次電池が高温となった際にも、セパレータ全体の熱収縮を良好に抑制することができ、正極と負極との直接の接触による短絡の発生をより良好に抑制することができる。   In the porous layer (II), the resin that does not melt at a temperature of 150 ° C. or lower and the inorganic filler having a heat resistant temperature of 150 ° C. or higher are mainly contained in the porous layer (II). The amount in (II) [when the porous layer (II) contains only one of a resin that does not melt at a temperature of 150 ° C. or less and an inorganic filler that has a heat resistant temperature of 150 ° C. or more, is the amount, If both are included, the total amount. The same applies to the amount of the resin that does not melt at a temperature of 150 ° C. or less and the amount of the inorganic filler having a heat resistant temperature of 150 ° C. or more in the porous layer (II). ] Is 50% by volume or more in the total volume of the constituent components of the porous layer (II), preferably 70% by volume or more, more preferably 80% by volume or more, and 90% by volume or more. More preferably it is. By making the inorganic filler in the porous layer (II) high as described above, even when the lithium secondary battery becomes high temperature, the thermal contraction of the entire separator can be satisfactorily suppressed, Generation | occurrence | production of the short circuit by the direct contact of a positive electrode and a negative electrode can be suppressed more favorably.

なお、後述するように、多孔質層(II)には有機バインダも含有させることが好ましいため、150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーの多孔質層(II)における量は、多孔質層(II)の構成成分の全体積中、99.5体積%以下であることが好ましい。   As will be described later, since it is preferable that the porous layer (II) also contains an organic binder, a porous layer (II) of a resin that does not melt at a temperature of 150 ° C. or lower and an inorganic filler having a heat resistant temperature of 150 ° C. or higher. ) In the total volume of the constituent components of the porous layer (II) is preferably 99.5% by volume or less.

多孔質層(II)には、150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラー同士を結着したり、多孔質層(II)と多孔質層(I)との一体化などのために、有機バインダを含有させることが好ましい。有機バインダとしては、エチレン−酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20〜35モル%のもの)、エチレン−エチルアクリレート共重合体などのエチレン−アクリル酸共重合体、フッ素系ゴム、SBR、CMC、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられるが、特に、150℃以上の耐熱温度を有する耐熱性のバインダが好ましく用いられる。有機バインダは、前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。   In the porous layer (II), a resin that does not melt at a temperature of 150 ° C. or less, or an inorganic filler having a heat resistant temperature of 150 ° C. or more is bound, or the porous layer (II) and the porous layer (I) For integration or the like, it is preferable to contain an organic binder. Examples of organic binders include ethylene-vinyl acetate copolymers (EVA, those having a structural unit derived from vinyl acetate of 20 to 35 mol%), ethylene-acrylic acid copolymers such as ethylene-ethyl acrylate copolymers, and fluorine-based binders. Examples include rubber, SBR, CMC, hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), cross-linked acrylic resin, polyurethane, and epoxy resin. A heat-resistant binder having a heat-resistant temperature is preferably used. As the organic binder, those exemplified above may be used singly or in combination of two or more.

前記例示の有機バインダの中でも、EVA、エチレン−アクリル酸共重合体、フッ素系ゴム、SBRなどの柔軟性の高いバインダが好ましい。このような柔軟性の高い有機バインダの具体例としては、三井デュポンポリケミカル社の「エバフレックスシリーズ(EVA)」、日本ユニカー社のEVA、三井デュポンポリケミカル社の「エバフレックス−EEAシリーズ(エチレン−アクリル酸共重合体)」、日本ユニカー社のEEA、ダイキン工業社の「ダイエルラテックスシリーズ(フッ素ゴム)」、JSR社の「TRD−2001(SBR)」、日本ゼオン社の「BM−400B(SBR)」などがある。   Among the organic binders exemplified above, highly flexible binders such as EVA, ethylene-acrylic acid copolymer, fluorine-based rubber, and SBR are preferable. Specific examples of such highly flexible organic binders include Mitsui DuPont Polychemical's “Evaflex Series (EVA)”, Nihon Unicar's EVA, Mitsui DuPont Polychemical's “Evaflex-EAA Series (Ethylene). -Acrylic acid copolymer) ", Nippon Unicar EEA, Daikin Industries" DAI-EL Latex Series (Fluororubber) ", JSR" TRD-2001 (SBR) ", Nippon Zeon" BM-400B " (SBR) ".

なお、前記の有機バインダを多孔質層(II)に使用する場合には、後述する多孔質層(II)形成用の組成物の溶媒に溶解させるか、または分散させたエマルジョンの形態で用いればよい。   When the organic binder is used for the porous layer (II), it can be used in the form of an emulsion dissolved or dispersed in the solvent for the composition for forming the porous layer (II) described later. Good.

前記塗布積層型のセパレータは、例えば、150℃以下の温度で溶融しない樹脂の粒子や耐熱温度が150℃以上の無機フィラーなどを含有する多孔質層(II)形成用組成物(スラリーなどの液状組成物など)を、多孔質層(I)を構成するための微多孔膜の表面に塗布し、所定の温度に乾燥して多孔質層(II)を形成することにより製造することができる。   The coating laminate type separator is, for example, a composition for forming a porous layer (II) containing a resin particle that does not melt at a temperature of 150 ° C. or lower, an inorganic filler having a heat resistant temperature of 150 ° C. or higher (liquid such as slurry). The composition etc.) can be applied to the surface of the microporous membrane for constituting the porous layer (I) and dried at a predetermined temperature to form the porous layer (II).

多孔質層(II)形成用組成物は、150℃以下の温度で溶融しない樹脂の粒子および/または耐熱温度が150℃以上の無機フィラーの他、必要に応じて有機バインダなどを含有し、これらを溶媒(分散媒を含む。以下同じ。)に分散させたものである。なお、有機バインダについては溶媒に溶解させることもできる。多孔質層(II)形成用組成物に用いられる溶媒は、150℃以下の温度で溶融しない樹脂の粒子や無機フィラーなどを均一に分散でき、また、有機バインダを均一に溶解または分散できるものであればよいが、例えば、トルエンなどの芳香族炭化水素、テトラヒドロフランなどのフラン類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類など、一般的な有機溶媒が好適に用いられる。なお、これらの溶媒に、界面張力を制御する目的で、アルコール(エチレングリコール、プロピレングリコールなど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを適宜添加してもよい。また、有機バインダが水溶性である場合、エマルジョンとして使用する場合などでは、水を溶媒としてもよく、この際にもアルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)を適宜加えて界面張力を制御することもできる。   The composition for forming the porous layer (II) contains resin particles that do not melt at a temperature of 150 ° C. or lower and / or an inorganic filler having a heat resistant temperature of 150 ° C. or higher, and an organic binder as necessary. Is dispersed in a solvent (including a dispersion medium; the same shall apply hereinafter). The organic binder can be dissolved in a solvent. The solvent used in the composition for forming the porous layer (II) can uniformly disperse resin particles and inorganic filler that do not melt at a temperature of 150 ° C. or lower, and can dissolve or disperse the organic binder uniformly. For example, general organic solvents such as aromatic hydrocarbons such as toluene, furans such as tetrahydrofuran, ketones such as methyl ethyl ketone and methyl isobutyl ketone are preferably used. In addition, for the purpose of controlling the interfacial tension, alcohols (ethylene glycol, propylene glycol, etc.) or various propylene oxide glycol ethers such as monomethyl acetate may be appropriately added to these solvents. In addition, when the organic binder is water-soluble or used as an emulsion, water may be used as a solvent. In this case, alcohols (methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, etc.) are appropriately added. It is also possible to control the interfacial tension.

多孔質層(II)形成用組成物は、150℃以下の温度で溶融しない樹脂の粒子および/または耐熱温度が150℃以上の無機フィラー、更には有機バインダなどを含む固形分含量を、例えば10〜80質量%とすることが好ましい。   The composition for forming the porous layer (II) has a solid content containing, for example, a resin particle that does not melt at a temperature of 150 ° C. or lower and / or an inorganic filler having a heat resistant temperature of 150 ° C. or higher, and an organic binder. It is preferable to set it as -80 mass%.

なお、前記積層型のセパレータにおいて、多孔質層(I)と多孔質層(II)とは、それぞれ1層ずつである必要はなく、複数の層がセパレータ中にあってもよい。例えば、多孔質層(II)の両面に多孔質層(I)を配置した構成としたり、多孔質層(I)の両面に多孔質層(II)を配置した構成としてもよい。ただし、層数を増やすことで、セパレータの厚みを増やして電池の内部抵抗の増加やエネルギー密度の低下を招く虞があるので、層数を多くしすぎるのは好ましくなく、前記積層型のセパレータ中の多孔質層(I)と多孔質層(II)との合計層数は5層以下であることが好ましい。   In the laminated separator, the porous layer (I) and the porous layer (II) do not have to be one each, and a plurality of layers may be present in the separator. For example, a configuration in which the porous layer (I) is disposed on both sides of the porous layer (II) or a configuration in which the porous layer (II) is disposed on both sides of the porous layer (I) may be employed. However, increasing the number of layers may increase the thickness of the separator and increase the internal resistance of the battery or decrease the energy density. Therefore, it is not preferable to increase the number of layers. The total number of the porous layers (I) and (II) is preferably 5 or less.

本発明の電池に係るセパレータ(ポリオレフィン製の微多孔膜からなるセパレータや、前記積層型のセパレータ)の厚みは、例えば、10〜30μmであることが好ましい。   The thickness of the separator according to the battery of the present invention (a separator made of a microporous membrane made of polyolefin or the laminated separator) is preferably 10 to 30 μm, for example.

また、前記積層型のセパレータにおいては、多孔質層(II)の厚み[セパレータが多孔質層(II)を複数有する場合は、その総厚み]は、多孔質層(II)による前記の各作用をより有効に発揮させる観点から、3μm以上であることが好ましい。ただし、多孔質層(II)が厚すぎると、電池のエネルギー密度の低下を引き起こすなどの虞があることから、多孔質層(II)の厚みは、8μm以下であることが好ましい。   In the laminated separator, the thickness of the porous layer (II) [when the separator has a plurality of porous layers (II), the total thickness] is determined by each of the functions of the porous layer (II). From the viewpoint of exhibiting more effectively, it is preferably 3 μm or more. However, if the porous layer (II) is too thick, the energy density of the battery may be lowered. Therefore, the thickness of the porous layer (II) is preferably 8 μm or less.

更に、前記積層型のセパレータにおいては、多孔質層(I)の厚み[セパレータが多孔質層(I)を複数有する場合は、その総厚み。以下同じ。]は、多孔質層(I)の使用による前記作用(特にシャットダウン作用)をより有効に発揮させる観点から、6μm以上であることが好ましく、10μm以上であることがより好ましい。ただし、多孔質層(I)が厚すぎると、電池のエネルギー密度の低下を引き起こす虞があることに加えて、多孔質層(I)が熱収縮しようとする力が大きくなり、セパレータ全体の熱収縮を抑える作用が小さくなる虞がある。そのため、多孔質層(I)の厚みは、25μm以下であることが好ましく、20μm以下であることがより好ましく、14μm以下であることが更に好ましい。   Further, in the laminated separator, the thickness of the porous layer (I) [when the separator has a plurality of porous layers (I), the total thickness thereof. same as below. ] Is preferably 6 μm or more, and more preferably 10 μm or more, from the viewpoint of more effectively exerting the above-described action (particularly shutdown action) by using the porous layer (I). However, if the porous layer (I) is too thick, there is a possibility that the energy density of the battery may be lowered. In addition, the force that the porous layer (I) tends to shrink is increased, and the heat of the entire separator is increased. There is a possibility that the action of suppressing the shrinkage becomes small. Therefore, the thickness of the porous layer (I) is preferably 25 μm or less, more preferably 20 μm or less, and further preferably 14 μm or less.

セパレータ全体の空孔率としては、電解液の保液量を確保してイオン透過性を良好にするために、乾燥した状態で、30%以上であることが好ましい。一方、セパレータ強度の確保と内部短絡の防止の観点から、セパレータの空孔率は、乾燥した状態で、70%以下であることが好ましい。なお、セパレータの空孔率:P(%)は、セパレータの厚み、面積あたりの質量、構成成分の密度から、下記(2)式を用いて各成分iについての総和を求めることにより計算できる。
P ={1−(m/t)/(Σa・ρ)}×100 (2)
ここで、前記式中、a:全体の質量を1としたときの成分iの比率、ρ:成分iの密度(g/cm)、m:セパレータの単位面積あたりの質量(g/cm)、t:セパレータの厚み(cm)である。
The porosity of the separator as a whole is preferably 30% or more in a dried state in order to secure the amount of electrolyte solution retained and to improve ion permeability. On the other hand, from the viewpoint of securing separator strength and preventing internal short circuit, the separator porosity is preferably 70% or less in a dry state. Note that the porosity of the separator: P (%) can be calculated by calculating the sum of each component i from the thickness of the separator, the mass per area, and the density of the constituent components using the following equation (2).
P = {1- (m / t) / (Σa i · ρ i )} × 100 (2)
Here, in the above formula, a i : ratio of component i when the total mass is 1, ρ i : density of component i (g / cm 3 ), m: mass per unit area of the separator (g / cm 2 ), t: thickness of separator (cm).

また、前記積層型のセパレータの場合、前記(2)式において、mを多孔質層(I)の単位面積あたりの質量(g/cm)とし、tを多孔質層(I)の厚み(cm)とすることで、前記(2)式を用いて多孔質層(I)の空孔率:P(%)を求めることもできる。この方法により求められる多孔質層(I)の空孔率は、30〜70%であることが好ましい。 In the case of the multilayer separator, in the formula (2), m is the mass (g / cm 2 ) per unit area of the porous layer (I), and t is the thickness of the porous layer (I) ( cm), the porosity: P (%) of the porous layer (I) can also be obtained using the formula (2). The porosity of the porous layer (I) determined by this method is preferably 30 to 70%.

更に、前記積層型のセパレータの場合、前記(2)式において、mを多孔質層(II)の単位面積あたりの質量(g/cm)とし、tを多孔質層(II)の厚み(cm)とすることで、前記(2)式を用いて多孔質層(II)の空孔率:P(%)を求めることもできる。この方法により求められる多孔質層(II)の空孔率は、20〜60%であることが好ましい。 Further, in the case of the laminated separator, in the formula (2), m is the mass per unit area (g / cm 2 ) of the porous layer (II), and t is the thickness of the porous layer (II) ( cm), the porosity: P (%) of the porous layer (II) can also be obtained using the formula (2). The porosity of the porous layer (II) obtained by this method is preferably 20 to 60%.

前記セパレータとしては、機械的な強度の高いものが好ましく、例えば突き刺し強度が3N以上であることが好ましい。例えば、充放電に伴う体積変化の大きなSiOを負極活物質に使用した場合、充放電を繰り返すことで、負極全体の伸縮によって、対面させたセパレータにも機械的なダメージが加わることになる。セパレータの突き刺し強度が3N以上であれば、良好な機械的強度が確保され、セパレータの受ける機械的ダメージを緩和することができる。 The separator preferably has high mechanical strength. For example, the puncture strength is preferably 3N or more. For example, when SiO x having a large volume change due to charge / discharge is used as the negative electrode active material, mechanical damage is also applied to the facing separator due to expansion / contraction of the entire negative electrode by repeating charge / discharge. If the piercing strength of the separator is 3N or more, good mechanical strength is ensured, and mechanical damage to the separator can be reduced.

突き刺し強度が3N以上のセパレータとしては、前述した積層型のセパレータが挙げられ、特に、融点が140℃以下の樹脂を主体とした多孔質層(I)に、耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)を積層したセパレータが好適である。それは、前記無機フィラーの機械的強度が高いため、多孔質層(I)の機械的強度を補って、セパレータ全体の機械的強度を高めることができるからであると考えられる。   Examples of the separator having a puncture strength of 3N or more include the above-described laminated separator, and in particular, an inorganic filler having a heat resistant temperature of 150 ° C. or higher in the porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or lower. A separator in which a porous layer (II) containing as a main component is laminated is preferable. This is probably because the mechanical strength of the inorganic filler is high, so that the mechanical strength of the entire separator can be increased by supplementing the mechanical strength of the porous layer (I).

前記突き刺し強度は以下の方法で測定できる。直径2インチの穴があいた板上にセパレータをしわやたわみのないように固定し、先端の直径が1.0mmの半円球状の金属ピンを、120mm/minの速度で測定試料に降下させて、セパレータに穴があく時の力を5回測定する。そして、前記5回の測定値のうち最大値と最小値とを除く3回の測定について平均値を求め、これをセパレータの突き刺し強度とする。   The puncture strength can be measured by the following method. A separator is fixed on a plate having a hole with a diameter of 2 inches so as not to be wrinkled or bent, and a semispherical metal pin having a tip diameter of 1.0 mm is lowered onto a measurement sample at a speed of 120 mm / min. Measure the force when making a hole in the separator 5 times. And an average value is calculated | required about the measurement of 3 times except the maximum value and the minimum value among the said measurement values of 5 times, and this is made into the piercing strength of a separator.

前記の正極と前記の負極と前記のセパレータとは、正極と負極との間にセパレータを介在させて重ねた積層電極体や、更にこれを渦巻状に巻回した巻回電極体の形態で本発明の電池に使用することができる。   The positive electrode, the negative electrode, and the separator are formed in the form of a laminated electrode body in which a separator is interposed between the positive electrode and the negative electrode, or a wound electrode body in which the separator is wound in a spiral shape. It can be used for the battery of the invention.

前記の積層電極体や巻回電極体においては、前記積層型のセパレータ、特に融点が140℃以下の樹脂を主体とする多孔質層(I)に、耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)を積層したセパレータを使用する場合、多孔質層(II)が少なくとも正極と面するように配置することが好ましい。なお、この場合、耐熱温度が150℃以上の無機フィラーを主体として含み、より耐酸化性に優れる多孔質層(II)が正極と面することで、正極によるセパレータの酸化をより良好に抑制できるため、電池の高温時の保存特性や充放電サイクル特性を高めることもできる。また、VCやシクロヘキシルベンゼンなどの添加剤を非水電解液に加えた場合、正極側で皮膜形成してセパレータの細孔を詰まらせ、電池特性の低下を引き起こす虞もある。そこで比較的ポーラスな多孔質層(II)を正極に対面させることで、細孔の目詰まりを抑制する効果も期待できる。   In the laminated electrode body and the wound electrode body, the laminated separator, particularly the porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or less, mainly comprises an inorganic filler having a heat resistant temperature of 150 ° C. or more. In the case of using a separator in which the porous layer (II) contained as a laminate is used, it is preferable that the porous layer (II) is disposed so as to face at least the positive electrode. In this case, the porous layer (II), which mainly contains an inorganic filler having a heat-resistant temperature of 150 ° C. or more, and more excellent in oxidation resistance, faces the positive electrode, so that the oxidation of the separator by the positive electrode can be suppressed more favorably. Therefore, the storage characteristics and charge / discharge cycle characteristics of the battery at a high temperature can be improved. In addition, when an additive such as VC or cyclohexylbenzene is added to the non-aqueous electrolyte, a film is formed on the positive electrode side to clog the pores of the separator, which may cause deterioration of battery characteristics. Therefore, an effect of suppressing pore clogging can be expected by making the relatively porous porous layer (II) face the positive electrode.

他方、前記積層型セパレータの一方の表面が多孔質層(I)である場合には、多孔質層(I)が負極に面するようにすることが好ましく、これにより、例えば、シャットダウン時に多孔質層(I)から溶融した熱可塑性樹脂が電極の合剤層に吸収されることを抑制して、効率よくセパレータの空孔の閉塞に利用することができるようになる。   On the other hand, when one surface of the multilayer separator is the porous layer (I), it is preferable that the porous layer (I) faces the negative electrode. The thermoplastic resin melted from the layer (I) is suppressed from being absorbed by the electrode mixture layer, and can be efficiently used to close the pores of the separator.

本発明のリチウム二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。   Examples of the form of the lithium secondary battery of the present invention include a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can or an aluminum can as an outer can. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.

本発明のリチウム二次電池は、従来から知られているリチウム二次電池が適用されている各種用途と同じ用途に用いることができる。   The lithium secondary battery of the present invention can be used for the same applications as various applications to which conventionally known lithium secondary batteries are applied.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。なお、下記の各実施例のうちの実施例2〜8が、本発明の実施例に該当する。
Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention. In addition, Example 2-8 of the following each Example corresponds to the Example of this invention.

実施例1
<リチウム含有複合酸化物の合成>
水酸化ナトリウムの添加によってpHを約12に調整したアンモニア水を反応容器に入れ、これを強攪拌しながら、この中に、硫酸ニッケル、硫酸コバルトおよび硫酸マンガンを、それぞれ、2.4mol/dm、0.8mol/dm、0.8mol/dmの濃度で含有する混合水溶液と、25質量%濃度のアンモニア水とを、それぞれ、23cm/分、6.6cm/分の割合で、定量ポンプを用いて滴下して、NiとCoとMnとの共沈化合物(球状の共沈化合物)を合成した。なお、この際、反応液の温度は50℃に保持し、また、反応液のpHが12付近に維持されるように、6.4mol/dm濃度の水酸化ナトリウム水溶液の滴下も同時に行い、更に窒素ガスを1dm/分の流量でバブリングした。
Example 1
<Synthesis of lithium-containing composite oxide>
Aqueous ammonia whose pH was adjusted to about 12 by adding sodium hydroxide was placed in a reaction vessel, and while vigorously stirring, nickel sulfate, cobalt sulfate and manganese sulfate were each added to 2.4 mol / dm 3. , 0.8 mol / dm 3, a mixed aqueous solution containing a concentration of 0.8 mol / dm 3, and aqueous ammonia 25% strength by weight, respectively, 23cm 3 / min at a rate of 6.6 cm 3 / min, The solution was added dropwise using a metering pump to synthesize a coprecipitation compound of Ni, Co, and Mn (spherical coprecipitation compound). At this time, the temperature of the reaction solution is kept at 50 ° C., and a sodium hydroxide aqueous solution having a concentration of 6.4 mol / dm 3 is dropped at the same time so that the pH of the reaction solution is maintained around 12. Further, nitrogen gas was bubbled at a flow rate of 1 dm 3 / min.

前記の共沈化合物を水洗、濾過および乾燥させて、NiとCoとMnとを6:2:2のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・HOとをエタノール中に分散させてスラリー状にした後、遊星型ボールミルで40分間混合し、室温で乾燥させて混合物を得た。次いで、前記混合物をアルミナ製のるつぼに入れ、2dm/分のドライエアーフロー中で600℃まで加熱し、その温度で2時間保持して予備加熱を行い、更に900℃に昇温して12時間焼成することにより、リチウム含有複合酸化物を合成した。 The coprecipitated compound was washed with water, filtered and dried to obtain a hydroxide containing Ni, Co and Mn in a molar ratio of 6: 2: 2. 0.196 mol of this hydroxide and 0.204 mol of LiOH.H 2 O were dispersed in ethanol to form a slurry, and then mixed with a planetary ball mill for 40 minutes and dried at room temperature to obtain a mixture. . Next, the mixture is put in an alumina crucible, heated to 600 ° C. in a dry air flow of 2 dm 3 / min, kept at that temperature for 2 hours for preheating, further heated to 900 ° C. and heated to 12 ° C. The lithium-containing composite oxide was synthesized by firing for a period of time.

得られたリチウム含有複合酸化物を水で洗浄した後、大気中(酸素濃度が約20vol%)で、850℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム含有複合酸化物は、デシケーター中で保存した。   The obtained lithium-containing composite oxide was washed with water, heat-treated at 850 ° C. for 12 hours in the air (oxygen concentration of about 20 vol%), and then pulverized in a mortar to obtain a powder. The lithium-containing composite oxide after pulverization was stored in a desiccator.

前記リチウム含有複合酸化物について、原子吸光分析装置で組成を測定したところ、Li1.02Ni0.6Co0.2Mn0.2で表される組成であることが判明した。 For the lithium-containing composite oxide was measured for a composition by an atomic absorption spectrometer, and found to be a composition represented by Li 1.02 Ni 0.6 Co 0.2 Mn 0.2 O 2.

<正極の作製>
正極活物質であるLiCoO2:70質量部および前記リチウム含有複合酸化物(Li1.02Ni0.6Co0.2Mn0.2):30質量部と、導電助剤である人造黒鉛:1質量部およびケッチェンブラック:1質量部と、バインダであるPVDF:10質量%とを、NMPを溶剤として均一になるように混合して、正極合剤含有ペーストを調製した。
<Preparation of positive electrode>
LiCoO2 as a positive electrode active material: 70 parts by mass and the lithium-containing composite oxide (Li 1.02 Ni 0.6 Co 0.2 Mn 0.2 O 2 ): 30 parts by mass, and artificial graphite as a conductive assistant 1 part by mass and Ketjen black: 1 part by mass and PVDF: 10% by mass as a binder were mixed so as to be uniform using NMP as a solvent to prepare a positive electrode mixture-containing paste.

前記の正極合剤含有ペーストを、厚みが15μmのアルミニウム箔(正極集電体)の両面に厚みを調節して間欠塗布し、乾燥した後、カレンダー処理を行って全厚が130μmになるように正極合剤層の厚みを調節し、幅が54.5mmになるように切断して正極を作製した。この正極において、前述の方法により測定した正極活物質の質量Pは11.4gであった。更にこの正極のアルミニウム箔の露出部にタブを溶接してリード部を形成した。   The positive electrode mixture-containing paste is intermittently applied to both surfaces of an aluminum foil (positive electrode current collector) having a thickness of 15 μm while adjusting the thickness, dried, and then subjected to a calendar treatment so that the total thickness becomes 130 μm. The thickness of the positive electrode mixture layer was adjusted, and the positive electrode was produced by cutting so as to have a width of 54.5 mm. In this positive electrode, the mass P of the positive electrode active material measured by the method described above was 11.4 g. Further, a tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion.

<負極の作製>
平均粒子径D50%が8μmであるSiO表面を炭素材料で被覆した複合体(複合体における炭素材料の量が10質量%)と、平均粒子径D50%が16μmである黒鉛とを、SiO表面を炭素材料で被覆した複合体の量が表1に示す量となる組成で混合した混合物:98質量部、粘度が1500〜5000mPa・sの範囲に調整された1質量%濃度のCMC水溶液:1.0質量部およびSBR:1.0質量部を、比伝導度が2.0×10Ω/cm以上のイオン交換水を溶剤として混合して、水系の負極合剤含有ペーストを調製した。
<Production of negative electrode>
A composite in which the surface of SiO x having an average particle diameter D 50% of 8 μm is coated with a carbon material (the amount of the carbon material in the composite is 10% by mass), and graphite having an average particle diameter D 50% of 16 μm, Mixture in which the amount of the composite having the SiO x surface coated with a carbon material is the amount shown in Table 1 is mixed: 98 parts by mass, CMC having a concentration of 1% by mass adjusted to a viscosity of 1500 to 5000 mPa · s Aqueous solution: 1.0 part by mass and SBR: 1.0 part by mass using ion-exchanged water having a specific conductivity of 2.0 × 10 5 Ω / cm or more as a solvent to prepare an aqueous negative electrode mixture-containing paste. Prepared.

前記の負極合剤含有ペーストを、厚みが8μmの銅箔(負極集電体)の両面に厚みを調節して間欠塗布し、乾燥した後、カレンダー処理を行って全厚が110μmになるように負極合剤層の厚みを調整し、幅が55.5mmになるように切断して負極を作製した。この負極において、前述の方法により測定した負極活物質の質量Nは4.5gであった。更にこの負極の銅箔の露出部にタブを溶接してリード部を形成した。   The negative electrode mixture-containing paste is intermittently applied on both sides of a copper foil (negative electrode current collector) having a thickness of 8 μm while adjusting the thickness, dried, and then subjected to a calendar treatment so that the total thickness becomes 110 μm. The thickness of the negative electrode mixture layer was adjusted, and the negative electrode was produced by cutting so as to have a width of 55.5 mm. In this negative electrode, the mass N of the negative electrode active material measured by the method described above was 4.5 g. Further, a tab was welded to the exposed portion of the copper foil of the negative electrode to form a lead portion.

<セパレータの作製>
平均粒子径D50%が1μmのベーマイト5kgに、イオン交換水5kgと、分散剤(水系ポリカルボン酸アンモニウム塩、固形分濃度40質量%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで10時間解砕処理をして分散液を調製した。処理後の分散液を120℃で真空乾燥し、走査型電子顕微鏡(SEM)で観察したところ、ベーマイトの形状はほぼ板状であった。
<Preparation of separator>
Add 5 kg of ion-exchanged water and 0.5 kg of a dispersant (aqueous polycarboxylic acid ammonium salt, solid content concentration 40 mass%) to 5 kg of boehmite with an average particle diameter D of 50% of 1 μm. Dispersion was prepared by crushing for 10 hours with a ball mill at times / minute. The treated dispersion was vacuum-dried at 120 ° C. and observed with a scanning electron microscope (SEM). As a result, the boehmite was almost plate-shaped.

前記分散液500gに、増粘剤としてキサンタンガムを0.5g、バインダとして樹脂バインダーディスパージョン(変性ポリブチルアクリレート、固形分含量45質量%)を17g加え、スリーワンモーターで3時間攪拌して均一なスラリー[多孔質層(II)形成用スラリー、固形分比率50質量%]を調製した。   To 500 g of the above dispersion, 0.5 g of xanthan gum as a thickener and 17 g of a resin binder dispersion (modified polybutyl acrylate, solid content 45% by mass) as a binder are added and stirred with a three-one motor for 3 hours to form a uniform slurry. [Slurry for forming porous layer (II), solid content ratio 50 mass%] was prepared.

リチウム二次電池用PE製微多孔質セパレータ[多孔質層(I):厚み12μm、空孔率40%、平均孔径0.08μm、PEの融点135℃]の片面にコロナ放電処理(放電量40W・min/m)を施し、この処理面に多孔質層(II)形成用スラリーをマイクログラビアコーターによって塗布し、乾燥して厚みが4μmの多孔質層(II)を形成して、積層型のセパレータを得た。このセパレータにおける多孔質層(II)の単位面積あたりの質量は5.5g/mで、ベーマイトの体積含有率は95体積%であり、空孔率は45%であった。 PE microporous separator for lithium secondary batteries [porous layer (I): thickness 12 μm, porosity 40%, average pore diameter 0.08 μm, PE melting point 135 ° C.] on one side corona discharge treatment (discharge amount 40 W)・ Min / m 2 ), a porous layer (II) forming slurry is applied to the treated surface by a micro gravure coater, and dried to form a porous layer (II) having a thickness of 4 μm. A separator was obtained. The mass per unit area of the porous layer (II) in this separator was 5.5 g / m 2 , the boehmite volume content was 95% by volume, and the porosity was 45%.

<非水電解液の調製>
EC、EMC、DECおよびVCを、体積比で2:3:1:0.2の割合で混合した非フッ素化溶媒に、TFPCとTFDMCとを、TFPC、TFDMCおよび非フッ素化溶媒の含有量が、それぞれ表1に示す量となるように添加して溶媒を調製し、これにリチウム塩としてLiPFを濃度1mol/lで溶解させて、非水電解液を調製した。
<Preparation of non-aqueous electrolyte>
EC, EMC, DEC and VC mixed in a volume ratio of 2: 3: 1: 0.2, TFPC and TFDMC, and TFPC, TFDMC and non-fluorinated solvent content. A solvent was prepared by adding each to the amount shown in Table 1, and LiPF 6 was dissolved as a lithium salt at a concentration of 1 mol / l to prepare a non-aqueous electrolyte.

<電池の組み立て>
前記のようにして得た正極と負極とを、セパレータの多孔質層(II)が正極に面するように介在させつつ重ね、渦巻状に巻回して巻回電極体を作製した。得られた巻回電極体を押しつぶして扁平状にし、厚み4.5mm、幅42mm、高さ61mmのアルミニウム合金製外装缶に入れ、前記の非水電解液を注入した。
<Battery assembly>
The positive electrode and the negative electrode obtained as described above were stacked with the separator porous layer (II) facing the positive electrode and wound in a spiral shape to produce a wound electrode body. The obtained wound electrode body was crushed into a flat shape, placed in an aluminum alloy outer can having a thickness of 4.5 mm, a width of 42 mm, and a height of 61 mm, and the non-aqueous electrolyte was injected.

非水電解液の注入後に外装缶の封止を行って、図1に示す構造で、図2に示す外観のリチウム二次電池を作製した。この電池は、缶の上部に内圧が上昇した場合に圧力を下げるための開裂ベントを備えている。   After injecting the non-aqueous electrolyte, the outer can was sealed to produce a lithium secondary battery having the structure shown in FIG. 1 and the appearance shown in FIG. This battery includes a cleavage vent for lowering the pressure when the internal pressure rises at the top of the can.

ここで図1および図2に示す電池について説明すると、図1の(a)は平面図、(b)はその部分断面図であって、図1(b)に示すように、正極1と負極2は前記のようにセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状の巻回電極体6として、角筒形の外装缶4に電解液と共に収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や電解液などは図示していない。また、セパレータの各層も区別して示していない。   Here, the battery shown in FIGS. 1 and 2 will be described. FIG. 1A is a plan view, and FIG. 1B is a partial cross-sectional view thereof. As shown in FIG. 2 is spirally wound through the separator 3 as described above, and then pressed so as to be flattened and accommodated in a rectangular tube-shaped outer can 4 together with the electrolyte as a flat wound electrode body 6 Has been. However, in FIG. 1, in order to avoid complication, a metal foil, an electrolytic solution, and the like as a current collector used for manufacturing the positive electrode 1 and the negative electrode 2 are not illustrated. Also, the separator layers are not shown separately.

外装缶4はアルミニウム合金製で電池の外装体を構成するものであり、この外装缶4は正極端子を兼ねている。そして、外装缶4の底部にはPEシートからなる絶縁体5が配置され、正極1、負極2およびセパレータ3からなる扁平状巻回電極体6からは、正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、外装缶4の開口部を封口するアルミニウム合金製の封口用蓋板9にはPP製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。   The outer can 4 is made of an aluminum alloy and constitutes an outer casing of the battery. The outer can 4 also serves as a positive electrode terminal. And the insulator 5 which consists of PE sheets is arrange | positioned at the bottom part of the armored can 4, and it connects to each one end of the positive electrode 1 and the negative electrode 2 from the flat wound electrode body 6 which consists of the positive electrode 1, the negative electrode 2, and the separator 3. The positive electrode lead body 7 and the negative electrode lead body 8 thus drawn are drawn out. A stainless steel terminal 11 is attached to a sealing lid plate 9 made of aluminum alloy for sealing the opening of the outer can 4 through a PP insulating packing 10, and an insulator 12 is attached to the terminal 11. A stainless steel lead plate 13 is attached.

そして、この蓋板9は外装缶4の開口部に挿入され、両者の接合部を溶接することによって、外装缶4の開口部が封口され、電池内部が密閉されている。また、図1の電池では、蓋板9に非水電解液注入口14が設けられており、この非水電解液注入口14には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている(従って、図1および図2の電池では、実際には、非水電解液注入口14は、非水電解液注入口と封止部材であるが、説明を容易にするために、非水電解液注入口14として示している)。更に、蓋板9には、電池の温度が上昇した際に内部のガスを外部に排出する機構として、開裂ベント15が設けられている。   And this cover plate 9 is inserted in the opening part of the armored can 4, and the opening part of the armored can 4 is sealed by welding the junction part of both, and the inside of a battery is sealed. Further, in the battery of FIG. 1, a non-aqueous electrolyte inlet 14 is provided in the cover plate 9, and a sealing member is inserted into the non-aqueous electrolyte inlet 14, for example, laser welding or the like. (See FIG. 1 and FIG. 2, in practice, the non-aqueous electrolyte inlet 14 is actually sealed with the non-aqueous electrolyte inlet.) Although it is a member, for ease of explanation, it is shown as a non-aqueous electrolyte inlet 14). Further, the lid plate 9 is provided with a cleavage vent 15 as a mechanism for discharging the internal gas to the outside when the temperature of the battery rises.

この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって外装缶4と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、外装缶4の材質などによっては、その正負が逆になる場合もある。   In the battery of Example 1, the outer can 4 and the lid plate 9 function as a positive electrode terminal by directly welding the positive electrode lead body 7 to the lid plate 9, and the negative electrode lead body 8 is welded to the lead plate 13. The terminal 11 functions as a negative electrode terminal by conducting the negative electrode lead body 8 and the terminal 11 through the lead plate 13, but depending on the material of the outer can 4, the sign may be reversed. There is also.

図2は前記図1に示す電池の外観を模式的に示す斜視図であり、この図2は前記電池が角形電池であることを示すことを目的として図示されたものであって、この図1では電池を概略的に示しており、電池を構成する部材のうち、特定のものしか図示していない。また、図1においても、電極群の内周側の部分は断面にしていない。   FIG. 2 is a perspective view schematically showing the external appearance of the battery shown in FIG. 1. FIG. 2 is shown for the purpose of showing that the battery is a square battery. FIG. 1 schematically shows a battery, and only specific members among the members constituting the battery are shown. Also in FIG. 1, the inner peripheral portion of the electrode group is not cross-sectional.

実施例2〜7
負極活物質中におけるSiO表面を炭素材料で被覆した複合体の含有量、並びに電池に使用した非水電解液におけるTFPCおよびTFDMCの含有量を、表1に示す値になるようにした以外は、実施例1と同様にしてリチウム二次電池を作製した。
Examples 2-7
The content of the composite in which the surface of SiO x in the negative electrode active material was coated with the carbon material, and the content of TFPC and TFDMC in the non-aqueous electrolyte used in the battery were set to the values shown in Table 1. A lithium secondary battery was produced in the same manner as in Example 1.

実施例8
負極活物質中におけるSiO表面を炭素材料で被覆した複合体の含有量、並びに電池に使用した非水電解液におけるTFPCおよびTFDMCの含有量を、表1に示す値になるようにし、更に正極合剤含有ペーストの塗布質量を変更して、正極合剤層中の正極活物質の質量Pを6.6gとし、更に負極合剤含有ペーストの塗布質量も変更して負極合剤層中の負極活物質の質量Nも変え、P/Nを表1に示す値にした以外は、実施例1と同様にしてリチウム二次電池を作製した。
Example 8
The content of the composite in which the surface of SiO x in the negative electrode active material was coated with a carbon material, and the content of TFPC and TFDMC in the non-aqueous electrolyte used in the battery were set to the values shown in Table 1, and the positive electrode The coating mass of the mixture-containing paste is changed so that the mass P of the positive electrode active material in the positive electrode mixture layer is 6.6 g, and the coating mass of the negative electrode mixture-containing paste is also changed to change the negative electrode in the negative electrode mixture layer A lithium secondary battery was produced in the same manner as in Example 1 except that the mass N of the active material was also changed and P / N was changed to the values shown in Table 1.

実施例9
負極活物質中におけるSiO表面を炭素材料で被覆した複合体の含有量、並びに電池に使用した非水電解液におけるTFPCおよびTFDMCの含有量を、表1に示す値になるようにし、更に正極合剤含有ペーストの塗布質量を変更して、正極合剤層中の正極活物質の質量Pを13.2gとし、更に負極合剤含有ペーストの塗布質量も変更して負極合剤層中の負極活物質の質量Nも変え、P/Nを表1に示す値にした以外は、実施例1と同様にしてリチウム二次電池を作製した。
Example 9
The content of the composite in which the surface of SiO x in the negative electrode active material was coated with a carbon material, and the content of TFPC and TFDMC in the non-aqueous electrolyte used in the battery were set to the values shown in Table 1, and the positive electrode The coating mass of the mixture-containing paste is changed so that the mass P of the positive electrode active material in the positive electrode mixture layer is 13.2 g, and the coating mass of the negative electrode mixture-containing paste is also changed to change the negative electrode in the negative electrode mixture layer A lithium secondary battery was produced in the same manner as in Example 1 except that the mass N of the active material was also changed and P / N was changed to the values shown in Table 1.

実施例10
負極活物質中におけるSiO表面を炭素材料で被覆した複合体の含有量、並びに電池に使用した非水電解液におけるTFPCおよびTFDMCの添加量を、TFPC、TFDMCおよび非フッ素化溶媒の含有量が表1に示す値になるようにし、更に正極合剤含有ペーストの塗布質量を変更して、正極合剤層中の正極活物質の質量Pを14.4gとし、更に負極合剤含有ペーストの塗布質量も変更して負極合剤層中の負極活物質の質量Nも変え、P/Nを表1に示す値にした以外は、実施例1と同様にしてリチウム二次電池を作製した。
Example 10
The content of the composite in which the SiO x surface is coated with a carbon material in the negative electrode active material, and the amount of TFPC and TFDMC added to the non-aqueous electrolyte used in the battery are the same as the content of TFPC, TFDMC, and non-fluorinated solvent. Further, the coating mass of the positive electrode mixture-containing paste was changed to the value shown in Table 1, and the mass P of the positive electrode active material in the positive electrode mixture layer was changed to 14.4 g, and further the coating of the negative electrode mixture-containing paste was applied. A lithium secondary battery was produced in the same manner as in Example 1, except that the mass N was changed to change the mass N of the negative electrode active material in the negative electrode mixture layer, and P / N was changed to the values shown in Table 1.

実施例11
負極活物質中におけるSiO表面を炭素材料で被覆した複合体の含有量、並びに電池に使用した非水電解液におけるTFPCおよびTFDMCの添加量を、TFPC、TFDMCおよび非フッ素化溶媒の含有量が表1に示す値になるようにし、更に正極合剤含有ペーストの塗布質量を変更して、正極合剤層中の正極活物質の質量Pを13.8gとし、更に負極合剤含有ペーストの塗布質量も変更して負極合剤層中の負極活物質の質量Nも変え、P/Nを表1に示す値にした以外は、実施例1と同様にしてリチウム二次電池を作製した。
Example 11
The content of the composite in which the SiO x surface is coated with a carbon material in the negative electrode active material, and the amount of TFPC and TFDMC added to the non-aqueous electrolyte used in the battery are the same as the content of TFPC, TFDMC, and non-fluorinated solvent. The coating mass of the positive electrode mixture-containing paste was changed to the value shown in Table 1, the mass P of the positive electrode active material in the positive electrode mixture layer was changed to 13.8 g, and the negative electrode mixture-containing paste was further coated. A lithium secondary battery was produced in the same manner as in Example 1, except that the mass N was changed to change the mass N of the negative electrode active material in the negative electrode mixture layer, and P / N was changed to the values shown in Table 1.

比較例1
負極活物質中におけるSiO表面を炭素材料で被覆した複合体の含有量、並びに電池に使用した非水電解液におけるTFPCおよびTFDMCの添加量を、TFPC、TFDMCおよび非フッ素化溶媒の含有量が表1に示す値になるようにし、更に正極合剤含有ペーストの塗布質量を変更して、正極合剤層中の正極活物質の質量Pを13.8gとし、更に負極合剤含有ペーストの塗布質量も変更して負極合剤層中の負極活物質の質量Nも変え、P/Nを表1に示す値にした以外は、実施例1と同様にしてリチウム二次電池を作製した。
Comparative Example 1
The content of the composite in which the SiO x surface is coated with a carbon material in the negative electrode active material, and the amount of TFPC and TFDMC added to the non-aqueous electrolyte used in the battery are the same as the content of TFPC, TFDMC, and non-fluorinated solvent. The coating mass of the positive electrode mixture-containing paste was changed to the value shown in Table 1, the mass P of the positive electrode active material in the positive electrode mixture layer was changed to 13.8 g, and the negative electrode mixture-containing paste was further coated. A lithium secondary battery was produced in the same manner as in Example 1, except that the mass N was changed to change the mass N of the negative electrode active material in the negative electrode mixture layer, and P / N was changed to the values shown in Table 1.

比較例2、3
負極活物質中におけるSiO表面を炭素材料で被覆した複合体の含有量、並びに電池に使用した非水電解液におけるTFPCおよびTFDMCの添加量を、TFPC、TFDMCおよび非フッ素化溶媒の含有量が表1に示す値になるようにし、更に正極合剤含有ペーストの塗布質量を変更して、正極合剤層中の正極活物質の質量Pを11.4gとし、P/Nを表1に示す値にした以外は、実施例1と同様にしてリチウム二次電池を作製した。
Comparative Examples 2 and 3
The content of the composite in which the SiO x surface is coated with a carbon material in the negative electrode active material, and the amount of TFPC and TFDMC added to the non-aqueous electrolyte used in the battery are the same as the content of TFPC, TFDMC, and non-fluorinated solvent. Further, the coating mass of the positive electrode mixture-containing paste was changed so as to be the value shown in Table 1, the mass P of the positive electrode active material in the positive electrode mixture layer was 11.4 g, and P / N is shown in Table 1. A lithium secondary battery was produced in the same manner as in Example 1 except that the value was changed.

実施例および比較例のリチウム二次電池に使用した負極に係るSiO表面を炭素材料で被覆した複合体の含有量の負極活物質中における含有量(表では、「SiO複合体の含有量」と記載する)、非水電解液中のTFPC含有量、TFDMC含有量および非フッ素化溶媒含有量、並びに正極活物質の質量Pと負極活物質の質量Nとの比P/N(表では「P/N」と記載する)を表1に示す。 Content of composite in which the surface of SiO x relating to the negative electrode used in the lithium secondary batteries of Examples and Comparative Examples was coated with a carbon material in the negative electrode active material (in the table, “content of SiO x composite ), TFPC content, TFDMC content and non-fluorinated solvent content in the non-aqueous electrolyte, and the ratio P / N of the positive electrode active material mass P and the negative electrode active material mass N (in the table) Table 1 shows “P / N”.

実施例および比較例の各電池について、以下の外部短絡試験および貯蔵試験を行った。これらの結果を表2に示す。   The following external short-circuit test and storage test were performed on the batteries of the examples and comparative examples. These results are shown in Table 2.

<外部短絡試験>
実施例および比較例の各電池について、各電池の設計容量を基に、25℃で1Cの定電流で4.2Vに達するまで充電し、更に4.2Vの定電圧で充電する定電流−定電圧充電(総充電時間:2.5時間)を行った後、1Cの定電流で2.7Vまで放電させた。その後、各電池について、更に、1Cの定電流で4.5Vに達するまで充電し、その後4.5Vの定電圧で充電する定電流−定電圧充電(総充電時間:2.5時間)を行った。
<External short circuit test>
About each battery of an Example and a comparative example, based on the design capacity | capacitance of each battery, it charges until it reaches 4.2V with the constant current of 1C at 25 degreeC, and also it charges with the constant voltage of 4.2V. After voltage charging (total charging time: 2.5 hours), the battery was discharged to 2.7 V with a constant current of 1 C. After that, each battery is further charged with a constant current of 1 C until it reaches 4.5 V, and then charged with a constant voltage of 4.5 V (constant current-constant voltage charging (total charging time: 2.5 hours)). It was.

次に、充電された電池を60℃に設定された恒温槽中で保持し、電池の温度が60℃に達した後、正極と負極を50mΩの抵抗を介してショートさせ、電池を完全に放電させた。そして、電池表面の最高温度を測定した。このときの最高温度が130℃以下であれば、安全性が良好であると評価できる。   Next, the charged battery is held in a thermostatic chamber set at 60 ° C., and after the temperature of the battery reaches 60 ° C., the positive electrode and the negative electrode are short-circuited through a 50 mΩ resistor to completely discharge the battery. I let you. And the maximum temperature of the battery surface was measured. If the maximum temperature at this time is 130 degrees C or less, it can be evaluated that safety | security is favorable.

<貯蔵試験>
実施例および比較例の各電池(外部短絡試験に使用したものとは別の電池)について、各電池の設計容量を基に、25℃で1Cの定電流で4.2Vに達するまで充電し、更に4.2Vの定電圧で充電する定電流−定電圧充電(総充電時間:2.5時間)を行った後、1Cの定電流で2.7Vまで放電させた。その後、各電池について、更に、1Cの定電流で4.35Vに達するまで充電し、その後4.35Vの定電圧で充電する定電流−定電圧充電(総充電時間:2.5時間)を行った。
<Storage test>
About each battery of Example and Comparative Example (battery different from that used in the external short-circuit test), based on the design capacity of each battery, it was charged at 25 ° C. with a constant current of 1 C until it reached 4.2 V, Furthermore, after performing constant current-constant voltage charging (total charging time: 2.5 hours) for charging at a constant voltage of 4.2 V, the battery was discharged to 2.7 V at a constant current of 1 C. After that, each battery is further charged at a constant current of 1 C until reaching 4.35 V, and then charged at a constant voltage of 4.35 V (constant current-constant voltage charging (total charging time: 2.5 hours)). It was.

次に、充電された電池を85℃に設定された恒温槽中で24時間保持し、次いで恒温槽から取り出して室温で3時間冷却し、貯蔵前後での電池の厚みの変化:ΔT(mm)を求めた。   Next, the charged battery is held in a thermostat set at 85 ° C. for 24 hours, then removed from the thermostat and cooled at room temperature for 3 hours, and the change in battery thickness before and after storage: ΔT (mm) Asked.

なお、表2における「外部短絡試験時における電池表面の最高温度」の欄の「>130」とは、電池表面の最高温度が130℃を超えたことを意味している。   In Table 2, “> 130” in the column of “maximum battery surface temperature during external short circuit test” means that the maximum battery surface temperature exceeded 130 ° C.

表1に示す通り、適正な構成の負極と非水電解液とを備えた実施例1〜11のリチウム二次電池は、外部短絡試験時における表面の最高温度が低く、良好な安全性を有しており、また、ΔTが1mm以下と小さく、貯蔵時の膨れが良好に抑制されている。これに対し、負極活物質中のSiO量が多すぎる比較例1の電池、TFPCを含有しない非水電解液を有する比較例2の電池、および鎖状フッ素化カーボネートを含有しない非水電解液を有する比較例3の電池は、外部短絡試験時に最高温度が130℃を超えており、安全性が劣っていることに加えて、貯蔵前後での厚み変化も大きい。   As shown in Table 1, the lithium secondary batteries of Examples 1 to 11 having a negative electrode and a non-aqueous electrolyte having a proper configuration have a low surface maximum temperature during an external short circuit test and have good safety. In addition, ΔT is as small as 1 mm or less, and swelling during storage is satisfactorily suppressed. In contrast, the battery of Comparative Example 1 in which the amount of SiO in the negative electrode active material is too large, the battery of Comparative Example 2 having a non-aqueous electrolyte not containing TFPC, and the non-aqueous electrolyte not containing a chain fluorinated carbonate The battery of Comparative Example 3 has a maximum temperature exceeding 130 ° C. during the external short circuit test, and in addition to poor safety, the thickness change before and after storage is also large.

1 正極
2 負極
3 セパレータ
1 Positive electrode 2 Negative electrode 3 Separator

Claims (7)

正極、負極、非水電解液およびセパレータを有するリチウム二次電池であって、
前記正極は、リチウム含有複合酸化物を正極活物質として含有する正極合剤層を、集電体の片面または両面に有するものであり、
前記負極は、SiとOとを構成元素に含む材料(ただし、Siに対するOの原子比xは、0.5≦x≦1.5である)と炭素材料との複合体、および黒鉛質炭素材料を負極活物質として含有する負極合剤層を、集電体の片面または両面に有するものであり、
前記負極活物質中におけるSiとOとを構成元素に含む材料と炭素材料との複合体の含有量が、1.0〜20質量%であり、
正極活物質の質量Pと負極活物質の質量Nとの比P/Nが、1.0〜2.5であり、
前記非水電解液が、トリフルオロプロピレンカーボネートと鎖状フッ素化カーボネートとを含有することを特徴とするリチウム二次電池。
A lithium secondary battery having a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator,
The positive electrode has a positive electrode mixture layer containing a lithium-containing composite oxide as a positive electrode active material on one side or both sides of a current collector,
The negative electrode is a composite of a material containing Si and O as constituent elements (provided that the atomic ratio x of O to Si is 0.5 ≦ x ≦ 1.5) and a carbon material, and graphitic carbon A negative electrode mixture layer containing a material as a negative electrode active material has one or both sides of a current collector,
The content of the composite of the material containing Si and O in the negative electrode active material and the carbon material is 1.0 to 20% by mass,
The ratio P / N of the mass P of the positive electrode active material and the mass N of the negative electrode active material is 1.0 to 2.5,
The lithium secondary battery, wherein the non-aqueous electrolytic solution contains trifluoropropylene carbonate and chain fluorinated carbonate.
非水電解液の全溶媒中におけるトリフルオロプロピレンカーボネートの含有量が、20〜50体積%である請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the content of trifluoropropylene carbonate in all the solvents of the nonaqueous electrolytic solution is 20 to 50% by volume. 非水電解液の全溶媒中におけるトリフルオロプロピレンカーボネートの含有量が、30〜50体積%である請求項1または2に記載のリチウム二次電池。   The lithium secondary battery according to claim 1 or 2, wherein the content of trifluoropropylene carbonate in all solvents of the non-aqueous electrolyte is 30 to 50% by volume. 正極活物質として、一般組成式Li1+yMO[ただし、−0.15≦y≦0.15であり、かつ、Mは、少なくともNi、CoおよびMnを含む3種以上の元素群を表し、Mを構成する各元素中で、Ni、CoおよびMnの割合(mol%)を、それぞれa、bおよびcとしたときに、30≦a≦90、5≦b≦35、5≦c≦35および10≦b+c≦70である]で表されるリチウム含有複合酸化物を含有している請求項1〜のいずれかに記載のリチウム二次電池。 As a positive electrode active material, a general composition formula Li 1 + y MO 2 [wherein −0.15 ≦ y ≦ 0.15, and M represents a group of three or more elements including at least Ni, Co, and Mn, 30 ≦ a ≦ 90, 5 ≦ b ≦ 35, 5 ≦ c ≦ 35, where the proportions (mol%) of Ni, Co and Mn in each element constituting M are a, b and c, respectively. The lithium secondary battery according to any one of claims 1 to 3 , further comprising a lithium-containing composite oxide represented by: 10 ≦ b + c ≦ 70. 前記一般組成式における元素群Mが、更に、Ge、Ca、Sr、Ba、B、ZrおよびGaより選ばれる少なくとも1種の元素M’を含んでいる請求項に記載のリチウム二次電池。 The lithium secondary battery according to claim 4 , wherein the element group M in the general composition formula further includes at least one element M ′ selected from Ge, Ca, Sr, Ba, B, Zr, and Ga. 元素群Mにおける元素M’の割合が、10mol%以下である請求項に記載のリチウム二次電池。 The lithium secondary battery according to claim 5 , wherein the ratio of the element M ′ in the element group M is 10 mol% or less. セパレータが、融点が140℃以下の樹脂を主体とする多孔質層(I)と、150℃以下の温度で溶融しない樹脂、または耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)とを有するものである請求項1〜のいずれかに記載のリチウム二次電池。 The separator has a porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or lower, a porous layer mainly composed of a resin that does not melt at a temperature of 150 ° C. or lower, or an inorganic filler having a heat resistant temperature of 150 ° C. or higher ( The lithium secondary battery according to any one of claims 1 to 6 , wherein:
JP2010206377A 2010-09-15 2010-09-15 Lithium secondary battery Active JP5566825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010206377A JP5566825B2 (en) 2010-09-15 2010-09-15 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010206377A JP5566825B2 (en) 2010-09-15 2010-09-15 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2012064376A JP2012064376A (en) 2012-03-29
JP5566825B2 true JP5566825B2 (en) 2014-08-06

Family

ID=46059898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010206377A Active JP5566825B2 (en) 2010-09-15 2010-09-15 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5566825B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029083B2 (en) * 2012-08-08 2016-11-24 日産自動車株式会社 Non-aqueous electrolyte and lithium ion battery using the same
JP2014067583A (en) * 2012-09-26 2014-04-17 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2017529664A (en) * 2014-08-27 2017-10-05 エイチエスシー コーポレーション Fluoropropylene carbonate-based electrolyte and lithium ion battery
CN107431234A (en) * 2015-03-24 2017-12-01 日本电气株式会社 The battery of high security and high-energy-density
JP6959015B2 (en) * 2017-02-17 2021-11-02 積水化学工業株式会社 Non-aqueous electrolyte secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195429A (en) * 1998-01-05 1999-07-21 Hitachi Ltd Nonaqueous electrolytic solution secondary battery
JP2003100342A (en) * 2001-09-25 2003-04-04 Hitachi Ltd Lithium secondary battery
JP4965790B2 (en) * 2002-10-28 2012-07-04 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2005078820A (en) * 2003-08-28 2005-03-24 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP4841116B2 (en) * 2004-05-28 2011-12-21 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4968503B2 (en) * 2005-04-26 2012-07-04 ソニー株式会社 Lithium secondary battery
JP5221892B2 (en) * 2007-04-24 2013-06-26 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
JP2009143060A (en) * 2007-12-12 2009-07-02 Asahi Kasei Chemicals Corp Multi-layer porous film
JP2010123383A (en) * 2008-11-19 2010-06-03 Teijin Ltd Separator for nonaqueous secondary battery, method of manufacturing the same, and nonaqueous secondary battery

Also Published As

Publication number Publication date
JP2012064376A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP4868556B2 (en) Lithium secondary battery
JP5756063B2 (en) Non-aqueous secondary battery
JP6253411B2 (en) Lithium secondary battery
KR101982682B1 (en) Lithium secondary battery
WO2015111710A1 (en) Non-aqueous secondary battery
JP2011243558A (en) Lithium secondary battery positive electrode and lithium secondary battery
WO2012014998A1 (en) Lithium secondary battery
JP2013222612A (en) Nonaqueous secondary battery
JP2012003997A (en) Nonaqueous electrolyte secondary cell
JP5031065B2 (en) Lithium ion secondary battery
JP5523506B2 (en) Method for producing lithium ion secondary battery
JP5566825B2 (en) Lithium secondary battery
WO2014069117A1 (en) Anode active material for non-aqueous secondary battery and non-aqueous secondary battery
JP5851801B2 (en) Lithium secondary battery
JP2013149451A (en) Lithium secondary battery
JP6063705B2 (en) Nonaqueous electrolyte secondary battery
JP2014022245A (en) Lithium ion secondary battery and manufacturing method thereof
WO2015037522A1 (en) Nonaqueous secondary battery
JP5658122B2 (en) Lithium secondary battery
JP2013118068A (en) Lithium secondary battery
JP5785653B2 (en) Lithium secondary battery
JP2013030398A (en) Negative electrode material, method for manufacturing the same, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140618

R150 Certificate of patent or registration of utility model

Ref document number: 5566825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250