WO2012014998A1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
WO2012014998A1
WO2012014998A1 PCT/JP2011/067328 JP2011067328W WO2012014998A1 WO 2012014998 A1 WO2012014998 A1 WO 2012014998A1 JP 2011067328 W JP2011067328 W JP 2011067328W WO 2012014998 A1 WO2012014998 A1 WO 2012014998A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
negative electrode
secondary battery
lithium secondary
Prior art date
Application number
PCT/JP2011/067328
Other languages
French (fr)
Japanese (ja)
Inventor
上剃春樹
御書至
松尾和貴
川端雄介
長岡修一
河野聡
稲葉章
山田將之
阿部浩史
Original Assignee
日立マクセルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセルエナジー株式会社 filed Critical 日立マクセルエナジー株式会社
Priority to KR1020137002446A priority Critical patent/KR101485382B1/en
Priority to CN2011800371612A priority patent/CN103038928A/en
Priority to JP2012526574A priority patent/JPWO2012014998A1/en
Publication of WO2012014998A1 publication Critical patent/WO2012014998A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery having a high capacity and good charge / discharge cycle characteristics and storage characteristics.
  • Patent Document 1 discloses a lithium ion secondary that has a low gas generation amount, a high capacity, and excellent storage characteristics and charge / discharge cycle characteristics by including a non-aqueous electrolyte solution with a specific compound of a phosphate ester type. A battery is disclosed.
  • LiCoO 2 lithium cobaltate
  • Co cobalt
  • the price of cobalt itself is high and the price fluctuates greatly, development of a positive electrode material that is inexpensive and stable in supply is desired.
  • Patent Document 2 discloses nickel (Ni), manganese (Mn). , Cobalt (Co) and other substitutional elements M, the content ratio of each element is defined, and the atomic ratio a of M to Mn, Ni, Co on the surface of the positive electrode active material particles A positive electrode active material that is larger than the average atomic ratio of M to Mn, Ni, and Co is disclosed.
  • SiO x having a structure in which ultrafine particles of silicon (Si) are dispersed in SiO 2 as a negative electrode material. 5.
  • Ni in the positive electrode active material In general, Ni is unstable in a high temperature environment. Therefore, Ni in the positive electrode active material reacts with the electrolyte under high-temperature storage, generating gas and causing the battery to swell, and the reaction product accumulates on the Ni interface, increasing the resistance of the battery and storing at high temperature. This is thought to reduce the recovery capacity later.
  • the SiO x utilization rate is limited to suppress volume expansion / contraction associated with charge / discharge reactions, or halogen-substituted cyclic carbonates (for example, 4-fluoro-1,3-dioxolane-).
  • halogen-substituted cyclic carbonates for example, 4-fluoro-1,3-dioxolane-
  • a lithium secondary battery having good charge / discharge cycle characteristics for example, can be obtained while increasing capacity by using SiO x as a negative electrode active material.
  • the produced cyclic carbonate easily causes the battery to swell, and in this respect, the technique described in Patent Document 5 still leaves room for improvement.
  • the present invention provides a lithium secondary battery having a high capacity, a small battery swelling after high-temperature storage, a high capacity recovery rate, and good charge / discharge cycle characteristics.
  • the first lithium secondary battery of the present invention is a lithium secondary battery including a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, and the positive electrode is formed on a current collector and the current collector.
  • a positive electrode mixture layer, the positive electrode mixture layer contains a positive electrode active material, the positive electrode active material contains a first lithium-containing composite oxide containing lithium and nickel, and the first lithium
  • the molar ratio of nickel to lithium in the total amount of the composite oxide containing is 0.05 to 1.05
  • the non-aqueous electrolyte is a phosphonoacetate compound represented by the following general formula (1) Is contained in an amount of 0.5 to 20% by mass.
  • R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom, and n is an integer of 0 to 6 It is.
  • the second lithium secondary battery of the present invention is a lithium secondary battery including a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, and the negative electrode is disposed on the current collector and the current collector.
  • R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom, and n is an integer of 0 to 6 It is.
  • the present invention it is possible to provide a lithium secondary battery having a high capacity, a small battery swelling after high-temperature storage, a high capacity recovery rate, and good charge / discharge cycle characteristics.
  • FIG. 1A is a plan view showing an example of the lithium secondary battery of the present invention
  • FIG. 1B is a cross-sectional view of FIG. 1A
  • FIG. 2 is a perspective view showing an example of the lithium secondary battery of the present invention.
  • the first lithium secondary battery of the present invention includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator.
  • the positive electrode includes a current collector and a positive electrode mixture layer formed on the current collector, the positive electrode mixture layer includes a positive electrode active material, and the positive electrode active material includes lithium and A first lithium-containing composite oxide containing nickel is included, and a molar ratio of the nickel to the lithium in the total amount of the first lithium-containing composite oxide is 0.05 to 1.05.
  • the nonaqueous electrolytic solution contains 0.5 to 20% by mass of a phosphonoacetate compound represented by the following general formula (1).
  • R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom, and n is an integer of 0 to 6 It is.
  • the positive electrode according to the first lithium secondary battery of the present invention for example, one having a structure having a positive electrode mixture layer containing a positive electrode active material, a binder, a conductive additive and the like on one side or both sides of a current collector is used. it can.
  • the positive electrode active material used for the positive electrode of the first lithium secondary battery of the present invention includes a first lithium-containing composite oxide containing lithium (Li) and nickel (Ni).
  • the first lithium-containing composite oxide may contain other metals such as cobalt (Co) and manganese (Mn) as constituent elements.
  • the ratio (molar ratio) of Ni to Li in the total amount of the first lithium-containing composite oxide is set to 0.05 to 1.05. Since Ni contributes to an increase in battery capacity, if Ni is contained in the positive electrode active material, the battery capacity increases. However, since Ni lacks stability under high-temperature storage, electrolysis including a phosphonoacetate compound is necessary. By using the solution together and setting the molar ratio of Ni to Li to 0.05 to 1.05, more preferably 0.2 to 0.9, a battery having a high capacity and stable even under high temperature storage can be obtained. it can.
  • the composition analysis of the lithium-containing composite oxide can be performed as follows using an ICP (Inductive Coupled Plasma) method. First, 0.2 g of a lithium-containing composite oxide to be measured is collected and placed in a 100 mL container. Thereafter, 5 mL of pure water, 2 mL of aqua regia, and 10 mL of pure water were added in order and dissolved by heating. After cooling, the mixture was further diluted 25 times with pure water, and an ICP analyzer “ICP-757” manufactured by JARRELASH was used. The composition is analyzed by a calibration curve method. The composition formula can be derived from the obtained results.
  • ICP Inductive Coupled Plasma
  • the first lithium-containing composite oxide used in the present invention is particularly represented by the following general composition formula (2). It is preferable to use one.
  • M represents an element group containing Ni, Co, and Mn, and is based on the total number of elements in the element group M.
  • the ratio of the number of elements Ni, Co and Mn contained in the element group M is a (mol%), b (mol%) and c (mol%), respectively, 25 ⁇ a ⁇ 90, 5 ⁇ b ⁇ 35, 5 ⁇ c ⁇ 35, and 10 ⁇ b + c ⁇ 70.
  • the Ni ratio a is a viewpoint of improving the capacity of the lithium-containing composite oxide. Therefore, it is preferable to set it as 25 mol% or more, and it is more preferable to set it as 50 mol% or more. However, if the proportion of Ni in the element group M is too large, for example, the amount of Co or Mn is reduced, and the effects of these may be reduced. Therefore, when the total number of elements in the element group M in the general composition formula (2) representing the first lithium-containing composite oxide is 100 mol%, the Ni ratio a is preferably 90 mol% or less, More preferably, it is 70 mol% or less.
  • Co contributes to the capacity of the lithium-containing composite oxide and acts to improve the packing density in the positive electrode mixture layer.
  • too much Co may cause an increase in cost and a decrease in safety. Therefore, when the total number of elements in the element group M in the general composition formula (2) representing the first lithium-containing composite oxide is 100 mol%, the Co ratio b is 5 mol% or more and 35 mol% or less. Is preferred.
  • the ratio c of Mn is 5 mol% or more and 35 mol% or less. It is preferable.
  • Mn in the lithium-containing composite oxide in the amount as described above, and by always allowing Mn to be present in the crystal lattice, the thermal stability of the lithium-containing composite oxide can be improved, and the safety is further improved. It is possible to construct a battery with a high value.
  • the first lithium-containing composite oxide by containing Co, fluctuations in the valence of Mn due to Li doping and dedoping during charging and discharging of the battery are suppressed, and the average valence of Mn is 4 It is possible to stabilize the value in the vicinity of the valence, and to further improve the reversibility of charge / discharge. Therefore, by using such a lithium-containing composite oxide, it becomes possible to configure a battery with more excellent charge / discharge cycle characteristics.
  • the total number of elements in the element group M in the general composition formula (2) is 100 mol. %
  • the sum b + c of the Co ratio b and the Mn ratio c is preferably 10 mol% or more and 70 mol% or less, and more preferably 10 mol% or more and 50 mol% or less.
  • the element group M in the general composition formula (2) representing the first lithium-containing composite oxide may contain elements other than Ni, Co, and Mn.
  • elements other than Ni, Co, and Mn For example, titanium (Ti), chromium (Cr) , Iron (Fe), copper (Cu), zinc (Zn), aluminum (Al), germanium (Ge), tin (Sn), magnesium (Mg), silver (Ag), thallium (Tl), niobium (Nb) , Boron (B), phosphorus (P), zirconium (Zr), calcium (Ca), strontium (Sr), barium (Ba) and the like.
  • Ni is obtained when the total number of elements in the element group M is 100 mol%.
  • Mn is expressed by f, f is preferably 15 mol% or less, and more preferably 3 mol% or less.
  • the crystal structure of the lithium-containing composite oxide can be stabilized, and the thermal stability thereof can be improved. It becomes possible to constitute a lithium secondary battery with higher safety.
  • Al is present at the grain boundaries and surfaces of the lithium-containing composite oxide particles, the stability over time and side reactions with the electrolytic solution can be suppressed, and a longer-life lithium secondary battery is constructed. It becomes possible.
  • the Al ratio is preferably 10 mol% or less.
  • the total number of elements in the element group M is set to 100 mol%.
  • the Al ratio is preferably 0.02 mol% or more.
  • the crystal structure of the lithium-containing composite oxide when Mg is present in the crystal lattice, the crystal structure of the lithium-containing composite oxide can be stabilized and its thermal stability can be improved, so that it is safer. It becomes possible to constitute a lithium secondary battery with high performance.
  • Mg is rearranged to relax the irreversible reaction, and the lithium-containing composite Since reversibility of the crystal structure of the oxide can be increased, a lithium secondary battery having a longer charge / discharge cycle life can be configured.
  • the ratio of Mg is preferably 10 mol% or less.
  • the total number of elements in the element group M is set to 100 mol%.
  • the Mg ratio is preferably 0.02 mol% or more.
  • the first lithium-containing composite oxide when Ti is contained in the particles, in the LiNiO 2 type crystal structure, Ti is arranged in a crystal defect portion such as an oxygen vacancy to stabilize the crystal structure.
  • the reversibility of the reaction of the lithium-containing composite oxide is increased, and a lithium secondary battery having more excellent charge / discharge cycle characteristics can be configured.
  • the ratio of Ti when the total number of elements in the element group M is 100 mol% Is preferably 0.01 mol% or more, and more preferably 0.1 mol% or more.
  • the ratio of Ti when the total number of elements in the element group M is 100 mol%, the ratio of Ti is preferably 10 mol% or less. More preferably, it is 5 mol% or less, and further preferably 2 mol% or less.
  • the first lithium-containing composite oxide contains at least one element M ′ selected from Ge, Ca, Sr, Ba, B, Zr and Ga as the element group M in the general composition formula (2).
  • element M ′ selected from Ge, Ca, Sr, Ba, B, Zr and Ga as the element group M in the general composition formula (2).
  • the crystal structure of the composite oxide after Li is eliminated is stabilized, so that the reversibility of the reaction during charge and discharge is improved. Therefore, it is possible to configure a lithium secondary battery that is higher in safety and more excellent in charge / discharge cycle characteristics.
  • Ge is present on the particle surface or grain boundary of the lithium-containing composite oxide, disorder of the crystal structure due to Li desorption / insertion at the interface is suppressed, greatly contributing to improvement of charge / discharge cycle characteristics. be able to.
  • the first lithium-containing composite oxide contains an alkaline earth metal such as Ca, Sr, or Ba
  • the growth of primary particles is promoted, and the crystallinity of the lithium-containing composite oxide is increased.
  • the active site can be reduced, the stability over time when a coating material for forming a positive electrode mixture layer (a positive electrode mixture-containing composition described later) is improved, and the lithium secondary battery has Irreversible reaction with the non-aqueous electrolyte can be suppressed.
  • these elements are present on the particle surfaces and grain boundaries of the lithium-containing composite oxide, the CO 2 gas in the battery can be trapped. It becomes possible to do.
  • the lithium-containing composite oxide contains Mn
  • the primary particles tend to be difficult to grow. Therefore, the addition of an alkaline earth metal such as Ca, Sr, or Ba is more effective.
  • the growth of primary particles is promoted and the crystallinity of the lithium-containing composite oxide is improved. Therefore, active sites can be reduced, Stability over time when a coating material for forming the positive electrode mixture layer is improved, and irreversible reaction with the non-aqueous electrolyte can be suppressed. Further, by dissolving Ga in the crystal structure of the lithium-containing composite oxide, the layer spacing of the crystal lattice can be expanded, and the rate of lattice expansion / contraction due to insertion and desorption of Li can be reduced. . For this reason, the reversibility of a crystal structure can be improved and it becomes possible to comprise a lithium secondary battery with a longer charge-discharge cycle life. In particular, when the lithium-containing composite oxide contains Mn, the addition of Ga is more effective because primary particles tend to be difficult to grow.
  • the ratio is 0.1 mol% or more in all elements of the element group M. It is preferable. Further, the ratio of these elements M ′ in all elements of the element group M is preferably 10 mol% or less.
  • Elements other than Ni, Co, and Mn in the element group M may be uniformly distributed in the first lithium-containing composite oxide, or may be segregated on the particle surface or the like.
  • the first lithium-containing composite oxide having the above composition has a large true density of 4.55 to 4.95 g / cm 3 and becomes a material having a high volume energy density.
  • the true density of the lithium-containing composite oxide containing Mn in a certain range varies greatly depending on its composition. However, since the structure is stabilized and the uniformity can be improved in the narrow composition range as described above, for example, LiCoO 2 This is considered to be a large value close to the true density of. Moreover, the capacity
  • the true density of the first lithium-containing composite oxide increases particularly when the composition is close to the stoichiometric ratio.
  • y is more preferably ⁇ 0.05 or more and 0.05 or less.
  • the true density of the lithium-containing composite oxide can be set to a higher value of 4.6 g / cm 3 or more. .
  • the first lithium-containing composite oxide represented by the general composition formula (2) includes a Li-containing compound (lithium hydroxide monohydrate and the like), a Ni-containing compound (such as nickel sulfate), and a Co-containing compound (sulfuric acid). Cobalt and the like), a Mn-containing compound (such as manganese sulfate), and a compound containing other elements contained in the element group M (such as aluminum sulfate and magnesium sulfate) are mixed and fired. Further, in order to synthesize the lithium-containing composite oxide with higher purity, a composite compound (hydroxide, oxide, etc.) containing a plurality of elements contained in the element group M and a Li-containing compound are mixed and fired. It is preferable to do.
  • the firing conditions can be, for example, 800 to 1050 ° C. for 1 to 24 hours, but once heated to a temperature lower than the firing temperature (for example, 250 to 850 ° C.) and maintained at that temperature, preheating is performed. After that, it is preferable to raise the temperature to the firing temperature to advance the reaction. There is no particular limitation on the preheating time, but it is usually about 0.5 to 30 hours.
  • the atmosphere during firing can be an atmosphere containing oxygen (that is, in the air), a mixed atmosphere of an inert gas (such as argon, helium, or nitrogen) and oxygen gas, or an oxygen gas atmosphere.
  • the oxygen concentration (volume basis) is preferably 15% or more, and more preferably 18% or more.
  • the positive electrode active material may contain one kind of the first lithium-containing composite oxide, or may contain two or more kinds.
  • the positive electrode active material may further contain a second lithium-containing composite oxide containing lithium and a transition metal, in addition to the first lithium-containing composite oxide described above.
  • the second lithium-containing composite oxide include lithium cobalt oxides such as LiCoO 2 ; lithium manganese oxides such as LiMnO 2 and Li 2 MnO 3 ; LiMn 2 O 4 and Li 4/3 Ti 5/3 O.
  • the positive electrode active material may contain one kind of the second lithium-containing composite oxide, or may contain two or more kinds.
  • LiCoO 2 when using the first lithium-containing composite oxide and the second lithium-containing composite oxide as the positive electrode active material, it is particularly preferable to use LiCoO 2 as the second lithium-containing composite oxide.
  • the content of the first lithium-containing composite oxide in the total amount of the positive electrode active material is preferably 10% by mass or more, and more preferably 30% by mass or more.
  • the inclusion of the first lithium-containing composite oxide in the total amount of the positive electrode active material is preferably 80% by mass or less, and more preferably 60% by mass or less.
  • the total molar ratio of total nickel to total lithium in the total amount of the positive electrode active material is preferably 0.05 to 1.0.
  • the total molar ratio R of all nickel to the total lithium in the total amount of the positive electrode active material is It can be calculated by equation (3).
  • N j molar composition ratio of Ni contained in the component j
  • a j mixing mass ratio of the component j
  • L j molar composition ratio of Li contained in the component j
  • LiNi 0.8 Co 0.1 Mn 0.1 O 2 as the first lithium-containing composite oxide and LiCoO 2 as the second lithium-containing composite oxide may have a mass ratio of 1: 1 ( That is, when the mixed mass ratio is 0.5) for both the first lithium-containing composite oxide and the second lithium-containing composite oxide, the total molar ratio R is as follows.
  • the average particle size of the first lithium-containing composite oxide and the second lithium-containing oxide used in the present invention is preferably 5 to 25 ⁇ m, particularly preferably 10 to 20 ⁇ m.
  • These particles may be secondary aggregates in which primary particles are aggregated, and the average particle size in this case means the average particle size of the secondary aggregates.
  • the average particle diameter of various particles in the present specification was measured by, for example, using a laser scattering particle size distribution analyzer “LA-920” manufactured by Horiba, Ltd., dispersing these fine particles in a medium in which the measurement particles are not dissolved.
  • the average particle diameter D is 50%.
  • the specific surface area by the BET method is preferably 0.1 to 0.4 m 2 / g for reasons such as ensuring reactivity with lithium ions and suppressing side reactions with the electrolyte.
  • the specific surface area by the BET method can be measured, for example, using a specific surface area measuring device “Macsorb HM model-1201” manufactured by Mounttech using a nitrogen adsorption method.
  • any thermoplastic resin or thermosetting resin can be used as long as it is chemically stable in the battery.
  • a thermoplastic resin or thermosetting resin can be used as long as it is chemically stable in the battery.
  • P (TFE-VDF) tetrafluoroethylene-vinylidene fluoride copolymer
  • PVDF polyvinylidene fluoride
  • binders other than these can be used together with PVDF and P (TFE-VDF) or independently.
  • binders include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyhexafluoropropylene (PHFP), styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoro.
  • FEP Propylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • ECTFE propylene-tetrafluoroethylene copolymer
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • ethylene-acrylic acid copolymer ethylene-methacrylic acid copolymer, ethylene-acrylic Methyl methacrylate copolymer, ethylene - methyl methacrylate copolymer and the like Na ion crosslinked product thereof copolymer.
  • the amount of these other binders used in the positive electrode mixture layer is 1 mass in the total amount of binder in the positive electrode mixture layer. % Or less is preferable.
  • the total content of the binder in the positive electrode mixture layer is preferably 4% by mass or less, and more preferably 3% by mass or less. If the amount of the binder in the positive electrode mixture layer is too large, the adhesion between the positive electrode mixture layer and the current collector becomes too high, and the positive electrode mixture layer is formed on the inner peripheral side of the wound electrode body using this positive electrode. Defects such as cracks are likely to occur.
  • the total content of the binder in the positive electrode mixture layer is preferably 1% by mass or more, and more preferably 1.4% by mass or more.
  • the ratio of P (TFE-VDF) is 10% by mass or more, preferably 20% by mass or more. can do. Thereby, even as a positive electrode mixture layer containing a lithium-containing composite oxide having a large Ni ratio and PVDF, it is possible to moderately suppress the adhesion with the current collector.
  • the ratio of P (TFE-VDF) is preferably 30% by mass or less.
  • ⁇ Conductive aid for positive electrode mixture layer As a conductive support agent used for the positive mix layer concerning the positive electrode of the 1st lithium secondary battery of this invention, what is chemically stable should just be in a battery.
  • graphite such as natural graphite and artificial graphite
  • carbon black such as acetylene black, ketjen black (trade name), channel black, furnace black, lamp black and thermal black
  • conductive fibers such as carbon fiber and metal fiber
  • aluminum Metallic powders such as powders; Fluorinated carbon; Zinc oxide; Conductive whiskers made of potassium titanate; Conductive metal oxides such as titanium oxide; Organic conductive materials such as polyphenylene derivatives;
  • One species may be used alone, or two or more species may be used in combination.
  • the form of the conductive auxiliary agent is not limited to primary particles, and secondary aggregates and aggregated forms such as chain structures can also be used. Such an assembly is easier to handle and has better productivity.
  • carbon fibers having an average fiber length of 10 nm or more and less than 1000 nm and an average fiber diameter of 1 nm or more and 100 nm or less are contained in an amount of 0.25 mass% or more and 1.5 mass% or less.
  • the carbon fibers of the size are easily dispersed well in the positive electrode mixture layer, and since many carbon fibers having a short fiber length are included, the distance between the positive electrode active material particles is small. This is considered to be because the components in the positive electrode mixture layer become shorter and can be filled satisfactorily. Furthermore, since the dispersion of the carbon fiber, which is a conductive auxiliary agent, becomes better, the reaction in the positive electrode mixture layer is averaged over the entire area, so that the area of the positive electrode mixture layer actually involved in the reaction becomes larger and the load is increased. The characteristics are improved, and further, the local reaction of the positive electrode mixture layer is suppressed, and the deterioration of the positive electrode when charging / discharging is repeated is suppressed. Therefore, it is considered that the charge / discharge cycle characteristics are also improved.
  • the average fiber length of the carbon fibers is preferably 30 nm or more, and preferably 500 nm or less. Furthermore, the average fiber diameter of the carbon fiber is preferably 3 nm or more, and preferably 50 nm or less.
  • the average fiber length and average fiber diameter of the carbon fiber referred to in this specification are accelerated by a transmission electron microscope (TEM, for example, “JEM series” manufactured by JEOL Ltd., “H-700H” manufactured by Hitachi, Ltd.), etc.
  • the voltage is 100 kV or 200 kV and is measured from the photographed TEM image.
  • TEM images of 100 samples were taken at 20,000 to 40,000 magnification, and when viewing the average fiber diameter at 200,000 to 400,000 magnification.
  • the length and diameter are measured one by one with a metal scale certified to the first grade of the industry standard (JIS), and the average of the measured values is taken as the average fiber length and average fiber diameter.
  • a conductive auxiliary other than carbon fibers having an average fiber length of 10 nm or more and less than 1000 nm and an average fiber diameter of 1 nm or more and 100 nm or less (hereinafter, referred to as “other conductive assistant”). Can be used in combination with the carbon fiber.
  • Examples of the other conductive assistants include conductive assistants used for positive electrodes of lithium secondary batteries that are conventionally known, such as natural graphite (such as flake graphite) and graphite such as artificial graphite; acetylene black, Carbon black such as ketjen black, channel black, furnace black, lamp black, thermal black; carbon fiber having an average fiber length of less than 1 nm or 1000 nm or more, carbon fiber having an average fiber diameter of less than 1 nm or more than 100 nm; Examples thereof include carbon materials.
  • natural graphite such as flake graphite
  • graphite such as artificial graphite
  • acetylene black Carbon black such as ketjen black, channel black, furnace black, lamp black, thermal black
  • the graphite is preferably used in combination with carbon fibers having an average fiber length of 10 nm or more and less than 1000 nm and an average fiber diameter of 1 nm or more and 100 nm or less.
  • the carbon in the positive electrode mixture layer is used. The dispersibility of the fibers becomes better, and the load characteristics and charge / discharge cycle characteristics of the lithium secondary battery using the positive electrode of the present embodiment can be further improved.
  • the graphite content is 25% by mass or more. It is preferable that the above-mentioned effects can be ensured more favorably by using the carbon fiber and graphite together.
  • the amount of graphite in the total of the carbon fiber and graphite in the positive electrode mixture layer is excessively increased, the amount of the conductive auxiliary agent in the positive electrode mixture layer is excessively increased and the filling amount of the positive electrode active material is decreased.
  • the effect of increasing the capacity may be reduced. Therefore, when the total of the carbon fiber content and the graphite content in the positive electrode mixture layer is 100% by mass, the graphite content is preferably 87.5% by mass or less.
  • the sum total of the said carbon fiber and said other conductive support agent in a positive mix layer is 100 mass%
  • the content of the other conductive aid is preferably 25 to 87.5% by mass.
  • the current collector used for the positive electrode of the first lithium secondary battery of the present invention can be the same as that used for the positive electrode of a conventionally known lithium secondary battery.
  • a 10-30 ⁇ m aluminum foil is preferred.
  • a positive electrode mixture-containing composition in the form of a paste or slurry in which the positive electrode active material, binder and conductive additive described above are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) is prepared.
  • NMP N-methyl-2-pyrrolidone
  • the binder may be dissolved in a solvent.
  • the manufacturing method of a positive electrode is not necessarily restricted to the said method, It can also manufacture with another manufacturing method.
  • the amount of the positive electrode active material is preferably 60 to 95% by mass
  • the amount of the binder is preferably 1 to 15% by mass
  • the amount of the conductive auxiliary agent is 3%. It is preferably ⁇ 20% by mass.
  • the thickness of the positive electrode mixture layer is preferably 15 to 200 ⁇ m per one side of the current collector.
  • the density of the positive electrode mixture layer is preferably 3.2 g / cm 3 or more, and more preferably 3.6 g / cm 3 or more.
  • the density of the positive electrode mixture layer referred to in the present specification is a value measured by the following method.
  • the positive electrode is cut into a predetermined area, its mass is measured using an electronic balance with a minimum scale of 0.1 mg, and the mass of the current collector is subtracted to calculate the mass of the positive electrode mixture layer.
  • the total thickness of the positive electrode was measured at 10 points with a micrometer having a minimum scale of 1 ⁇ m, and the volume of the positive electrode mixture layer was determined from the average value obtained by subtracting the thickness of the current collector from these measured values and the area. calculate. Then, the density of the positive electrode mixture layer is calculated by dividing the mass of the positive electrode mixture layer by the volume.
  • the negative electrode according to the lithium secondary battery of the present invention has, for example, a structure having a negative electrode mixture layer containing a negative electrode active material, a binder, and a conductive auxiliary agent, if necessary, on one side or both sides of a current collector. Can be used.
  • the negative electrode active material used for the negative electrode of the first lithium secondary battery of the present invention includes a negative electrode active material conventionally used for lithium secondary batteries, that is, a material capable of inserting and extracting lithium ions. If there is no restriction in particular.
  • a negative electrode active material conventionally used for lithium secondary batteries, that is, a material capable of inserting and extracting lithium ions.
  • carbon-based materials that can occlude and release lithium ions such as graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers.
  • MCMB mesocarbon microbeads
  • One kind or a mixture of two or more kinds is used as the negative electrode active material.
  • elements such as silicon (Si), tin (Sn), germanium (Ge), bismuth (Bi), antimony (Sb), indium (In), and alloys thereof, lithium such as lithium-containing nitride or lithium-containing oxide
  • anode active material a material represented by SiO x containing the constituent elements silicon and oxygen, a complex with SiO x and the carbon material, and in combination with SiO x and the graphitic carbon material is preferred.
  • the SiO x may contain Si microcrystal or amorphous phase.
  • the atomic ratio of Si and O is a ratio including Si microcrystal or amorphous phase Si. That is, SiO x includes a structure in which Si (for example, microcrystalline Si) is dispersed in an amorphous SiO 2 matrix, and this amorphous SiO 2 is dispersed in the SiO 2 matrix. It is sufficient that the atomic ratio x satisfies 0.5 ⁇ x ⁇ 1.5 in combination with Si.
  • x 1, so that the structural formula is represented by SiO.
  • a material having such a structure for example, in X-ray diffraction analysis, a peak due to the presence of Si (microcrystalline Si) may not be observed, but when observed with a transmission electron microscope, the presence of fine Si Can be confirmed.
  • SiO x is preferably a complex complexed with carbon materials, for example, it is desirable that the surface of the SiO x is coated with a carbon material.
  • a conductive material conductive aid
  • SiO x in the negative electrode is electrically conductive. It is necessary to form an excellent conductive network by making good mixing and dispersion with the conductive material. If complexes complexed with carbon material SiO x, for example, simply than with a material obtained by mixing a conductive material such as SiO x and the carbon material, good conductive network in the negative electrode Formed.
  • the specific resistance value of SiO x is usually 10 3 to 10 7 k ⁇ cm, whereas the specific resistance value of the carbon material exemplified above is usually 10 ⁇ 5 to 10 k ⁇ cm.
  • the composite of SiO x and the carbon material may further have a material layer (a material layer containing non-graphitizable carbon) that covers the carbon material coating layer on the particle surface.
  • the composite in which the surface of SiO x is coated with a carbon material is further combined with a conductive material (carbon material or the like), a better conductive network can be formed in the negative electrode. Therefore, it is possible to realize a lithium secondary battery with higher capacity and more excellent battery characteristics (for example, charge / discharge cycle characteristics).
  • the complex of the SiO x and the carbon material coated with a carbon material for example, like granules the mixture was further granulated with SiO x and the carbon material coated with a carbon material.
  • SiO x whose surface is coated with a carbon material
  • the surface of a composite (for example, a granulated body) of SiO x and a carbon material having a smaller specific resistance value is further coated with a carbon material.
  • a carbon material for example, a granulated body
  • Those can also be preferably used.
  • the non-aqueous secondary battery having a negative electrode containing SiO x as a negative electrode active material it is possible to form a better conductive network when SiO x and the carbon material are dispersed inside the granule. Battery characteristics such as load discharge characteristics can be further improved.
  • Preferred examples of the carbon material that can be used to form a composite with SiO x include carbon materials such as low crystalline carbon, carbon nanotubes, and vapor grown carbon fibers.
  • the details of the carbon material include at least one selected from the group consisting of fibrous or coiled carbon materials, carbon black (including acetylene black and ketjen black), artificial graphite, graphitizable carbon, and non-graphitizable carbon.
  • a seed material is preferred.
  • a fibrous or coiled carbon material is preferable in that it easily forms a conductive network and has a large surface area.
  • Carbon black (including acetylene black and ketjen black), graphitizable carbon, and non-graphitizable carbon have high electrical conductivity and high liquid retention, and further, SiO x particles expand and contract. Is preferable in that it has a property of easily maintaining contact with the particles.
  • a fibrous carbon material is particularly preferable for use when the composite with SiO x is a granulated body.
  • the fibrous carbon material has a thin thread shape and high flexibility so that it can follow the expansion and contraction of SiO x that accompanies charging / discharging of the battery, and because of its large bulk density, it has a large amount of SiO x particles. It is because it can have the following junction point.
  • the fibrous carbon include polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, and carbon nanotube, and any of these may be used.
  • PAN polyacrylonitrile
  • the fibrous carbon material can be formed on the surface of the SiO x particles by, for example, a vapor phase method.
  • the ratio of SiO x and the carbon material is based on SiO x : 100 parts by mass from the viewpoint of satisfactorily exerting the effect of the composite with the carbon material.
  • the carbon material is preferably 5 parts by mass or more, and more preferably 10 parts by mass or more. Further, in the composite, if the ratio of the carbon material to be combined with SiO x is too large, it may lead to a decrease in the amount of SiO x in the negative electrode mixture layer, and the effect of increasing the capacity may be reduced.
  • SiO x relative to 100 parts by weight, the carbon material, and more preferably preferably not more than 50 parts by weight, more than 40 parts by weight.
  • the composite of the SiO x and the carbon material can be obtained, for example, by the following method.
  • a dispersion liquid in which SiO x is dispersed in a dispersion medium is prepared, and sprayed and dried to produce composite particles including a plurality of particles.
  • a dispersion medium for example, ethanol or the like can be used as the dispersion medium. It is appropriate to spray the dispersion liquid in an atmosphere of 50 to 300 ° C.
  • similar composite particles can be produced also by a granulation method by a mechanical method using a vibration type or planetary type ball mill or rod mill.
  • the carbon material is added to a dispersion in which SiO x is dispersed in a dispersion medium, and the dispersion is
  • the composite particles (granulated body) may be obtained by the same method as that used when combining SiO x . Further, by granulation process according to the similar mechanical method, it is possible to produce a granular material of the SiO x and the carbon material.
  • SiO x particles SiO x composite particles or a granulated body of SiO x and a carbon material
  • a carbon material for example, the SiO x particles and the hydrocarbon-based material
  • the gas is heated in the gas phase, and carbon generated by pyrolysis of the hydrocarbon-based gas is deposited on the surface of the particles.
  • the hydrocarbon-based gas spreads to every corner of the composite particle, and the surface of the particle and the pores in the surface are thin and contain a conductive carbon material. Since a uniform film (carbon material coating layer) can be formed, the SiO x particles can be imparted with good conductivity with a small amount of carbon material.
  • the processing temperature (atmosphere temperature) of the vapor deposition (CVD) method varies depending on the type of hydrocarbon gas, but usually 600 to 1200 ° C. is appropriate. Among these, the temperature is preferably 700 ° C. or higher, and more preferably 800 ° C. or higher. This is because the higher the treatment temperature, the fewer impurities remain and the formation of a coating layer containing carbon having high conductivity.
  • toluene As the liquid source of the hydrocarbon-based gas, toluene, benzene, xylene, mesitylene and the like can be used, but toluene that is easy to handle is particularly preferable.
  • a hydrocarbon-based gas can be obtained by vaporizing them (for example, bubbling with nitrogen gas).
  • methane gas, acetylene gas, etc. can also be used.
  • SiO x particles SiO x composite particles or a granulated body of SiO x and a carbon material
  • a carbon material by a vapor deposition (CVD) method
  • a petroleum-based pitch or a coal-based pitch is used.
  • At least one organic compound selected from the group consisting of a thermosetting resin and a condensate of naphthalene sulfonate and aldehydes is attached to a coating layer containing a carbon material, and then the organic compound is attached.
  • the obtained particles may be fired.
  • a dispersion liquid in which a SiO x particle (SiO x composite particle or a granulated body of SiO x and a carbon material) coated with a carbon material and the organic compound are dispersed in a dispersion medium is prepared, The dispersion is sprayed and dried to form particles coated with the organic compound, and the particles coated with the organic compound are fired.
  • Isotropic pitch can be used as the pitch, and phenol resin, furan resin, furfural resin, or the like can be used as the thermosetting resin.
  • phenol resin, furan resin, furfural resin, or the like can be used as the thermosetting resin.
  • condensate of naphthalene sulfonate and aldehydes naphthalene sulfonic acid formaldehyde condensate can be used.
  • a dispersion medium for dispersing the SiO x particles coated with the carbon material and the organic compound for example, water or alcohols (ethanol or the like) can be used. It is appropriate to spray the dispersion liquid in an atmosphere of 50 to 300 ° C.
  • the firing temperature is usually 600 to 1200 ° C., preferably 700 ° C. or higher, and more preferably 800 ° C. or higher. This is because the higher the treatment temperature, the fewer impurities remain and the formation of a coating layer containing a high-quality carbon material with high conductivity. However, the processing temperature needs to be lower than the melting point of SiO x .
  • the negative electrode active material it is preferable to use a graphitic carbon material together with SiO x .
  • a graphitic carbon material By reducing the ratio of SiO x in the negative electrode active material using a graphitic carbon material, while suppressing the decrease in the effect of increasing the capacity due to the reduction in SiO x as much as possible, the negative electrode accompanying charging / discharging of the battery ( It is possible to suppress a change in volume of the negative electrode mixture layer) and suppress a decrease in battery characteristics that may be caused by the volume change.
  • the graphitic carbon material used in combination with SiO x as the anode active material can also be used as a carbon material according to the complex of the SiO x and the carbon material.
  • Graphite carbon material like carbon black, has high electrical conductivity and high liquid retention, and even when SiO x particles expand and contract, it is easy to maintain contact with the particles. Since it has properties, it can be preferably used for forming a complex with SiO x .
  • Examples of the graphitic carbon material used as the negative electrode active material include artificial graphite obtained by graphitizing natural graphite such as scaly graphite; graphitizable carbon such as pyrolytic carbons, MCMB, and carbon fiber at 2800 ° C. or higher. And so on.
  • the content of the complex of the SiO x and the carbon material in the anode active material is more than 0.01 wt% It is preferable that it is 1 mass% or more, and it is more preferable that it is 3 mass% or more. Further, from the viewpoint of better avoiding the problem due to the volume change of SiO x accompanying charge / discharge, the content of the composite of SiO x and carbon material in the negative electrode active material is preferably 20% by mass or less. More preferably, it is 15 mass% or less.
  • binder of negative electrode mixture layer examples include starch, polyvinyl alcohol, polyacrylic acid, carboxymethylcellulose (CMC), hydroxypropylcellulose, regenerated cellulose, diacetylcellulose, and other polysaccharides and modified products thereof; polyvinylchloride, Thermoplastic resins such as polyvinylpyrrolidone, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, polyamideimide, polyamide, and their modified products; polyimide; ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene Rubber (SBR), butadiene rubber, polybutadiene, fluororubber, polyethylene oxide and other polymers having rubbery elasticity, and modified products thereof. May be used alone or two or more al.
  • EPDM ethylene-propylene-diene terpolymer
  • SBR sulfonated EPDM
  • a conductive material may be further added to the negative electrode mixture layer as a conductive aid.
  • a conductive material is not particularly limited as long as it does not cause a chemical change in the battery.
  • carbon black thermal black, furnace black, channel black, ketjen black, acetylene black, etc.
  • carbon black thermal black, furnace black, channel black, ketjen black, acetylene black, etc.
  • carbon It is possible to use one or more materials such as fiber, metal powder (powder of copper, nickel, aluminum, silver, etc.), metal fiber, polyphenylene derivative (described in JP-A-59-20971). it can.
  • carbon black is preferably used, and ketjen black and acetylene black are more preferable.
  • the particle diameter of the carbon fiber used as the conductive additive is, for example, an average particle diameter determined by the same method as the method for determining the average fiber length described above, and is preferably 0.01 ⁇ m or more, and 0.02 ⁇ m or more. More preferably, it is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • ⁇ Negative electrode current collector> As the current collector used for the negative electrode, a foil made of copper or nickel, a punching metal, a net, an expanded metal, or the like can be used, but a copper foil is usually used.
  • the upper limit of the thickness is preferably 30 ⁇ m, and the lower limit is 5 ⁇ m in order to ensure mechanical strength. Is desirable.
  • the negative electrode is, for example, a paste-like or slurry-like negative electrode in which the above-described negative electrode active material and binder, and further, if necessary, a conductive additive are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) or water.
  • NMP N-methyl-2-pyrrolidone
  • a step of preparing a mixture-containing composition (however, the binder may be dissolved in a solvent), applying this to one or both sides of the current collector, drying, and then subjecting to a calender treatment if necessary It is manufactured through.
  • the manufacturing method of a negative electrode is not necessarily restricted to the said manufacturing method, It can also manufacture with another manufacturing method.
  • the total amount of the negative electrode active material is preferably 80 to 99% by mass and the amount of the binder is preferably 1 to 20% by mass.
  • these conductive materials in the negative electrode mixture layer are used in a range in which the total amount of the negative electrode active material and the binder amount satisfy the above-described preferable values. It is preferable.
  • the thickness of the negative electrode mixture layer is preferably 10 to 100 ⁇ m, for example.
  • the nonaqueous electrolytic solution according to the first lithium secondary battery of the present invention is a solution in which a lithium salt is dissolved in an organic solvent, and contains a phosphonoacetate compound represented by the following general formula (1). Is used.
  • R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom, and n is an integer of 0 to 6 It is.
  • Examples of the phosphonoacetate compound include the following compounds.
  • ⁇ Compound with n 1 in the general formula (1)> Trimethylphosphonoacetate, methyldiethylphosphonoacetate, methyldipropylphosphonoacetate, methyldibutylphosphonoacetate, triethylphosphonoacetate, ethyldimethylphosphonoacetate, ethyldipropylphosphonoacetate, ethyldibutylphosphonoacetate, tripropyl Phosphonoacetate, propyldimethylphosphonoacetate, propyldiethylphosphonoacetate, propyldibutylphosphonoacetate, tributylphosphonoacetate, butyldimethylphosphonoacetate, butyldiethylphosphonoacetate, butyldipropylphosphonoacetate, methylbis (2, 2,2-trifluoroethyl) phosphonoacetate, ethylbis (2,2,2-trifluoro
  • triethylphosphonoacetate is most preferable.
  • non-aqueous electrolytes used for batteries include, for example, vinylene carbonate, fluoroethylene carbonate, anhydride, sulfonate ester, dinitrile, 1,3-propane sultone, diphenyl disulfide, cyclohexylbenzene, biphenyl, fluorobenzene, t -Additives (including their derivatives) such as butylbenzene and succinonitrile as appropriate, for example, charge / discharge cycle characteristics, high-temperature blistering suppression, overcharge prevention, and other safety characteristics Additives corresponding to were added.
  • the inventors use a lithium-containing composite oxide containing Ni as the positive electrode active material, and when the phosphonoacetate compound is contained in the nonaqueous electrolytic solution, the charge / discharge cycle characteristics are not deteriorated. In addition, the inventors have found that the high temperature storage property is improved and the swelling of the battery is suppressed. The reason for this is not clear, but it is presumed that the phosphonoacetate compound mainly coats the active sites of Ni that react with the electrolyte and becomes the starting point of gas generation, thereby inactivating the Ni active sites. Is done.
  • a film is formed by the phosphonoacetate compound at the first charge / discharge after the battery is manufactured.
  • the film by the phosphonoacetate compound has high thermal stability and low resistance.
  • it is considered that the coating is hardly decomposed and the increase in resistance is suppressed.
  • these phosphonoacetate compounds are contained in a non-aqueous electrolyte solution (a non-aqueous electrolyte solution used for battery assembly, the same applies hereinafter). 5 mass% or more is contained, Preferably 1 mass% or more is contained. If the content is too small, the effect of suppressing gas generation is recognized, but the Ni active sites are not covered and the swelling of the battery cannot be suppressed.
  • the content is preferably 20% by mass or less, preferably Is 10% by mass or less, more preferably 5% by mass or less.
  • the electrolytic solution of the first lithium secondary battery of the present invention preferably further contains, for example, a halogen-substituted cyclic carbonate such as fluoroethylene carbonate (FEC) and vinylene carbonate (VC).
  • a halogen-substituted cyclic carbonate such as fluoroethylene carbonate (FEC) and vinylene carbonate (VC).
  • halogen-substituted cyclic carbonate a compound represented by the following general formula (4) can be used.
  • R 4 , R 5 , R 6 and R 7 are hydrogen, a halogen element or an alkyl group having 1 to 10 carbon atoms, and part or all of the hydrogen in the alkyl group is a halogen element. may be substituted, at least one of R 4, R 5, R 6 and R 7 are halogen, R 4, R 5, R 6 and R 7, which may be different from each Two or more may be the same.
  • R 4 , R 5 , R 6 and R 7 are alkyl groups, the smaller the number of carbon atoms, the better.
  • the halogen element fluorine is particularly preferable.
  • FEC 4-fluoro-1,3-dioxolan-2-one
  • the halogen-substituted cyclic carbonate and VC content in the non-aqueous electrolyte used for the battery are halogen-substituted cyclic carbonate and halogen-substituted cyclic carbonate from the viewpoint of ensuring the above-mentioned effects by VC.
  • the content of is 1% by mass or more, preferably 1.5% by mass or more, and the content of VC is 1% by mass or more, preferably 1.5% by mass or more. .
  • the SiO x is contained in the anode active material, it may decrease the activity of SiO x, during film formation There is a possibility that excessive gas is generated and causes the battery outer body to swell. Therefore, in the nonaqueous electrolytic solution used for the battery, the content of the halogen-substituted cyclic carbonate is 10% by mass or less, preferably 5% by mass or less, and the VC content is 10% by mass. % Or less, and preferably 5% by mass or less.
  • the lithium salt used in the non-aqueous electrolyte is not particularly limited as long as it dissociates in a solvent to form lithium ions and does not easily cause a side reaction such as decomposition in a voltage range used as a battery.
  • LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 and other inorganic lithium salts LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ⁇ n ⁇ 7), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] or the like is used. be able to.
  • the concentration of this lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / L, more preferably 0.9 to 1.25 mol / L.
  • the organic solvent used in the non-aqueous electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause side reactions such as decomposition in the voltage range used as a battery.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate
  • chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate
  • chain esters such as methyl propionate
  • cyclic esters such as ⁇ -butyrolactone
  • dimethoxyethane Chain ethers such as diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme
  • cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran
  • nitriles such as acetonitrile, propionitrile and methoxypropionitrile
  • ethylene Sulfites such as glyco
  • the separator according to the first lithium secondary battery of the present invention has a property that the pores are blocked at 80 ° C. or higher (more preferably 100 ° C. or higher) and 170 ° C. or lower (more preferably 150 ° C. or lower) (ie, shutdown function). ),
  • separators used in ordinary lithium secondary batteries for example, microporous membranes made of polyolefin such as polyethylene (PE) and polypropylene (PP) can be used.
  • the microporous film constituting the separator may be, for example, one using only PE or one using PP, or a laminate of a PE microporous film and a PP microporous film. There may be.
  • the separator according to the first lithium secondary battery of the present invention has a porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or lower, a resin that does not melt at a temperature of 150 ° C. or lower, or a heat resistant temperature of 150 ° C. It is preferable to use a laminated separator having a porous layer (II) mainly containing the above inorganic filler.
  • the “melting point” means the melting temperature measured using a differential scanning calorimeter (DSC) in accordance with the provisions of JIS K 7121.
  • DSC differential scanning calorimeter
  • does not melt at a temperature of 150 ° C. or lower means that the melting temperature measured using DSC exceeds 150 ° C. in accordance with the provisions of JIS K 7121. This means that the melting behavior is not exhibited at the temperature.
  • the heat resistant temperature is 150 ° C. or higher” means that deformation such as softening is not observed at least at 150 °
  • the porous layer (I) according to the laminated separator is mainly for ensuring a shutdown function, and the melting point of the resin, which is a component in which the lithium secondary battery is the main component of the porous layer (I) When the temperature reaches the value, the resin related to the porous layer (I) melts and closes the pores of the separator, thereby causing a shutdown that suppresses the progress of the electrochemical reaction.
  • Examples of the resin having a melting point of 140 ° C. or lower, which is the main component of the porous layer (I), include PE, and the form thereof is a substrate such as a microporous film used in the above-described lithium secondary battery or a nonwoven fabric. And a dispersion obtained by applying a dispersion containing PE particles and drying.
  • the volume of the resin having a main melting point of 140 ° C. or less is 50% by volume or more, and more preferably 70% by volume or more.
  • the volume of the resin having a melting point of 140 ° C. or lower is 100% by volume.
  • the porous layer (II) according to the multilayer separator has a function of preventing a short circuit due to direct contact between the positive electrode and the negative electrode even when the internal temperature of the lithium secondary battery is increased.
  • the function is secured by a resin that does not melt at a temperature of °C or less or an inorganic filler with a heat resistant temperature of 150 °C or more. That is, when the battery becomes high temperature, even if the porous layer (I) shrinks, the porous layer (II) which does not easily shrink can directly generate positive and negative electrodes that can be generated when the separator is thermally contracted. It is possible to prevent a short circuit due to the contact. Moreover, since this heat-resistant porous layer (II) acts as a skeleton of the separator, the thermal contraction of the porous layer (I), that is, the thermal contraction of the entire separator itself can be suppressed.
  • the porous layer (II) is formed mainly of a resin having a melting point of 150 ° C. or higher, for example, a microporous film formed of a resin that does not melt at a temperature of 150 ° C. or lower (for example, the above-mentioned PP micro battery cell
  • the porous layer (I) is laminated on the porous layer (I), or a dispersion liquid containing resin particles that do not melt at a temperature of 150 ° C. or lower is applied to the porous layer (I) and dried to form a porous layer ( Examples thereof include a coating lamination type form in which the porous layer (II) is formed on the surface of I).
  • Resins that do not melt at temperatures below 150 ° C include PP; crosslinked polymethyl methacrylate, crosslinked polystyrene, crosslinked polydivinylbenzene, crosslinked styrene-divinylbenzene copolymer, polyimide, melamine resin, phenolic resin, benzoguanamine-formaldehyde condensation And various crosslinked polymer fine particles; polysulfone; polyether sulfone; polyphenylene sulfide; polytetrafluoroethylene; polyacrylonitrile; aramid; polyacetal and the like.
  • the average particle size is, for example, preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, It is preferably 10 ⁇ m or less, and more preferably 2 ⁇ m or less.
  • the average particle size of the various particles referred to in the present specification is measured by, for example, using a laser scattering particle size distribution analyzer “LA-920” manufactured by Horiba, Ltd., and dispersing these fine particles in a medium that does not dissolve the resin.
  • the average particle diameter D is 50%.
  • porous layer (II) is mainly formed of an inorganic filler having a heat resistant temperature of 150 ° C. or higher, for example, a dispersion containing an inorganic filler having a heat resistant temperature of 150 ° C. or higher is applied to the porous layer (I).
  • a dispersion containing an inorganic filler having a heat resistant temperature of 150 ° C. or higher is applied to the porous layer (I).
  • the inorganic filler related to the porous layer (II) has a heat resistant temperature of 150 ° C. or higher, is stable to the non-aqueous electrolyte of the battery, and is electrochemically stable to be hardly oxidized or reduced in the battery operating voltage range.
  • fine particles are preferable from the viewpoint of dispersion, and alumina, silica, and boehmite are preferable.
  • Alumina, silica, and boehmite have high oxidation resistance, and the particle size and shape can be adjusted to the desired numerical values, making it easy to control the porosity of the porous layer (II) with high accuracy. It becomes.
  • an inorganic filler having a heat resistant temperature of 150 ° C. or higher may be used in combination with a resin that does not melt at a temperature of 150 ° C. or lower.
  • a substantially spherical shape (a true spherical shape is included), a substantially ellipsoid shape (an ellipsoid shape is included), a board
  • Various shapes such as shapes can be used.
  • the average particle diameter of the inorganic filler having a heat resistant temperature of 150 ° C. or higher related to the porous layer (II) is preferably 0.3 ⁇ m or more because the ion permeability is lowered if it is too small. More preferably, it is 5 ⁇ m or more.
  • the average particle diameter is preferably 5 ⁇ m or less, and more preferably 2 ⁇ m or less.
  • the resin that does not melt at a temperature of 150 ° C. or lower and the inorganic filler having a heat resistant temperature of 150 ° C. or higher are mainly contained in the porous layer (II).
  • Amount in (II) is the amount, If both are included, the total amount. The same applies hereinafter in the porous layer (II) of the resin that does not melt at a temperature of 150 ° C. or lower and the inorganic filler having a heat resistant temperature of 150 ° C.
  • the porous layer (II) also contains an organic binder, in the porous layer (II) of a resin that does not melt at a temperature of 150 ° C. or less and an inorganic filler having a heat resistant temperature of 150 ° C. or more.
  • the amount is preferably 99.5% by volume or less in the total volume of the constituent components of the porous layer (II).
  • porous layer (II) a resin that does not melt at a temperature of 150 ° C. or less or an inorganic filler having a heat resistant temperature of 150 ° C. or higher is bound, or the porous layer (II) and the porous layer (I) For integration or the like, it is preferable to contain an organic binder.
  • Organic binders include ethylene-vinyl acetate copolymers (EVA, structural units derived from vinyl acetate of 20 to 35 mol%), ethylene-acrylic acid copolymers such as ethylene-ethyl acrylate copolymers, fluorine-based binders Examples include rubber, SBR, CMC, hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), cross-linked acrylic resin, polyurethane, and epoxy resin.
  • a heat-resistant binder having a heat-resistant temperature is preferably used.
  • the organic binder those exemplified above may be used singly or in combination of two or more.
  • highly flexible binders such as EVA, ethylene-acrylic acid copolymer, fluorine rubber, and SBR are preferable.
  • highly flexible organic binders include EVA “Evaflex Series” from Mitsui DuPont Polychemical Co., Ltd., EVA from Nippon Unicar Co., Ltd., and “Evaflex” ethylene-acrylic acid copolymer from Mitsui DuPont Polychemical Co., Ltd.
  • the organic binder when used for the porous layer (II), it may be used in the form of an emulsion dissolved or dispersed in a solvent of a composition for forming the porous layer (II) described later.
  • the coating-laminated separator is, for example, a composition for forming a porous layer (II) containing a resin particle that does not melt at a temperature of 150 ° C. or lower, an inorganic filler having a heat resistant temperature of 150 ° C. or higher (liquid such as slurry).
  • the composition etc.) can be applied to the surface of the microporous membrane for constituting the porous layer (I) and dried at a predetermined temperature to form the porous layer (II).
  • the composition for forming the porous layer (II) contains resin particles that do not melt at a temperature of 150 ° C. or lower and / or an inorganic filler having a heat resistant temperature of 150 ° C. or higher, and an organic binder as necessary. Is dispersed in a solvent (including a dispersion medium; the same shall apply hereinafter). The organic binder can be dissolved in a solvent.
  • the solvent used in the composition for forming the porous layer (II) can uniformly disperse resin particles and inorganic filler that do not melt at a temperature of 150 ° C. or lower, and can dissolve or disperse the organic binder uniformly.
  • Common organic solvents such as aromatic hydrocarbons such as toluene; furans such as tetrahydrofuran; ketones such as methyl ethyl ketone and methyl isobutyl ketone; are preferably used.
  • alcohols ethylene glycol, propylene glycol, etc.
  • various propylene oxide glycol ethers such as monomethyl acetate may be appropriately added to these solvents.
  • water may be used as a solvent.
  • alcohols methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, etc.
  • the composition for forming the porous layer (II) has a solid content containing, for example, a resin particle that does not melt at a temperature of 150 ° C. or lower and / or an inorganic filler having a heat resistant temperature of 150 ° C. or higher, and an organic binder. It is preferable to set it to 80 mass%.
  • the porous layer (I) and the porous layer (II) do not have to be one each, and a plurality of layers may be present in the separator.
  • the porous layer (I) may be arranged on both sides of the porous layer (II), or the porous layer (II) may be arranged on both sides of the porous layer (I).
  • increasing the number of layers may increase the thickness of the separator and increase the internal resistance of the battery or decrease the energy density. Therefore, it is not preferable to increase the number of layers.
  • the total number of layers of the porous layer (I) and the porous layer (II) is preferably 5 or less.
  • the thickness of the separator (the separator made of a polyolefin microporous film or the laminated separator) according to the first lithium secondary battery of the present invention is preferably 10 to 30 ⁇ m, for example.
  • the thickness of the porous layer (II) [when the separator has a plurality of porous layers (II), the total thickness thereof. same as below. ] Is preferably 3 ⁇ m or more from the viewpoint of more effectively exerting the above-described functions of the porous layer (II).
  • the thickness of the porous layer (II) is preferably 8 ⁇ m or less.
  • the thickness of the porous layer (I) [when the separator has a plurality of porous layers (I), the total thickness thereof. same as below. ] Is preferably 6 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of more effectively exerting the above-described action (particularly the shutdown action) due to the use of the porous layer (I).
  • the porous layer (I) is too thick, there is a possibility that the energy density of the battery may be lowered.
  • the force that the porous layer (I) tends to shrink is increased, and the heat of the entire separator is increased. There is a possibility that the action of suppressing the shrinkage becomes small. Therefore, the thickness of the porous layer (I) is preferably 25 ⁇ m or less, more preferably 20 ⁇ m or less, and still more preferably 14 ⁇ m or less.
  • the porosity of the separator as a whole is preferably 30% or more in a dry state in order to ensure the amount of electrolyte retained and to improve ion permeability.
  • the separator porosity is preferably 70% or less in a dry state.
  • the porosity of the separator: P (%) can be calculated by calculating the sum of each component i from the thickness of the separator, the mass per area, and the density of the constituent components using the following formula (5).
  • a i ratio of component i expressed by mass%
  • ⁇ i density of component i (g / cm 3 )
  • m mass per unit area of the separator (g / cm 2 )
  • t thickness (cm) of the separator.
  • m is the mass per unit area (g / cm 2 ) of the porous layer (I)
  • t is the thickness of the porous layer (I) ( cm)
  • the porosity: P (%) of the porous layer (I) can also be obtained using the formula (5).
  • the porosity of the porous layer (I) obtained by this method is preferably 30 to 70%.
  • the porosity of the porous layer (II) obtained by this method is preferably 20 to 60%.
  • the separator preferably has high mechanical strength.
  • the puncture strength is preferably 3N or more.
  • SiO x having a large volume change due to charge / discharge is used as the negative electrode active material, mechanical damage is also applied to the facing separator due to expansion / contraction of the entire negative electrode by repeating charge / discharge. If the piercing strength of the separator is 3N or more, good mechanical strength is ensured, and mechanical damage to the separator can be reduced.
  • Examples of the separator having a puncture strength of 3N or more include the above-described laminated separator, and in particular, an inorganic filler having a heat resistant temperature of 150 ° C. or higher in the porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or lower.
  • a separator in which a porous layer (II) containing as a main component is laminated is preferable. This is considered because the mechanical strength of the inorganic filler is high, so that the mechanical strength of the entire separator can be increased by supplementing the mechanical strength of the porous layer (I).
  • the piercing strength can be measured by the following method.
  • a separator is fixed on a plate having a hole with a diameter of 2 inches so as not to be wrinkled or bent, and a semicircular metal pin having a tip diameter of 1.0 mm is lowered onto a measurement sample at a speed of 120 mm / min.
  • an average value is calculated
  • the positive electrode, the negative electrode, and the separator are formed in the form of a laminated electrode body in which a separator is interposed between the positive electrode and the negative electrode, or a wound electrode body in which the separator is wound in a spiral shape. It can be used for the first lithium secondary battery of the invention.
  • the laminated separator particularly the porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or lower, mainly composed of an inorganic filler having a heat resistant temperature of 150 ° C. or higher.
  • stacked porous layer (II) included as it is preferable to arrange
  • the cylinder shape square cylinder shape, cylindrical shape, etc.
  • the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.
  • the first lithium secondary battery of the present invention can be used in the same applications as various applications to which conventionally known lithium secondary batteries are applied.
  • Example 1-1 Synthesis of first lithium-containing composite oxide> Aqueous ammonia whose pH was adjusted to about 12 by adding sodium hydroxide was placed in a reaction vessel, and while vigorously stirring, nickel sulfate, cobalt sulfate and manganese sulfate were each added to 2.4 mol / dm 3.
  • the coprecipitated compound was washed with water, filtered and dried to obtain a hydroxide containing Ni, Co and Mn in a molar ratio of 6: 2: 2. 0.196 mol of this hydroxide and 0.204 mol of LiOH.H 2 O were dispersed in ethanol to form a slurry, and then mixed with a planetary ball mill for 40 minutes and dried at room temperature to obtain a mixture. . Next, the mixture is put in an alumina crucible, heated to 600 ° C. in a dry air flow of 2 dm 3 / min, kept at that temperature for 2 hours for preheating, further heated to 900 ° C. and heated to 12 ° C. The first lithium-containing composite oxide was synthesized by firing for a period of time.
  • the obtained first lithium-containing composite oxide was washed with water, then heat-treated in the atmosphere (oxygen concentration of about 20% by volume) at 850 ° C. for 12 hours, and then pulverized in a mortar to obtain a powder.
  • the first lithium-containing composite oxide after pulverization was stored in a desiccator.
  • the composition analysis was performed as follows using ICP method mentioned above. First, 0.2 g of the first lithium-containing composite oxide was sampled and placed in a 100 mL container. Thereafter, 5 mL of pure water, 2 mL of aqua regia, and 10 mL of pure water were added in order and dissolved by heating. After cooling, the mixture was further diluted 25 times with pure water, and an ICP analyzer “ICP-757” manufactured by JARRELASH was used. The composition was analyzed by a calibration curve method. From the obtained results, the composition of the first lithium-containing composite oxide was derived and found to be a composition represented by Li 1.02 Ni 0.6 Co 0.2 Mn 0.2 O 2. did.
  • the first lithium-containing composite oxide and the second lithium-containing composite oxide LiCoO 2 are weighed to a mass ratio of 3: 7 and mixed for 30 minutes using a Henschel mixer.
  • 100 parts by mass of the obtained mixture as a positive electrode active material
  • NMP N-methyl-2-pyrrolidone
  • a 1.04 part by mass carbon fiber having an average fiber length of 100 nm and an average fiber diameter of 10 nm and 1.04 part by mass of graphite are kneaded using a biaxial kneader, and NMP is added to adjust the viscosity.
  • a positive electrode mixture-containing paste was prepared.
  • the amount of the PVDF and P (TFE-VDF) NMP solution used is such that the amount of the dissolved PVDF and P (TFE-VDF) is the mixture of the first lithium-containing composite oxide and LiCoO 2 , PVDF and , P (TFE-VDF) and the conductive auxiliary agent (ie, the total amount of the positive electrode mixture layer) in 100% by mass, amounts to 2.34% by mass and 0.26% by mass, respectively. That is, the total amount of binder in the positive electrode mixture layer is 2.6% by mass, and the ratio of P (TFE-VDF) in the total of 100% by mass of P (TFE-VDF) and PVDF is 10% by mass.
  • the positive electrode mixture-containing paste is intermittently applied to both sides of an aluminum foil (positive electrode current collector) having a thickness of 15 ⁇ m while adjusting the thickness, dried, and then subjected to a calendering process so that the total thickness becomes 130 ⁇ m.
  • the thickness of the positive electrode mixture layer was adjusted, and the positive electrode was produced by cutting so as to have a width of 54.5 mm. Further, a tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion.
  • the density of the positive electrode mixture layer was measured by the above-described method, it was 3.80 g / cm 3 .
  • the negative electrode mixture-containing paste is intermittently applied on both sides of a copper foil (negative electrode current collector) having a thickness of 8 ⁇ m while adjusting the thickness, dried, and then calendered so that the total thickness becomes 110 ⁇ m.
  • the thickness of the negative electrode mixture layer was adjusted, and the negative electrode was produced by cutting so as to have a width of 55.5 mm. Further, a tab was welded to the exposed portion of the copper foil of the negative electrode to form a lead portion.
  • ⁇ Preparation of separator> Add 5 kg of ion-exchanged water and 0.5 kg of a dispersant (aqueous polycarboxylic acid ammonium salt, solid content concentration 40 mass%) to 5 kg of boehmite with an average particle diameter D50% of 1 ⁇ m, and have an internal volume of 20 L and 40 turns.
  • a dispersion was prepared by pulverizing with a ball mill for 10 hours per minute. When a part of the treated dispersion was vacuum dried at 120 ° C. and observed with a scanning electron microscope (SEM), the shape of boehmite was almost plate-like.
  • PE microporous separator for lithium secondary batteries [Porous layer (I): thickness 12 ⁇ m, porosity 40%, average pore diameter 0.08 ⁇ m, PE melting point 135 ° C.] on one side corona discharge treatment (discharge amount 40 W) ⁇ Min / m 2 ), a porous layer (II) forming slurry is applied to the treated surface by a micro gravure coater, and dried to form a porous layer (II) having a thickness of 4 ⁇ m. A separator was obtained. The mass per unit area of the porous layer (II) in this separator was 5.5 g / m 2 , the boehmite volume content was 95% by volume, and the porosity was 45%.
  • ⁇ Battery assembly> The positive electrode and the negative electrode obtained as described above were stacked with the separator porous layer (II) facing the positive electrode, and wound in a spiral shape to produce a wound electrode body.
  • the obtained wound electrode body was crushed into a flat shape and placed in an aluminum alloy outer can having a thickness of 5 mm, a width of 42 mm, and a height of 61 mm.
  • LiPF 6 was dissolved to a concentration of 1.1 mol / L in a solvent in which ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate were mixed at a volume ratio of 1: 1: 1 as a non-aqueous electrolyte.
  • a solution was prepared by adding 2.0% by mass of FEC, 1.0% by mass of VC, and further adding triethylphosphonoacetate to a concentration of 2.0% by mass. Next, the non-aqueous electrolyte was poured into the outer can.
  • the outer can After injecting the non-aqueous electrolyte, the outer can was sealed, and a lithium secondary battery having the structure shown in FIGS. 1A and 1B and the appearance shown in FIG. 2 was produced.
  • This battery includes a cleavage vent for lowering the pressure when the internal pressure rises at the top of the can.
  • FIG. 1A is a plan view of the lithium secondary battery of this example
  • FIG. 1B is a cross-sectional view of FIG. 1A
  • the positive electrode 1 and the negative electrode 2 are spirally wound through the separator 3 as described above, and then pressed so as to be flattened to form a flat wound electrode body 6.
  • a cylindrical outer can 4 is accommodated together with the electrolytic solution.
  • a metal foil, an electrolytic solution, or the like as a current collector used in manufacturing the positive electrode 1 and the negative electrode 2 is not illustrated. Further, each layer of the separator 3 is not shown separately.
  • the outer can 4 is made of an aluminum alloy and constitutes an outer casing of the battery.
  • the outer can 4 also serves as a positive electrode terminal.
  • the insulator 5 which consists of PE sheets is arrange
  • the positive electrode lead body 7 and the negative electrode lead body 8 are drawn out.
  • a stainless steel terminal 11 is attached to a sealing lid plate 9 made of aluminum alloy for sealing the opening of the outer can 4 via a PP insulating packing 10, and an insulator 12 is attached to the terminal 11.
  • a stainless steel lead plate 13 is attached via
  • the cover plate 9 is inserted into the opening of the outer can 4 and welded to join the opening of the outer can 4 to seal the inside of the battery.
  • a non-aqueous electrolyte inlet 14 is provided in the lid plate 9, and a sealing member is inserted into the non-aqueous electrolyte inlet 14, for example, with a laser.
  • the battery is hermetically sealed by welding or the like, so that the battery is sealed. Accordingly, in the batteries of FIGS. 1A, 1B and 2, the non-aqueous electrolyte inlet 14 is actually a non-aqueous electrolyte inlet and a sealing member. An electrolyte inlet 14 is shown.
  • the lid plate 9 is provided with a cleavage vent 15 as a mechanism for discharging the internal gas to the outside when the temperature of the battery rises.
  • the outer can 4 and the lid plate 9 function as a positive electrode terminal by directly welding the positive electrode lead body 7 to the lid plate 9, and the negative electrode lead body 8 is welded to the lead plate 13.
  • the terminal 11 functions as a negative electrode terminal by conducting the negative electrode lead body 8 and the terminal 11 through the plate 13.
  • the sign may be reversed. is there.
  • FIG. 2 is a perspective view of the lithium secondary battery of this example, and this FIG. 2 is shown for the purpose of showing that the battery is a square battery.
  • 1A and 1B schematically show the battery, and only specific members are shown among the members constituting the battery. Also in FIG. 1B, the inner peripheral side portion of the wound electrode body 6 is not cross-sectional.
  • Example 1-2 A lithium secondary battery was produced in the same manner as in Example 1-1 except that triethylphosphonoacetate was added to the nonaqueous electrolytic solution in an amount of 0.5% by mass.
  • Example 1-3 A lithium secondary battery was produced in the same manner as in Example 1-1, except that triethylphosphonoacetate was added to the nonaqueous electrolytic solution in an amount of 10.0% by mass.
  • Example 1-4 As a non-aqueous electrolyte, LiPF 6 was dissolved at a concentration of 1.1 mol / L in a solvent in which ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate were mixed at a volume ratio of 1: 1: 1, and FEC and VC were respectively added. Examples were used except that a solution having a concentration of 2.0% by mass and 1.0% by mass and triethyl-3-phosphonopropionate added to an amount of 2.0% by mass was used. A lithium secondary battery was produced in the same manner as in 1-1.
  • Example 1-5 98 parts by weight of graphite having an average particle diameter D50% of 16 ⁇ m: 100 parts by weight of CMC aqueous solution having a concentration of 1% by weight adjusted to a viscosity of 1500 to 5000 mPa ⁇ s: 1.0 part by weight and SBR: 1.0 part by weight Except that ion-exchanged water having a specific resistance of 2.0 ⁇ 10 5 ⁇ cm or more was mixed as a solvent to prepare an aqueous negative electrode mixture-containing paste, and a negative electrode was produced using this negative electrode mixture-containing paste. A lithium secondary battery was produced in the same manner as in Example 1-1.
  • the coprecipitated compound was washed with water, filtered and dried to obtain a hydroxide containing Ni, Mn and Co in a molar ratio of 90: 5: 5. 0.196 mol of this hydroxide, 0.204 mol of LiOH.H 2 O and 0.001 mol of TiO 2 were dispersed in ethanol to form a slurry, and then mixed for 40 minutes with a planetary ball mill. And dried to obtain a mixture. Next, the mixture is put in an alumina crucible, heated to 600 ° C. in a dry air flow of 2 dm 3 / min, held at that temperature for 2 hours for preheating, further heated to 800 ° C. and heated to 12 ° C. The first lithium-containing composite oxide was synthesized by firing for a period of time. The obtained first lithium-containing composite oxide was pulverized into a powder in a mortar and then stored in a desiccator.
  • the first lithium-containing composite oxide and the second lithium-containing composite oxide LiCoO 2 were weighed to a mass ratio of 3: 7 and mixed for 30 minutes using a Henschel mixer.
  • a lithium secondary battery was produced in the same manner as in Example 1-1 except that the obtained mixture was used as the positive electrode active material.
  • the density of the positive electrode mixture layer measured by the same method as in Example 1-1 was 3.65 g / cm 3 .
  • the first lithium-containing composite oxide and the second lithium-containing composite oxide LiCoO 2 were weighed to a mass ratio of 3: 7 and mixed for 30 minutes using a Henschel mixer.
  • a lithium secondary battery was produced in the same manner as in Example 1-1 except that the obtained mixture was used as the positive electrode active material.
  • the density of the positive electrode mixture layer measured by the same method as in Example 1-1 was 3.60 g / cm 3 .
  • Example 1 Example 1 except that the thickness of the positive electrode mixture layer after calendering was the same as that of Example 1-1 and the density of the positive electrode mixture layer after calendering was 3.20 g / cm 3.
  • a lithium secondary battery was produced in the same manner as in Example-1.
  • Example 1-1 As in Example 1-1, only LiCoO 2 was used as the positive electrode active material and the density of the positive electrode mixture layer after calendering was adjusted to 3.80 g / cm 3. A battery was produced.
  • Example 1-1 As a non-aqueous electrolyte, LiPF 6 was dissolved at a concentration of 1.1 mol / L in a solvent in which ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate were mixed at a volume ratio of 1: 1: 1, and FEC and VC were respectively added.
  • Example 1-1 and Example 1-1 were used except that a solution having a concentration of 2.0 mass% and 1.0 mass in which 1,3-propane sultone was added in an amount of 2.0 mass% was used. Similarly, a lithium secondary battery was produced.
  • Comparative Example 1-3 As a positive electrode active material, only LiCoO 2 was used, and a lithium secondary secondary was prepared in the same manner as in Comparative Example 1-2, except that the density of the positive electrode mixture layer after calendering was adjusted to 3.80 g / cm 3. A battery was produced.
  • Example 1-4 A lithium secondary battery was produced in the same manner as in Example 1-1 except that the concentration of triethylphosphonoacetate in the nonaqueous electrolytic solution was changed to 0.3% by mass.
  • each battery was charged under the same conditions as the battery capacity measurement after the initial charge / discharge. Measured in advance thickness T 1 of the outer can of the battery after charging, then, stored for 24 hours in a constant temperature bath set at 85 ° C. the cells, taken out from the thermostatic bath, after standing 3 hours at room temperature , to measure the thickness T 2 of the outer can again.
  • the thickness of the outer can means the thickness between the wide side surfaces of the outer can.
  • the thickness of the outer can was measured in units of 1/100 mm using a caliper “CD-15CX” manufactured by Mitutoyo Co., Ltd. with the central part of the wide side face as the measurement target.
  • the battery swelling was evaluated by the battery swelling ratio (%) obtained by the following formula.
  • Capacity recovery rate (%) 100 ⁇ ⁇ (0.5C capacity after storage test) / (0.5C capacity before storage test) ⁇
  • the first lithium-containing composite oxide containing Li and Ni and having a molar ratio of Ni to Li in the range of 0.05 to 1.05 is used as the positive electrode active material.
  • a lithium secondary battery using a non-aqueous electrolyte containing 0.5 to 20% by mass of a noacetate compound has a high capacity, a small battery swelling after high-temperature storage, a high capacity recovery rate, and charge / discharge. It can be seen that the cycle characteristics are also good.
  • the coprecipitated compound was washed with water, filtered and dried to obtain a hydroxide containing Ni, Co and Mn in a molar ratio of 6: 2: 2. 0.196 mol of this hydroxide and 0.204 mol of LiOH.H 2 O were dispersed in ethanol to form a slurry, and then mixed with a planetary ball mill for 40 minutes and dried at room temperature to obtain a mixture. . Next, the mixture is put in an alumina crucible, heated to 600 ° C. in a dry air flow of 2 dm 3 / min, kept at that temperature for 2 hours for preheating, further heated to 900 ° C. and heated to 12 ° C. The first lithium-containing composite oxide A was synthesized by firing for a period of time.
  • the obtained first lithium-containing composite oxide A was washed with water, then heat treated in the atmosphere (oxygen concentration about 20% by volume) at 850 ° C. for 12 hours, and then pulverized in a mortar to obtain a powder. .
  • the first lithium-containing composite oxide A after pulverization was stored in a desiccator.
  • the composition analysis of the first lithium-containing composite oxide A was performed in the same manner as in Example 1-1 described above, and the composition of the first lithium-containing composite oxide A was derived from the obtained results. However, it was found that the composition was represented by Li 1.02 Ni 0.6 Co 0.2 Mn 0.2 O 2 .
  • the coprecipitated compound was washed with water, filtered and dried to obtain a hydroxide containing Ni, Mn and Co in a molar ratio of 90: 5: 5. 0.196 mol of this hydroxide, 0.204 mol of LiOH.H 2 O and 0.001 mol of TiO 2 were dispersed in ethanol to form a slurry, and then mixed for 40 minutes with a planetary ball mill. And dried to obtain a mixture. Next, the mixture is put in an alumina crucible, heated to 600 ° C. in a dry air flow of 2 dm 3 / min, held at that temperature for 2 hours for preheating, further heated to 800 ° C. and heated to 12 ° C. The first lithium-containing composite oxide B was synthesized by firing for a period of time. The obtained first lithium-containing composite oxide B was pulverized into a powder in a mortar and then stored in a desiccator.
  • the composition analysis of the first lithium-containing composite oxide B was performed in the same manner as in Example 1-1 described above, and the composition of the first lithium-containing composite oxide B was derived from the obtained results. However, it was found that the composition was represented by Li 1.02 Ni 0.895 Co 0.05 Mn 0.05 Ti 0.005 O 2 .
  • the amount of the PVDF and P (TFE-VDF) NMP solution used is such that the amount of the dissolved PVDF and P (TFE-VDF) is the mixture of the first lithium-containing composite oxide and LiCoO 2 , PVDF and , P (TFE-VDF) and the conductive auxiliary agent (ie, the total amount of the positive electrode mixture layer) in 100% by mass, amounts to 2.34% by mass and 0.26% by mass, respectively. That is, the total amount of binder in the positive electrode mixture layer is 2.6% by mass, and the ratio of P (TFE-VDF) in the total of 100% by mass of P (TFE-VDF) and PVDF is 10% by mass.
  • the positive electrode mixture-containing paste is intermittently applied to both sides of an aluminum foil (positive electrode current collector) having a thickness of 15 ⁇ m while adjusting the thickness, dried, and then subjected to a calendering process so that the total thickness becomes 130 ⁇ m.
  • the thickness of the positive electrode mixture layer was adjusted, and the positive electrode was produced by cutting so as to have a width of 54.5 mm. Further, a tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion.
  • the density of the positive electrode mixture layer measured by the above-described method was 3.80 g / cm 3 .
  • the negative electrode mixture-containing paste is intermittently applied on both sides of a copper foil (negative electrode current collector) having a thickness of 8 ⁇ m while adjusting the thickness, dried, and then calendered so that the total thickness becomes 110 ⁇ m.
  • the thickness of the negative electrode mixture layer was adjusted, and the negative electrode was produced by cutting so as to have a width of 55.5 mm. Further, a tab was welded to the exposed portion of the copper foil of the negative electrode to form a lead portion.
  • PE microporous separator for lithium secondary batteries [Porous layer (I): thickness 12 ⁇ m, porosity 40%, average pore diameter 0.08 ⁇ m, PE melting point 135 ° C.] on one side corona discharge treatment (discharge amount 40 W) ⁇ Min / m 2 ), a porous layer (II) forming slurry is applied to the treated surface by a micro gravure coater, and dried to form a porous layer (II) having a thickness of 4 ⁇ m. A separator was obtained. The mass per unit area of the porous layer (II) in this separator was 5.5 g / m 2 , the boehmite volume content was 95% by volume, and the porosity was 45%.
  • ⁇ Battery assembly> The positive electrode and the negative electrode obtained as described above were stacked with the separator porous layer (II) facing the positive electrode, and wound in a spiral shape to produce a wound electrode body.
  • the obtained wound electrode body was crushed into a flat shape and placed in an aluminum alloy outer can having a thickness of 5 mm, a width of 42 mm, and a height of 61 mm.
  • LiPF 6 was dissolved in a solvent in which ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate were mixed at a volume ratio of 1: 1: 1 to a concentration of 1.1 mol / L.
  • a solution was prepared by adding 2.0% by mass of FEC, 1.0% by mass of VC, and further adding triethylphosphonoacetate to the concentrations shown in Table 3.
  • the non-aqueous electrolyte was poured into the outer can.
  • the outer can After injecting the non-aqueous electrolyte, the outer can was sealed, and a lithium secondary battery having the structure shown in FIGS. 1A and 1B and the appearance shown in FIG. 2 was produced.
  • Example 2-6 A mixture was metered in a weight ratio of 0.5: the a synthesized first lithium-containing composite oxide containing nickel B, and a LiCoO 2 as the second lithium-containing composite oxide, 0.5 A wound electrode body was produced in the same manner as in Example 2-1, except that the positive electrode active material was used. Further, the density of the positive electrode mixture layer measured by the above-described method was 3.80 g / cm 3 . Next, a non-aqueous electrolyte similar to that used in Example 2-1 except that the concentration of triethylphosphonoacetate was 5.0% by mass was poured into the outer can, and Example 2-1 Similarly, a lithium secondary battery was produced.
  • Example 2-7 A wound electrode body was produced in the same manner as in Example 2-1, except that only the first lithium-containing composite oxide C containing nickel was used as the positive electrode active material. Further, the density of the positive electrode mixture layer measured by the above-described method was 3.80 g / cm 3 . Next, a non-aqueous electrolyte similar to that used in Example 2-1 was poured into the outer can, and a lithium secondary battery was produced in the same manner as in Example 2-1.
  • Example 2-8 What mixed and mixed the 1st lithium containing complex oxide A containing the said nickel and LiCoO2 which is a 2nd lithium containing complex oxide to the mass ratio of 0.1: 0.9.
  • a wound electrode body was produced in the same manner as in Example 2-1, except that it was used as the positive electrode active material and only graphite having an average particle diameter D50% of 16 ⁇ m was used as the negative electrode active material. Further, the density of the positive electrode mixture layer measured by the above-described method was 3.80 g / cm 3 .
  • Example 2-1 a non-aqueous electrolyte similar to that used in Example 2-1 was poured into the outer can except that the concentration of triethylphosphonoacetate was 0.5% by mass, and Example 2-1 Similarly, a lithium secondary battery was produced.
  • Example 2-9 A Henschel mixer was prepared by weighing the first lithium-containing composite oxide A containing nickel and the second lithium-containing composite oxide LiCoO 2 to a mass ratio of 0.5: 0.5. Was mixed for 30 minutes to obtain a mixture.
  • a wound electrode body was produced in the same manner as in Example 2-1, except that 100 parts by mass of the obtained mixture was used as the positive electrode active material and 2.08 parts by mass of acetylene black was used as the conductive auxiliary agent. Further, the density of the positive electrode mixture layer measured by the above-described method was 3.40 g / cm 3 .
  • a non-aqueous electrolyte similar to that used in Example 2-1 was poured into the outer can, and a lithium secondary battery was produced in the same manner as in Example 2-1.
  • Example 2-10 A Henschel mixer was prepared by weighing the first lithium-containing composite oxide A containing nickel and the second lithium-containing composite oxide LiCoO 2 to a mass ratio of 0.5: 0.5. Was mixed for 30 minutes to obtain a mixture.
  • Example 2-1 except that 100 parts by mass of the obtained mixture was used as the positive electrode active material, only PVDF was used as the binder, and the total amount of PVDF in the positive electrode mixture layer was adjusted to 2.6% by mass. Thus, a wound electrode body was produced. Further, the density of the positive electrode mixture layer measured by the above-described method was 3.60 g / cm 3 .
  • a non-aqueous electrolyte similar to that used in Example 2-1 was poured into the outer can, and a lithium secondary battery was produced in the same manner as in Example 2-1.
  • Example 2-1 A wound electrode body was produced in the same manner as in Example 2-1, except that only LiCoO 2 was used as the positive electrode active material. Further, the density of the positive electrode mixture layer measured by the above-described method was 3.80 g / cm 3 . Next, a non-aqueous electrolyte similar to that used in Example 2-1 was poured into the outer can, and a lithium secondary battery was produced in the same manner as in Example 2-1.
  • Example 2-2 A lithium secondary battery was produced in the same manner as in Example 2-1, except that the concentration of triethylphosphonoacetate in the nonaqueous electrolytic solution was changed to 0.3% by mass.
  • Table 3 shows the total molar ratio of total nickel to total lithium (hereinafter abbreviated as total Ni / Li) and the content of the phosphonoacetate compound in the nonaqueous electrolytic solution.
  • Examples 1-1 to 1-8 and Comparative Examples 1-1 to 1- The battery capacity (relative battery capacity with respect to the battery capacity of Example 2-1), battery swelling (battery swelling ratio), and capacity recovery rate after high temperature storage were evaluated in the same manner as in No. 5.
  • the charge / discharge cycle characteristics were evaluated as follows. The results are shown in Table 4.
  • each battery which investigated the said cycle number it repeats charging / discharging on the same conditions until it becomes 50% of discharge capacity with respect to the discharge capacity obtained in the 1st cycle, and then disassembles the lithium secondary battery.
  • the positive electrode taken out was washed with dimethyl carbonate and dried, and then the composition was analyzed using the ICP method described above (calibration curve method). From the obtained result, the composition of the positive electrode active material was derived, The total molar ratio (total Ni / Li) of total nickel to total lithium in the total amount of the positive electrode active material was calculated from (3) and listed in Table 4.
  • the first lithium-containing composite oxide containing Li and Ni and the second lithium-containing composite oxide are used as the positive electrode active material, and the total nickel in all lithium in the total amount of the positive electrode active material
  • a lithium secondary battery using a non-aqueous electrolyte containing a phosphonoacetate compound in an amount of 0.05 to 1.0% and a phosphonoacetate compound of 0.5 to 20% by mass is high capacity and high It can be seen that the battery swelling after storage is small, the capacity recovery rate is high, and the charge / discharge cycle characteristics are also good.
  • the second lithium secondary battery of the present invention includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator.
  • the negative electrode includes a current collector and a negative electrode mixture layer formed on the current collector, the negative electrode mixture layer includes a negative electrode active material, and the negative electrode active material includes silicon and A material containing oxygen as a constituent element is included.
  • the non-aqueous electrolyte solution includes a halogen-substituted cyclic carbonate and a phosphonoacetate compound represented by the following general formula (1). In the non-aqueous electrolyte solution, the content of the phosphonoacetate compound Is set below the content of the halogen-substituted cyclic carbonate.
  • R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom, and n is an integer of 0 to 6 It is.
  • a non-aqueous electrolyte containing a halogen-substituted cyclic carbonate is used.
  • the halogen-substituted cyclic carbonate can form a film that satisfactorily coats the SiO x particles by pulverization due to the volume change associated with charge and discharge, resulting in a new surface. Therefore, the reaction between the negative electrode active material and the non-aqueous electrolyte is highly suppressed by such a film, and a lithium secondary battery excellent in charge / discharge cycle characteristics can be obtained.
  • a non-aqueous electrolyte containing a phosphonoacetate compound represented by the general formula (1) is used in addition to the halogen-substituted cyclic carbonate. It was.
  • the phosphonoacetate compound represented by the general formula (1) has an action of suppressing the occurrence of battery swelling. Therefore, by using together with the halogen-substituted cyclic carbonate, it is possible to satisfactorily suppress the occurrence of battery swelling caused by the halogen-substituted cyclic carbonate.
  • the phosphonoacetate compound represented by the general formula (1) also has an effect of impairing the charge / discharge cycle characteristics of the battery. For example, when the amount of use increases, the effect of suppressing the battery swelling is good. On the other hand, it has been found that the charge / discharge cycle characteristics are greatly deteriorated.
  • the content of the halogen-substituted cyclic carbonate in the non-aqueous electrolyte and the content of the phosphonoacetate compound represented by the general formula (1) are: It is possible to effectively bring out both the action of the halogen-substituted cyclic carbonate and the action of the phosphonoacetate compound by suppressing the deterioration of charge / discharge cycle characteristics caused by the phosphonoacetate compound. Thus, it is possible to provide a lithium secondary battery that is excellent in charge / discharge cycle characteristics and can suppress the occurrence of swelling well.
  • the negative electrode according to the second lithium secondary battery of the present invention has, for example, a structure in which a negative electrode mixture layer containing a negative electrode active material, a binder, and a conductive auxiliary agent if necessary is provided on one side or both sides of a current collector Can be used.
  • the negative electrode active material used for the negative electrode of the second lithium secondary battery of the present invention contains a material containing silicon and oxygen as constituent elements.
  • a material containing silicon and oxygen as constituent elements a material represented by the general formula composition formula SiO x and 0.5 ⁇ x ⁇ 1.5 in the general composition formula is used.
  • the material represented by the general formula composition formula SiO x and 0.5 ⁇ x ⁇ 1.5 the same materials as those described in the first embodiment can be used.
  • the negative electrode active material a composite of a material containing silicon and oxygen described in Embodiment 1 as constituent elements and a carbon material can be used. Furthermore, as the negative electrode active material, the material containing silicon and oxygen as constituent elements described in Embodiment 1 and the graphitic carbon material can be used in combination.
  • the binder of the negative electrode mixture layer, the conductive additive, and the current collector of the negative electrode the same materials as those described in Embodiment 1 can be used.
  • a negative electrode can be manufactured by the method similar to what was demonstrated in Embodiment 1, for example.
  • the negative electrode mixture layer can have the same configuration as that described in the first embodiment.
  • a positive electrode mixture layer containing a positive electrode active material, a binder, a conductive additive and the like is used on one side or both sides of the current collector. it can.
  • the positive electrode active material used for the positive electrode of the second lithium secondary battery of the present invention includes a positive electrode active material used for a conventionally known lithium secondary battery, that is, a material capable of inserting and extracting lithium ions. If there is no restriction in particular.
  • a lithium-containing composite oxide can be used. Among them, the lithium-containing composite oxide containing lithium and nickel represented by the general composition formula (2) described in Embodiment 1 is preferable because of its high capacity and excellent thermal stability.
  • the lithium cobalt oxide such as LiCoO 2; LiMnO 2, lithium manganese oxides such as Li 2 MnO 3; LiMn 2 O 4, Li 4/3 Ti 5 / 3 O 4 and other spinel-structure lithium-containing composite oxides; LiFePO 4 and other olivine-structure lithium-containing composite oxides; These oxides have a basic composition, and some of the constituent elements are replaced with other elements Oxides; etc. can be used.
  • the binder of the positive electrode mixture layer, the conductive additive, and the current collector of the positive electrode the same materials as those described in Embodiment 1 can be used.
  • a positive electrode can be manufactured by the method similar to what was demonstrated in Embodiment 1, for example.
  • the positive electrode mixture layer can have the same configuration as that described in the first embodiment.
  • Non-aqueous electrolyte The non-aqueous electrolyte solution according to the second lithium secondary battery of the present invention uses a halogen-substituted cyclic carbonate and a phosphonoacetate compound represented by the general formula (1).
  • the content of the phosphonoacetate compound is set to be equal to or less than the content of the halogen-substituted cyclic carbonate.
  • halogen-substituted cyclic carbonate and the phosphonoacetate compound represented by the general formula (1) the same compounds as those described in Embodiment 1 can be used.
  • the content of the halogen-substituted cyclic carbonate in the non-aqueous electrolyte is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, from the viewpoint of better ensuring the effect of its use. Is more preferable. However, if the content of the halogen-substituted cyclic carbonate in the non-aqueous electrolyte is too large, the battery swelling suppression effect may be reduced. Therefore, the content of the halogen-substituted cyclic carbonate in the nonaqueous electrolytic solution used for the battery is preferably 30% by mass or less, and more preferably 5% by mass or less.
  • the content of the phosphonoacetate compound represented by the general formula (1) in the nonaqueous electrolytic solution may be 0.1% by mass or more from the viewpoint of better securing the effect of its use. Preferably, it is 0.5 mass% or more.
  • the content of the phosphonoacetate compound represented by the general formula (1) in the non-aqueous electrolytic solution used for the battery is preferably 10% by mass or less, and more preferably 3% by mass or less. preferable.
  • the negative electrode contains a graphite carbon material together with SiO x as the negative electrode active material
  • a non-aqueous electrolyte that further contains vinylene carbonate (VC).
  • VC effectively acts on the carbon material to improve the properties of the film formed on the negative electrode surface, so that a battery with more excellent charge / discharge cycle characteristics can be configured.
  • the content of the phosphonoacetate compound represented by the general formula (1) is equal to or less than the content of the halogen-substituted cyclic carbonate.
  • the phosphonoacetate compound represented by the general formula (1) has a battery swelling suppression effect, but also causes deterioration in charge / discharge cycle characteristics of the battery.
  • the content of the halogen-substituted cyclic carbonate in the non-aqueous electrolyte used in the battery is the same as or more than the content of the phosphonoacetate compound represented by the general formula (1).
  • the effect of improving the charge / discharge cycle characteristics of the battery by the halogen-substituted cyclic carbonate the deterioration of the charge / discharge cycle characteristics caused by the volume change of SiO x accompanying the charge / discharge of the battery is suppressed.
  • the deterioration of the charge / discharge cycle characteristics due to the represented phosphonoacetate compound can also be satisfactorily suppressed.
  • the halogen-substituted cyclic carbonate content and the VC content It is preferable to reduce the content of the phosphonoacetate compound represented by the general formula (1) rather than the total amount.
  • the content when VC is contained in the non-aqueous electrolyte, the content is preferably 0.1% by mass or more, more preferably 1.0% by mass or more from the viewpoint of better securing the effect of using VC. It is more preferable that However, if the content of VC in the non-aqueous electrolyte is too large, the effect of suppressing battery swelling may be reduced. Therefore, the content of VC in the non-aqueous electrolyte used for the battery is preferably 10% by mass or less, and more preferably 4.0% by mass or less.
  • lithium salt and organic solvent used in the non-aqueous electrolyte the same ones as described in Embodiment 1 can be used.
  • non-aqueous electrolytes may contain acid anhydrides, sulfonic acid esters, dinitriles, 1,3-methyl ether for the purpose of further improving charge / discharge cycle characteristics and improving safety such as high-temperature storage and overcharge resistance.
  • Additives such as propane sultone, diphenyl disulfide, cyclohexylbenzene, biphenyl, fluorobenzene, t-butylbenzene, and derivatives thereof may be added as appropriate.
  • the form of the second lithium secondary battery of the present invention can be the same as that described in the first embodiment.
  • Example 3-1 Synthesis of lithium-containing composite oxide> Aqueous ammonia whose pH was adjusted to about 12 by adding sodium hydroxide was placed in a reaction vessel, and while vigorously stirring, nickel sulfate, cobalt sulfate and manganese sulfate were each added to 2.4 mol / dm 3.
  • the coprecipitated compound was washed with water, filtered and dried to obtain a hydroxide containing Ni, Co and Mn in a molar ratio of 6: 2: 2. 0.196 mol of this hydroxide and 0.204 mol of LiOH.H 2 O were dispersed in ethanol to form a slurry, and then mixed with a planetary ball mill for 40 minutes and dried at room temperature to obtain a mixture. . Next, the mixture is put in an alumina crucible, heated to 600 ° C. in a dry air flow of 2 dm 3 / min, kept at that temperature for 2 hours for preheating, further heated to 900 ° C. and heated to 12 ° C. The lithium-containing composite oxide was synthesized by firing for a period of time.
  • the obtained lithium-containing composite oxide was washed with water and then heat-treated in the atmosphere (oxygen concentration of about 20% by volume) at 850 ° C. for 12 hours, and then pulverized in a mortar to obtain a powder.
  • the lithium-containing composite oxide after pulverization was stored in a desiccator.
  • composition of the lithium-containing composite oxide was analyzed with an atomic absorption spectrometer, it was found that the composition was represented by Li 1.02 Ni 0.6 Co 0.2 Mn 0.2 O 2 .
  • the positive electrode mixture-containing paste is intermittently applied to both sides of an aluminum foil (positive electrode current collector) having a thickness of 15 ⁇ m while adjusting the thickness, dried, and then subjected to a calendering process so that the total thickness becomes 130 ⁇ m.
  • the thickness of the positive electrode mixture layer was adjusted, and the positive electrode was produced by cutting so as to have a width of 54.5 mm. Further, a tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion.
  • the negative electrode mixture-containing paste is intermittently applied on both sides of a copper foil (negative electrode current collector) having a thickness of 8 ⁇ m while adjusting the thickness, dried, and then calendered so that the total thickness becomes 110 ⁇ m.
  • the thickness of the negative electrode mixture layer was adjusted, and the negative electrode was produced by cutting so as to have a width of 55.5 mm. Further, a tab was welded to the exposed portion of the copper foil of the negative electrode to form a lead portion.
  • ⁇ Preparation of separator> Add 5 kg of ion-exchanged water and 0.5 kg of a dispersant (aqueous polycarboxylic acid ammonium salt, solid content concentration 40 mass%) to 5 kg of boehmite with an average particle diameter D50% of 1 ⁇ m, and have an internal volume of 20 L and 40 turns.
  • a dispersion was prepared by pulverizing with a ball mill for 10 hours per minute. When a part of the treated dispersion was vacuum dried at 120 ° C. and observed with a scanning electron microscope (SEM), the shape of boehmite was almost plate-like.
  • PE microporous separator for lithium secondary batteries [Porous layer (I): thickness 12 ⁇ m, porosity 40%, average pore diameter 0.08 ⁇ m, PE melting point 135 ° C.] on one side corona discharge treatment (discharge amount 40 W) ⁇ Min / m 2 ), a porous layer (II) forming slurry is applied to the treated surface by a micro gravure coater, and dried to form a porous layer (II) having a thickness of 4 ⁇ m. A separator was obtained. The mass per unit area of the porous layer (II) in this separator was 5.5 g / m 2 , the boehmite volume content was 95% by volume, and the porosity was 45%.
  • ⁇ Battery assembly> The positive electrode and the negative electrode obtained as described above were stacked with the separator porous layer (II) facing the positive electrode, and wound in a spiral shape to produce a wound electrode body.
  • the obtained wound electrode body was crushed into a flat shape and placed in an aluminum alloy outer can having a thickness of 5 mm, a width of 42 mm, and a height of 61 mm.
  • LiPF 6 was dissolved in a solvent in which ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate were mixed at a volume ratio of 1: 1: 1 so as to have a concentration of 1.1 mol / L.
  • a solution was prepared by adding FEC, triethylphosphonoacetate, and VC to each sample so that the respective concentrations were 1.25 mass%, 1.25 mass%, and 1.75 mass%. Next, the non-aqueous electrolyte was poured into the outer can.
  • the outer can After injecting the non-aqueous electrolyte, the outer can was sealed, and a lithium secondary battery having the structure shown in FIGS. 1A and 1B and the appearance shown in FIG. 2 was produced.
  • Example 3-1 Example 3-1 except that the FEC content was changed to 2.00% by mass, the triethylphosphonoacetate content was changed to 1.50% by mass, and the VC content was changed to 1.50% by mass.
  • a non-aqueous electrolyte was prepared in the same manner as described above, and a lithium secondary battery was produced in the same manner as in Example 3-1, except that this non-aqueous electrolyte was used.
  • Example 3-3 Example 3-1 except that the content of FEC was changed to 2.00% by mass, the content of triethylphosphonoacetate was changed to 2.00% by mass, and the content of VC was changed to 2.50% by mass.
  • a non-aqueous electrolyte was prepared in the same manner as described above, and a lithium secondary battery was produced in the same manner as in Example 3-1, except that this non-aqueous electrolyte was used.
  • Example 3-4 instead of triethylphosphonoacetate, the trimethylphosphonoacetate content is 1.00% by mass, the FEC content is 1.00% by mass, and the VC content is 2.00% by mass. %, Respectively, except that the non-aqueous electrolyte was prepared in the same manner as in Example 3-1, and a lithium secondary battery was prepared in the same manner as in Example 3-1, except that this non-aqueous electrolyte was used. Was made.
  • Example 3-1 except that the content of FEC was changed to 1.25% by mass, the content of triethylphosphonoacetate was changed to 0.50% by mass, and the content of VC was changed to 1.75% by mass.
  • a non-aqueous electrolyte was prepared in the same manner as described above, and a lithium secondary battery was produced in the same manner as in Example 3-1, except that this non-aqueous electrolyte was used.
  • Example 3-1 except that the FEC content was changed to 1.00% by mass, the triethylphosphonoacetate content was changed to 0.50% by mass, and the VC content was changed to 1.00% by mass.
  • a non-aqueous electrolyte was prepared in the same manner as described above, and a lithium secondary battery was produced in the same manner as in Example 3-1, except that this non-aqueous electrolyte was used.
  • Example 3--7 instead of FEC, the content of the cyclic carbonate represented by the general formula (4), wherein R 4 and R 5 are fluorine (F), and R 6 and R 7 are hydrogen (H) is 1.25% by mass.
  • R 4 and R 5 are fluorine (F)
  • R 6 and R 7 are hydrogen (H)
  • a lithium secondary battery was produced in the same manner as in Example 3-1, except that an aqueous electrolyte was prepared and this nonaqueous electrolyte was used.
  • Example 3-8 instead of FEC, the cyclic carbonate is represented by the general formula (4), R 4 and R 5 are F, and R 6 and R 7 are H.
  • Example 3-1 except that trimethylphosphonoacetate was used instead of triethylphosphonoacetate so that the content of trimethylphosphonoacetate was 2.00% by mass and the VC content was changed to 2.00% by mass.
  • a non-aqueous electrolyte was prepared in the same manner, and a lithium secondary battery was produced in the same manner as in Example 3-1, except that this non-aqueous electrolyte was used.
  • Example 3-3 Without using trimethylphosphonoacetate, the content of the cyclic carbonate represented by the general formula (4), wherein R 4 and R 5 are F, and R 6 and R 7 are H is 1.00% by mass.
  • a non-aqueous electrolyte was prepared in the same manner as in Example 3-8 except that the non-aqueous electrolyte was used, and a lithium secondary battery was produced in the same manner as in Example 3-1, except that this non-aqueous electrolyte was used. .
  • the battery was charged under the same conditions as in the charge / discharge cycle characteristic evaluation.
  • Each battery after charging was stored for 120 hours in an environment of 60 ° C., and the change in thickness (swelling amount) of the battery before and after storage was determined.
  • the thickness of the battery means the thickness between the wide side surfaces of the outer can, as described above.
  • Examples 3-1 to 3-8 and Comparative Examples were compared with the lithium secondary battery of Comparative Example 3-3 using a non-aqueous electrolyte containing no phosphonoacetate compound represented by the general formula (1) In the lithium secondary batteries 3-1 and 3-2, the thickness change is suppressed by the action of the non-aqueous electrolyte containing the phosphonoacetate compound represented by the general formula (1).
  • the capacity retention rate at the time of charge / discharge cycle characteristics evaluation is low and the charge / discharge cycle characteristics are inferior.
  • the capacity retention rate is high and the charge / discharge cycle characteristics are also excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The lithium secondary battery of the present invention is provided with a positive electrode, a negative electrode, a nonaqueous electrolyte, and a separator, and is characterized by: the positive electrode including a current collector and a positive electrode mixture layer formed on top of the current collector; the positive electrode mixture layer including a positive electrode active material; the positive electrode active material including a lithium-containing complex oxide containing lithium and nickel; the molar ratio of lithium to nickel in the total volume of the lithium-containing complex oxide being 0.5-1.05%; and the nonaqueous electrolyte including 0.5-20% by weight of a phosphonoacetate compound represented in Formula (1). In Formula (1), R1, R2 and R3 all independently represent C1-12 alkyl groups that can be substituted with halogen atoms, and n represents an integer of 0 to 6.

Description

リチウム二次電池Lithium secondary battery
 本発明は、高容量であり、且つ充放電サイクル特性および貯蔵特性が良好なリチウム二次電池に関するものである。 The present invention relates to a lithium secondary battery having a high capacity and good charge / discharge cycle characteristics and storage characteristics.
 近年、携帯電話、ノート型パーソナルコンピュータなどのポータブル電子機器の発達や、電気自動車の実用化などに伴い、小型軽量で且つ高容量の二次電池やキャパシタが必要とされるようになってきた。 In recent years, along with the development of portable electronic devices such as mobile phones and notebook personal computers, and the practical application of electric vehicles, secondary batteries and capacitors with small and light weight and high capacity have been required.
 こうしたリチウム二次電池では、電池特性の向上などを目的として、種々の改良が現在も続けられている。例えば、特許文献1には、非水系電解液にリン酸エステル系の特定の化合物を含有させることによって、ガス発生量が少なく高容量で、保存特性および充放電サイクル特性が優れたリチウムイオン二次電池が開示されている。 Such lithium secondary batteries have been continuously improved for the purpose of improving battery characteristics. For example, Patent Document 1 discloses a lithium ion secondary that has a low gas generation amount, a high capacity, and excellent storage characteristics and charge / discharge cycle characteristics by including a non-aqueous electrolyte solution with a specific compound of a phosphate ester type. A battery is disclosed.
 また、従来、リチウム二次電池の正極材料として使用されているコバルト酸リチウム(LiCoO)は製造が容易であり、且つ取り扱いが容易なことから、好適な活物質として多用されている。しかしながら、LiCoOは希少金属であるコバルト(Co)を原料として製造されるために、今後、資源不足が深刻になると予想される。また、コバルト自体の価格も高く、価格変動も大きいために、安価で供給の安定している正極材料の開発が望まれる。 Conventionally, lithium cobaltate (LiCoO 2 ), which has been used as a positive electrode material for lithium secondary batteries, is easy to manufacture and easy to handle, and is therefore frequently used as a suitable active material. However, since LiCoO 2 is produced using cobalt (Co), which is a rare metal, as a raw material, it is expected that resource shortages will become serious in the future. Further, since the price of cobalt itself is high and the price fluctuates greatly, development of a positive electrode material that is inexpensive and stable in supply is desired.
 そこで、更なる高容量化を目指して、正極活物質からのアプローチとして、LiCoOに代わる正極活物質の開発が行われており、例えば、特許文献2では、ニッケル(Ni)、マンガン(Mn)、コバルト(Co)、その他の置換元素Mを含み、各元素の含有割合を規定して、正極活物質粒子の表面におけるMn、Ni、Coに対するMの原子比率aを、前記正極活物質粒子全体におけるMn、Ni、Coに対する前記Mの平均原子比率よりも大きくした正極活物質が開示されている。 Therefore, with the aim of further increasing the capacity, as an approach from the positive electrode active material, a positive electrode active material replacing LiCoO 2 has been developed. For example, Patent Document 2 discloses nickel (Ni), manganese (Mn). , Cobalt (Co) and other substitutional elements M, the content ratio of each element is defined, and the atomic ratio a of M to Mn, Ni, Co on the surface of the positive electrode active material particles A positive electrode active material that is larger than the average atomic ratio of M to Mn, Ni, and Co is disclosed.
 更に、高容量化を目的とした、負極活物質からのアプローチとして、シリコン(Si)の超微粒子がSiO中に分散した構造を持つSiOを負極材料として用いることが特許文献3、4および5で開示されている。 Further, as an approach from a negative electrode active material for the purpose of increasing the capacity, it is possible to use SiO x having a structure in which ultrafine particles of silicon (Si) are dispersed in SiO 2 as a negative electrode material. 5.
特開2008-262908号公報JP 2008-262908 A 特開2006-202647号公報JP 2006-202647 A 特開2004-047404号公報Japanese Patent Laid-Open No. 2004-047404 特開2005-259697号公報Japanese Patent Laid-Open No. 2005-259697 特開2008-210618号公報JP 2008-210618A
 しかしながら、LiCoOよりも高容量な、NiやMnを含むリチウム含有複合酸化物を正極活物質として用いた正極を使用して電池を構成すると、充電状態で特に高温下で貯蔵すると、電池の膨れが生じやすいという問題があり、これはLiCoOを単独で正極活物質として使用した電池に比べて顕著である。更に、高温貯蔵前と比較して、高温下で貯蔵した後に低下した容量の回復率が小さいことも問題となっている。 However, when a battery is configured using a positive electrode using a lithium-containing composite oxide containing Ni or Mn, which has a higher capacity than LiCoO 2 , as a positive electrode active material, the battery swells when stored in a charged state, particularly at high temperatures. This is remarkable as compared with a battery using LiCoO 2 alone as a positive electrode active material. Furthermore, there is also a problem that the recovery rate of the capacity that has decreased after storage at high temperature is smaller than that before high temperature storage.
 これらの問題は、正極活物質にNiが含有されていることが原因と考えられる。一般にNiは高温環境下で不安定である。そのため高温貯蔵下で正極活物質中のNiと電解液とが反応することで、ガスが発生して電池の膨れを起こし、その反応生成物がNi界面に堆積し電池の抵抗を上げ、高温貯蔵後の回復容量を低下させると考えられる。 These problems are thought to be caused by the inclusion of Ni in the positive electrode active material. In general, Ni is unstable in a high temperature environment. Therefore, Ni in the positive electrode active material reacts with the electrolyte under high-temperature storage, generating gas and causing the battery to swell, and the reaction product accumulates on the Ni interface, increasing the resistance of the battery and storing at high temperature. This is thought to reduce the recovery capacity later.
 また、前記SiOは、充放電反応に伴う体積の膨張・収縮が大きいため、電池の充放電サイクル毎に粒子が粉砕され、表面に析出したSiが非水電解液溶媒と反応して不可逆な容量が増大したりするなどの問題が生じることも知られている。 In addition, since the SiO x has a large volume expansion / contraction associated with the charge / discharge reaction, particles are pulverized for each charge / discharge cycle of the battery, and Si deposited on the surface reacts with the nonaqueous electrolyte solvent and is irreversible. It is also known that problems such as an increase in capacity occur.
 このような事情を受けて、SiOの利用率を制限して充放電反応に伴う体積の膨張・収縮を抑制したり、ハロゲン置換された環状カーボネート(例えば4-フルオロ-1,3-ジオキソラン-2-オンなど)などを添加した非水電解液を用いることで、電池の充放電サイクル特性を改善する技術も提案がされている(特許文献5参照)。 Under such circumstances, the SiO x utilization rate is limited to suppress volume expansion / contraction associated with charge / discharge reactions, or halogen-substituted cyclic carbonates (for example, 4-fluoro-1,3-dioxolane- There has also been proposed a technique for improving the charge / discharge cycle characteristics of a battery by using a non-aqueous electrolytic solution to which 2-one or the like is added (see Patent Document 5).
 特許文献5に記載の技術によれば、負極活物質にSiOを使用して高容量化を図りつつ、例えば充放電サイクル特性も良好なリチウム二次電池とし得るが、その一方で、ハロゲン置換された環状カーボネートは電池の膨れを引き起こしやすく、このような点において、特許文献5に記載の技術は未だ改善の余地を残している。 According to the technique described in Patent Document 5, a lithium secondary battery having good charge / discharge cycle characteristics, for example, can be obtained while increasing capacity by using SiO x as a negative electrode active material. The produced cyclic carbonate easily causes the battery to swell, and in this respect, the technique described in Patent Document 5 still leaves room for improvement.
 本発明は、上記の問題に鑑みて、高容量で、高温貯蔵後の電池膨れが小さく、且つ容量回復率が高いとともに、充放電サイクル特性も良好なリチウム二次電池を提供するものである。 In view of the above problems, the present invention provides a lithium secondary battery having a high capacity, a small battery swelling after high-temperature storage, a high capacity recovery rate, and good charge / discharge cycle characteristics.
 本発明の第1のリチウム二次電池は、正極、負極、非水電解液およびセパレータを含むリチウム二次電池であって、前記正極は、集電体と、前記集電体の上に形成された正極合剤層とを含み、前記正極合剤層は、正極活物質を含み、前記正極活物質は、リチウムとニッケルとを含む第1のリチウム含有複合酸化物を含み、前記第1のリチウム含有複合酸化物の全量中の前記リチウムに対する前記ニッケルのモル比率が、0.05~1.05であり、前記非水電解液は、下記一般式(1)で表されるホスホノアセテート類化合物を0.5~20質量%含むことを特徴とする。 The first lithium secondary battery of the present invention is a lithium secondary battery including a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, and the positive electrode is formed on a current collector and the current collector. A positive electrode mixture layer, the positive electrode mixture layer contains a positive electrode active material, the positive electrode active material contains a first lithium-containing composite oxide containing lithium and nickel, and the first lithium The molar ratio of nickel to lithium in the total amount of the composite oxide containing is 0.05 to 1.05, and the non-aqueous electrolyte is a phosphonoacetate compound represented by the following general formula (1) Is contained in an amount of 0.5 to 20% by mass.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記一般式(1)中、R、RおよびRは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数1~12のアルキル基であり、nは0~6の整数である。 In the general formula (1), R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom, and n is an integer of 0 to 6 It is.
 また、本発明の第2のリチウム二次電池は、正極、負極、非水電解液およびセパレータを含むリチウム二次電池であって、前記負極は、集電体と、前記集電体の上に形成された負極合剤層とを含み、前記負極合剤層は、負極活物質を含み、前記負極活物質は、シリコンと酸素とを構成元素に含む材料を含み、前記非水電解液は、ハロゲン置換された環状カーボネートおよび下記一般式(1)で表されるホスホノアセテート類化合物を含み、前記非水電解液において、前記ホスホノアセテート類化合物の含有量が、前記ハロゲン置換された環状カーボネートの含有量以下であることを特徴とする。 The second lithium secondary battery of the present invention is a lithium secondary battery including a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, and the negative electrode is disposed on the current collector and the current collector. A negative electrode mixture layer formed, the negative electrode mixture layer contains a negative electrode active material, the negative electrode active material contains a material containing silicon and oxygen as constituent elements, and the non-aqueous electrolyte is: A halogen-substituted cyclic carbonate and a phosphonoacetate compound represented by the following general formula (1), wherein in the non-aqueous electrolyte, the content of the phosphonoacetate compound is the halogen-substituted cyclic carbonate It is characterized by being below the content of.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 前記一般式(1)中、R、RおよびRは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数1~12のアルキル基であり、nは0~6の整数である。 In the general formula (1), R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom, and n is an integer of 0 to 6 It is.
 本発明によれば、高容量で、高温貯蔵後の電池膨れが小さく、且つ容量回復率が高いとともに、充放電サイクル特性も良好なリチウム二次電池を提供することができる。 According to the present invention, it is possible to provide a lithium secondary battery having a high capacity, a small battery swelling after high-temperature storage, a high capacity recovery rate, and good charge / discharge cycle characteristics.
図1Aは、本発明のリチウム二次電池の一例を示す平面図であり、図1Bは、図1Aの断面図である。1A is a plan view showing an example of the lithium secondary battery of the present invention, and FIG. 1B is a cross-sectional view of FIG. 1A. 図2は、本発明のリチウム二次電池の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of the lithium secondary battery of the present invention.
 以下、本発明の実施の形態について説明するが、これらは本発明の実施態様の一例に過ぎず、本発明はこれらの内容に限定されない。 Hereinafter, embodiments of the present invention will be described. However, these are merely examples of embodiments of the present invention, and the present invention is not limited to these contents.
 (実施形態1)
 本発明の第1のリチウム二次電池は、正極、負極、非水電解液およびセパレータを備えている。また、前記正極は、集電体と、前記集電体の上に形成された正極合剤層とを含み、前記正極合剤層は、正極活物質を含み、前記正極活物質は、リチウムとニッケルとを含む第1のリチウム含有複合酸化物を含み、前記第1のリチウム含有複合酸化物の全量中の前記リチウムに対する前記ニッケルのモル比率が、0.05~1.05である。更に、前記非水電解液は、下記一般式(1)で表されるホスホノアセテート類化合物を0.5~20質量%含んでいる。
(Embodiment 1)
The first lithium secondary battery of the present invention includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator. The positive electrode includes a current collector and a positive electrode mixture layer formed on the current collector, the positive electrode mixture layer includes a positive electrode active material, and the positive electrode active material includes lithium and A first lithium-containing composite oxide containing nickel is included, and a molar ratio of the nickel to the lithium in the total amount of the first lithium-containing composite oxide is 0.05 to 1.05. Further, the nonaqueous electrolytic solution contains 0.5 to 20% by mass of a phosphonoacetate compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 前記一般式(1)中、R、RおよびRは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数1~12のアルキル基であり、nは0~6の整数である。 In the general formula (1), R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom, and n is an integer of 0 to 6 It is.
 〔正極〕
 本発明の第1のリチウム二次電池に係る正極には、例えば、正極活物質、バインダおよび導電助剤などを含む正極合剤層を、集電体の片面または両面に有する構造のものが使用できる。
[Positive electrode]
For the positive electrode according to the first lithium secondary battery of the present invention, for example, one having a structure having a positive electrode mixture layer containing a positive electrode active material, a binder, a conductive additive and the like on one side or both sides of a current collector is used. it can.
 <正極活物質>
 本発明の第1のリチウム二次電池の正極に用いる正極活物質は、リチウム(Li)とニッケル(Ni)とを含有する第1のリチウム含有複合酸化物を含んでいる。また、前記第1のリチウム含有複合酸化物は、コバルト(Co)、マンガン(Mn)などの他金属を構成元素として含有してもよい。更に、前記第1のリチウム含有複合酸化物の全量中のLiに対するNiの割合(モル比率)は、0.05~1.05に設定されている。Niは電池の容量向上に寄与するので、正極活物質中にNiを含有していると電池容量は増えるが、Niは高温貯蔵下での安定性に欠けるため、ホスホノアセテート類化合物を含む電解液を併用し、且つLiに対するNiのモル比率を0.05~1.05、より好ましくは0.2~0.9とすることにより、高容量且つ高温貯蔵下でも安定な電池とすることができる。
<Positive electrode active material>
The positive electrode active material used for the positive electrode of the first lithium secondary battery of the present invention includes a first lithium-containing composite oxide containing lithium (Li) and nickel (Ni). The first lithium-containing composite oxide may contain other metals such as cobalt (Co) and manganese (Mn) as constituent elements. Furthermore, the ratio (molar ratio) of Ni to Li in the total amount of the first lithium-containing composite oxide is set to 0.05 to 1.05. Since Ni contributes to an increase in battery capacity, if Ni is contained in the positive electrode active material, the battery capacity increases. However, since Ni lacks stability under high-temperature storage, electrolysis including a phosphonoacetate compound is necessary. By using the solution together and setting the molar ratio of Ni to Li to 0.05 to 1.05, more preferably 0.2 to 0.9, a battery having a high capacity and stable even under high temperature storage can be obtained. it can.
 本発明で定義する第1のリチウム含有複合酸化物の全量中のLiに対するNiのモル比率は、以下のように算出する。リチウム・ニッケル含有複合酸化物として、LiNi0.8Co0.2を例にとって説明すると、このリチウム・ニッケル含有複合酸化物におけるLi:Niの組成比は、1:0.8であり、この場合のLiNi0.8Co0.2のLiに対するNiのモル比率は、0.8/1=0.8となる。 The molar ratio of Ni to Li in the total amount of the first lithium-containing composite oxide defined in the present invention is calculated as follows. Taking LiNi 0.8 Co 0.2 O 2 as an example of the lithium-nickel-containing composite oxide, the composition ratio of Li: Ni in this lithium-nickel-containing composite oxide is 1: 0.8. In this case, the molar ratio of Ni to Li in LiNi 0.8 Co 0.2 O 2 is 0.8 / 1 = 0.8.
 また、リチウム含有複合酸化物の組成分析は、ICP(Inductive Coupled Plasma)法を用いて以下のように行うことができる。先ず、測定対象となるリチウム含有複合酸化物を0.2g採取して100mL容器に入れる。その後、純水5mL、王水2mL、純水10mLを順に加えて加熱溶解し、冷却後、更に純水で25倍に希釈してJARRELASH社製のICP分析装置「ICP-757」を用いて、検量線法により組成を分析する。得られた結果から、組成式を導くことができる。 The composition analysis of the lithium-containing composite oxide can be performed as follows using an ICP (Inductive Coupled Plasma) method. First, 0.2 g of a lithium-containing composite oxide to be measured is collected and placed in a 100 mL container. Thereafter, 5 mL of pure water, 2 mL of aqua regia, and 10 mL of pure water were added in order and dissolved by heating. After cooling, the mixture was further diluted 25 times with pure water, and an ICP analyzer “ICP-757” manufactured by JARRELASH was used. The composition is analyzed by a calibration curve method. The composition formula can be derived from the obtained results.
 本発明で使用される第1のリチウム含有複合酸化物には、例えば、熱安定性や高電位安定性といった正極活物質における他の特性も鑑み、特に、下記一般組成式(2)で表されるものを使用することが好ましい。 In view of other characteristics of the positive electrode active material such as thermal stability and high potential stability, the first lithium-containing composite oxide used in the present invention is particularly represented by the following general composition formula (2). It is preferable to use one.
 Li1+yMO      (2)
 但し、前記一般組成式(2)において、-0.15≦y≦0.15であり、且つ、Mは、Ni、CoおよびMnを含む元素群を示し、前記元素群Mの全元素数に対する、前記元素群Mに含まれるNi、CoおよびMnの元素数の割合を、それぞれa(mol%)、b(mol%)およびc(mol%)としたときに、25≦a≦90、5≦b≦35、5≦c≦35および10≦b+c≦70で表される。
Li 1 + y MO 2 (2)
However, in the general composition formula (2), −0.15 ≦ y ≦ 0.15, and M represents an element group containing Ni, Co, and Mn, and is based on the total number of elements in the element group M. When the ratio of the number of elements Ni, Co and Mn contained in the element group M is a (mol%), b (mol%) and c (mol%), respectively, 25 ≦ a ≦ 90, 5 ≦ b ≦ 35, 5 ≦ c ≦ 35, and 10 ≦ b + c ≦ 70.
 前記第1のリチウム含有複合酸化物を表す前記一般組成式(2)における元素群Mの全元素数を100mol%としたとき、Niの割合aは、リチウム含有複合酸化物の容量向上を図る観点から、25mol%以上とすることが好ましく、50mol%以上とすることがより好ましい。但し、元素群M中のNiの割合が多すぎると、例えば、CoやMnの量が減って、これらによる効果が小さくなる虞がある。よって、前記第1のリチウム含有複合酸化物を表す前記一般組成式(2)における元素群Mの全元素数を100mol%としたとき、Niの割合aは、90mol%以下とすることが好ましく、70mol%以下とすることがより好ましい。 When the total number of elements in the element group M in the general composition formula (2) representing the first lithium-containing composite oxide is 100 mol%, the Ni ratio a is a viewpoint of improving the capacity of the lithium-containing composite oxide. Therefore, it is preferable to set it as 25 mol% or more, and it is more preferable to set it as 50 mol% or more. However, if the proportion of Ni in the element group M is too large, for example, the amount of Co or Mn is reduced, and the effects of these may be reduced. Therefore, when the total number of elements in the element group M in the general composition formula (2) representing the first lithium-containing composite oxide is 100 mol%, the Ni ratio a is preferably 90 mol% or less, More preferably, it is 70 mol% or less.
 また、Coはリチウム含有複合酸化物の容量に寄与し、正極合剤層における充填密度向上にも作用する一方で、多すぎるとコスト増大や安全性低下を引き起こす虞もある。よって、前記第1のリチウム含有複合酸化物を表す前記一般組成式(2)における元素群Mの全元素数を100mol%としたとき、Coの割合bは、5mol%以上35mol%以下とすることが好ましい。 In addition, Co contributes to the capacity of the lithium-containing composite oxide and acts to improve the packing density in the positive electrode mixture layer. On the other hand, too much Co may cause an increase in cost and a decrease in safety. Therefore, when the total number of elements in the element group M in the general composition formula (2) representing the first lithium-containing composite oxide is 100 mol%, the Co ratio b is 5 mol% or more and 35 mol% or less. Is preferred.
 また、前記第1のリチウム含有複合酸化物においては、前記一般組成式(2)における元素群Mの全元素数を100mol%としたとき、Mnの割合cを、5mol%以上35mol%以下とすることが好ましい。前記リチウム含有複合酸化物に前記のような量でMnを含有させ、結晶格子中に必ずMnを存在させることによって、前記リチウム含有複合酸化物の熱的安定性を高めることができ、より安全性の高い電池を構成することが可能となる。 In the first lithium-containing composite oxide, when the total number of elements in the element group M in the general composition formula (2) is 100 mol%, the ratio c of Mn is 5 mol% or more and 35 mol% or less. It is preferable. By including Mn in the lithium-containing composite oxide in the amount as described above, and by always allowing Mn to be present in the crystal lattice, the thermal stability of the lithium-containing composite oxide can be improved, and the safety is further improved. It is possible to construct a battery with a high value.
 更に、前記第1のリチウム含有複合酸化物において、Coを含有させることによって、電池の充放電でのLiのドープおよび脱ドープに伴うMnの価数変動を抑制し、Mnの平均価数を4価近傍の値に安定させ、充放電の可逆性をより高めることができる。よって、このようなリチウム含有複合酸化物を使用することで、より充放電サイクル特性に優れた電池を構成することが可能となる。 Furthermore, in the first lithium-containing composite oxide, by containing Co, fluctuations in the valence of Mn due to Li doping and dedoping during charging and discharging of the battery are suppressed, and the average valence of Mn is 4 It is possible to stabilize the value in the vicinity of the valence, and to further improve the reversibility of charge / discharge. Therefore, by using such a lithium-containing composite oxide, it becomes possible to configure a battery with more excellent charge / discharge cycle characteristics.
 また、前記第1のリチウム含有複合酸化物において、CoとMnとを併用することによる前記の効果を良好に確保する観点から、前記一般組成式(2)における元素群Mの全元素数を100mol%としたとき、Coの割合bとMnの割合cとの和b+cを、10mol%以上70mol%以下とすることが好ましく、10mol%以上50mol%以下とすることがより好ましい。 In addition, in the first lithium-containing composite oxide, from the viewpoint of favorably securing the above-described effect by using Co and Mn together, the total number of elements in the element group M in the general composition formula (2) is 100 mol. %, The sum b + c of the Co ratio b and the Mn ratio c is preferably 10 mol% or more and 70 mol% or less, and more preferably 10 mol% or more and 50 mol% or less.
 前記第1のリチウム含有複合酸化物を表す前記一般組成式(2)における元素群Mは、Ni、CoおよびMn以外の元素を含んでいてもよく、例えば、チタン(Ti)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、アルミニウム(Al)、ゲルマニウム(Ge)、スズ(Sn)、マグネシウム(Mg)、銀(Ag)、タリウム(Tl)、ニオブ(Nb)、ホウ素(B)、リン(P)、ジルコニウム(Zr)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)などの元素を含んでいても構わない。但し、前記第1のリチウム含有複合酸化物において、Ni、CoおよびMnを含有させることによる前記の効果を十分に得るためには、元素群Mの全元素数を100mol%としたときの、Ni、CoおよびMn以外の元素の割合(mol%)の合計をfで表すと、fは、15mol%以下とすることが好ましく、3mol%以下とすることがより好ましい。 The element group M in the general composition formula (2) representing the first lithium-containing composite oxide may contain elements other than Ni, Co, and Mn. For example, titanium (Ti), chromium (Cr) , Iron (Fe), copper (Cu), zinc (Zn), aluminum (Al), germanium (Ge), tin (Sn), magnesium (Mg), silver (Ag), thallium (Tl), niobium (Nb) , Boron (B), phosphorus (P), zirconium (Zr), calcium (Ca), strontium (Sr), barium (Ba) and the like. However, in the first lithium-containing composite oxide, in order to sufficiently obtain the above-described effect by containing Ni, Co, and Mn, Ni is obtained when the total number of elements in the element group M is 100 mol%. When the sum of the ratios (mol%) of elements other than Co, Mn is expressed by f, f is preferably 15 mol% or less, and more preferably 3 mol% or less.
 例えば、前記第1のリチウム含有複合酸化物において、結晶格子中にAlを存在させると、リチウム含有複合酸化物の結晶構造を安定化させることができ、その熱的安定性を向上させ得るため、より安全性の高いリチウム二次電池を構成することが可能となる。また、Alがリチウム含有複合酸化物粒子の粒界や表面に存在することで、その経時安定性や電解液との副反応を抑制することができ、より長寿命のリチウム二次電池を構成することが可能となる。 For example, in the first lithium-containing composite oxide, when Al is present in the crystal lattice, the crystal structure of the lithium-containing composite oxide can be stabilized, and the thermal stability thereof can be improved. It becomes possible to constitute a lithium secondary battery with higher safety. In addition, since Al is present at the grain boundaries and surfaces of the lithium-containing composite oxide particles, the stability over time and side reactions with the electrolytic solution can be suppressed, and a longer-life lithium secondary battery is constructed. It becomes possible.
 但し、Alは充放電容量に関与することができないため、前記第1のリチウム含有複合酸化物中の含有量を多くすると、容量低下を引き起こす虞がある。よって、前記第1のリチウム含有複合酸化物を表す前記一般組成式(2)において、元素群Mの全元素数を100mol%としたときに、Alの割合を10mol%以下とすることが好ましい。Alを含有させることによる前記の効果をより良好に確保するには、前記第1のリチウム含有複合酸化物を表す前記一般組成式(2)において、元素群Mの全元素数を100mol%としたときに、Alの割合を0.02mol%以上とすることが好ましい。 However, since Al cannot participate in the charge / discharge capacity, increasing the content in the first lithium-containing composite oxide may cause a decrease in capacity. Therefore, in the general composition formula (2) representing the first lithium-containing composite oxide, when the total number of elements in the element group M is 100 mol%, the Al ratio is preferably 10 mol% or less. In order to better secure the above-described effect by including Al, in the general composition formula (2) representing the first lithium-containing composite oxide, the total number of elements in the element group M is set to 100 mol%. Sometimes, the Al ratio is preferably 0.02 mol% or more.
 前記第1のリチウム含有複合酸化物において、結晶格子中にMgを存在させると、リチウム含有複合酸化物の結晶構造を安定化させることができ、その熱的安定性を向上させ得るため、より安全性の高いリチウム二次電池を構成することが可能となる。また、リチウム二次電池の充放電でのLiのドープおよび脱ドープによって前記リチウム含有複合酸化物の相転移が起こる際、MgがLiサイトに転位することによって不可逆反応を緩和し、前記リチウム含有複合酸化物の結晶構造の可逆性を高めることができるため、より充放電サイクル寿命の長いリチウム二次電池を構成することができるようになる。特に、前記第1のリチウム含有複合酸化物を表す前記一般組成式(2)において、y<0として、リチウム含有複合酸化物をLi欠損な結晶構造とした場合には、Liの代わりにMgがLiサイトに入る形でリチウム含有複合酸化物を形成し、安定な化合物とすることができる。 In the first lithium-containing composite oxide, when Mg is present in the crystal lattice, the crystal structure of the lithium-containing composite oxide can be stabilized and its thermal stability can be improved, so that it is safer. It becomes possible to constitute a lithium secondary battery with high performance. In addition, when a phase transition of the lithium-containing composite oxide occurs due to Li doping and dedoping during charging and discharging of a lithium secondary battery, Mg is rearranged to relax the irreversible reaction, and the lithium-containing composite Since reversibility of the crystal structure of the oxide can be increased, a lithium secondary battery having a longer charge / discharge cycle life can be configured. In particular, in the general composition formula (2) representing the first lithium-containing composite oxide, when y <0 and the lithium-containing composite oxide has a Li-deficient crystal structure, Mg is substituted for Li. A lithium-containing composite oxide can be formed so as to enter the Li site, and a stable compound can be obtained.
 但し、Mgは充放電容量への関与が小さいため、前記リチウム含有複合酸化物中の含有量を多くすると、容量低下を引き起こす虞がある。よって、前記第1のリチウム含有複合酸化物を表す前記一般組成式(2)において、元素群Mの全元素数を100mol%としたときに、Mgの割合を10mol%以下とすることが好ましい。一方、Mgを含有させることによる前記の効果をより良好に確保するには、前記第1のリチウム含有複合酸化物を表す前記一般組成式(2)において、元素群Mの全元素数を100mol%としたときに、Mgの割合を0.02mol%以上とすることが好ましい。 However, since Mg has little influence on the charge / discharge capacity, if the content in the lithium-containing composite oxide is increased, the capacity may be reduced. Therefore, in the general composition formula (2) representing the first lithium-containing composite oxide, when the total number of elements in the element group M is 100 mol%, the ratio of Mg is preferably 10 mol% or less. On the other hand, in order to better secure the above-described effect by containing Mg, in the general composition formula (2) representing the first lithium-containing composite oxide, the total number of elements in the element group M is set to 100 mol%. In this case, the Mg ratio is preferably 0.02 mol% or more.
 前記第1のリチウム含有複合酸化物において、粒子中にTiを含有させると、LiNiO型の結晶構造において、酸素欠損などの結晶の欠陥部にTiが配置されて結晶構造を安定化させるため、前記リチウム含有複合酸化物の反応の可逆性が高まり、より充放電サイクル特性に優れたリチウム二次電池を構成できるようになる。前記の効果を良好に確保するためには、前記第1のリチウム含有複合酸化物を表す前記一般組成式(2)において、元素群Mの全元素数を100mol%としたときに、Tiの割合を、0.01mol%以上とすることが好ましく、0.1mol%以上とすることがより好ましい。一方、Tiの含有量が多くなると、Tiは充放電に関与しないために容量低下を引き起こしたり、LiTiOなどの異相を形成しやすくなったりして、特性低下を招く虞がある。よって、前記第1のリチウム含有複合酸化物を表す前記一般組成式(2)において、元素群Mの全元素数を100mol%としたときに、Tiの割合は、10mol%以下とすることが好ましく、5mol%以下とすることがより好ましく、2mol%以下とすることが更に好ましい。 In the first lithium-containing composite oxide, when Ti is contained in the particles, in the LiNiO 2 type crystal structure, Ti is arranged in a crystal defect portion such as an oxygen vacancy to stabilize the crystal structure. The reversibility of the reaction of the lithium-containing composite oxide is increased, and a lithium secondary battery having more excellent charge / discharge cycle characteristics can be configured. In order to secure the above-mentioned effect satisfactorily, in the general composition formula (2) representing the first lithium-containing composite oxide, the ratio of Ti when the total number of elements in the element group M is 100 mol% Is preferably 0.01 mol% or more, and more preferably 0.1 mol% or more. On the other hand, when the content of Ti increases, Ti does not participate in charging / discharging, so that the capacity may be reduced or a heterogeneous phase such as Li 2 TiO 3 may be easily formed, leading to a deterioration in characteristics. Therefore, in the general composition formula (2) representing the first lithium-containing composite oxide, when the total number of elements in the element group M is 100 mol%, the ratio of Ti is preferably 10 mol% or less. More preferably, it is 5 mol% or less, and further preferably 2 mol% or less.
 また、前記第1のリチウム含有複合酸化物が、前記一般組成式(2)における元素群Mとして、Ge、Ca、Sr、Ba、B、ZrおよびGaより選ばれる少なくとも1種の元素M’を含有している場合には、それぞれ下記の効果を確保することができる点で好ましい。 In addition, the first lithium-containing composite oxide contains at least one element M ′ selected from Ge, Ca, Sr, Ba, B, Zr and Ga as the element group M in the general composition formula (2). When it contains, it is preferable at the point which can ensure the following effect, respectively.
 前記第1のリチウム含有複合酸化物がGeを含有している場合には、Liが脱離した後の複合酸化物の結晶構造が安定化するため、充放電での反応の可逆性を高めることができ、より安全性が高く、また、より充放電サイクル特性に優れるリチウム二次電池を構成することが可能となる。特に、リチウム含有複合酸化物の粒子表面や粒界にGeが存在する場合には、界面でのLiの脱離・挿入における結晶構造の乱れが抑制され、充放電サイクル特性の向上に大きく寄与することができる。 In the case where the first lithium-containing composite oxide contains Ge, the crystal structure of the composite oxide after Li is eliminated is stabilized, so that the reversibility of the reaction during charge and discharge is improved. Therefore, it is possible to configure a lithium secondary battery that is higher in safety and more excellent in charge / discharge cycle characteristics. In particular, when Ge is present on the particle surface or grain boundary of the lithium-containing composite oxide, disorder of the crystal structure due to Li desorption / insertion at the interface is suppressed, greatly contributing to improvement of charge / discharge cycle characteristics. be able to.
 また、前記第1のリチウム含有複合酸化物がCa、Sr、Baなどのアルカリ土類金属を含有している場合には、一次粒子の成長が促進されて前記リチウム含有複合酸化物の結晶性が向上するため、活性点を低減することができ、正極合剤層を形成するための塗料(後述する正極合剤含有組成物)としたときの経時安定性が向上し、リチウム二次電池の有する非水電解液との不可逆な反応を抑制することができる。更に、これらの元素が、前記リチウム含有複合酸化物の粒子表面や粒界に存在することで、電池内のCOガスをトラップできるため、より貯蔵性に優れ長寿命のリチウム二次電池を構成することが可能となる。特に、前記リチウム含有複合酸化物がMnを含有する場合には、一次粒子が成長し難くなる傾向があるため、Ca、Sr、Baなどのアルカリ土類金属の添加がより有効である。 When the first lithium-containing composite oxide contains an alkaline earth metal such as Ca, Sr, or Ba, the growth of primary particles is promoted, and the crystallinity of the lithium-containing composite oxide is increased. In order to improve, the active site can be reduced, the stability over time when a coating material for forming a positive electrode mixture layer (a positive electrode mixture-containing composition described later) is improved, and the lithium secondary battery has Irreversible reaction with the non-aqueous electrolyte can be suppressed. Furthermore, since these elements are present on the particle surfaces and grain boundaries of the lithium-containing composite oxide, the CO 2 gas in the battery can be trapped. It becomes possible to do. In particular, when the lithium-containing composite oxide contains Mn, the primary particles tend to be difficult to grow. Therefore, the addition of an alkaline earth metal such as Ca, Sr, or Ba is more effective.
 前記第1のリチウム含有複合酸化物にBを含有させた場合にも、一次粒子の成長が促進されて前記リチウム含有複合酸化物の結晶性が向上するため、活性点を低減することができ、大気中の水分や、正極合剤層の形成に用いるバインダ、電池の有する非水電解液との不可逆な反応を抑制することができる。このため、正極合剤層を形成するための塗料としたときの経時安定性が向上し、電池内でのガス発生を抑制することができ、より貯蔵性に優れ長寿命のリチウム二次電池を構成することが可能となる。特に、前記リチウム含有複合酸化物がMnを含有する場合には、一次粒子が成長し難くなる傾向があるため、Bの添加がより有効である。 Even when B is contained in the first lithium-containing composite oxide, the growth of primary particles is promoted and the crystallinity of the lithium-containing composite oxide is improved, so that the active sites can be reduced, Irreversible reactions with the moisture in the atmosphere, the binder used for forming the positive electrode mixture layer, and the non-aqueous electrolyte of the battery can be suppressed. For this reason, stability over time when it is used as a coating material for forming the positive electrode mixture layer is improved, gas generation in the battery can be suppressed, and a lithium secondary battery having better storage and a longer life can be obtained. It can be configured. In particular, when the lithium-containing composite oxide contains Mn, the addition of B is more effective because primary particles tend to be difficult to grow.
 前記第1のリチウム含有複合酸化物にZrを含有させた場合には、前記リチウム含有複合酸化物の粒子の粒界や表面にZrが存在することにより、前記リチウム含有複合酸化物の電気化学特性を損なうことなく、その表面活性を抑制するため、より貯蔵性に優れ長寿命のリチウム二次電池を構成することが可能となる。 When Zr is contained in the first lithium-containing composite oxide, the presence of Zr at the grain boundaries and surfaces of the lithium-containing composite oxide particles results in electrochemical characteristics of the lithium-containing composite oxide. Therefore, it is possible to construct a lithium secondary battery having a better shelf life and a longer life.
 前記第1のリチウム含有複合酸化物にGaを含有させた場合には、一次粒子の成長が促進されて前記リチウム含有複合酸化物の結晶性が向上するため、活性点を低減することができ、正極合剤層を形成するための塗料としたときの経時安定性が向上し、非水電解液との不可逆な反応を抑制することができる。また、前記リチウム含有複合酸化物の結晶構造内にGaを固溶することにより、結晶格子の層間隔を拡張し、Liの挿入および脱離による格子の膨張・収縮の割合を低減することができる。このため、結晶構造の可逆性を高めることができ、より充放電サイクル寿命の高いリチウム二次電池を構成することが可能となる。特に、前記リチウム含有複合酸化物がMnを含有する場合には、一次粒子が成長し難くなる傾向があるため、Gaの添加がより有効である。 When Ga is contained in the first lithium-containing composite oxide, the growth of primary particles is promoted and the crystallinity of the lithium-containing composite oxide is improved. Therefore, active sites can be reduced, Stability over time when a coating material for forming the positive electrode mixture layer is improved, and irreversible reaction with the non-aqueous electrolyte can be suppressed. Further, by dissolving Ga in the crystal structure of the lithium-containing composite oxide, the layer spacing of the crystal lattice can be expanded, and the rate of lattice expansion / contraction due to insertion and desorption of Li can be reduced. . For this reason, the reversibility of a crystal structure can be improved and it becomes possible to comprise a lithium secondary battery with a longer charge-discharge cycle life. In particular, when the lithium-containing composite oxide contains Mn, the addition of Ga is more effective because primary particles tend to be difficult to grow.
 前記Ge、Ca、Sr、Ba、B、ZrおよびGaより選ばれる元素M’の効果を得られやすくするためには、その割合は、元素群Mの全元素中で0.1mol%以上であることが好ましい。また、これら元素M’の元素群Mの全元素中における割合は、10mol%以下であることが好ましい。 In order to easily obtain the effect of the element M ′ selected from Ge, Ca, Sr, Ba, B, Zr, and Ga, the ratio is 0.1 mol% or more in all elements of the element group M. It is preferable. Further, the ratio of these elements M ′ in all elements of the element group M is preferably 10 mol% or less.
 元素群MにおけるNi、CoおよびMn以外の元素は、前記第1のリチウム含有複合酸化物中に均一に分布していてもよく、また、粒子表面などに偏析していてもよい。 Elements other than Ni, Co, and Mn in the element group M may be uniformly distributed in the first lithium-containing composite oxide, or may be segregated on the particle surface or the like.
 また、前記第1のリチウム含有複合酸化物を表す前記一般組成式(2)において、元素群M中のCoの割合bとMnの割合cとの関係をb>cとした場合には、前記リチウム含有複合酸化物の粒子の成長を促して、正極(その正極合剤層)での充填密度が高く、より可逆性の高いリチウム含有複合酸化物とすることができ、かかる正極を用いた電池の容量の更なる向上が期待できる。 In the general composition formula (2) representing the first lithium-containing composite oxide, when the relationship between the Co ratio b and the Mn ratio c in the element group M is b> c, By promoting the growth of lithium-containing composite oxide particles, it is possible to obtain a lithium-containing composite oxide that has a high packing density at the positive electrode (the positive electrode mixture layer) and is more reversible. Further improvement in capacity can be expected.
 他方、前記第1のリチウム含有複合酸化物を表す前記一般組成式(2)において、元素群M中のCoの割合bとMnの割合cとの関係をb≦cとした場合には、より熱安定性の高いリチウム含有複合酸化物とすることができ、これを用いた電池の安全性の更なる向上が期待できる。 On the other hand, in the general composition formula (2) representing the first lithium-containing composite oxide, when the relationship between the Co ratio b and the Mn ratio c in the element group M is b ≦ c, A lithium-containing composite oxide having high thermal stability can be obtained, and further improvement in the safety of a battery using the lithium-containing composite oxide can be expected.
 前記の組成を有する第1のリチウム含有複合酸化物は、その真密度が4.55~4.95g/cmと大きな値になり、高い体積エネルギー密度を有する材料となる。Mnを一定範囲で含むリチウム含有複合酸化物の真密度は、その組成により大きく変化するが、前記のような狭い組成範囲では構造が安定化され、均一性を高めることができるため、例えばLiCoOの真密度に近い大きな値となるものと考えられる。また、リチウム含有複合酸化物の質量当たりの容量を大きくすることができ、可逆性に優れた材料とすることができる。 The first lithium-containing composite oxide having the above composition has a large true density of 4.55 to 4.95 g / cm 3 and becomes a material having a high volume energy density. The true density of the lithium-containing composite oxide containing Mn in a certain range varies greatly depending on its composition. However, since the structure is stabilized and the uniformity can be improved in the narrow composition range as described above, for example, LiCoO 2 This is considered to be a large value close to the true density of. Moreover, the capacity | capacitance per mass of lithium containing complex oxide can be enlarged, and it can be set as the material excellent in reversibility.
 前記第1のリチウム含有複合酸化物は、特に化学量論比に近い組成のときに、その真密度が大きくなるが、具体的には、前記一般組成式(2)において、-0.15≦y≦0.15とすることが好ましく、yの値をこのように調整することで、真密度および可逆性を高めることができる。yは、-0.05以上0.05以下であることがより好ましく、この場合には、リチウム含有複合酸化物の真密度を4.6g/cm以上と、より高い値にすることができる。 The true density of the first lithium-containing composite oxide increases particularly when the composition is close to the stoichiometric ratio. Specifically, in the general composition formula (2), −0.15 ≦ It is preferable to satisfy y ≦ 0.15, and the true density and reversibility can be improved by adjusting the value of y in this way. y is more preferably −0.05 or more and 0.05 or less. In this case, the true density of the lithium-containing composite oxide can be set to a higher value of 4.6 g / cm 3 or more. .
 前記一般組成式(2)で表される第1のリチウム含有複合酸化物は、Li含有化合物(水酸化リチウム・一水和物など)、Ni含有化合物(硫酸ニッケルなど)、Co含有化合物(硫酸コバルトなど)、Mn含有化合物(硫酸マンガンなど)、および元素群Mに含まれるその他の元素を含有する化合物(硫酸アルミニウム、硫酸マグネシウムなど)を混合し、焼成するなどして製造することができる。また、より高い純度で前記リチウム含有複合酸化物を合成するには、元素群Mに含まれる複数の元素を含む複合化合物(水酸化物、酸化物など)とLi含有化合物とを混合し、焼成することが好ましい。 The first lithium-containing composite oxide represented by the general composition formula (2) includes a Li-containing compound (lithium hydroxide monohydrate and the like), a Ni-containing compound (such as nickel sulfate), and a Co-containing compound (sulfuric acid). Cobalt and the like), a Mn-containing compound (such as manganese sulfate), and a compound containing other elements contained in the element group M (such as aluminum sulfate and magnesium sulfate) are mixed and fired. Further, in order to synthesize the lithium-containing composite oxide with higher purity, a composite compound (hydroxide, oxide, etc.) containing a plurality of elements contained in the element group M and a Li-containing compound are mixed and fired. It is preferable to do.
 焼成条件は、例えば、800~1050℃で1~24時間とすることができるが、一旦焼成温度よりも低い温度(例えば、250~850℃)まで加熱し、その温度で保持することにより予備加熱を行い、その後に焼成温度まで昇温して反応を進行させることが好ましい。予備加熱の時間については特に制限はないが、通常、0.5~30時間程度とすればよい。また、焼成時の雰囲気は、酸素を含む雰囲気(すなわち、大気中)、不活性ガス(アルゴン、ヘリウム、窒素など)と酸素ガスとの混合雰囲気、酸素ガス雰囲気などとすることができるが、その際の酸素濃度(体積基準)は、15%以上であることが好ましく、18%以上であることが好ましい。 The firing conditions can be, for example, 800 to 1050 ° C. for 1 to 24 hours, but once heated to a temperature lower than the firing temperature (for example, 250 to 850 ° C.) and maintained at that temperature, preheating is performed. After that, it is preferable to raise the temperature to the firing temperature to advance the reaction. There is no particular limitation on the preheating time, but it is usually about 0.5 to 30 hours. The atmosphere during firing can be an atmosphere containing oxygen (that is, in the air), a mixed atmosphere of an inert gas (such as argon, helium, or nitrogen) and oxygen gas, or an oxygen gas atmosphere. The oxygen concentration (volume basis) is preferably 15% or more, and more preferably 18% or more.
 正極活物質は、前記第1のリチウム含有複合酸化物を1種類含有していてもよく、2種類以上含有していてもよい。 The positive electrode active material may contain one kind of the first lithium-containing composite oxide, or may contain two or more kinds.
 また、正極活物質は、前述した第1のリチウム含有複合酸化物以外に、リチウムと遷移金属とを含む第2のリチウム含有複合酸化物を更に含有してもよい。第2のリチウム含有複合酸化物としては、例えば、LiCoOなどのリチウムコバルト酸化物;LiMnO、LiMnOなどのリチウムマンガン酸化物;LiMn、Li4/3Ti5/3などのスピネル構造のリチウム含有複合酸化物;LiFePOなどのオリビン構造のリチウム含有複合酸化物;これらの酸化物を基本組成とし、その構成元素の一部を他の元素で置換した酸化物;などが挙げられる。 The positive electrode active material may further contain a second lithium-containing composite oxide containing lithium and a transition metal, in addition to the first lithium-containing composite oxide described above. Examples of the second lithium-containing composite oxide include lithium cobalt oxides such as LiCoO 2 ; lithium manganese oxides such as LiMnO 2 and Li 2 MnO 3 ; LiMn 2 O 4 and Li 4/3 Ti 5/3 O. A lithium-containing composite oxide having a spinel structure such as 4 ; a lithium-containing composite oxide having an olivine structure such as LiFePO 4 ; an oxide in which these oxides have a basic composition and a part of the constituent elements is substituted with another element; Etc.
 正極活物質は、前記第2のリチウム含有複合酸化物を1種類含有していてもよく、2種類以上含有していてもよい。 The positive electrode active material may contain one kind of the second lithium-containing composite oxide, or may contain two or more kinds.
 正極活物質に、前記第1のリチウム含有複合酸化物と前記第2のリチウム含有複合酸化物とを使用する場合、前記第2のリチウム含有複合酸化物としてLiCoOを用いることが特に好ましい。 When using the first lithium-containing composite oxide and the second lithium-containing composite oxide as the positive electrode active material, it is particularly preferable to use LiCoO 2 as the second lithium-containing composite oxide.
 また、正極活物質に、前記第1のリチウム含有複合酸化物と前記第2のリチウム含有複合酸化物とを使用する場合、前記第1のリチウム含有複合酸化物の使用における効果を良好に確保する観点から、正極活物質の全量中における前記第1のリチウム含有複合酸化物の含有量は、10質量%以上とすることが好ましく、30質量%以上がより好ましい。また、本発明のリチウム二次電池の高温下での貯蔵特性および充放電サイクル特性の改善効果をより良好に達成するため、正極活物質の全量中における前記第1のリチウム含有複合酸化物の含有量は、80質量%以下とすることが好ましく、60質量%以下がより好ましい。 In addition, when the first lithium-containing composite oxide and the second lithium-containing composite oxide are used as the positive electrode active material, the effect of using the first lithium-containing composite oxide is ensured satisfactorily. From the viewpoint, the content of the first lithium-containing composite oxide in the total amount of the positive electrode active material is preferably 10% by mass or more, and more preferably 30% by mass or more. Further, in order to better achieve the effect of improving the storage characteristics and charge / discharge cycle characteristics at high temperatures of the lithium secondary battery of the present invention, the inclusion of the first lithium-containing composite oxide in the total amount of the positive electrode active material The amount is preferably 80% by mass or less, and more preferably 60% by mass or less.
 また、正極活物質に、前記第1のリチウム含有複合酸化物と前記第2のリチウム含有複合酸化物とを使用する場合、高容量且つ高温貯蔵下でも安定なリチウム二次電池を得るために、正極活物質の全量中の全リチウムに対する全ニッケルの全モル比率は、0.05~1.0であることが好ましい。 In addition, when using the first lithium-containing composite oxide and the second lithium-containing composite oxide as the positive electrode active material, in order to obtain a lithium secondary battery that has a high capacity and is stable even under high-temperature storage, The total molar ratio of total nickel to total lithium in the total amount of the positive electrode active material is preferably 0.05 to 1.0.
 正極活物質に、前記第1のリチウム含有複合酸化物と前記第2のリチウム含有複合酸化物とを使用する場合、正極活物質の全量中の全リチウムに対する全ニッケルの全モル比率Rは、下記式(3)により算出することができる。 When the first lithium-containing composite oxide and the second lithium-containing composite oxide are used as the positive electrode active material, the total molar ratio R of all nickel to the total lithium in the total amount of the positive electrode active material is It can be calculated by equation (3).
 R=ΣN×a/ΣL×a      (3)
 ここで、前記式(3)中、N:成分jに含まれるNiのモル組成比、a:成分jの混合質量比率、L:成分jに含まれるLiのモル組成比である。
R = ΣN j × a j / ΣL j × a j (3)
Here, in the formula (3), N j : molar composition ratio of Ni contained in the component j, a j : mixing mass ratio of the component j, L j : molar composition ratio of Li contained in the component j.
 例えば、前記第1のリチウム含有複合酸化物としてLiNi0.8Co0.1Mn0.1と、前記第2のリチウム含有複合酸化物としてLiCoOとを、質量比として1:1(すなわち、混合質量比率は第1のリチウム含有複合酸化物と第2のリチウム含有複合酸化物とも0.5)で併用する場合、全モル比率Rは以下の通りとなる。 For example, LiNi 0.8 Co 0.1 Mn 0.1 O 2 as the first lithium-containing composite oxide and LiCoO 2 as the second lithium-containing composite oxide may have a mass ratio of 1: 1 ( That is, when the mixed mass ratio is 0.5) for both the first lithium-containing composite oxide and the second lithium-containing composite oxide, the total molar ratio R is as follows.
 R=(0.8×0.5)/(1.0×0.5+1.0×0.5)=0.4 R = (0.8 × 0.5) / (1.0 × 0.5 + 1.0 × 0.5) = 0.4
 本発明で使用する、前記第1のリチウム含有複合酸化物および第2のリチウム含有酸化物の平均粒子径は、5~25μmであることが好ましく、特に好ましくは10~20μmである。これら粒子は一次粒子が凝集した二次凝集体であってもよく、その場合の平均粒子径は二次凝集体の平均粒子径を意味する。また、本明細書における各種粒子の平均粒子径は、例えば、堀場製作所製のレーザー散乱粒度分布計「LA-920」を用い、測定粒子を溶解しない媒体に、これらの微粒子を分散させて測定した平均粒子径D50%である。更に、BET法による比表面積は、リチウムイオンとの反応性を確保すること、電解液との副反応を抑制することなどの理由で、0.1~0.4m/gとすることが好ましい。BET法による比表面積は、例えば、窒素吸着法によるMountech社製の比表面積測定装置「Macsorb HM modele-1201」を用いて、測定することができる。 The average particle size of the first lithium-containing composite oxide and the second lithium-containing oxide used in the present invention is preferably 5 to 25 μm, particularly preferably 10 to 20 μm. These particles may be secondary aggregates in which primary particles are aggregated, and the average particle size in this case means the average particle size of the secondary aggregates. Further, the average particle diameter of various particles in the present specification was measured by, for example, using a laser scattering particle size distribution analyzer “LA-920” manufactured by Horiba, Ltd., dispersing these fine particles in a medium in which the measurement particles are not dissolved. The average particle diameter D is 50%. Furthermore, the specific surface area by the BET method is preferably 0.1 to 0.4 m 2 / g for reasons such as ensuring reactivity with lithium ions and suppressing side reactions with the electrolyte. . The specific surface area by the BET method can be measured, for example, using a specific surface area measuring device “Macsorb HM model-1201” manufactured by Mounttech using a nitrogen adsorption method.
 <正極合剤層のバインダ>
 本発明の第1のリチウム二次電池の正極に係る正極合剤層に用いるバインダとしては、電池内で化学的に安定なものであれば、熱可塑性樹脂、熱硬化性樹脂のいずれも使用できる。中でも、例えば、ポリフッ化ビニリデン(PVDF)と共にPVDF系ポリマー以外のテトラフルオロエチレン-ビニリデンフルオライド共重合体(以下、「P(TFE-VDF)」という。)を使用することが好ましい。このP(TFE-VDF)の作用によって、正極合剤層と集電体との密着性を適度に抑えることができる。
<Binder of positive electrode mixture layer>
As the binder used for the positive electrode mixture layer relating to the positive electrode of the first lithium secondary battery of the present invention, any thermoplastic resin or thermosetting resin can be used as long as it is chemically stable in the battery. . Among them, for example, it is preferable to use a tetrafluoroethylene-vinylidene fluoride copolymer (hereinafter referred to as “P (TFE-VDF)”) other than the PVDF polymer together with polyvinylidene fluoride (PVDF). By the action of P (TFE-VDF), the adhesion between the positive electrode mixture layer and the current collector can be moderately suppressed.
 また、正極合剤層のバインダには、PVDFおよびP(TFE-VDF)と共に、又は単独で、これら以外のバインダも使用することができる。このようなバインダとしては、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリヘキサフルオロプロピレン(PHFP)、スチレンブタジエンゴム、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、または、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸メチル共重合体およびそれら共重合体のNaイオン架橋体などが挙げられる。 In addition, as the binder of the positive electrode mixture layer, binders other than these can be used together with PVDF and P (TFE-VDF) or independently. Examples of such binders include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyhexafluoropropylene (PHFP), styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoro. Propylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), propylene-tetrafluoroethylene copolymer Polymer, ethylene-chlorotrifluoroethylene copolymer (ECTFE), or ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene-acrylic Methyl methacrylate copolymer, ethylene - methyl methacrylate copolymer and the like Na ion crosslinked product thereof copolymer.
 PVDFおよびP(TFE-VDF)と、それ以外の他のバインダを使用する場合、正極合剤層中における、これら他のバインダの使用量は、正極合剤層中の総バインダ量中、1質量%以下とすることが好ましい。 When PVDF and P (TFE-VDF) and other binders are used, the amount of these other binders used in the positive electrode mixture layer is 1 mass in the total amount of binder in the positive electrode mixture layer. % Or less is preferable.
 正極合剤層中のバインダの総含有量は、4質量%以下が好ましく、より好ましくは3質量%以下である。正極合剤層中のバインダ量が多すぎると、正極合剤層と集電体との密着性が高くなりすぎて、この正極を用いた巻回電極体の内周側において、正極合剤層に亀裂などの欠陥が生じやすくなる。 The total content of the binder in the positive electrode mixture layer is preferably 4% by mass or less, and more preferably 3% by mass or less. If the amount of the binder in the positive electrode mixture layer is too large, the adhesion between the positive electrode mixture layer and the current collector becomes too high, and the positive electrode mixture layer is formed on the inner peripheral side of the wound electrode body using this positive electrode. Defects such as cracks are likely to occur.
 また、正極の容量向上の観点からは、正極合剤層中のバインダ量を減らして、正極活物質の含有量を高めることが好ましいが、正極合剤層中のバインダ量が少なすぎると、正極合剤層の柔軟性が低下して、この正極を用いた巻回電極体の形状(特に外周側の形状)が悪化し、正極の生産性、更にはこれを用いた電池の生産性が損なわれる虞がある。よって、正極合剤層中のバインダの総含有量は、1質量%以上が好ましく、より好ましくは1.4質量%以上である。 Further, from the viewpoint of improving the capacity of the positive electrode, it is preferable to increase the content of the positive electrode active material by reducing the amount of the binder in the positive electrode mixture layer, but if the amount of the binder in the positive electrode mixture layer is too small, The flexibility of the mixture layer is lowered, the shape of the wound electrode body using this positive electrode (especially the shape on the outer peripheral side) is deteriorated, and the productivity of the positive electrode and further the productivity of the battery using this are impaired. There is a risk that. Therefore, the total content of the binder in the positive electrode mixture layer is preferably 1% by mass or more, and more preferably 1.4% by mass or more.
 また、正極合剤層においては、PVDFとP(TFE-VDF)との合計を100質量%としたとき、P(TFE-VDF)の割合を、10質量%以上、好ましくは20質量%以上とすることができる。これにより、Niの割合が大きなリチウム含有複合酸化物とPVDFとを含有する正極合剤層としても、集電体との密着性を適度に抑えることが可能となる。 In the positive electrode mixture layer, when the total of PVDF and P (TFE-VDF) is 100% by mass, the ratio of P (TFE-VDF) is 10% by mass or more, preferably 20% by mass or more. can do. Thereby, even as a positive electrode mixture layer containing a lithium-containing composite oxide having a large Ni ratio and PVDF, it is possible to moderately suppress the adhesion with the current collector.
 但し、PVDFとP(TFE-VDF)との合計中におけるP(TFE-VDF)量が多すぎると、電極密着強度が低下し、電池抵抗を増大させ、電池の負荷特性を低下させる原因となることがある。よって、正極合剤層におけるPVDFとP(TFE-VDF)との合計を100質量%としたとき、P(TFE-VDF)の割合を、30質量%以下とすることが好ましい。 However, if the amount of P (TFE-VDF) in the sum of PVDF and P (TFE-VDF) is too large, the electrode adhesion strength is reduced, battery resistance is increased, and the load characteristics of the battery are reduced. Sometimes. Therefore, when the total of PVDF and P (TFE-VDF) in the positive electrode mixture layer is 100% by mass, the ratio of P (TFE-VDF) is preferably 30% by mass or less.
 <正極合剤層の導電助剤>
 本発明の第1のリチウム二次電池の正極に係る正極合剤層に用いる導電助剤としては、電池内で化学的に安定なものであればよい。例えば、天然黒鉛、人造黒鉛などのグラファイト;アセチレンブラック、ケッチェンブラック(商品名)、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック;炭素繊維、金属繊維などの導電性繊維;アルミニウム粉などの金属粉末;フッ化炭素;酸化亜鉛;チタン酸カリウムなどからなる導電性ウィスカー;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの有機導電性材料;などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。これらの中でも、導電性の高いグラファイトと、吸液性に優れたカーボンブラックが好ましい。また、導電助剤の形態としては、一次粒子に限定されず、二次凝集体や、チェーンストラクチャーなどの集合体の形態のものも用いることができる。このような集合体の方が、取り扱いが容易であり、生産性が良好となる。
<Conductive aid for positive electrode mixture layer>
As a conductive support agent used for the positive mix layer concerning the positive electrode of the 1st lithium secondary battery of this invention, what is chemically stable should just be in a battery. For example, graphite such as natural graphite and artificial graphite; carbon black such as acetylene black, ketjen black (trade name), channel black, furnace black, lamp black and thermal black; conductive fibers such as carbon fiber and metal fiber; aluminum Metallic powders such as powders; Fluorinated carbon; Zinc oxide; Conductive whiskers made of potassium titanate; Conductive metal oxides such as titanium oxide; Organic conductive materials such as polyphenylene derivatives; One species may be used alone, or two or more species may be used in combination. Among these, highly conductive graphite and carbon black excellent in liquid absorption are preferable. Further, the form of the conductive auxiliary agent is not limited to primary particles, and secondary aggregates and aggregated forms such as chain structures can also be used. Such an assembly is easier to handle and has better productivity.
 その中でも、平均繊維長が10nm以上1000nm未満であり、且つ平均繊維径が1nm以上100nm以下の炭素繊維を、0.25質量%以上1.5質量%以下の量で含有していると好ましい。平均繊維長が10nm以上1000nm未満であり、かつ平均繊維径が1nm以上100nm以下の炭素繊維を、正極合剤層中に0.25質量%以上1.5質量%以下となる量で使用することで、例えば、正極合剤層の高密度化が可能となり、電池の高容量化に繋がる。その理由の詳細は不明であるが、前記サイズの炭素繊維は、正極合剤層中で良好に分散しやすく、また、繊維長の短いものを多く含むことから、正極活物質粒子同士の距離が短くなり、正極合剤層内の各成分が良好に充填できるようになるためと考えられる。更に、導電助剤である炭素繊維の分散が良好になることで、正極合剤層での反応が全体にわたって平均化するため、実際に反応に関与する正極合剤層の面積が大きくなって負荷特性が向上し、更に、正極合剤層の局所的な反応が抑えられて、充放電を繰り返した際の正極の劣化が抑制されるため、充放電サイクル特性も向上すると考えられる。 Among them, it is preferable that carbon fibers having an average fiber length of 10 nm or more and less than 1000 nm and an average fiber diameter of 1 nm or more and 100 nm or less are contained in an amount of 0.25 mass% or more and 1.5 mass% or less. Use carbon fibers having an average fiber length of 10 nm or more and less than 1000 nm and an average fiber diameter of 1 nm or more and 100 nm or less in an amount of 0.25 mass% or more and 1.5 mass% or less in the positive electrode mixture layer. Thus, for example, it is possible to increase the density of the positive electrode mixture layer, leading to an increase in battery capacity. Although the details of the reason are unclear, the carbon fibers of the size are easily dispersed well in the positive electrode mixture layer, and since many carbon fibers having a short fiber length are included, the distance between the positive electrode active material particles is small. This is considered to be because the components in the positive electrode mixture layer become shorter and can be filled satisfactorily. Furthermore, since the dispersion of the carbon fiber, which is a conductive auxiliary agent, becomes better, the reaction in the positive electrode mixture layer is averaged over the entire area, so that the area of the positive electrode mixture layer actually involved in the reaction becomes larger and the load is increased. The characteristics are improved, and further, the local reaction of the positive electrode mixture layer is suppressed, and the deterioration of the positive electrode when charging / discharging is repeated is suppressed. Therefore, it is considered that the charge / discharge cycle characteristics are also improved.
 前記炭素繊維の平均繊維長は、30nm以上であることが好ましく、また、500nm以下であることが好ましい。更に、前記炭素繊維の平均繊維径は、3nm以上であることが好ましく、また、50nm以下であることが好ましい。 The average fiber length of the carbon fibers is preferably 30 nm or more, and preferably 500 nm or less. Furthermore, the average fiber diameter of the carbon fiber is preferably 3 nm or more, and preferably 50 nm or less.
 本明細書でいう前記炭素繊維の平均繊維長および平均繊維径は、透過型電子顕微鏡(TEM、例えば日本電子社製の「JEMシリーズ」、日立製作所製の「H-700H」など)により、加速電圧を100kVまたは200kVとして、撮影したTEM像から測定されるものである。平均繊維長を見る場合には20,000~40,000倍率にて、平均繊維径を見る場合には200,000~400,000倍率にて、100本のサンプルについてTEM像を撮影し、日本工業規格(JIS)の1級に認定された金尺で1本ずつ長さと径を測定し、その測定値を平均化したものを平均繊維長および平均繊維径とする。 The average fiber length and average fiber diameter of the carbon fiber referred to in this specification are accelerated by a transmission electron microscope (TEM, for example, “JEM series” manufactured by JEOL Ltd., “H-700H” manufactured by Hitachi, Ltd.), etc. The voltage is 100 kV or 200 kV and is measured from the photographed TEM image. When viewing the average fiber length, TEM images of 100 samples were taken at 20,000 to 40,000 magnification, and when viewing the average fiber diameter at 200,000 to 400,000 magnification. The length and diameter are measured one by one with a metal scale certified to the first grade of the industry standard (JIS), and the average of the measured values is taken as the average fiber length and average fiber diameter.
 また、正極合剤層には、平均繊維長が10nm以上1000nm未満であり、且つ平均繊維径が1nm以上100nm以下の炭素繊維以外の導電助剤(以下、「他の導電助剤」という場合がある。)を使用する、又は、前記炭素繊維と併用することができる。前記他の導電助剤としては、従来から知られているリチウム二次電池の正極に使用されている導電助剤、例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ-ボンブラック;平均繊維長が1nm未満または1000nm以上の炭素繊維、平均繊維径が1nm未満または100nmを超える炭素繊維;などの炭素材料などが挙げられる。 Further, in the positive electrode mixture layer, a conductive auxiliary other than carbon fibers having an average fiber length of 10 nm or more and less than 1000 nm and an average fiber diameter of 1 nm or more and 100 nm or less (hereinafter, referred to as “other conductive assistant”). Can be used in combination with the carbon fiber. Examples of the other conductive assistants include conductive assistants used for positive electrodes of lithium secondary batteries that are conventionally known, such as natural graphite (such as flake graphite) and graphite such as artificial graphite; acetylene black, Carbon black such as ketjen black, channel black, furnace black, lamp black, thermal black; carbon fiber having an average fiber length of less than 1 nm or 1000 nm or more, carbon fiber having an average fiber diameter of less than 1 nm or more than 100 nm; Examples thereof include carbon materials.
 特に、前記のグラファイトを、平均繊維長が10nm以上1000nm未満であり、且つ平均繊維径が1nm以上100nm以下の炭素繊維と併用することが好ましく、この場合には、正極合剤層中における前記炭素繊維の分散性がより良好になり、本実施形態の正極を用いたリチウム二次電池の負荷特性や充放電サイクル特性を更に高めることが可能となる。 In particular, the graphite is preferably used in combination with carbon fibers having an average fiber length of 10 nm or more and less than 1000 nm and an average fiber diameter of 1 nm or more and 100 nm or less. In this case, the carbon in the positive electrode mixture layer is used. The dispersibility of the fibers becomes better, and the load characteristics and charge / discharge cycle characteristics of the lithium secondary battery using the positive electrode of the present embodiment can be further improved.
 前記炭素繊維とグラファイトとを併用する場合、正極合剤層における前記炭素繊維の含有量とグラファイトの含有量との合計を100質量%としたときに、グラファイトの含有量を25質量%以上とすることが好ましく、これにより前記炭素繊維とグラファイトとを併用することによる前記の効果がより良好に確保できるようになる。但し、正極合剤層における前記炭素繊維とグラファイトとの合計中におけるグラファイトの量を多くしすぎると、正極合剤層中の導電助剤量が多くなりすぎて、正極活物質の充填量が低下し、高容量化効果が小さくなる虞がある。よって、正極合剤層における前記炭素繊維の含有量とグラファイトの含有量との合計を100質量%としたときに、グラファイトの含有量を87.5質量%以下とすることが好ましい。 When the carbon fiber and graphite are used in combination, when the total of the carbon fiber content and the graphite content in the positive electrode mixture layer is 100% by mass, the graphite content is 25% by mass or more. It is preferable that the above-mentioned effects can be ensured more favorably by using the carbon fiber and graphite together. However, if the amount of graphite in the total of the carbon fiber and graphite in the positive electrode mixture layer is excessively increased, the amount of the conductive auxiliary agent in the positive electrode mixture layer is excessively increased and the filling amount of the positive electrode active material is decreased. However, the effect of increasing the capacity may be reduced. Therefore, when the total of the carbon fiber content and the graphite content in the positive electrode mixture layer is 100% by mass, the graphite content is preferably 87.5% by mass or less.
 また、正極合剤層に係る導電助剤として、2種以上を併用する場合にも、正極合剤層中における前記炭素繊維と前記他の導電助剤との合計を100質量%としたときに、前記他の導電助剤の含有量を25~87.5質量%とすることが好ましい。 Moreover, also when using 2 or more types together as a conductive support agent which concerns on a positive mix layer, when the sum total of the said carbon fiber and said other conductive support agent in a positive mix layer is 100 mass% The content of the other conductive aid is preferably 25 to 87.5% by mass.
 <正極の集電体>
 本発明の第1のリチウム二次電池の正極に用いる集電体としては、従来から知られているリチウム二次電池の正極に使用されているものと同様のものが使用でき、例えば、厚みが10~30μmのアルミニウム箔が好ましい。
<Current collector of positive electrode>
The current collector used for the positive electrode of the first lithium secondary battery of the present invention can be the same as that used for the positive electrode of a conventionally known lithium secondary battery. A 10-30 μm aluminum foil is preferred.
 <正極の製造方法>
 前記正極は、例えば、前述した正極活物質、バインダおよび導電助剤を、N-メチル-2-ピロリドン(NMP)などの溶剤に分散させたペースト状やスラリー状の正極合剤含有組成物を調製し(但し、バインダは溶剤に溶解していてもよい。)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダ処理を施す工程を経て製造することができる。正極の製造方法は、前記の方法に制限されるわけではなく、他の製造方法で製造することもできる。
<Method for producing positive electrode>
For the positive electrode, for example, a positive electrode mixture-containing composition in the form of a paste or slurry in which the positive electrode active material, binder and conductive additive described above are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) is prepared. (However, the binder may be dissolved in a solvent.) After applying this to one or both sides of the current collector and drying, it can be produced through a process of calendering if necessary. . The manufacturing method of a positive electrode is not necessarily restricted to the said method, It can also manufacture with another manufacturing method.
 <正極合剤層>
 正極合剤層の組成としては、例えば、正極活物質の量が60~95質量%であることが好ましく、バインダの量が1~15質量%であることが好ましく、導電助剤の量が3~20質量%であることが好ましい。
<Positive electrode mixture layer>
As the composition of the positive electrode mixture layer, for example, the amount of the positive electrode active material is preferably 60 to 95% by mass, the amount of the binder is preferably 1 to 15% by mass, and the amount of the conductive auxiliary agent is 3%. It is preferably ˜20% by mass.
 また、カレンダ処理後において、正極合剤層の厚みは、集電体の片面あたり、15~200μmであることが好ましい。更に、カレンダ処理後において、正極合剤層の密度は、3.2g/cm以上であることが好ましく、3.6g/cm以上であることがより好ましい。このような高密度の正極合剤層を有する正極とすることで、より高容量化を図ることができる。但し、正極合剤層の密度が大きすぎると、空孔率が小さくなって、非水電解質の浸透性が低下する虞があることから、プレス処理後における正極合剤層の密度は、4.2g/cm以下であることが好ましい。また、カレンダ処理としては、例えば、1~30kN/cm程度の線圧でロールプレスすることができ、このような処理によって、前記の密度を有する正極合剤層とすることができる。 Further, after the calendar treatment, the thickness of the positive electrode mixture layer is preferably 15 to 200 μm per one side of the current collector. Furthermore, after the calendar treatment, the density of the positive electrode mixture layer is preferably 3.2 g / cm 3 or more, and more preferably 3.6 g / cm 3 or more. By using a positive electrode having such a high-density positive electrode mixture layer, higher capacity can be achieved. However, if the density of the positive electrode mixture layer is too large, the porosity becomes small and the permeability of the non-aqueous electrolyte may be reduced. It is preferably 2 g / cm 3 or less. As the calendering process, for example, roll pressing can be performed at a linear pressure of about 1 to 30 kN / cm. By such a process, the positive electrode mixture layer having the above density can be obtained.
 また、本明細書でいう正極合剤層の密度は、以下の方法により測定される値である。正極を所定面積に切り取り、その質量を最小目盛0.1mgの電子天秤を用いて測定し、集電体の質量を差し引いて正極合剤層の質量を算出する。一方、正極の全厚を最小目盛1μmのマイクロメーターで10点測定し、これらの測定値から集電体の厚みを差し引いた値の平均値と、その面積とから、正極合剤層の体積を算出する。そして、前記正極合剤層の質量を前記体積で割ることにより正極合剤層の密度を算出する。 Further, the density of the positive electrode mixture layer referred to in the present specification is a value measured by the following method. The positive electrode is cut into a predetermined area, its mass is measured using an electronic balance with a minimum scale of 0.1 mg, and the mass of the current collector is subtracted to calculate the mass of the positive electrode mixture layer. On the other hand, the total thickness of the positive electrode was measured at 10 points with a micrometer having a minimum scale of 1 μm, and the volume of the positive electrode mixture layer was determined from the average value obtained by subtracting the thickness of the current collector from these measured values and the area. calculate. Then, the density of the positive electrode mixture layer is calculated by dividing the mass of the positive electrode mixture layer by the volume.
 〔負極〕
 本発明のリチウム二次電池に係る負極には、例えば、負極活物質、バインダおよび必要に応じて導電助剤などを含む負極合剤層を、集電体の片面または両面に有する構造のものが使用できる。
[Negative electrode]
The negative electrode according to the lithium secondary battery of the present invention has, for example, a structure having a negative electrode mixture layer containing a negative electrode active material, a binder, and a conductive auxiliary agent, if necessary, on one side or both sides of a current collector. Can be used.
 <負極活物質>
 本発明の第1のリチウム二次電池の負極に用いる負極活物質には、従来から知られているリチウム二次電池に用いられている負極活物質、すなわち、リチウムイオンを吸蔵・放出可能な材料であれば特に制限はない。例えば、グラファイト、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムイオンを吸蔵・放出可能な炭素系材料の1種または2種以上の混合物が負極活物質として用いられる。また、シリコン(Si)、スズ(Sn)、ゲルマニウム(Ge)、ビスマス(Bi)、アンチモン(Sb)、インジウム(In)などの元素およびその合金、リチウム含有窒化物またはリチウム含有酸化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。中でも、負極活物質としては、シリコンと酸素とを構成元素に含むSiOで表される材料、SiOと炭素材料との複合体、およびSiOと黒鉛質炭素材料との併用が好ましい。
<Negative electrode active material>
The negative electrode active material used for the negative electrode of the first lithium secondary battery of the present invention includes a negative electrode active material conventionally used for lithium secondary batteries, that is, a material capable of inserting and extracting lithium ions. If there is no restriction in particular. For example, carbon-based materials that can occlude and release lithium ions, such as graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers. One kind or a mixture of two or more kinds is used as the negative electrode active material. In addition, elements such as silicon (Si), tin (Sn), germanium (Ge), bismuth (Bi), antimony (Sb), indium (In), and alloys thereof, lithium such as lithium-containing nitride or lithium-containing oxide A compound that can be charged and discharged at a low voltage close to that of a metal, or a lithium metal or lithium / aluminum alloy can also be used as the negative electrode active material. Specially, as the anode active material, a material represented by SiO x containing the constituent elements silicon and oxygen, a complex with SiO x and the carbon material, and in combination with SiO x and the graphitic carbon material is preferred.
 SiOは、Siの微結晶または非晶質相を含んでいてもよく、この場合、SiとOの原子比は、Siの微結晶または非晶質相のSiを含めた比率となる。すなわち、SiOには、非晶質のSiOマトリックス中に、Si(例えば、微結晶Si)が分散した構造のものが含まれ、この非晶質のSiOと、その中に分散しているSiを合わせて、前記の原子比xが0.5≦x≦1.5を満足していればよい。例えば、非晶質のSiOマトリックス中に、Siが分散した構造で、SiOとSiのモル比が1:1の材料の場合、x=1であるので、構造式としてはSiOで表記される。このような構造の材料の場合、例えば、X線回折分析では、Si(微結晶Si)の存在に起因するピークが観察されない場合もあるが、透過型電子顕微鏡で観察すると、微細なSiの存在が確認できる。 The SiO x may contain Si microcrystal or amorphous phase. In this case, the atomic ratio of Si and O is a ratio including Si microcrystal or amorphous phase Si. That is, SiO x includes a structure in which Si (for example, microcrystalline Si) is dispersed in an amorphous SiO 2 matrix, and this amorphous SiO 2 is dispersed in the SiO 2 matrix. It is sufficient that the atomic ratio x satisfies 0.5 ≦ x ≦ 1.5 in combination with Si. For example, in the case of a material in which Si is dispersed in an amorphous SiO 2 matrix and the material has a molar ratio of SiO 2 to Si of 1: 1, x = 1, so that the structural formula is represented by SiO. The In the case of a material having such a structure, for example, in X-ray diffraction analysis, a peak due to the presence of Si (microcrystalline Si) may not be observed, but when observed with a transmission electron microscope, the presence of fine Si Can be confirmed.
 そして、SiOは、炭素材料と複合化した複合体であることが好ましく、例えば、SiOの表面が炭素材料で被覆されていることが望ましい。通常、SiOは導電性が乏しいため、これを負極活物質として用いる際には、良好な電池特性確保の観点から、導電性材料(導電助剤)を使用し、負極内におけるSiOと導電性材料との混合・分散を良好にして、優れた導電ネットワークを形成する必要がある。SiOを炭素材料と複合化した複合体であれば、例えば、単にSiOと炭素材料などの導電性材料とを混合して得られた材料を用いた場合よりも、負極における導電ネットワークが良好に形成される。 Then, SiO x is preferably a complex complexed with carbon materials, for example, it is desirable that the surface of the SiO x is coated with a carbon material. Usually, since SiO x has poor conductivity, when using it as a negative electrode active material, from the viewpoint of ensuring good battery characteristics, a conductive material (conductive aid) is used, and SiO x in the negative electrode is electrically conductive. It is necessary to form an excellent conductive network by making good mixing and dispersion with the conductive material. If complexes complexed with carbon material SiO x, for example, simply than with a material obtained by mixing a conductive material such as SiO x and the carbon material, good conductive network in the negative electrode Formed.
 すなわち、SiOの比抵抗値は、通常、10~10kΩcmであるのに対して、前記例示の炭素材料の比抵抗値は、通常、10-5~10kΩcmである。また、SiOと炭素材料との複合体は、粒子表面の炭素材料被覆層を覆う材料層(難黒鉛化炭素を含む材料層)を更に有していてもよい。 That is, the specific resistance value of SiO x is usually 10 3 to 10 7 kΩcm, whereas the specific resistance value of the carbon material exemplified above is usually 10 −5 to 10 kΩcm. The composite of SiO x and the carbon material may further have a material layer (a material layer containing non-graphitizable carbon) that covers the carbon material coating layer on the particle surface.
 SiOと炭素材料との複合体としては、前記のように、SiOの表面を炭素材料で被覆したものの他、SiOと炭素材料との造粒体などが挙げられる。 The complex of the SiO x and the carbon material, as described above, other although the surface of the SiO x coated with carbon material, such as granules of SiO x and the carbon material can be cited.
 また、前記の、SiOの表面を炭素材料で被覆した複合体を、更に導電性材料(炭素材料など)と複合化して用いることで、負極において更に良好な導電ネットワークの形成が可能となるため、より高容量で、より電池特性(例えば、充放電サイクル特性)に優れたリチウム二次電池の実現が可能となる。炭素材料で被覆されたSiOと炭素材料との複合体としては、例えば、炭素材料で被覆されたSiOと炭素材料との混合物を更に造粒した造粒体などが挙げられる。 In addition, since the composite in which the surface of SiO x is coated with a carbon material is further combined with a conductive material (carbon material or the like), a better conductive network can be formed in the negative electrode. Therefore, it is possible to realize a lithium secondary battery with higher capacity and more excellent battery characteristics (for example, charge / discharge cycle characteristics). The complex of the SiO x and the carbon material coated with a carbon material, for example, like granules the mixture was further granulated with SiO x and the carbon material coated with a carbon material.
 また、表面が炭素材料で被覆されたSiOとしては、SiOとそれよりも比抵抗値が小さい炭素材料との複合体(例えば造粒体)の表面が、更に炭素材料で被覆されてなるものも、好ましく用いることができる。前記造粒体内部でSiOと炭素材料とが分散した状態であると、より良好な導電ネットワークを形成できるため、SiOを負極活物質として含有する負極を有する非水二次電池において、重負荷放電特性などの電池特性を更に向上させることができる。 Further, as SiO x whose surface is coated with a carbon material, the surface of a composite (for example, a granulated body) of SiO x and a carbon material having a smaller specific resistance value is further coated with a carbon material. Those can also be preferably used. In the non-aqueous secondary battery having a negative electrode containing SiO x as a negative electrode active material, it is possible to form a better conductive network when SiO x and the carbon material are dispersed inside the granule. Battery characteristics such as load discharge characteristics can be further improved.
 SiOとの複合体の形成に用い得る前記炭素材料としては、例えば、低結晶性炭素、カーボンナノチューブ、気相成長炭素繊維などの炭素材料が好ましいものとして挙げられる。 Preferred examples of the carbon material that can be used to form a composite with SiO x include carbon materials such as low crystalline carbon, carbon nanotubes, and vapor grown carbon fibers.
 前記炭素材料の詳細としては、繊維状またはコイル状の炭素材料、カーボンブラック(アセチレンブラック、ケッチェンブラックを含む)、人造黒鉛、易黒鉛化炭素および難黒鉛化炭素よりなる群から選ばれる少なくとも1種の材料が好ましい。繊維状またはコイル状の炭素材料は、導電ネットワークを形成し易く、且つ表面積の大きい点において好ましい。カーボンブラック(アセチレンブラック、ケッチェンブラックを含む。)、易黒鉛化炭素および難黒鉛化炭素は、高い電気伝導性、高い保液性を有しており、更に、SiO粒子が膨張収縮しても、その粒子との接触を保持し易い性質を有している点において好ましい。 The details of the carbon material include at least one selected from the group consisting of fibrous or coiled carbon materials, carbon black (including acetylene black and ketjen black), artificial graphite, graphitizable carbon, and non-graphitizable carbon. A seed material is preferred. A fibrous or coiled carbon material is preferable in that it easily forms a conductive network and has a large surface area. Carbon black (including acetylene black and ketjen black), graphitizable carbon, and non-graphitizable carbon have high electrical conductivity and high liquid retention, and further, SiO x particles expand and contract. Is preferable in that it has a property of easily maintaining contact with the particles.
 前記例示の炭素材料の中でも、SiOとの複合体が造粒体である場合に用いるものとしては、繊維状の炭素材料が特に好ましい。繊維状の炭素材料は、その形状が細い糸状であり柔軟性が高いために電池の充放電に伴うSiOの膨張・収縮に追従でき、また、嵩密度が大きいために、SiO粒子と多くの接合点を持つことができるからである。繊維状の炭素としては、例えば、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、カーボンナノチューブなどが挙げられ、これらの何れを用いてもよい。繊維状の炭素材料は、例えば、気相法にてSiO粒子の表面に形成することもできる。 Among the carbon materials exemplified above, a fibrous carbon material is particularly preferable for use when the composite with SiO x is a granulated body. The fibrous carbon material has a thin thread shape and high flexibility so that it can follow the expansion and contraction of SiO x that accompanies charging / discharging of the battery, and because of its large bulk density, it has a large amount of SiO x particles. It is because it can have the following junction point. Examples of the fibrous carbon include polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, and carbon nanotube, and any of these may be used. The fibrous carbon material can be formed on the surface of the SiO x particles by, for example, a vapor phase method.
 負極にSiOと炭素材料との複合体を使用する場合、SiOと炭素材料との比率は、炭素材料との複合化による作用を良好に発揮させる観点から、SiO:100質量部に対して、炭素材料が、5質量部以上であることが好ましく、10質量部以上であることがより好ましい。また、前記複合体において、SiOと複合化する炭素材料の比率が多すぎると、負極合剤層中のSiO量の低下に繋がり、高容量化の効果が小さくなる虞があることから、SiO:100質量部に対して、炭素材料は、50質量部以下であることが好ましく、40質量部以下であることがより好ましい。 When a composite of SiO x and a carbon material is used for the negative electrode, the ratio of SiO x and the carbon material is based on SiO x : 100 parts by mass from the viewpoint of satisfactorily exerting the effect of the composite with the carbon material. The carbon material is preferably 5 parts by mass or more, and more preferably 10 parts by mass or more. Further, in the composite, if the ratio of the carbon material to be combined with SiO x is too large, it may lead to a decrease in the amount of SiO x in the negative electrode mixture layer, and the effect of increasing the capacity may be reduced. SiO x: relative to 100 parts by weight, the carbon material, and more preferably preferably not more than 50 parts by weight, more than 40 parts by weight.
 前記のSiOと炭素材料との複合体は、例えば下記の方法によって得ることができる。 The composite of the SiO x and the carbon material can be obtained, for example, by the following method.
 先ず、SiOを複合化する場合の作製方法について説明する。SiOが分散媒に分散した分散液を用意し、それを噴霧し乾燥して、複数の粒子を含む複合粒子を作製する。分散媒としては、例えば、エタノールなどを用いることができる。分散液の噴霧は、通常、50~300℃の雰囲気内で行うことが適当である。前記の方法以外にも、振動型や遊星型のボールミルやロッドミルなどを用いた機械的な方法による造粒方法においても、同様の複合粒子を作製することができる。 First, a manufacturing method in the case of combining SiO x will be described. A dispersion liquid in which SiO x is dispersed in a dispersion medium is prepared, and sprayed and dried to produce composite particles including a plurality of particles. For example, ethanol or the like can be used as the dispersion medium. It is appropriate to spray the dispersion liquid in an atmosphere of 50 to 300 ° C. In addition to the above method, similar composite particles can be produced also by a granulation method by a mechanical method using a vibration type or planetary type ball mill or rod mill.
 SiOと、SiOよりも比抵抗値の小さい炭素材料との造粒体を作製する場合には、SiOが分散媒に分散した分散液中に前記炭素材料を添加し、この分散液を用いて、SiOを複合化する場合と同様の手法によって複合粒子(造粒体)とすればよい。また、前記と同様の機械的な方法による造粒方法によっても、SiOと炭素材料との造粒体を作製することができる。 In the case of producing a granulated body of SiO x and a carbon material having a specific resistance value smaller than that of SiO x , the carbon material is added to a dispersion in which SiO x is dispersed in a dispersion medium, and the dispersion is The composite particles (granulated body) may be obtained by the same method as that used when combining SiO x . Further, by granulation process according to the similar mechanical method, it is possible to produce a granular material of the SiO x and the carbon material.
 次に、SiO粒子(SiO複合粒子、またはSiOと炭素材料との造粒体)の表面を炭素材料で被覆して複合体とする場合には、例えば、SiO粒子と炭化水素系ガスとを気相中にて加熱して、炭化水素系ガスの熱分解により生じた炭素を、粒子の表面上に堆積させる。このように、気相成長(CVD)法によれば、炭化水素系ガスが複合粒子の隅々にまで行き渡り、粒子の表面や表面の空孔内に、導電性を有する炭素材料を含む薄くて均一な皮膜(炭素材料被覆層)を形成できることから、少量の炭素材料によってSiO粒子に均一性よく導電性を付与できる。 Next, when the surface of SiO x particles (SiO x composite particles or a granulated body of SiO x and a carbon material) is coated with a carbon material to form a composite, for example, the SiO x particles and the hydrocarbon-based material The gas is heated in the gas phase, and carbon generated by pyrolysis of the hydrocarbon-based gas is deposited on the surface of the particles. As described above, according to the vapor deposition (CVD) method, the hydrocarbon-based gas spreads to every corner of the composite particle, and the surface of the particle and the pores in the surface are thin and contain a conductive carbon material. Since a uniform film (carbon material coating layer) can be formed, the SiO x particles can be imparted with good conductivity with a small amount of carbon material.
 炭素材料で被覆されたSiOの製造において、気相成長(CVD)法の処理温度(雰囲気温度)については、炭化水素系ガスの種類によっても異なるが、通常、600~1200℃が適当であり、中でも、700℃以上であることが好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、且つ導電性の高い炭素を含む被覆層を形成できるからである。 In the production of SiO x coated with a carbon material, the processing temperature (atmosphere temperature) of the vapor deposition (CVD) method varies depending on the type of hydrocarbon gas, but usually 600 to 1200 ° C. is appropriate. Among these, the temperature is preferably 700 ° C. or higher, and more preferably 800 ° C. or higher. This is because the higher the treatment temperature, the fewer impurities remain and the formation of a coating layer containing carbon having high conductivity.
 炭化水素系ガスの液体ソースとしては、トルエン、ベンゼン、キシレン、メシチレンなどを用いることができるが、取り扱い易いトルエンが特に好ましい。これらを気化させる(例えば、窒素ガスでバブリングする)ことにより炭化水素系ガスを得ることができる。また、メタンガスやアセチレンガスなどを用いることもできる。 As the liquid source of the hydrocarbon-based gas, toluene, benzene, xylene, mesitylene and the like can be used, but toluene that is easy to handle is particularly preferable. A hydrocarbon-based gas can be obtained by vaporizing them (for example, bubbling with nitrogen gas). Moreover, methane gas, acetylene gas, etc. can also be used.
 また、気相成長(CVD)法にてSiO粒子(SiO複合粒子、またはSiOと炭素材料との造粒体)の表面を炭素材料で覆った後に、石油系ピッチ、石炭系のピッチ、熱硬化性樹脂、およびナフタレンスルホン酸塩とアルデヒド類との縮合物よりなる群から選択される少なくとも1種の有機化合物を、炭素材料を含む被覆層に付着させた後、前記有機化合物が付着した粒子を焼成してもよい。 In addition, after the surface of SiO x particles (SiO x composite particles or a granulated body of SiO x and a carbon material) is covered with a carbon material by a vapor deposition (CVD) method, a petroleum-based pitch or a coal-based pitch is used. At least one organic compound selected from the group consisting of a thermosetting resin and a condensate of naphthalene sulfonate and aldehydes is attached to a coating layer containing a carbon material, and then the organic compound is attached. The obtained particles may be fired.
 具体的には、炭素材料で被覆されたSiO粒子(SiO複合粒子、またはSiOと炭素材料との造粒体)と、前記有機化合物とが分散媒に分散した分散液を用意し、この分散液を噴霧し乾燥して、有機化合物によって被覆された粒子を形成し、その有機化合物によって被覆された粒子を焼成する。 Specifically, a dispersion liquid in which a SiO x particle (SiO x composite particle or a granulated body of SiO x and a carbon material) coated with a carbon material and the organic compound are dispersed in a dispersion medium is prepared, The dispersion is sprayed and dried to form particles coated with the organic compound, and the particles coated with the organic compound are fired.
 前記ピッチとしては等方性ピッチを、熱硬化性樹脂としてはフェノール樹脂、フラン樹脂、フルフラール樹脂などを用いることができる。ナフタレンスルホン酸塩とアルデヒド類との縮合物としては、ナフタレンスルホン酸ホルムアルデヒド縮合物を用いることができる。 Isotropic pitch can be used as the pitch, and phenol resin, furan resin, furfural resin, or the like can be used as the thermosetting resin. As the condensate of naphthalene sulfonate and aldehydes, naphthalene sulfonic acid formaldehyde condensate can be used.
 炭素材料で被覆されたSiO粒子と前記有機化合物とを分散させるための分散媒としては、例えば、水、アルコール類(エタノールなど)を用いることができる。分散液の噴霧は、通常、50~300℃の雰囲気内で行うことが適当である。焼成温度は、通常、600~1200℃が適当であるが、中でも700℃以上が好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、且つ導電性の高い良質な炭素材料を含む被覆層を形成できるからである。但し、処理温度はSiOの融点以下であることを要する。 As a dispersion medium for dispersing the SiO x particles coated with the carbon material and the organic compound, for example, water or alcohols (ethanol or the like) can be used. It is appropriate to spray the dispersion liquid in an atmosphere of 50 to 300 ° C. The firing temperature is usually 600 to 1200 ° C., preferably 700 ° C. or higher, and more preferably 800 ° C. or higher. This is because the higher the treatment temperature, the fewer impurities remain and the formation of a coating layer containing a high-quality carbon material with high conductivity. However, the processing temperature needs to be lower than the melting point of SiO x .
 前記負極活物質には、SiOと共に黒鉛質炭素材料を使用することが好ましい。黒鉛質炭素材料を使用して負極活物質中のSiOの比率を下げることで、SiOの減量による高容量化効果の低下を可及的に抑制しつつ、電池の充放電に伴う負極(負極合剤層)の体積変化を抑えて、かかる体積変化によって生じ得る電池特性の低下を抑制することが可能となる。 As the negative electrode active material, it is preferable to use a graphitic carbon material together with SiO x . By reducing the ratio of SiO x in the negative electrode active material using a graphitic carbon material, while suppressing the decrease in the effect of increasing the capacity due to the reduction in SiO x as much as possible, the negative electrode accompanying charging / discharging of the battery ( It is possible to suppress a change in volume of the negative electrode mixture layer) and suppress a decrease in battery characteristics that may be caused by the volume change.
 また、負極活物質としてSiOと併用される黒鉛質炭素材料を、SiOと炭素材料との複合体に係る炭素材料として使用することもできる。黒鉛質炭素材料も、カーボンブラックなどと同様に、高い電気伝導性、高い保液性を有しており、更に、SiO粒子が膨張・収縮しても、その粒子との接触を保持し易い性質を有しているため、SiOとの複合体形成に好ましく使用することができる。 Also, the graphitic carbon material used in combination with SiO x as the anode active material, it can also be used as a carbon material according to the complex of the SiO x and the carbon material. Graphite carbon material, like carbon black, has high electrical conductivity and high liquid retention, and even when SiO x particles expand and contract, it is easy to maintain contact with the particles. Since it has properties, it can be preferably used for forming a complex with SiO x .
 前記負極活物質として使用する黒鉛質炭素材料としては、例えば、鱗片状黒鉛などの天然黒鉛;熱分解炭素類、MCMB、炭素繊維などの易黒鉛化炭素を2800℃以上で黒鉛化処理した人造黒鉛;などが挙げられる。 Examples of the graphitic carbon material used as the negative electrode active material include artificial graphite obtained by graphitizing natural graphite such as scaly graphite; graphitizable carbon such as pyrolytic carbons, MCMB, and carbon fiber at 2800 ° C. or higher. And so on.
 前記負極においては、SiOを使用することによる高容量化の効果を良好に確保する観点から、負極活物質中におけるSiOと炭素材料との複合体の含有量が、0.01質量%以上であることが好ましく、1質量%以上であることがより好ましく、3質量%以上であることがより好ましい。また、充放電に伴うSiOの体積変化による問題をより良好に回避する観点から、負極活物質中におけるSiOと炭素材料との複合体の含有量が、20質量%以下であることが好ましく、15質量%以下であることがより好ましい。 Wherein the negative electrode, from the viewpoint of satisfactorily ensuring the effect of the high capacity by using a SiO x, the content of the complex of the SiO x and the carbon material in the anode active material is more than 0.01 wt% It is preferable that it is 1 mass% or more, and it is more preferable that it is 3 mass% or more. Further, from the viewpoint of better avoiding the problem due to the volume change of SiO x accompanying charge / discharge, the content of the composite of SiO x and carbon material in the negative electrode active material is preferably 20% by mass or less. More preferably, it is 15 mass% or less.
 <負極合剤層のバインダ>
 負極合剤層に使用するバインダとしては、例えば、でんぷん、ポリビニルアルコール、ポリアクリル酸、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロースなどの多糖類やそれらの変成体;ポリビニルクロリド、ポリビニルピロリドン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、ポリアミドイミド、ポリアミドなどの熱可塑性樹脂やそれらの変成体;ポリイミド;エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキシドなどのゴム状弾性を有するポリマーやそれらの変成体;などが挙げられ、これらの1種または2種以上を用いることができる。
<Binder of negative electrode mixture layer>
Examples of the binder used in the negative electrode mixture layer include starch, polyvinyl alcohol, polyacrylic acid, carboxymethylcellulose (CMC), hydroxypropylcellulose, regenerated cellulose, diacetylcellulose, and other polysaccharides and modified products thereof; polyvinylchloride, Thermoplastic resins such as polyvinylpyrrolidone, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, polyamideimide, polyamide, and their modified products; polyimide; ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene Rubber (SBR), butadiene rubber, polybutadiene, fluororubber, polyethylene oxide and other polymers having rubbery elasticity, and modified products thereof. May be used alone or two or more al.
 <負極合剤層の導電助剤>
 負極合剤層には、更に導電助剤として導電性材料を添加してもよい。このような導電性材料としては、電池内において化学変化を起こさないものであれば特に限定されず、例えば、カーボンブラック(サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック、アセチレンブラックなど)、炭素繊維、金属粉(銅、ニッケル、アルミニウム、銀などの粉末)、金属繊維、ポリフェニレン誘導体(特開昭59-20971号公報に記載のもの)などの材料を、1種または2種以上用いることができる。これらの中でも、カーボンブラックを用いることが好ましく、ケッチェンブラックやアセチレンブラックがより好ましい。
<Conductive aid for negative electrode mixture layer>
A conductive material may be further added to the negative electrode mixture layer as a conductive aid. Such a conductive material is not particularly limited as long as it does not cause a chemical change in the battery. For example, carbon black (thermal black, furnace black, channel black, ketjen black, acetylene black, etc.), carbon It is possible to use one or more materials such as fiber, metal powder (powder of copper, nickel, aluminum, silver, etc.), metal fiber, polyphenylene derivative (described in JP-A-59-20971). it can. Among these, carbon black is preferably used, and ketjen black and acetylene black are more preferable.
 導電助剤として使用する炭素繊維の粒径は、例えば、前述した平均繊維長の求め方と同様の方法により求められる平均粒径で、0.01μm以上であることが好ましく、0.02μm以上であることがより好ましく、また、10μm以下であることが好ましく、5μm以下であることがより好ましい。 The particle diameter of the carbon fiber used as the conductive additive is, for example, an average particle diameter determined by the same method as the method for determining the average fiber length described above, and is preferably 0.01 μm or more, and 0.02 μm or more. More preferably, it is preferably 10 μm or less, and more preferably 5 μm or less.
 <負極の集電体>
 負極に用いる集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、機械的強度を確保するために下限は5μmであることが望ましい。
<Negative electrode current collector>
As the current collector used for the negative electrode, a foil made of copper or nickel, a punching metal, a net, an expanded metal, or the like can be used, but a copper foil is usually used. In the negative electrode current collector, when the thickness of the entire negative electrode is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit is 5 μm in order to ensure mechanical strength. Is desirable.
 <負極の製造方法>
 負極は、例えば、前述した負極活物質およびバインダ、更には必要に応じて導電助剤を、N-メチル-2-ピロリドン(NMP)や水などの溶剤に分散させたペースト状やスラリー状の負極合剤含有組成物を調製し(但し、バインダは溶剤に溶解していてもよい。)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダ処理を施す工程を経て製造される。負極の製造方法は、前記の製法に制限されるわけではなく、他の製造方法で製造することもできる。
<Method for producing negative electrode>
The negative electrode is, for example, a paste-like or slurry-like negative electrode in which the above-described negative electrode active material and binder, and further, if necessary, a conductive additive are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) or water. A step of preparing a mixture-containing composition (however, the binder may be dissolved in a solvent), applying this to one or both sides of the current collector, drying, and then subjecting to a calender treatment if necessary It is manufactured through. The manufacturing method of a negative electrode is not necessarily restricted to the said manufacturing method, It can also manufacture with another manufacturing method.
 <負極合剤層>
 負極合剤層においては、負極活物質の総量を、80~99質量%とし、バインダの量を1~20質量%とすることが好ましい。また、別途導電助剤として導電性材料を使用する場合には、負極合剤層におけるこれらの導電性材料は、負極活物質の総量およびバインダ量が、前記の好適値を満足する範囲で使用することが好ましい。負極合剤層の厚みは、例えば、10~100μmであることが好ましい。
<Negative electrode mixture layer>
In the negative electrode mixture layer, the total amount of the negative electrode active material is preferably 80 to 99% by mass and the amount of the binder is preferably 1 to 20% by mass. In addition, when a conductive material is separately used as the conductive auxiliary agent, these conductive materials in the negative electrode mixture layer are used in a range in which the total amount of the negative electrode active material and the binder amount satisfy the above-described preferable values. It is preferable. The thickness of the negative electrode mixture layer is preferably 10 to 100 μm, for example.
 〔非水電解液〕
 本発明の第1のリチウム二次電池に係る非水電解液は、リチウム塩を有機溶媒に溶解した溶液であって、下記一般式(1)で表されるホスホノアセテート類化合物を含有するものを使用する。
[Non-aqueous electrolyte]
The nonaqueous electrolytic solution according to the first lithium secondary battery of the present invention is a solution in which a lithium salt is dissolved in an organic solvent, and contains a phosphonoacetate compound represented by the following general formula (1). Is used.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 前記一般式(1)中、R、RおよびRは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数1~12のアルキル基であり、nは0~6の整数である。 In the general formula (1), R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom, and n is an integer of 0 to 6 It is.
 前記ホスホノアセテート類化合物は、例えば以下の化合物を挙げることが出来る。 Examples of the phosphonoacetate compound include the following compounds.
 <前記一般式(1)においてn=0の化合物>
 トリメチルホスホノフォルメート、メチルジエチルホスホノフォルメート、メチルジプロピルホスホノフォルメート、メチルジブチルホスホノフォルメート、トリエチルホスホノフォルメート、エチルジメチルホスホノフォルメート、エチルジプロピルホスホノフォルメート、エチルジブチルホスホノフォルメート、トリプロピルホスホノフォルメート、プロピルジメチルホスホノフォルメート、プロピルジエチルホスホノフォルメート、プロピルジブチルホスホノフォルメート、トリブチルホスホノフォルメート、ブチルジメチルホスホノフォルメート、ブチルジエチルホスホノフォルメート、ブチルジプロピルホスホノフォルメート、メチルビス(2,2,2-トリフルオロエチル)ホスホノフォルメート、エチルビス(2,2,2-トリフルオロエチル)ホスホノフォルメート、プロピルビス(2,2,2-トリフルオロエチル)ホスホノフォルメート、ブチルビス(2,2,2-トリフルオロエチル)ホスホノフォルメート等。
<Compound with n = 0 in the general formula (1)>
Trimethylphosphonoformate, methyldiethylphosphonoformate, methyldipropylphosphonoformate, methyldibutylphosphonoformate, triethylphosphonoformate, ethyldimethylphosphonoformate, ethyldipropylphosphonoformate, ethyl Dibutylphosphonoformate, tripropylphosphonoformate, propyldimethylphosphonoformate, propyldiethylphosphonoformate, propyldibutylphosphonoformate, tributylphosphonoformate, butyldimethylphosphonoformate, butyldiethylphospho Noformate, butyldipropylphosphonoformate, methylbis (2,2,2-trifluoroethyl) phosphonoformate, ethylbis (2,2,2-to Trifluoroethyl) phosphonoacetate formate, propyl bis (2,2,2-trifluoroethyl) phosphonoacetate formate, butyl bis (2,2,2-trifluoroethyl) phosphonoacetate formate and the like.
 <前記一般式(1)においてn=1の化合物>
 トリメチルホスホノアセテート、メチルジエチルホスホノアセテート、メチルジプロピルホスホノアセテート、メチルジブチルホスホノアセテート、トリエチルホスホノアセテート、エチルジメチルホスホノアセテート、エチルジプロピルホスホノアセテート、エチルジブチルホスホノアセテート、トリプロピルホスホノアセテート、プロピルジメチルホスホノアセテート、プロピルジエチルホスホノアセテート、プロピルジブチルホスホノアセテート、トリブチルホスホノアセテート、ブチルジメチルホスホノアセテート、ブチルジエチルホスホノアセテート、ブチルジプロピルホスホノアセテート、メチルビス(2,2,2-トリフルオロエチル)ホスホノアセテート、エチルビス(2,2,2-トリフルオロエチル)ホスホノアセテート、プロピルビス(2,2,2-トリフルオロエチル)ホスホノアセテート、ブチルビス(2,2,2-トリフルオロエチル)ホスホノアセテート等。
<Compound with n = 1 in the general formula (1)>
Trimethylphosphonoacetate, methyldiethylphosphonoacetate, methyldipropylphosphonoacetate, methyldibutylphosphonoacetate, triethylphosphonoacetate, ethyldimethylphosphonoacetate, ethyldipropylphosphonoacetate, ethyldibutylphosphonoacetate, tripropyl Phosphonoacetate, propyldimethylphosphonoacetate, propyldiethylphosphonoacetate, propyldibutylphosphonoacetate, tributylphosphonoacetate, butyldimethylphosphonoacetate, butyldiethylphosphonoacetate, butyldipropylphosphonoacetate, methylbis (2, 2,2-trifluoroethyl) phosphonoacetate, ethylbis (2,2,2-trifluoroethyl) phosphonoacetate , Propyl bis (2,2,2-trifluoroethyl) phosphonoacetate, butyl bis (2,2,2-trifluoroethyl) phosphonoacetate, and the like.
 <前記一般式(1)においてn=2の化合物>
 トリメチル-3-ホスホノプロピオネート、メチルジエチル-3-ホスホノプロピオネート、メチルジプロピル-3-ホスホノプロピオネート、メチルジブチル3-ホスホノプロピオネート、トリエチル-3-ホスホノプロピオネート、エチルジメチル-3-ホスホノプロピオネート、エチルジプロピル-3-ホスホノプロピオネート、エチルジブチル3-ホスホノプロピオネート、トリプロピル-3-ホスホノプロピオネート、プロピルジメチル-3-ホスホノプロピオネート、プロピルジエチル-3-ホスホノプロピオネート、プロピルジブチル3-ホスホノプロピオネート、トリブチル-3-ホスホノプロピオネート、ブチルジメチル-3-ホスホノプロピオネート、ブチルジエチル-3-ホスホノプロピオネート、ブチルジプロピル-3-ホスホノプロピオネート、メチルビス(2,2,2-トリフルオロエチル)-3-ホスホノプロピオネート、エチルビス(2,2,2-トリフルオロエチル)-3-ホスホノプロピオネート、プロピルビス(2,2,2-トリフルオロエチル)-3-ホスホノプロピオネート、ブチルビス(2,2,2-トリフルオロエチル)-3-ホスホノプロピオネート等。
<Compound with n = 2 in the general formula (1)>
Trimethyl-3-phosphonopropionate, methyldiethyl-3-phosphonopropionate, methyldipropyl-3-phosphonopropionate, methyldibutyl-3-phosphonopropionate, triethyl-3-phosphonopro Pionate, ethyldimethyl-3-phosphonopropionate, ethyldipropyl-3-phosphonopropionate, ethyldibutyl-3-phosphonopropionate, tripropyl-3-phosphonopropionate, propyldimethyl- 3-phosphonopropionate, propyldiethyl-3-phosphonopropionate, propyldibutyl 3-phosphonopropionate, tributyl-3-phosphonopropionate, butyldimethyl-3-phosphonopropionate, Butyldiethyl-3-phosphonopropionate, butyldipropyl 3-phosphonopropionate, methylbis (2,2,2-trifluoroethyl) -3-phosphonopropionate, ethylbis (2,2,2-trifluoroethyl) -3-phosphonopropionate, Propylbis (2,2,2-trifluoroethyl) -3-phosphonopropionate, butylbis (2,2,2-trifluoroethyl) -3-phosphonopropionate, and the like.
 <前記一般式(1)においてn=3の化合物>
 トリメチル-4-ホスホノブチレート、メチルジエチル-4-ホスホノブチレート、メチルジプロピル-4-ホスホノブチレート、メチルジブチル4-ホスホノブチレート、トリエチル-4-ホスホノブチレート、エチルジメチル-4-ホスホノブチレート、エチルジプロピル-4-ホスホノブチレート、エチルジブチル4-ホスホノブチレート、トリプロピル-4-ホスホノブチレート、プロピルジメチル-4-ホスホノブチレート、プロピルジエチル-4-ホスホノブチレート、プロピルジブチル4-ホスホノブチレート、トリブチル-4-ホスホノブチレート、ブチルジメチル-4-ホスホノブチレート、ブチルジエチル-4-ホスホノブチレート、ブチルジプロピル-4-ホスホノブチレート等。
<Compound with n = 3 in the general formula (1)>
Trimethyl-4-phosphonobutyrate, methyldiethyl-4-phosphonobutyrate, methyldipropyl-4-phosphonobutyrate, methyldibutyl-4-phosphonobutyrate, triethyl-4-phosphonobutyrate, ethyldimethyl -4-phosphonobutyrate, ethyldipropyl-4-phosphonobutyrate, ethyldibutyl-4-phosphonobutyrate, tripropyl-4-phosphonobutyrate, propyldimethyl-4-phosphonobutyrate, propyldiethyl -4-phosphonobutyrate, propyldibutyl 4-phosphonobutyrate, tributyl-4-phosphonobutyrate, butyldimethyl-4-phosphonobutyrate, butyldiethyl-4-phosphonobutyrate, butyldipropyl- 4-phosphonobutyrate and the like.
 上述のホスホノアセテート類化合物の中でも、トリエチルホスホノアセテートが最も好ましい。 Of the above-mentioned phosphonoacetate compounds, triethylphosphonoacetate is most preferable.
 通常、電池に使用する非水電解液には、例えば、ビニレンカーボネート、フルオロエチレンカーボネート、無水酸、スルホン酸エステル、ジニトリル、1,3-プロパンスルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t-ブチルベンゼン、スクシノニトリルなどの添加剤(これらの誘導体も含む。)を適宜加えて、例えば、充放電サイクル特性、高温膨れ抑制や過充電防止などの安全性を向上させるなど、適宜求める特性に応じた添加剤を添加していた。 Usually, non-aqueous electrolytes used for batteries include, for example, vinylene carbonate, fluoroethylene carbonate, anhydride, sulfonate ester, dinitrile, 1,3-propane sultone, diphenyl disulfide, cyclohexylbenzene, biphenyl, fluorobenzene, t -Additives (including their derivatives) such as butylbenzene and succinonitrile as appropriate, for example, charge / discharge cycle characteristics, high-temperature blistering suppression, overcharge prevention, and other safety characteristics Additives corresponding to were added.
 前述したように、Niが含有されているリチウム含有複合酸化物を正極活物質として用いると、LiCoOのみを正極活物質として使用した場合よりも、高温貯蔵下での電池の膨れが大きくなる。それは、Niは高温下では不安定であるため、高充電状態にあるNiと溶媒または添加剤との反応性が高く、活性点となりやすいと考えられているからである。そのため、Niの活性点と溶媒または添加剤との余剰反応により過剰なガスが発生して電池の膨れが生じたり、反応生成物がNi界面に堆積して電池の抵抗を上げてしまい、高温貯蔵後の容量回復率が大きく低下してしまう。従って、その対策として、1,3-プロパンスルトン、スクシノニトリルなどの添加剤を添加し、上記の余剰反応を抑制することは、必要不可欠であった。 As described above, when a lithium-containing composite oxide containing Ni is used as the positive electrode active material, the swelling of the battery under high temperature storage becomes larger than when only LiCoO 2 is used as the positive electrode active material. This is because Ni is unstable at high temperatures, and therefore, the reactivity between Ni in a highly charged state and a solvent or additive is high, and it is considered that it is likely to become an active site. For this reason, excessive reaction between the Ni active sites and the solvent or additive generates excessive gas, causing the battery to swell, or the reaction product accumulates at the Ni interface to increase the resistance of the battery. The subsequent capacity recovery rate is greatly reduced. Therefore, as a countermeasure, it has been indispensable to add additives such as 1,3-propane sultone and succinonitrile to suppress the above excess reaction.
 しかしながら、従来の添加剤では、高温貯蔵性は改善され、電池の膨れを抑えることができるものの、充放電サイクル特性が悪化してしまうことが多かった。これは、添加量が少ない場合においても1,3-プロパンスルトン、スクシノニトリルなどの従来の添加剤は、正極活物質の活性点以外とも反応して反応生成物が堆積し、その結果容量低下および抵抗の増大を招くからであると考えられる。 However, with conventional additives, the high-temperature storage property is improved and the swelling of the battery can be suppressed, but the charge / discharge cycle characteristics often deteriorate. This is because even when the addition amount is small, conventional additives such as 1,3-propane sultone and succinonitrile react with other than the active sites of the positive electrode active material, resulting in the deposition of reaction products, resulting in a decrease in capacity. This is thought to be due to an increase in resistance.
 発明者らは、Niが含有されているリチウム含有複合酸化物を正極活物質として使用し、且つ非水電解液にホスホノアセテート類化合物が含有していると、充放電サイクル特性を悪化させずに、高温貯蔵性が改善され、電池の膨れを抑えることを見出したのである。この理由は定かではないが、ホスホノアセテート類化合物が、電解液と反応しガス発生の起点となるNiの活性点を主に被覆して、Niの活性点を不活性化しているものと推測される。 The inventors use a lithium-containing composite oxide containing Ni as the positive electrode active material, and when the phosphonoacetate compound is contained in the nonaqueous electrolytic solution, the charge / discharge cycle characteristics are not deteriorated. In addition, the inventors have found that the high temperature storage property is improved and the swelling of the battery is suppressed. The reason for this is not clear, but it is presumed that the phosphonoacetate compound mainly coats the active sites of Ni that react with the electrolyte and becomes the starting point of gas generation, thereby inactivating the Ni active sites. Is done.
 更に、負極においても、電池作製後の初回充放電時にホスホノアセテート類化合物によって被膜が形成されるが、ホスホノアセテート類化合物による被膜は、熱安定性が高く抵抗が小さいため、高温貯蔵下においても被膜が分解しにくく、抵抗増加が抑制されていると考えられる。 Furthermore, in the negative electrode, a film is formed by the phosphonoacetate compound at the first charge / discharge after the battery is manufactured. However, the film by the phosphonoacetate compound has high thermal stability and low resistance. However, it is considered that the coating is hardly decomposed and the increase in resistance is suppressed.
 本発明の第1のリチウム二次電池の電解液は、これらのホスホノアセテート類化合物が、非水電解液(電池組み立ての際に使用する非水電解液。以下、同じ。)中に0.5質量%以上含まれており、好ましくは1質量%以上含まれている。含有量が少なすぎるとガス発生を抑える効果は認められるがNiの活性点を覆いきらず、電池の膨れを抑制できない。但し、電解液中にホスホノアセテート類化合物が多すぎると、正極材の活性点以外にも反応を起こし、他の添加剤同様に抵抗の上昇を伴うため、含有量は20質量%以下、好ましくは10質量%以下、更に好ましくは5質量%以下である。 In the electrolyte solution of the first lithium secondary battery of the present invention, these phosphonoacetate compounds are contained in a non-aqueous electrolyte solution (a non-aqueous electrolyte solution used for battery assembly, the same applies hereinafter). 5 mass% or more is contained, Preferably 1 mass% or more is contained. If the content is too small, the effect of suppressing gas generation is recognized, but the Ni active sites are not covered and the swelling of the battery cannot be suppressed. However, if there is too much phosphonoacetate compound in the electrolytic solution, it causes a reaction other than the active site of the positive electrode material, and increases the resistance like other additives, so the content is preferably 20% by mass or less, preferably Is 10% by mass or less, more preferably 5% by mass or less.
 既述のビニレンカーボネート、フルオロエチレンカーボネート、無水酸、スルホン酸エステル、ジニトリル、1,3-プロパンスルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t-ブチルベンゼンなどの従来の添加剤(これらの誘導体も含む。)は、求める電池の特性に応じて、適宜併用しても構わない。 Conventional additives such as vinylene carbonate, fluoroethylene carbonate, anhydride, sulfonic acid ester, dinitrile, 1,3-propane sultone, diphenyl disulfide, cyclohexylbenzene, biphenyl, fluorobenzene, t-butylbenzene described above (these (Including derivatives) may be used in combination as appropriate depending on the desired battery characteristics.
 特に、本発明の第1のリチウム二次電池の電解液は、更に、例えばフルオロエチレンカーボネート(FEC)などのハロゲン置換された環状カーボネートと、ビニレンカーボネート(VC)とを含有することが好ましい。 In particular, the electrolytic solution of the first lithium secondary battery of the present invention preferably further contains, for example, a halogen-substituted cyclic carbonate such as fluoroethylene carbonate (FEC) and vinylene carbonate (VC).
 ハロゲン置換された環状カーボネートとしては、下記の一般式(4)で表される化合物を用いることができる。 As the halogen-substituted cyclic carbonate, a compound represented by the following general formula (4) can be used.
 前記一般式(4)中、R、R、RおよびRは、水素、ハロゲン元素または炭素数1~10のアルキル基であり、アルキル基の水素の一部または全部がハロゲン元素で置換されていてもよく、R、R、RおよびRのうちの少なくとも1つはハロゲン元素であり、R、R、RおよびRは、それぞれが異なっていてもよく、2つ以上が同一であってもよい。R、R、RおよびRがアルキル基である場合、その炭素数は少ないほど好ましい。前記ハロゲン元素としては、フッ素が特に好ましい。 In the general formula (4), R 4 , R 5 , R 6 and R 7 are hydrogen, a halogen element or an alkyl group having 1 to 10 carbon atoms, and part or all of the hydrogen in the alkyl group is a halogen element. may be substituted, at least one of R 4, R 5, R 6 and R 7 are halogen, R 4, R 5, R 6 and R 7, which may be different from each Two or more may be the same. When R 4 , R 5 , R 6 and R 7 are alkyl groups, the smaller the number of carbon atoms, the better. As the halogen element, fluorine is particularly preferable.
 このようなハロゲン元素で置換された環状カーボネートの中でも、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)が特に好ましい。 Among such cyclic carbonates substituted with a halogen element, 4-fluoro-1,3-dioxolan-2-one (FEC) is particularly preferable.
 電池に使用する非水電解液中のハロゲン置換された環状カーボネートおよびVCの含有量としては、ハロゲン置換された環状カーボネートおよびVCによる前記の効果を良好に確保する観点から、ハロゲン置換された環状カーボネートの含有量は、1質量%以上であり、1.5質量%以上であることが好ましく、また、VCの含有量は、1質量%以上であり、1.5質量%以上であることが好ましい。一方、非水電解液中のハロゲン置換された環状カーボネート量やVC量が多すぎると、負極活物質にSiOが含有されていると、SiOの活性が低下したり、皮膜形成の際に過剰なガスが発生して電池外装体の膨れの原因となったりする虞がある。よって、電池に使用する非水電解液においては、ハロゲン置換された環状カーボネートの含有量は、10質量%以下であり、5質量%以下であることが好ましく、また、VCの含有量は10質量%以下であり、5質量%以下であることが好ましい。 The halogen-substituted cyclic carbonate and VC content in the non-aqueous electrolyte used for the battery are halogen-substituted cyclic carbonate and halogen-substituted cyclic carbonate from the viewpoint of ensuring the above-mentioned effects by VC. The content of is 1% by mass or more, preferably 1.5% by mass or more, and the content of VC is 1% by mass or more, preferably 1.5% by mass or more. . On the other hand, when the halogen-substituted cyclic carbonate weight and the amount of VC nonaqueous electrolytic solution is too large, the SiO x is contained in the anode active material, it may decrease the activity of SiO x, during film formation There is a possibility that excessive gas is generated and causes the battery outer body to swell. Therefore, in the nonaqueous electrolytic solution used for the battery, the content of the halogen-substituted cyclic carbonate is 10% by mass or less, preferably 5% by mass or less, and the VC content is 10% by mass. % Or less, and preferably 5% by mass or less.
 非水電解液に用いるリチウム塩としては、溶媒中で解離してリチウムイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限はない。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbFなどの無機リチウム塩、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(2≦n≦7)、LiN(RfOSO〔ここで、Rfはフルオロアルキル基〕などの有機リチウム塩などを用いることができる。 The lithium salt used in the non-aqueous electrolyte is not particularly limited as long as it dissociates in a solvent to form lithium ions and does not easily cause a side reaction such as decomposition in a voltage range used as a battery. For example, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 and other inorganic lithium salts, LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ≦ n ≦ 7), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] or the like is used. be able to.
 このリチウム塩の非水電解液中の濃度としては、0.5~1.5mol/Lとすることが好ましく、0.9~1.25mol/Lとすることがより好ましい。 The concentration of this lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / L, more preferably 0.9 to 1.25 mol / L.
 非水電解液に用いる有機溶媒としては、前記のリチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ-ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられ、これらは2種以上混合して用いることもできる。より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。 The organic solvent used in the non-aqueous electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause side reactions such as decomposition in the voltage range used as a battery. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; chain esters such as methyl propionate; cyclic esters such as γ-butyrolactone; dimethoxyethane, Chain ethers such as diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme; cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; nitriles such as acetonitrile, propionitrile and methoxypropionitrile; ethylene Sulfites such as glycol sulfite; and the like. These may be used in combination of two or more. In order to obtain a battery with better characteristics, it is desirable to use a combination that can obtain high electrical conductivity, such as a mixed solvent of ethylene carbonate and chain carbonate.
 〔セパレータ〕
 本発明の第1のリチウム二次電池に係るセパレータには、80℃以上(より好ましくは100℃以上)170℃以下(より好ましくは150℃以下)において、その孔が閉塞する性質(すなわちシャットダウン機能)を有していることが好ましく、通常のリチウム二次電池などで使用されているセパレータ、例えば、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン製の微多孔膜を用いることができる。セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。
[Separator]
The separator according to the first lithium secondary battery of the present invention has a property that the pores are blocked at 80 ° C. or higher (more preferably 100 ° C. or higher) and 170 ° C. or lower (more preferably 150 ° C. or lower) (ie, shutdown function). ), And separators used in ordinary lithium secondary batteries, for example, microporous membranes made of polyolefin such as polyethylene (PE) and polypropylene (PP) can be used. The microporous film constituting the separator may be, for example, one using only PE or one using PP, or a laminate of a PE microporous film and a PP microporous film. There may be.
 本発明の第1のリチウム二次電池に係るセパレータには、融点が140℃以下の樹脂を主体とした多孔質層(I)と、150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)とを有する積層型のセパレータを使用することが好ましい。ここで、「融点」とはJIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度を意味している。また、「150℃以下の温度で溶融しない」とは、JIS K 7121の規定に準じて、DSCを用いて測定される融解温度が150℃を超えているなど、前記融解温度測定時に150℃以下の温度で融解挙動を示さないことを意味している。更に、「耐熱温度が150℃以上」とは、少なくとも150℃において軟化などの変形が見られないことを意味している。 The separator according to the first lithium secondary battery of the present invention has a porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or lower, a resin that does not melt at a temperature of 150 ° C. or lower, or a heat resistant temperature of 150 ° C. It is preferable to use a laminated separator having a porous layer (II) mainly containing the above inorganic filler. Here, the “melting point” means the melting temperature measured using a differential scanning calorimeter (DSC) in accordance with the provisions of JIS K 7121. In addition, “does not melt at a temperature of 150 ° C. or lower” means that the melting temperature measured using DSC exceeds 150 ° C. in accordance with the provisions of JIS K 7121. This means that the melting behavior is not exhibited at the temperature. Furthermore, “the heat resistant temperature is 150 ° C. or higher” means that deformation such as softening is not observed at least at 150 ° C.
 前記積層型のセパレータに係る多孔質層(I)は、主にシャットダウン機能を確保するためのものであり、リチウム二次電池が多孔質層(I)の主体となる成分である樹脂の融点以上に達したときには、多孔質層(I)に係る樹脂が溶融してセパレータの空孔を塞ぎ、電気化学反応の進行を抑制するシャットダウンを生じる。 The porous layer (I) according to the laminated separator is mainly for ensuring a shutdown function, and the melting point of the resin, which is a component in which the lithium secondary battery is the main component of the porous layer (I) When the temperature reaches the value, the resin related to the porous layer (I) melts and closes the pores of the separator, thereby causing a shutdown that suppresses the progress of the electrochemical reaction.
 多孔質層(I)の主体となる融点が140℃以下の樹脂としては、例えばPEが挙げられ、その形態としては、前述のリチウム二次電池に用いられる微多孔膜や、不織布などの基材にPEの粒子を含む分散液を塗布し、乾燥するなどして得られるものが挙げられる。ここで、多孔質層(I)の全構成成分中において、主体となる融点が140℃以下の樹脂の体積は、50体積%以上であり、70体積%以上であることがより好ましい。例えば、多孔質層(I)を前記PEの微多孔膜で形成する場合は、融点が140℃以下の樹脂の体積が100体積%となる。 Examples of the resin having a melting point of 140 ° C. or lower, which is the main component of the porous layer (I), include PE, and the form thereof is a substrate such as a microporous film used in the above-described lithium secondary battery or a nonwoven fabric. And a dispersion obtained by applying a dispersion containing PE particles and drying. Here, in all the constituent components of the porous layer (I), the volume of the resin having a main melting point of 140 ° C. or less is 50% by volume or more, and more preferably 70% by volume or more. For example, when the porous layer (I) is formed of the microporous film of PE, the volume of the resin having a melting point of 140 ° C. or lower is 100% by volume.
 前記積層型のセパレータに係る多孔質層(II)は、リチウム二次電池の内部温度が上昇した際にも正極と負極との直接の接触による短絡を防止する機能を備えたものであり、150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラーによって、その機能を確保している。すなわち、電池が高温となった場合には、喩え多孔質層(I)が収縮しても、収縮し難い多孔質層(II)によって、セパレータが熱収縮した場合に発生し得る正負極の直接の接触による短絡を防止することができる。また、この耐熱性の多孔質層(II)がセパレータの骨格として作用するため、多孔質層(I)の熱収縮、すなわちセパレータ全体の熱収縮自体も抑制できる。 The porous layer (II) according to the multilayer separator has a function of preventing a short circuit due to direct contact between the positive electrode and the negative electrode even when the internal temperature of the lithium secondary battery is increased. The function is secured by a resin that does not melt at a temperature of ℃ or less or an inorganic filler with a heat resistant temperature of 150 ℃ or more. That is, when the battery becomes high temperature, even if the porous layer (I) shrinks, the porous layer (II) which does not easily shrink can directly generate positive and negative electrodes that can be generated when the separator is thermally contracted. It is possible to prevent a short circuit due to the contact. Moreover, since this heat-resistant porous layer (II) acts as a skeleton of the separator, the thermal contraction of the porous layer (I), that is, the thermal contraction of the entire separator itself can be suppressed.
 多孔質層(II)を融点が150℃以上の樹脂を主体として形成する場合、例えば、150℃以下の温度で溶融しない樹脂で形成された微多孔膜(例えば、前述のPP製の電池用微多孔膜)を多孔質層(I)に積層させる形態や、150℃以下の温度で溶融しない樹脂の粒子などを含む分散液を多孔質層(I)に塗布し、乾燥して多孔質層(I)の表面に多孔質層(II)を形成する塗布積層型の形態が挙げられる。 When the porous layer (II) is formed mainly of a resin having a melting point of 150 ° C. or higher, for example, a microporous film formed of a resin that does not melt at a temperature of 150 ° C. or lower (for example, the above-mentioned PP micro battery cell The porous layer (I) is laminated on the porous layer (I), or a dispersion liquid containing resin particles that do not melt at a temperature of 150 ° C. or lower is applied to the porous layer (I) and dried to form a porous layer ( Examples thereof include a coating lamination type form in which the porous layer (II) is formed on the surface of I).
 150℃以下の温度で溶融しない樹脂としては、PP;架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物などの各種架橋高分子微粒子;ポリスルフォン;ポリエーテルスルフォン;ポリフェニレンスルフィド;ポリテトラフルオロエチレン;ポリアクリロニトリル;アラミド;ポリアセタールなどが挙げられる。 Resins that do not melt at temperatures below 150 ° C include PP; crosslinked polymethyl methacrylate, crosslinked polystyrene, crosslinked polydivinylbenzene, crosslinked styrene-divinylbenzene copolymer, polyimide, melamine resin, phenolic resin, benzoguanamine-formaldehyde condensation And various crosslinked polymer fine particles; polysulfone; polyether sulfone; polyphenylene sulfide; polytetrafluoroethylene; polyacrylonitrile; aramid; polyacetal and the like.
 150℃以下の温度で溶融しない樹脂の粒子を使用する場合、その粒径は、平均粒子径で、例えば、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましく、また、10μm以下であることが好ましく、2μm以下であることがより好ましい。本明細書でいう各種粒子の平均粒子径は、前述のとおり、例えば、堀場製作所製のレーザー散乱粒度分布計「LA-920」を用い、樹脂を溶解しない媒体に、これら微粒子を分散させて測定した平均粒子径D50%である。 When using resin particles that do not melt at a temperature of 150 ° C. or lower, the average particle size is, for example, preferably 0.01 μm or more, more preferably 0.1 μm or more, It is preferably 10 μm or less, and more preferably 2 μm or less. As described above, the average particle size of the various particles referred to in the present specification is measured by, for example, using a laser scattering particle size distribution analyzer “LA-920” manufactured by Horiba, Ltd., and dispersing these fine particles in a medium that does not dissolve the resin. The average particle diameter D is 50%.
 多孔質層(II)を耐熱温度が150℃以上の無機フィラーを主体として形成する場合、例えば、耐熱温度が150℃以上の無機フィラーなどを含む分散液を、多孔質層(I)に塗布し、乾燥して多孔質層(II)を形成する塗布積層型の形態が挙げられる。 When the porous layer (II) is mainly formed of an inorganic filler having a heat resistant temperature of 150 ° C. or higher, for example, a dispersion containing an inorganic filler having a heat resistant temperature of 150 ° C. or higher is applied to the porous layer (I). Examples of the coating-laminated type in which the porous layer (II) is formed by drying.
 多孔質層(II)に係る無機フィラーは、耐熱温度が150℃以上で、電池の有する非水電解液に対して安定であり、更に電池の作動電圧範囲において酸化還元されにくい電気化学的に安定なものであればよいが、分散などの点から微粒子であることが好ましく、また、アルミナ、シリカ、ベーマイトが好ましい。アルミナ、シリカ、ベーマイトは、耐酸化性が高く、粒径や形状を所望の数値などに調整することが可能であるため、多孔質層(II)の空孔率を精度よく制御することが容易となる。耐熱温度が150℃以上の無機フィラーは、例えば前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。また、耐熱温度が150℃以上の無機フィラーを、前述の150℃以下の温度で溶融しない樹脂と併用しても差し支えない。 The inorganic filler related to the porous layer (II) has a heat resistant temperature of 150 ° C. or higher, is stable to the non-aqueous electrolyte of the battery, and is electrochemically stable to be hardly oxidized or reduced in the battery operating voltage range. However, fine particles are preferable from the viewpoint of dispersion, and alumina, silica, and boehmite are preferable. Alumina, silica, and boehmite have high oxidation resistance, and the particle size and shape can be adjusted to the desired numerical values, making it easy to control the porosity of the porous layer (II) with high accuracy. It becomes. As the inorganic filler having a heat resistant temperature of 150 ° C. or higher, for example, one of the above-mentioned examples may be used alone, or two or more may be used in combination. Further, an inorganic filler having a heat resistant temperature of 150 ° C. or higher may be used in combination with a resin that does not melt at a temperature of 150 ° C. or lower.
 多孔質層(II)に係る耐熱温度が150℃以上の無機フィラーの形状については特に制限はなく、略球状(真球状を含む。)、略楕円体状(楕円体状を含む。)、板状などの各種形状のものを使用できる。 There is no restriction | limiting in particular about the shape of the inorganic filler whose heat resistant temperature which concerns on porous layer (II) is 150 degreeC or more, A substantially spherical shape (a true spherical shape is included), a substantially ellipsoid shape (an ellipsoid shape is included), a board Various shapes such as shapes can be used.
 また、多孔質層(II)に係る耐熱温度が150℃以上の無機フィラーの平均粒子径は、小さすぎるとイオンの透過性が低下することから、0.3μm以上であることが好ましく、0.5μm以上であることがより好ましい。また、耐熱温度が150℃以上の無機フィラーが大きすぎると、電気特性が劣化しやすくなることから、その平均粒子径は、5μm以下であることが好ましく、2μm以下であることがより好ましい。 Further, the average particle diameter of the inorganic filler having a heat resistant temperature of 150 ° C. or higher related to the porous layer (II) is preferably 0.3 μm or more because the ion permeability is lowered if it is too small. More preferably, it is 5 μm or more. In addition, if the inorganic filler having a heat resistant temperature of 150 ° C. or higher is too large, the electrical characteristics are likely to be deteriorated. Therefore, the average particle diameter is preferably 5 μm or less, and more preferably 2 μm or less.
 多孔質層(II)において、150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーは、多孔質層(II)に主体として含まれるものであるため、これらの多孔質層(II)における量[多孔質層(II)が150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーのうちのいずれか一方のみを含有する場合は、その量であり、両者を含有する場合は、それらの合計量。150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーの多孔質層(II)における量について、以下同じ。]は、多孔質層(II)の構成成分の全体積中、50体積%以上であり、70体積%以上であることが好ましく、80体積%以上であることがより好ましく、90体積%以上であることが更に好ましい。多孔質層(II)中の耐熱材料を前記のように高含有量とすることで、リチウム二次電池が高温となった際にも、セパレータ全体の熱収縮を良好に抑制することができ、正極と負極との直接の接触による短絡の発生をより良好に抑制することができる。 In the porous layer (II), the resin that does not melt at a temperature of 150 ° C. or lower and the inorganic filler having a heat resistant temperature of 150 ° C. or higher are mainly contained in the porous layer (II). Amount in (II) [when the porous layer (II) contains only one of a resin that does not melt at a temperature of 150 ° C. or less and an inorganic filler that has a heat resistant temperature of 150 ° C. or more, is the amount, If both are included, the total amount. The same applies hereinafter in the porous layer (II) of the resin that does not melt at a temperature of 150 ° C. or lower and the inorganic filler having a heat resistant temperature of 150 ° C. or higher. ] Is 50% by volume or more in the total volume of the constituent components of the porous layer (II), preferably 70% by volume or more, more preferably 80% by volume or more, and 90% by volume or more. More preferably it is. By making the heat-resistant material in the porous layer (II) high as described above, even when the lithium secondary battery becomes high temperature, it is possible to satisfactorily suppress the thermal contraction of the entire separator, Generation | occurrence | production of the short circuit by the direct contact of a positive electrode and a negative electrode can be suppressed more favorably.
 後述するように、多孔質層(II)には有機バインダも含有させることが好ましいため、150℃以下の温度で溶融しない樹脂および耐熱温度が150℃以上の無機フィラーの多孔質層(II)における量は、多孔質層(II)の構成成分の全体積中、99.5体積%以下であることが好ましい。 As will be described later, since it is preferable that the porous layer (II) also contains an organic binder, in the porous layer (II) of a resin that does not melt at a temperature of 150 ° C. or less and an inorganic filler having a heat resistant temperature of 150 ° C. or more. The amount is preferably 99.5% by volume or less in the total volume of the constituent components of the porous layer (II).
 多孔質層(II)には、150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラー同士を結着したり、多孔質層(II)と多孔質層(I)との一体化などのために、有機バインダを含有させることが好ましい。有機バインダとしては、エチレン-酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20~35モル%のもの)、エチレン-エチルアクリレート共重合体などのエチレン-アクリル酸共重合体、フッ素系ゴム、SBR、CMC、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられるが、特に、150℃以上の耐熱温度を有する耐熱性のバインダが好ましく用いられる。有機バインダは、前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。 In the porous layer (II), a resin that does not melt at a temperature of 150 ° C. or less or an inorganic filler having a heat resistant temperature of 150 ° C. or higher is bound, or the porous layer (II) and the porous layer (I) For integration or the like, it is preferable to contain an organic binder. Organic binders include ethylene-vinyl acetate copolymers (EVA, structural units derived from vinyl acetate of 20 to 35 mol%), ethylene-acrylic acid copolymers such as ethylene-ethyl acrylate copolymers, fluorine-based binders Examples include rubber, SBR, CMC, hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), cross-linked acrylic resin, polyurethane, and epoxy resin. A heat-resistant binder having a heat-resistant temperature is preferably used. As the organic binder, those exemplified above may be used singly or in combination of two or more.
 前記例示の有機バインダの中でも、EVA、エチレン-アクリル酸共重合体、フッ素系ゴム、SBRなどの柔軟性の高いバインダが好ましい。このような柔軟性の高い有機バインダの具体例としては、三井デュポンポリケミカル社のEVA「エバフレックスシリーズ」、日本ユニカー社のEVA、三井デュポンポリケミカル社のエチレン-アクリル酸共重合体「エバフレックス-EEAシリーズ」、日本ユニカー社のEEA、ダイキン工業社のフッ素ゴム「ダイエルラテックスシリーズ」、JSR社のSBR「TRD-2001」、日本ゼオン社のSBR「BM-400B」などがある。 Among the organic binders exemplified above, highly flexible binders such as EVA, ethylene-acrylic acid copolymer, fluorine rubber, and SBR are preferable. Specific examples of such highly flexible organic binders include EVA “Evaflex Series” from Mitsui DuPont Polychemical Co., Ltd., EVA from Nippon Unicar Co., Ltd., and “Evaflex” ethylene-acrylic acid copolymer from Mitsui DuPont Polychemical Co., Ltd. -EEA series ", EEA of Nihon Unicar, Daikin Industries, Ltd.'s fluoro rubber" Daiel Latex Series ", JSR's SBR" TRD-2001 ", Zeon's SBR" BM-400B ".
 前記有機バインダを多孔質層(II)に使用する場合には、後述する多孔質層(II)形成用の組成物の溶媒に溶解させるか、または分散させたエマルジョンの形態で用いればよい。 When the organic binder is used for the porous layer (II), it may be used in the form of an emulsion dissolved or dispersed in a solvent of a composition for forming the porous layer (II) described later.
 前記塗布積層型のセパレータは、例えば、150℃以下の温度で溶融しない樹脂の粒子や耐熱温度が150℃以上の無機フィラーなどを含有する多孔質層(II)形成用組成物(スラリーなどの液状組成物など)を、多孔質層(I)を構成するための微多孔膜の表面に塗布し、所定の温度で乾燥して多孔質層(II)を形成することにより製造することができる。 The coating-laminated separator is, for example, a composition for forming a porous layer (II) containing a resin particle that does not melt at a temperature of 150 ° C. or lower, an inorganic filler having a heat resistant temperature of 150 ° C. or higher (liquid such as slurry). The composition etc.) can be applied to the surface of the microporous membrane for constituting the porous layer (I) and dried at a predetermined temperature to form the porous layer (II).
 多孔質層(II)形成用組成物は、150℃以下の温度で溶融しない樹脂の粒子および/または耐熱温度が150℃以上の無機フィラーの他、必要に応じて有機バインダなどを含有し、これらを溶媒(分散媒を含む。以下同じ。)に分散させたものである。有機バインダについては溶媒に溶解させることもできる。多孔質層(II)形成用組成物に用いられる溶媒は、150℃以下の温度で溶融しない樹脂の粒子や無機フィラーなどを均一に分散でき、また、有機バインダを均一に溶解または分散できるものであればよいが、例えば、トルエンなどの芳香族炭化水素;テトラヒドロフランなどのフラン類;メチルエチルケトン、メチルイソブチルケトンなどのケトン類;など、一般的な有機溶媒が好適に用いられる。これらの溶媒に、界面張力を制御する目的で、アルコール類(エチレングリコール、プロピレングリコールなど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを適宜添加してもよい。また、有機バインダが水溶性である場合、エマルジョンとして使用する場合などでは、水を溶媒としてもよく、この際にもアルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)を適宜加えて界面張力を制御することもできる。 The composition for forming the porous layer (II) contains resin particles that do not melt at a temperature of 150 ° C. or lower and / or an inorganic filler having a heat resistant temperature of 150 ° C. or higher, and an organic binder as necessary. Is dispersed in a solvent (including a dispersion medium; the same shall apply hereinafter). The organic binder can be dissolved in a solvent. The solvent used in the composition for forming the porous layer (II) can uniformly disperse resin particles and inorganic filler that do not melt at a temperature of 150 ° C. or lower, and can dissolve or disperse the organic binder uniformly. Common organic solvents such as aromatic hydrocarbons such as toluene; furans such as tetrahydrofuran; ketones such as methyl ethyl ketone and methyl isobutyl ketone; are preferably used. For the purpose of controlling the interfacial tension, alcohols (ethylene glycol, propylene glycol, etc.) or various propylene oxide glycol ethers such as monomethyl acetate may be appropriately added to these solvents. In addition, when the organic binder is water-soluble or used as an emulsion, water may be used as a solvent. In this case, alcohols (methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, etc.) are appropriately added. It is also possible to control the interfacial tension.
 多孔質層(II)形成用組成物は、150℃以下の温度で溶融しない樹脂の粒子および/または耐熱温度が150℃以上の無機フィラー、更には有機バインダなどを含む固形分含量を、例えば10~80質量%とすることが好ましい。 The composition for forming the porous layer (II) has a solid content containing, for example, a resin particle that does not melt at a temperature of 150 ° C. or lower and / or an inorganic filler having a heat resistant temperature of 150 ° C. or higher, and an organic binder. It is preferable to set it to 80 mass%.
 前記積層型のセパレータにおいて、多孔質層(I)と多孔質層(II)とは、それぞれ1層ずつである必要はなく、複数の層がセパレータ中にあってもよい。例えば、多孔質層(II)の両面に多孔質層(I)を配置した構成としたり、多孔質層(I)の両面に多孔質層(II)を配置した構成としてもよい。但し、層数を増やすことで、セパレータの厚みを増やして電池の内部抵抗の増加やエネルギー密度の低下を招く虞があるので、層数を多くしすぎるのは好ましくなく、前記積層型のセパレータ中の多孔質層(I)と多孔質層(II)との合計層数は5層以下であることが好ましい。 In the laminated separator, the porous layer (I) and the porous layer (II) do not have to be one each, and a plurality of layers may be present in the separator. For example, the porous layer (I) may be arranged on both sides of the porous layer (II), or the porous layer (II) may be arranged on both sides of the porous layer (I). However, increasing the number of layers may increase the thickness of the separator and increase the internal resistance of the battery or decrease the energy density. Therefore, it is not preferable to increase the number of layers. The total number of layers of the porous layer (I) and the porous layer (II) is preferably 5 or less.
 本発明の第1のリチウム二次電池に係るセパレータ(ポリオレフィン製の微多孔膜からなるセパレータや、前記積層型のセパレータ)の厚みは、例えば、10~30μmであることが好ましい。 The thickness of the separator (the separator made of a polyolefin microporous film or the laminated separator) according to the first lithium secondary battery of the present invention is preferably 10 to 30 μm, for example.
 また、前記積層型のセパレータにおいては、多孔質層(II)の厚み[セパレータが多孔質層(II)を複数有する場合は、その総厚み。以下、同じ。]は、多孔質層(II)による前記の各作用をより有効に発揮させる観点から、3μm以上であることが好ましい。但し、多孔質層(II)が厚すぎると、電池のエネルギー密度の低下を引き起こすなどの虞があることから、多孔質層(II)の厚みは、8μm以下であることが好ましい。 In the laminated separator, the thickness of the porous layer (II) [when the separator has a plurality of porous layers (II), the total thickness thereof. same as below. ] Is preferably 3 μm or more from the viewpoint of more effectively exerting the above-described functions of the porous layer (II). However, if the porous layer (II) is too thick, the energy density of the battery may be lowered. Therefore, the thickness of the porous layer (II) is preferably 8 μm or less.
 更に、前記積層型のセパレータにおいては、多孔質層(I)の厚み[セパレータが多孔質層(I)を複数有する場合は、その総厚み。以下同じ。]は、多孔質層(I)の使用による前記作用(特にシャットダウン作用)をより有効に発揮させる観点から、6μm以上であることが好ましく、10μm以上であることがより好ましい。但し、多孔質層(I)が厚すぎると、電池のエネルギー密度の低下を引き起こす虞があることに加えて、多孔質層(I)が熱収縮しようとする力が大きくなり、セパレータ全体の熱収縮を抑える作用が小さくなる虞がある。そのため、多孔質層(I)の厚みは、25μm以下であることが好ましく、20μm以下であることがより好ましく、14μm以下であることが更に好ましい。 Furthermore, in the laminated separator, the thickness of the porous layer (I) [when the separator has a plurality of porous layers (I), the total thickness thereof. same as below. ] Is preferably 6 μm or more, more preferably 10 μm or more, from the viewpoint of more effectively exerting the above-described action (particularly the shutdown action) due to the use of the porous layer (I). However, if the porous layer (I) is too thick, there is a possibility that the energy density of the battery may be lowered. In addition, the force that the porous layer (I) tends to shrink is increased, and the heat of the entire separator is increased. There is a possibility that the action of suppressing the shrinkage becomes small. Therefore, the thickness of the porous layer (I) is preferably 25 μm or less, more preferably 20 μm or less, and still more preferably 14 μm or less.
 セパレータ全体の空孔率としては、電解液の保液量を確保してイオン透過性を良好にするために、乾燥した状態で、30%以上であることが好ましい。一方、セパレータ強度の確保と内部短絡の防止の観点から、セパレータの空孔率は、乾燥した状態で、70%以下であることが好ましい。セパレータの空孔率:P(%)は、セパレータの厚み、面積あたりの質量、構成成分の密度から、下記式(5)を用いて各成分iについての総和を求めることにより計算できる。 The porosity of the separator as a whole is preferably 30% or more in a dry state in order to ensure the amount of electrolyte retained and to improve ion permeability. On the other hand, from the viewpoint of securing separator strength and preventing internal short circuit, the separator porosity is preferably 70% or less in a dry state. The porosity of the separator: P (%) can be calculated by calculating the sum of each component i from the thickness of the separator, the mass per area, and the density of the constituent components using the following formula (5).
 P={1-m/(Σaρ×t)}×100      (5)
 ここで、前記式(5)中、a:質量%で表した成分iの比率、ρ:成分iの密度(g/cm)、m:セパレータの単位面積あたりの質量(g/cm)、t:セパレータの厚み(cm)である。
P = {1−m / (Σa i ρ i × t)} × 100 (5)
Here, in the above formula (5), a i : ratio of component i expressed by mass%, ρ i : density of component i (g / cm 3 ), m: mass per unit area of the separator (g / cm 2 ), t: thickness (cm) of the separator.
 また、前記積層型のセパレータの場合、前記式(5)において、mを多孔質層(I)の単位面積あたりの質量(g/cm)とし、tを多孔質層(I)の厚み(cm)とすることで、前記式(5)を用いて多孔質層(I)の空孔率:P(%)を求めることもできる。この方法により求められる多孔質層(I)の空孔率は、30~70%であることが好ましい。 In the case of the multilayer separator, in the above formula (5), m is the mass per unit area (g / cm 2 ) of the porous layer (I), and t is the thickness of the porous layer (I) ( cm), the porosity: P (%) of the porous layer (I) can also be obtained using the formula (5). The porosity of the porous layer (I) obtained by this method is preferably 30 to 70%.
 更に、前記積層型のセパレータの場合、前記式(5)において、mを多孔質層(II)の単位面積あたりの質量(g/cm)とし、tを多孔質層(II)の厚み(cm)とすることで、前記式(5)を用いて多孔質層(II)の空孔率:P(%)を求めることもできる。この方法により求められる多孔質層(II)の空孔率は、20~60%であることが好ましい。 Further, in the case of the laminated separator, in the formula (5), m is the mass per unit area (g / cm 2 ) of the porous layer (II), and t is the thickness of the porous layer (II) ( cm), the porosity: P (%) of the porous layer (II) can also be obtained using the formula (5). The porosity of the porous layer (II) obtained by this method is preferably 20 to 60%.
 前記セパレータとしては、機械的な強度の高いものが好ましく、例えば突き刺し強度が3N以上であることが好ましい。例えば、充放電に伴う体積変化の大きなSiOを負極活物質に使用した場合、充放電を繰り返すことで、負極全体の伸縮によって、対面させたセパレータにも機械的なダメージが加わることになる。セパレータの突き刺し強度が3N以上であれば、良好な機械的強度が確保され、セパレータの受ける機械的ダメージを緩和することができる。 The separator preferably has high mechanical strength. For example, the puncture strength is preferably 3N or more. For example, when SiO x having a large volume change due to charge / discharge is used as the negative electrode active material, mechanical damage is also applied to the facing separator due to expansion / contraction of the entire negative electrode by repeating charge / discharge. If the piercing strength of the separator is 3N or more, good mechanical strength is ensured, and mechanical damage to the separator can be reduced.
 突き刺し強度が3N以上のセパレータとしては、前述した積層型のセパレータが挙げられ、特に、融点が140℃以下の樹脂を主体とした多孔質層(I)に、耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)を積層したセパレータが好適である。それは、前記無機フィラーの機械的強度が高いため、多孔質層(I)の機械的強度を補って、セパレータ全体の機械的強度を高めることができるからであると考えられる。 Examples of the separator having a puncture strength of 3N or more include the above-described laminated separator, and in particular, an inorganic filler having a heat resistant temperature of 150 ° C. or higher in the porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or lower. A separator in which a porous layer (II) containing as a main component is laminated is preferable. This is considered because the mechanical strength of the inorganic filler is high, so that the mechanical strength of the entire separator can be increased by supplementing the mechanical strength of the porous layer (I).
 前記突き刺し強度は以下の方法で測定できる。直径2インチの穴があいた板上にセパレータをしわやたわみのないように固定し、先端の直径が1.0mmの半円球状の金属ピンを、120mm/分の速度で測定試料に降下させて、セパレータに穴があく時の力を5回測定する。そして、前記5回の測定値のうち最大値と最小値とを除く3回の測定について平均値を求め、これをセパレータの突き刺し強度とする。 The piercing strength can be measured by the following method. A separator is fixed on a plate having a hole with a diameter of 2 inches so as not to be wrinkled or bent, and a semicircular metal pin having a tip diameter of 1.0 mm is lowered onto a measurement sample at a speed of 120 mm / min. Measure the force when the separator is perforated 5 times. And an average value is calculated | required about the measurement of 3 times except the maximum value and the minimum value among the said 5 times of measured values, and this is made into the piercing strength of a separator.
 前記の正極と前記の負極と前記のセパレータとは、正極と負極との間にセパレータを介在させて重ねた積層電極体や、更にこれを渦巻状に巻回した巻回電極体の形態で本発明の第1のリチウム二次電池に使用することができる。 The positive electrode, the negative electrode, and the separator are formed in the form of a laminated electrode body in which a separator is interposed between the positive electrode and the negative electrode, or a wound electrode body in which the separator is wound in a spiral shape. It can be used for the first lithium secondary battery of the invention.
 前記の積層電極体や巻回電極体においては、前記積層型のセパレータ、特に融点が140℃以下の樹脂を主体とした多孔質層(I)に、耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)を積層したセパレータを使用する場合、多孔質層(II)が少なくとも正極と面するように配置することが好ましい。この場合、耐熱温度が150℃以上の無機フィラーを主体として含み、より耐酸化性に優れる多孔質層(II)が正極と面することで、正極によるセパレータの酸化をより良好に抑制できるため、電池の高温時の保存特性や充放電サイクル特性を高めることもできる。また、VCやシクロヘキシルベンゼンなど、非水電解液中に添加物を加えた場合、正極側で皮膜形成してセパレータの細孔を詰まらせ、電池特性の低下を引き起こす虞もある。そこで、比較的ポーラスな多孔質層(II)を正極に対面させることで、細孔の目詰まりを抑制する効果も期待できる。 In the laminated electrode body and the wound electrode body, the laminated separator, particularly the porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or lower, mainly composed of an inorganic filler having a heat resistant temperature of 150 ° C. or higher. When using the separator which laminated | stacked porous layer (II) included as, it is preferable to arrange | position so that porous layer (II) may face a positive electrode at least. In this case, since the porous layer (II) that includes an inorganic filler having a heat resistant temperature of 150 ° C. or more as a main component and more excellent in oxidation resistance faces the positive electrode, oxidation of the separator by the positive electrode can be better suppressed, It is also possible to improve the storage characteristics and charge / discharge cycle characteristics of the battery at high temperatures. Further, when an additive such as VC or cyclohexylbenzene is added to the non-aqueous electrolyte, a film is formed on the positive electrode side to clog the pores of the separator, which may cause deterioration of battery characteristics. Therefore, an effect of suppressing clogging of pores can be expected by causing the relatively porous porous layer (II) to face the positive electrode.
 〔電池の形態〕
 本発明の第1のリチウム二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。
[Battery form]
As a form of the 1st lithium secondary battery of this invention, the cylinder shape (square cylinder shape, cylindrical shape, etc.) etc. which used a steel can, an aluminum can, etc. as an exterior can are mentioned. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.
 本発明の第1のリチウム二次電池は、従来から知られているリチウム二次電池が適用されている各種用途と同じ用途に用いることができる。 The first lithium secondary battery of the present invention can be used in the same applications as various applications to which conventionally known lithium secondary batteries are applied.
 以下、実施形態1の実施例に基づいて本発明を詳細に述べる。但し、下記実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on examples of the first embodiment. However, the following examples do not limit the present invention.
 (実施例1-1)
 <第1のリチウム含有複合酸化物の合成>
 水酸化ナトリウムの添加によってpHを約12に調整したアンモニア水を反応容器に入れ、これを強攪拌しながら、この中に、硫酸ニッケル、硫酸コバルトおよび硫酸マンガンを、それぞれ、2.4mol/dm、0.8mol/dm、0.8mol/dmの濃度で含有する混合水溶液と、25質量%濃度のアンモニア水とを、それぞれ、23cm/分、6.6cm/分の割合で、定量ポンプを用いて滴下して、NiとCoとMnとの共沈化合物(球状の共沈化合物)を合成した。この際、反応液の温度は50℃に保持し、また、反応液のpHが12付近に維持されるように、6.4mol/dm濃度の水酸化ナトリウム水溶液の滴下も同時に行い、更に不活性雰囲気下で反応させるため、窒素ガスを1dm/分の流量でバブリングした。
Example 1-1
<Synthesis of first lithium-containing composite oxide>
Aqueous ammonia whose pH was adjusted to about 12 by adding sodium hydroxide was placed in a reaction vessel, and while vigorously stirring, nickel sulfate, cobalt sulfate and manganese sulfate were each added to 2.4 mol / dm 3. , 0.8 mol / dm 3, a mixed aqueous solution containing a concentration of 0.8 mol / dm 3, and aqueous ammonia 25% strength by weight, respectively, 23cm 3 / min at a rate of 6.6 cm 3 / min, The solution was added dropwise using a metering pump to synthesize a coprecipitation compound of Ni, Co, and Mn (spherical coprecipitation compound). At this time, the temperature of the reaction solution is maintained at 50 ° C., and a 6.4 mol / dm 3 concentration sodium hydroxide aqueous solution is simultaneously added so that the pH of the reaction solution is maintained around 12. In order to react under an active atmosphere, nitrogen gas was bubbled at a flow rate of 1 dm 3 / min.
 前記の共沈化合物を水洗、濾過および乾燥させて、NiとCoとMnとを6:2:2のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・HOとをエタノール中に分散させてスラリー状にした後、遊星型ボールミルで40分間混合し、室温で乾燥させて混合物を得た。次いで、前記混合物をアルミナ製のるつぼに入れ、2dm/分のドライエアーフロー中で600℃まで加熱し、その温度で2時間保持して予備加熱を行い、更に900℃に昇温して12時間焼成することにより、第1のリチウム含有複合酸化物を合成した。 The coprecipitated compound was washed with water, filtered and dried to obtain a hydroxide containing Ni, Co and Mn in a molar ratio of 6: 2: 2. 0.196 mol of this hydroxide and 0.204 mol of LiOH.H 2 O were dispersed in ethanol to form a slurry, and then mixed with a planetary ball mill for 40 minutes and dried at room temperature to obtain a mixture. . Next, the mixture is put in an alumina crucible, heated to 600 ° C. in a dry air flow of 2 dm 3 / min, kept at that temperature for 2 hours for preheating, further heated to 900 ° C. and heated to 12 ° C. The first lithium-containing composite oxide was synthesized by firing for a period of time.
 得られた第1のリチウム含有複合酸化物を水で洗浄した後、大気中(酸素濃度が約20体積%)で、850℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後の第1のリチウム含有複合酸化物は、デシケーター中で保存した。 The obtained first lithium-containing composite oxide was washed with water, then heat-treated in the atmosphere (oxygen concentration of about 20% by volume) at 850 ° C. for 12 hours, and then pulverized in a mortar to obtain a powder. The first lithium-containing composite oxide after pulverization was stored in a desiccator.
 前記第1のリチウム含有複合酸化物について、その組成分析を、前述したICP法を用いて以下のように行った。先ず、前記第1のリチウム含有複合酸化物を0.2g採取して100mL容器に入れた。その後、純水5mL、王水2mL、純水10mLを順に加えて加熱溶解し、冷却後、更に純水で25倍に希釈してJARRELASH社製のICP分析装置「ICP-757」を用いて、検量線法により組成を分析した。得られた結果から、前記第1のリチウム含有複合酸化物の組成を導出したところ、Li1.02Ni0.6Co0.2Mn0.2で表される組成であることが判明した。このとき、前記第1のリチウム含有複合酸化物の全量中のLiに対するNiの割合(モル比率:以下、Ni/Liと略記する。)は、Li=1.02、Ni=0.6から、Ni/Li=0.59(小数点第3位を四捨五入)であった。 About the said 1st lithium containing complex oxide, the composition analysis was performed as follows using ICP method mentioned above. First, 0.2 g of the first lithium-containing composite oxide was sampled and placed in a 100 mL container. Thereafter, 5 mL of pure water, 2 mL of aqua regia, and 10 mL of pure water were added in order and dissolved by heating. After cooling, the mixture was further diluted 25 times with pure water, and an ICP analyzer “ICP-757” manufactured by JARRELASH was used. The composition was analyzed by a calibration curve method. From the obtained results, the composition of the first lithium-containing composite oxide was derived and found to be a composition represented by Li 1.02 Ni 0.6 Co 0.2 Mn 0.2 O 2. did. At this time, the ratio of Ni to Li in the total amount of the first lithium-containing composite oxide (molar ratio: hereinafter abbreviated as Ni / Li) is Li = 1.02, Ni = 0.6, Ni / Li = 0.59 (the third decimal place was rounded off).
 <正極の作製>
 前記第1のリチウム含有複合酸化物と、第2のリチウム含有複合酸化物であるLiCoOとを、質量比で3:7になるように計量し、ヘンシェルミキサを用いて30分混合し、混合物を得た。得られた混合物を正極活物質として100質量部と、バインダであるPVDFおよびP(TFE-VDF)をN-メチル-2-ピロリドン(NMP)に溶解させた溶液20質量部と、導電助剤である平均繊維長が100nmで、平均繊維径が10nmの炭素繊維1.04質量部と、グラファイト1.04質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。PVDFおよびP(TFE-VDF)のNMP溶液の使用量は、溶解しているPVDFおよびP(TFE-VDF)の量が、前記第1のリチウム含有複合酸化物とLiCoOの混合物と、PVDFと、P(TFE-VDF)と、前記導電助剤との合計(すなわち、正極合剤層の総量)100質量%中、それぞれ、2.34質量%および0.26質量%となる量とした。すなわち、正極合剤層におけるバインダ総量が2.6質量%であり、P(TFE-VDF)とPVDFとの合計100質量%中のP(TFE-VDF)の割合が10質量%である。
<Preparation of positive electrode>
The first lithium-containing composite oxide and the second lithium-containing composite oxide LiCoO 2 are weighed to a mass ratio of 3: 7 and mixed for 30 minutes using a Henschel mixer. Got. 100 parts by mass of the obtained mixture as a positive electrode active material, 20 parts by mass of a solution obtained by dissolving PVDF and P (TFE-VDF) as binders in N-methyl-2-pyrrolidone (NMP), and a conductive auxiliary agent A 1.04 part by mass carbon fiber having an average fiber length of 100 nm and an average fiber diameter of 10 nm and 1.04 part by mass of graphite are kneaded using a biaxial kneader, and NMP is added to adjust the viscosity. Thus, a positive electrode mixture-containing paste was prepared. The amount of the PVDF and P (TFE-VDF) NMP solution used is such that the amount of the dissolved PVDF and P (TFE-VDF) is the mixture of the first lithium-containing composite oxide and LiCoO 2 , PVDF and , P (TFE-VDF) and the conductive auxiliary agent (ie, the total amount of the positive electrode mixture layer) in 100% by mass, amounts to 2.34% by mass and 0.26% by mass, respectively. That is, the total amount of binder in the positive electrode mixture layer is 2.6% by mass, and the ratio of P (TFE-VDF) in the total of 100% by mass of P (TFE-VDF) and PVDF is 10% by mass.
 前記の正極合剤含有ペーストを、厚みが15μmのアルミニウム箔(正極集電体)の両面に厚みを調節して間欠塗布し、乾燥した後、カレンダ処理を行って全厚が130μmになるように正極合剤層の厚みを調節し、幅が54.5mmになるように切断して正極を作製した。更に、この正極のアルミニウム箔の露出部にタブを溶接してリード部を形成した。ここで、前述の方法で正極合剤層の密度を測定したところ、3.80g/cmであった。 The positive electrode mixture-containing paste is intermittently applied to both sides of an aluminum foil (positive electrode current collector) having a thickness of 15 μm while adjusting the thickness, dried, and then subjected to a calendering process so that the total thickness becomes 130 μm. The thickness of the positive electrode mixture layer was adjusted, and the positive electrode was produced by cutting so as to have a width of 54.5 mm. Further, a tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion. Here, when the density of the positive electrode mixture layer was measured by the above-described method, it was 3.80 g / cm 3 .
 <負極の作製>
 平均粒子径D50%が8μmであるSiO表面を炭素材料で被覆した複合体(複合体における炭素材料の量が10質量%)と、平均粒子径D50%が16μmであるグラファイトとを、SiO表面を炭素材料で被覆した複合体の量が3.0質量%となる量で混合した混合物:98質量部と、粘度が1500~5000mPa・sの範囲に調整された1質量%濃度のCMC水溶液:100質量部およびSBR:1.0質量部とを、比抵抗が2.0×10Ωcm以上のイオン交換水を溶剤として混合して、水系の負極合剤含有ペーストを調製した。
<Production of negative electrode>
A composite in which the surface of SiO x having an average particle diameter D50% of 8 μm is coated with a carbon material (the amount of the carbon material in the composite is 10 mass%) and graphite having an average particle diameter D50% of 16 μm are combined with SiO x. Mixture in which the amount of the composite whose surface is coated with a carbon material is 3.0% by mass: 98 parts by mass, and a 1% by mass CMC aqueous solution whose viscosity is adjusted to a range of 1500 to 5000 mPa · s : 100 parts by mass and SBR: 1.0 part by mass were mixed with ion-exchanged water having a specific resistance of 2.0 × 10 5 Ωcm or more as a solvent to prepare an aqueous negative electrode mixture-containing paste.
 前記の負極合剤含有ペーストを、厚みが8μmの銅箔(負極集電体)の両面に厚みを調節して間欠塗布し、乾燥した後、カレンダ処理を行って全厚が110μmになるように負極合剤層の厚みを調整し、幅が55.5mmになるように切断して負極を作製した。更に、この負極の銅箔の露出部にタブを溶接してリード部を形成した。 The negative electrode mixture-containing paste is intermittently applied on both sides of a copper foil (negative electrode current collector) having a thickness of 8 μm while adjusting the thickness, dried, and then calendered so that the total thickness becomes 110 μm. The thickness of the negative electrode mixture layer was adjusted, and the negative electrode was produced by cutting so as to have a width of 55.5 mm. Further, a tab was welded to the exposed portion of the copper foil of the negative electrode to form a lead portion.
 <セパレータの作製>
 平均粒子径D50%が1μmのベーマイト5kgに、イオン交換水5kgと、分散剤(水系ポリカルボン酸アンモニウム塩、固形分濃度40質量%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで10時間解砕処理をして分散液を調製した。処理後の分散液の一部を120℃で真空乾燥し、走査型電子顕微鏡(SEM)で観察したところ、ベーマイトの形状はほぼ板状であった。
<Preparation of separator>
Add 5 kg of ion-exchanged water and 0.5 kg of a dispersant (aqueous polycarboxylic acid ammonium salt, solid content concentration 40 mass%) to 5 kg of boehmite with an average particle diameter D50% of 1 μm, and have an internal volume of 20 L and 40 turns. A dispersion was prepared by pulverizing with a ball mill for 10 hours per minute. When a part of the treated dispersion was vacuum dried at 120 ° C. and observed with a scanning electron microscope (SEM), the shape of boehmite was almost plate-like.
 前記分散液500gに、増粘剤としてキサンタンガムを0.5g、バインダとして樹脂バインダーディスパージョン(変性ポリブチルアクリレート、固形分含量45質量%)を17g加え、スリーワンモーターで3時間攪拌して均一なスラリー[多孔質層(II)形成用スラリー、固形分比率50質量%]を調製した。 To 500 g of the above dispersion, 0.5 g of xanthan gum as a thickener and 17 g of a resin binder dispersion (modified polybutyl acrylate, solid content 45% by mass) as a binder are added and stirred with a three-one motor for 3 hours to form a uniform slurry. [Slurry for forming porous layer (II), solid content ratio: 50% by mass] was prepared.
 リチウム二次電池用PE製微多孔質セパレータ[多孔質層(I):厚み12μm、空孔率40%、平均孔径0.08μm、PEの融点135℃]の片面にコロナ放電処理(放電量40W・分/m)を施し、この処理面に多孔質層(II)形成用スラリーをマイクログラビアコーターによって塗布し、乾燥して厚みが4μmの多孔質層(II)を形成して、積層型のセパレータを得た。このセパレータにおける多孔質層(II)の単位面積あたりの質量は5.5g/mで、ベーマイトの体積含有率は95体積%であり、空孔率は45%であった。 PE microporous separator for lithium secondary batteries [Porous layer (I): thickness 12 μm, porosity 40%, average pore diameter 0.08 μm, PE melting point 135 ° C.] on one side corona discharge treatment (discharge amount 40 W)・ Min / m 2 ), a porous layer (II) forming slurry is applied to the treated surface by a micro gravure coater, and dried to form a porous layer (II) having a thickness of 4 μm. A separator was obtained. The mass per unit area of the porous layer (II) in this separator was 5.5 g / m 2 , the boehmite volume content was 95% by volume, and the porosity was 45%.
 <電池の組み立て>
 前記のようにして得た正極と負極とを、セパレータの多孔質層(II)が正極に面するように介在させつつ重ね、渦巻状に巻回して巻回電極体を作製した。得られた巻回電極体を押しつぶして扁平状にし、厚み5mm、幅42mm、高さ61mmのアルミニウム合金製外装缶に入れた。また、非水電解液として、エチレンカーボネートとエチルメチルカーボネートとジエチルカーボネートとを体積比で1:1:1で混合した溶媒に、LiPFを1.1mol/Lの濃度になるように溶解させたものに、FECを2.0質量%、VCを1.0質量%、更にトリエチルホスホノアセテートを濃度が2.0質量%となるように、それぞれ添加した溶液を調製した。次に、外装缶に前記非水電解液を注入した。
<Battery assembly>
The positive electrode and the negative electrode obtained as described above were stacked with the separator porous layer (II) facing the positive electrode, and wound in a spiral shape to produce a wound electrode body. The obtained wound electrode body was crushed into a flat shape and placed in an aluminum alloy outer can having a thickness of 5 mm, a width of 42 mm, and a height of 61 mm. In addition, LiPF 6 was dissolved to a concentration of 1.1 mol / L in a solvent in which ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate were mixed at a volume ratio of 1: 1: 1 as a non-aqueous electrolyte. A solution was prepared by adding 2.0% by mass of FEC, 1.0% by mass of VC, and further adding triethylphosphonoacetate to a concentration of 2.0% by mass. Next, the non-aqueous electrolyte was poured into the outer can.
 非水電解液の注入後に外装缶の封止を行って、図1A、Bに示す構造で、図2に示す外観のリチウム二次電池を作製した。この電池は、缶の上部に内圧が上昇した場合に圧力を下げるための開裂ベントを備えている。 After injecting the non-aqueous electrolyte, the outer can was sealed, and a lithium secondary battery having the structure shown in FIGS. 1A and 1B and the appearance shown in FIG. 2 was produced. This battery includes a cleavage vent for lowering the pressure when the internal pressure rises at the top of the can.
 ここで、図1A、Bおよび図2に示す電池について説明すると、図1Aは本実施例のリチウム二次電池の平面図であり、図1Bは図1Aの断面図である。図1Bに示すように、正極1と負極2は前記のようにセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状の巻回電極体6として、角筒形の外装缶4に電解液と共に収容されている。但し、図1Bでは、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や電解液などは図示していない。また、セパレータ3の各層も区別して示していない。 Here, the battery shown in FIGS. 1A, 1B and 2 will be described. FIG. 1A is a plan view of the lithium secondary battery of this example, and FIG. 1B is a cross-sectional view of FIG. 1A. As shown in FIG. 1B, the positive electrode 1 and the negative electrode 2 are spirally wound through the separator 3 as described above, and then pressed so as to be flattened to form a flat wound electrode body 6. A cylindrical outer can 4 is accommodated together with the electrolytic solution. However, in FIG. 1B, in order to avoid complication, a metal foil, an electrolytic solution, or the like as a current collector used in manufacturing the positive electrode 1 and the negative electrode 2 is not illustrated. Further, each layer of the separator 3 is not shown separately.
 外装缶4はアルミニウム合金製で電池の外装体を構成するものであり、この外装缶4は正極端子を兼ねている。そして、外装缶4の底部にはPEシートからなる絶縁体5が配置され、正極1、負極2およびセパレータ3からなる巻回電極体6からは、正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、外装缶4の開口部を封口するアルミニウム合金製の封口用の蓋板9にはPP製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。 The outer can 4 is made of an aluminum alloy and constitutes an outer casing of the battery. The outer can 4 also serves as a positive electrode terminal. And the insulator 5 which consists of PE sheets is arrange | positioned at the bottom part of the armored can 4, and it connected to each one end of the positive electrode 1 and the negative electrode 2 from the winding electrode body 6 which consists of the positive electrode 1, the negative electrode 2, and the separator 3. The positive electrode lead body 7 and the negative electrode lead body 8 are drawn out. A stainless steel terminal 11 is attached to a sealing lid plate 9 made of aluminum alloy for sealing the opening of the outer can 4 via a PP insulating packing 10, and an insulator 12 is attached to the terminal 11. A stainless steel lead plate 13 is attached via
 そして、この蓋板9は外装缶4の開口部に挿入され、両者の接合部を溶接することによって、外装缶4の開口部が封口され、電池内部が密閉されている。また、図1A、Bの電池では、蓋板9に非水電解液注入口14が設けられており、この非水電解液注入口14には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている。従って、図1A、Bおよび図2の電池では、実際には、非水電解液注入口14は、非水電解液注入口と封止部材であるが、説明を容易にするために、非水電解液注入口14として示している。更に、蓋板9には、電池の温度が上昇した際に内部のガスを外部に排出する機構として、開裂ベント15が設けられている。 The cover plate 9 is inserted into the opening of the outer can 4 and welded to join the opening of the outer can 4 to seal the inside of the battery. In the battery shown in FIGS. 1A and 1B, a non-aqueous electrolyte inlet 14 is provided in the lid plate 9, and a sealing member is inserted into the non-aqueous electrolyte inlet 14, for example, with a laser. The battery is hermetically sealed by welding or the like, so that the battery is sealed. Accordingly, in the batteries of FIGS. 1A, 1B and 2, the non-aqueous electrolyte inlet 14 is actually a non-aqueous electrolyte inlet and a sealing member. An electrolyte inlet 14 is shown. Further, the lid plate 9 is provided with a cleavage vent 15 as a mechanism for discharging the internal gas to the outside when the temperature of the battery rises.
 本実施例の電池では、正極リード体7を蓋板9に直接溶接することによって外装缶4と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、外装缶4の材質などによっては、その正負が逆になる場合もある。 In the battery of this embodiment, the outer can 4 and the lid plate 9 function as a positive electrode terminal by directly welding the positive electrode lead body 7 to the lid plate 9, and the negative electrode lead body 8 is welded to the lead plate 13. The terminal 11 functions as a negative electrode terminal by conducting the negative electrode lead body 8 and the terminal 11 through the plate 13. However, depending on the material of the outer can 4, the sign may be reversed. is there.
 図2は本実施例のリチウム二次電池の斜視図であり、この図2は前記電池が角形電池であることを示すことを目的として図示されたものである。また、図1A、Bでは電池を概略的に示しており、電池を構成する部材のうち、特定のものしか図示していない。また、図1Bにおいても、巻回電極体6の内周側の部分は断面にしていない。 FIG. 2 is a perspective view of the lithium secondary battery of this example, and this FIG. 2 is shown for the purpose of showing that the battery is a square battery. 1A and 1B schematically show the battery, and only specific members are shown among the members constituting the battery. Also in FIG. 1B, the inner peripheral side portion of the wound electrode body 6 is not cross-sectional.
 (実施例1-2)
 非水電解液にトリエチルホスホノアセテートを濃度が0.5質量%となる量で添加した以外は、実施例1-1と同様にしてリチウム二次電池を作製した。
Example 1-2
A lithium secondary battery was produced in the same manner as in Example 1-1 except that triethylphosphonoacetate was added to the nonaqueous electrolytic solution in an amount of 0.5% by mass.
 (実施例1-3)
 非水電解液にトリエチルホスホノアセテートを濃度が10.0質量%となる量で添加した以外は、実施例1-1と同様にしてリチウム二次電池を作製した。
(Example 1-3)
A lithium secondary battery was produced in the same manner as in Example 1-1, except that triethylphosphonoacetate was added to the nonaqueous electrolytic solution in an amount of 10.0% by mass.
 (実施例1-4)
 非水電解液として、エチレンカーボネートとエチルメチルカーボネートとジエチルカーボネートとを体積比で1:1:1で混合した溶媒にLiPFを濃度1.1mol/Lで溶解させ、更にFECおよびVCを、それぞれ濃度が2.0質量%、1.0質量%となる量で、トリエチル-3-ホスホノプロピオネートを濃度が2.0質量%となる量で添加した溶液を用いた以外は、実施例1-1と同様にしてリチウム二次電池を作製した。
(Example 1-4)
As a non-aqueous electrolyte, LiPF 6 was dissolved at a concentration of 1.1 mol / L in a solvent in which ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate were mixed at a volume ratio of 1: 1: 1, and FEC and VC were respectively added. Examples were used except that a solution having a concentration of 2.0% by mass and 1.0% by mass and triethyl-3-phosphonopropionate added to an amount of 2.0% by mass was used. A lithium secondary battery was produced in the same manner as in 1-1.
 (実施例1-5)
 平均粒子径D50%が16μmであるグラファイトを:98質量部と、粘度が1500~5000mPa・sの範囲に調整された1質量%濃度のCMC水溶液:100質量部およびSBR:1.0質量部とを、比抵抗が2.0×10Ωcm以上のイオン交換水を溶剤として混合して、水系の負極合剤含有ペーストを調製し、この負極合剤含有ペーストを用いて負極を作製した以外は、実施例1-1と同様にしてリチウム二次電池を作製した。
(Example 1-5)
98 parts by weight of graphite having an average particle diameter D50% of 16 μm: 100 parts by weight of CMC aqueous solution having a concentration of 1% by weight adjusted to a viscosity of 1500 to 5000 mPa · s: 1.0 part by weight and SBR: 1.0 part by weight Except that ion-exchanged water having a specific resistance of 2.0 × 10 5 Ωcm or more was mixed as a solvent to prepare an aqueous negative electrode mixture-containing paste, and a negative electrode was produced using this negative electrode mixture-containing paste. A lithium secondary battery was produced in the same manner as in Example 1-1.
 (実施例1-6)
 <第1のリチウム含有複合酸化物の合成>
 水酸化ナトリウムの添加によってpHを約12に調整したアンモニア水を反応容器に入れ、これを強攪拌しながら、この中に、硫酸ニッケル、硫酸マンガンおよび硫酸コバルトを、それぞれ、3.76mol/dm、0.21mol/dm、0.21mol/dmの濃度で含有する混合水溶液と、25質量%濃度のアンモニア水とを、それぞれ、23cm/分、6.6cm/分の割合で、定量ポンプを用いて滴下して、NiとMnとCoとの共沈化合物(球状の共沈化合物)を合成した。この際、反応液の温度は50℃に保持し、また、反応液のpHが12付近に維持されるように、6.4mol/dm濃度の水酸化ナトリウム水溶液の滴下も同時に行い、更に不活性雰囲気下で反応させるため、窒素ガスを1dm/分の流量でバブリングした。
(Example 1-6)
<Synthesis of first lithium-containing composite oxide>
Aqueous ammonia whose pH was adjusted to about 12 by adding sodium hydroxide was placed in a reaction vessel, and while vigorously stirring, nickel sulfate, manganese sulfate, and cobalt sulfate were each added to 3.76 mol / dm 3. , 0.21 mol / dm 3, a mixed aqueous solution containing a concentration of 0.21 mol / dm 3, and aqueous ammonia 25% strength by weight, respectively, 23cm 3 / min at a rate of 6.6 cm 3 / min, The mixture was added dropwise using a metering pump to synthesize a coprecipitation compound of Ni, Mn, and Co (spherical coprecipitation compound). At this time, the temperature of the reaction solution is maintained at 50 ° C., and a 6.4 mol / dm 3 concentration sodium hydroxide aqueous solution is simultaneously added so that the pH of the reaction solution is maintained around 12. In order to react under an active atmosphere, nitrogen gas was bubbled at a flow rate of 1 dm 3 / min.
 前記の共沈化合物を水洗、濾過および乾燥させて、NiとMnとCoとを90:5:5のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・HOと、0.001molのTiOとをエタノール中に分散させてスラリー状にした後、遊星型ボールミルで40分間混合し、室温で乾燥させて混合物を得た。次いで、前記混合物をアルミナ製のるつぼに入れ、2dm/分のドライエアーフロー中で600℃まで加熱し、その温度で2時間保持して予備加熱を行い、更に800℃に昇温して12時間焼成することにより、第1のリチウム含有複合酸化物を合成した。得られた第1のリチウム含有複合酸化物は、乳鉢で粉砕して粉体とした後、デシケーター中で保存した。 The coprecipitated compound was washed with water, filtered and dried to obtain a hydroxide containing Ni, Mn and Co in a molar ratio of 90: 5: 5. 0.196 mol of this hydroxide, 0.204 mol of LiOH.H 2 O and 0.001 mol of TiO 2 were dispersed in ethanol to form a slurry, and then mixed for 40 minutes with a planetary ball mill. And dried to obtain a mixture. Next, the mixture is put in an alumina crucible, heated to 600 ° C. in a dry air flow of 2 dm 3 / min, held at that temperature for 2 hours for preheating, further heated to 800 ° C. and heated to 12 ° C. The first lithium-containing composite oxide was synthesized by firing for a period of time. The obtained first lithium-containing composite oxide was pulverized into a powder in a mortar and then stored in a desiccator.
 この第1のリチウム含有複合酸化物について、その組成分析を実施例1-1と同様にして行い、得られた結果から、前記第1のリチウム含有複合酸化物の組成を導出したところ、Li1.02Ni0.895Co0.05Mn0.05Ti0.005で表される組成であることが判明した。このとき、Li:Ni=1.02:0.895から、Ni/Li=0.88(小数点第3位を四捨五入)であった。 This first lithium-containing composite oxide, when carried out in the same manner as the composition analysis as in Example 1-1, from the results obtained, to derive the composition of the first lithium-containing composite oxide, Li 1 0.02 Ni 0.895 Co 0.05 Mn 0.05 Ti 0.005 O 2 was found to be the composition. At this time, from Li: Ni = 1.02: 0.895, Ni / Li = 0.88 (the third decimal place was rounded off).
 前記第1のリチウム含有複合酸化物と、第2のリチウム含有複合酸化物であるLiCoOとを、質量比で3:7になるように計量し、ヘンシェルミキサを用いて30分混合し、得られた混合物を正極活物質とした以外は、実施例1-1と同様にしてリチウム二次電池を作製した。ここで、実施例1-1と同様の方法で測定した正極合剤層の密度は3.65g/cmであった。 The first lithium-containing composite oxide and the second lithium-containing composite oxide LiCoO 2 were weighed to a mass ratio of 3: 7 and mixed for 30 minutes using a Henschel mixer. A lithium secondary battery was produced in the same manner as in Example 1-1 except that the obtained mixture was used as the positive electrode active material. Here, the density of the positive electrode mixture layer measured by the same method as in Example 1-1 was 3.65 g / cm 3 .
 (実施例1-7)
 共沈化合物の合成に使用する混合水溶液中の原料化合物の濃度を調節して、NiとCoとMnとを1:1:1のモル比で含有する水酸化物を合成し、これを用いた以外は、実施例1-1と同様にして第1のリチウム含有複合酸化物を合成した。この第1のリチウム含有複合酸化物について、その組成分析を実施例1-1と同様にして行い、得られた結果から、前記第1のリチウム含有複合酸化物の組成を導出したところ、Li1.02Ni0.3Co0.3Mn0.3で表される組成であることが判明した。このとき、Li:Ni=1.02:0.3から、Ni/Li=0.29(小数点第3位を四捨五入)であった。
(Example 1-7)
By adjusting the concentration of the raw material compound in the mixed aqueous solution used for the synthesis of the coprecipitation compound, a hydroxide containing Ni, Co and Mn at a molar ratio of 1: 1: 1 was synthesized and used. Except for the above, a first lithium-containing composite oxide was synthesized in the same manner as in Example 1-1. This first lithium-containing composite oxide, when carried out in the same manner as the composition analysis as in Example 1-1, from the results obtained, to derive the composition of the first lithium-containing composite oxide, Li 1 0.02 Ni 0.3 Co 0.3 Mn 0.3 O 2 was found to be the composition. At this time, from Li: Ni = 1.02: 0.3, Ni / Li = 0.29 (the third decimal place was rounded off).
 この第1のリチウム含有複合酸化物と、第2のリチウム含有複合酸化物であるLiCoOとを、質量比で3:7になるように計量し、ヘンシェルミキサを用いて30分混合し、得られた混合物を正極活物質とした以外は、実施例1-1と同様にしてリチウム二次電池を作製した。ここで、実施例1-1と同様の方法で測定した正極合剤層の密度は3.60g/cmであった。 The first lithium-containing composite oxide and the second lithium-containing composite oxide LiCoO 2 were weighed to a mass ratio of 3: 7 and mixed for 30 minutes using a Henschel mixer. A lithium secondary battery was produced in the same manner as in Example 1-1 except that the obtained mixture was used as the positive electrode active material. Here, the density of the positive electrode mixture layer measured by the same method as in Example 1-1 was 3.60 g / cm 3 .
 (実施例1-8)
 カレンダ後の正極合剤層の厚みを実施例1-1と同じになるようにし、且つカレンダ後の正極合剤層の密度が3.20g/cmになるようにした以外は、実施例1-1と同様にしてリチウム二次電池を作製した。
(Example 1-8)
Example 1 except that the thickness of the positive electrode mixture layer after calendering was the same as that of Example 1-1 and the density of the positive electrode mixture layer after calendering was 3.20 g / cm 3. A lithium secondary battery was produced in the same manner as in Example-1.
 (比較例1-1)
 正極活物質として、LiCoOのみを使用し、カレンダ後の正極合剤層の密度が3.80g/cmとなるように調整した以外は、実施例1-1と同様にして、リチウム二次電池を作製した。
(Comparative Example 1-1)
As in Example 1-1, only LiCoO 2 was used as the positive electrode active material and the density of the positive electrode mixture layer after calendering was adjusted to 3.80 g / cm 3. A battery was produced.
 (比較例1-2)
 非水電解液として、エチレンカーボネートとエチルメチルカーボネートとジエチルカーボネートとを体積比で1:1:1で混合した溶媒にLiPFを濃度1.1mol/Lで溶解させ、更にFECおよびVCを、それぞれ濃度が2.0質量%、1.0質量となる量で、1,3-プロパンスルトンを濃度が2.0質量%となる量で添加した溶液を用いた以外は、実施例1-1と同様にしてリチウム二次電池を作製した。
(Comparative Example 1-2)
As a non-aqueous electrolyte, LiPF 6 was dissolved at a concentration of 1.1 mol / L in a solvent in which ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate were mixed at a volume ratio of 1: 1: 1, and FEC and VC were respectively added. Example 1-1 and Example 1-1 were used except that a solution having a concentration of 2.0 mass% and 1.0 mass in which 1,3-propane sultone was added in an amount of 2.0 mass% was used. Similarly, a lithium secondary battery was produced.
 (比較例1-3)
 正極活物質として、LiCoOのみを使用し、カレンダ後の正極合剤層の密度が3.80g/cmとなるように調整した以外は、比較例1-2と同様にして、リチウム二次電池を作製した。
(Comparative Example 1-3)
As a positive electrode active material, only LiCoO 2 was used, and a lithium secondary secondary was prepared in the same manner as in Comparative Example 1-2, except that the density of the positive electrode mixture layer after calendering was adjusted to 3.80 g / cm 3. A battery was produced.
 (比較例1-4)
 非水電解液中のトリエチルホスホノアセテートの濃度を0.3質量%に変更した以外は、実施例1-1と同様にしてリチウム二次電池を作製した。
(Comparative Example 1-4)
A lithium secondary battery was produced in the same manner as in Example 1-1 except that the concentration of triethylphosphonoacetate in the nonaqueous electrolytic solution was changed to 0.3% by mass.
 (比較例1-5)
 正極活物質として、LiCoOのみを使用し、カレンダ後の正極合剤層の厚みを実施例1-1と同じになるようにし、且つカレンダ後の正極合剤層の密度が3.20g/cmとなるように調整した以外は、実施例1-1と同様にして、リチウム二次電池を作製した。
(Comparative Example 1-5)
Only LiCoO 2 was used as the positive electrode active material, the thickness of the positive electrode mixture layer after calendering was made the same as in Example 1-1, and the density of the positive electrode mixture layer after calendering was 3.20 g / cm 3. A lithium secondary battery was produced in the same manner as in Example 1-1 except that the adjustment was made to be 3.
 実施例1-1~1-8および比較例1-1~1-5のリチウム二次電池の正極活物質として用いた第1のリチウム含有複合酸化物の組成と、Ni/Li(モル比率)と、非水電解液中のホスホノアセテート類化合物の含有量とを表1に示す。 Composition of the first lithium-containing composite oxide used as the positive electrode active material of the lithium secondary batteries of Examples 1-1 to 1-8 and Comparative Examples 1-1 to 1-5, and Ni / Li (molar ratio) Table 1 shows the content of the phosphonoacetate compound in the nonaqueous electrolytic solution.
 更に、実施例1-1~1-8および比較例1-1~1-5で作製したリチウム二次電池について、下記手法により電池容量、電池膨れ、高温貯蔵後の容量回復率、充放電サイクル特性(容量維持率)の評価を行った。その結果を正極合剤層の密度と合わせて表2に示す。 Further, with respect to the lithium secondary batteries produced in Examples 1-1 to 1-8 and Comparative Examples 1-1 to 1-5, the battery capacity, battery swelling, capacity recovery rate after high-temperature storage, and charge / discharge cycles were measured by the following methods. The characteristics (capacity retention rate) were evaluated. The results are shown in Table 2 together with the density of the positive electrode mixture layer.
 <電池容量測定>
 各電池を初回充放電後、常温(25℃)で、1Cの定電流で4.2Vに達するまで充電し、その後4.2Vの定電圧で充電する定電流-定電圧充電(総充電時間:2.5時間)を行った後、0.2Cの定電流放電(放電終止電圧:3.0V)を行い、得られた放電容量(mAh)を電池容量とした。表2では、各実施例および各比較例で測定した放電容量を、実施例1-1の放電容量で除した値を百分率で表した相対電池容量(%)として示している。
<Battery capacity measurement>
After the initial charge and discharge of each battery, the battery is charged at room temperature (25 ° C.) with a constant current of 1 C until it reaches 4.2 V, and then charged with a constant voltage of 4.2 V (constant current-constant voltage charging (total charging time: 2.5 hours), 0.2 C constant current discharge (discharge end voltage: 3.0 V) was performed, and the obtained discharge capacity (mAh) was defined as the battery capacity. In Table 2, the value obtained by dividing the discharge capacity measured in each Example and each Comparative Example by the discharge capacity of Example 1-1 is shown as a relative battery capacity (%) expressed as a percentage.
 <電池膨れ>
 各電池を初回充放電後、前記電池容量測定と同じ条件で充電した。充電後の電池の外装缶の厚さTを予め測定しておき、その後、電池を85℃に設定した恒温槽内で24時間保存し、恒温槽から取り出して、常温で3時間放置した後に、再び外装缶の厚さTを測定した。ここで、外装缶の厚さとは、外装缶の幅広側面間の厚さを意味する。外装缶の厚さ測定は、ミツトヨ社製のノギス「CD-15CX」を用い、幅広側面部の中央部を測定対象として、100分の1mm単位で計測した。電池膨れは、下記式により求めた電池膨れ率(%)で評価した。
<Battery swelling>
Each battery was charged under the same conditions as the battery capacity measurement after the initial charge / discharge. Measured in advance thickness T 1 of the outer can of the battery after charging, then, stored for 24 hours in a constant temperature bath set at 85 ° C. the cells, taken out from the thermostatic bath, after standing 3 hours at room temperature , to measure the thickness T 2 of the outer can again. Here, the thickness of the outer can means the thickness between the wide side surfaces of the outer can. The thickness of the outer can was measured in units of 1/100 mm using a caliper “CD-15CX” manufactured by Mitutoyo Co., Ltd. with the central part of the wide side face as the measurement target. The battery swelling was evaluated by the battery swelling ratio (%) obtained by the following formula.
 電池膨れ率(%)=100×(T-T)/(TBattery swelling rate (%) = 100 × (T 2 −T 1 ) / (T 1 )
 <高温貯蔵後の容量回復率>
 各電池を初回充放電後、前記電池容量測定と同じ条件で充電した。その後、0.5Cの定電流放電(放電終止電圧:3.0V、以下、放電終止電圧は同じ。)を行い、得られた放電容量(mAh)を貯蔵試験前の0.5C容量とした。その後、前記電池容量測定と同じ条件で充電した後、電池を85℃に設定した恒温槽内で24時間保存し、恒温槽から取り出して、常温で3時間放置後に、0.5Cの定電流放電を行った。続いて、前記電池容量測定と同じ条件で充電した後、0.5Cの定電流放電を行い、得られた放電容量(mAh)を貯蔵試験後の0.5C容量とした。これらの結果から、貯蔵試験前の0.5C容量に対する貯蔵試験後の0.5C容量における容量回復率を下記式により求めた。
<Capacity recovery rate after high temperature storage>
Each battery was charged under the same conditions as the battery capacity measurement after the initial charge / discharge. Thereafter, a constant current discharge of 0.5 C (discharge end voltage: 3.0 V, hereinafter the discharge end voltage is the same) was performed, and the obtained discharge capacity (mAh) was set to 0.5 C capacity before the storage test. Then, after charging under the same conditions as the battery capacity measurement, the battery was stored in a thermostat set at 85 ° C. for 24 hours, taken out from the thermostat and left at room temperature for 3 hours, and then a constant current discharge of 0.5 C. Went. Subsequently, after charging under the same conditions as the battery capacity measurement, 0.5 C constant current discharge was performed, and the obtained discharge capacity (mAh) was set to 0.5 C capacity after the storage test. From these results, the capacity recovery rate at 0.5 C capacity after the storage test with respect to 0.5 C capacity before the storage test was determined by the following formula.
 容量回復率(%)=100×{(貯蔵試験後の0.5C容量)/(貯蔵試験前の0.5C容量)} Capacity recovery rate (%) = 100 × {(0.5C capacity after storage test) / (0.5C capacity before storage test)}
 <充放電サイクル特性>
 各電池を初回充放電後、前記電池容量測定と同じ条件の充電および放電の一連の操作を1サイクルとして充放電を500サイクル繰り返した後、再度、前記電池容量測定と同じ条件の充電を行った後、1Cの定電流放電(放電終止電圧:3.0V)を行い、1C放電容量(mAh)を測定し、この1C放電容量を、前記電池容量測定で得た0.2C放電容量で除した値を百分率で表して容量維持率(%)とした。
<Charge / discharge cycle characteristics>
After charging and discharging each battery for the first time, charging and discharging were repeated 500 cycles with a series of operations of charging and discharging under the same conditions as in the battery capacity measurement as one cycle, and then charging under the same conditions as in the battery capacity measurement was performed again. After that, 1C constant current discharge (discharge end voltage: 3.0V) was performed, 1C discharge capacity (mAh) was measured, and this 1C discharge capacity was divided by the 0.2C discharge capacity obtained by the battery capacity measurement. The value was expressed as a percentage and used as a capacity maintenance rate (%).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1と表2から、正極活物質として、LiとNiを含み、Liに対するNiのモル比率が0.05~1.05の範囲にある第1のリチウム含有複合酸化物を用い、且つ、ホスホノアセテート類化合物を0.5~20質量%含む非水電解液を用いたリチウム二次電池であれば、高容量で,高温貯蔵後の電池膨れが小さく、且つ容量回復率も高く、充放電サイクル特性も良好であることが分かる。 From Tables 1 and 2, the first lithium-containing composite oxide containing Li and Ni and having a molar ratio of Ni to Li in the range of 0.05 to 1.05 is used as the positive electrode active material. A lithium secondary battery using a non-aqueous electrolyte containing 0.5 to 20% by mass of a noacetate compound has a high capacity, a small battery swelling after high-temperature storage, a high capacity recovery rate, and charge / discharge. It can be seen that the cycle characteristics are also good.
 次に、実施形態1の他の実施例に基づいて本発明を詳細に述べる。但し、下記実施例は、本発明を制限するものではない。 Next, the present invention will be described in detail based on another example of the first embodiment. However, the following examples do not limit the present invention.
 <ニッケルを含む第1のリチウム含有複合酸化物Aの合成>
 水酸化ナトリウムの添加によってpHを約12に調整したアンモニア水を反応容器に入れ、これを強攪拌しながら、この中に、硫酸ニッケル、硫酸コバルトおよび硫酸マンガンを、それぞれ、2.4mol/dm、0.8mol/dm、0.8mol/dmの濃度で含有する混合水溶液と、25質量%濃度のアンモニア水とを、それぞれ、23cm/分、6.6cm/分の割合で、定量ポンプを用いて滴下して、NiとCoとMnとの共沈化合物(球状の共沈化合物)を合成した。この際、反応液の温度は50℃に保持し、また、反応液のpHが12付近に維持されるように、6.4mol/dm濃度の水酸化ナトリウム水溶液の滴下も同時に行い、更に不活性雰囲気下で反応させるため、窒素ガスを1dm/分の流量でバブリングした。
<Synthesis of first lithium-containing composite oxide A containing nickel>
Aqueous ammonia whose pH was adjusted to about 12 by adding sodium hydroxide was placed in a reaction vessel, and while vigorously stirring, nickel sulfate, cobalt sulfate and manganese sulfate were each added to 2.4 mol / dm 3. , 0.8 mol / dm 3, a mixed aqueous solution containing a concentration of 0.8 mol / dm 3, and aqueous ammonia 25% strength by weight, respectively, 23cm 3 / min at a rate of 6.6 cm 3 / min, The solution was added dropwise using a metering pump to synthesize a coprecipitation compound of Ni, Co, and Mn (spherical coprecipitation compound). At this time, the temperature of the reaction solution is maintained at 50 ° C., and a 6.4 mol / dm 3 concentration sodium hydroxide aqueous solution is simultaneously added so that the pH of the reaction solution is maintained around 12. In order to react under an active atmosphere, nitrogen gas was bubbled at a flow rate of 1 dm 3 / min.
 前記の共沈化合物を水洗、濾過および乾燥させて、NiとCoとMnとを6:2:2のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・HOとをエタノール中に分散させてスラリー状にした後、遊星型ボールミルで40分間混合し、室温で乾燥させて混合物を得た。次いで、前記混合物をアルミナ製のるつぼに入れ、2dm/分のドライエアーフロー中で600℃まで加熱し、その温度で2時間保持して予備加熱を行い、更に900℃に昇温して12時間焼成することにより、第1のリチウム含有複合酸化物Aを合成した。 The coprecipitated compound was washed with water, filtered and dried to obtain a hydroxide containing Ni, Co and Mn in a molar ratio of 6: 2: 2. 0.196 mol of this hydroxide and 0.204 mol of LiOH.H 2 O were dispersed in ethanol to form a slurry, and then mixed with a planetary ball mill for 40 minutes and dried at room temperature to obtain a mixture. . Next, the mixture is put in an alumina crucible, heated to 600 ° C. in a dry air flow of 2 dm 3 / min, kept at that temperature for 2 hours for preheating, further heated to 900 ° C. and heated to 12 ° C. The first lithium-containing composite oxide A was synthesized by firing for a period of time.
 得られた第1のリチウム含有複合酸化物Aを水で洗浄した後、大気中(酸素濃度が約20体積%)で、850℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後の第1のリチウム含有複合酸化物Aは、デシケーター中で保存した。 The obtained first lithium-containing composite oxide A was washed with water, then heat treated in the atmosphere (oxygen concentration about 20% by volume) at 850 ° C. for 12 hours, and then pulverized in a mortar to obtain a powder. . The first lithium-containing composite oxide A after pulverization was stored in a desiccator.
 前記第1のリチウム含有複合酸化物Aについて、その組成分析を前述の実施例1-1と同様にして行い、得られた結果から、前記第1のリチウム含有複合酸化物Aの組成を導出したところ、Li1.02Ni0.6Co0.2Mn0.2で表される組成であることが判明した。 The composition analysis of the first lithium-containing composite oxide A was performed in the same manner as in Example 1-1 described above, and the composition of the first lithium-containing composite oxide A was derived from the obtained results. However, it was found that the composition was represented by Li 1.02 Ni 0.6 Co 0.2 Mn 0.2 O 2 .
 <ニッケルを含む第1のリチウム含有複合酸化物Bの合成>
 水酸化ナトリウムの添加によってpHを約12に調整したアンモニア水を反応容器に入れ、これを強攪拌しながら、この中に、硫酸ニッケル、硫酸マンガンおよび硫酸コバルトを、それぞれ、3.76mol/dm、0.21mol/dm、0.21mol/dmの濃度で含有する混合水溶液と、25質量%濃度のアンモニア水とを、それぞれ、23cm/分、6.6cm/分の割合で、定量ポンプを用いて滴下して、NiとMnとCoとの共沈化合物(球状の共沈化合物)を合成した。この際、反応液の温度は50℃に保持し、また、反応液のpHが12付近に維持されるように、6.4mol/dm濃度の水酸化ナトリウム水溶液の滴下も同時に行い、更に不活性雰囲気下で反応させるため、窒素ガスを1dm/分の流量でバブリングした。
<Synthesis of first lithium-containing composite oxide B containing nickel>
Aqueous ammonia whose pH was adjusted to about 12 by adding sodium hydroxide was placed in a reaction vessel, and while vigorously stirring, nickel sulfate, manganese sulfate, and cobalt sulfate were each added to 3.76 mol / dm 3. , 0.21 mol / dm 3, a mixed aqueous solution containing a concentration of 0.21 mol / dm 3, and aqueous ammonia 25% strength by weight, respectively, 23cm 3 / min at a rate of 6.6 cm 3 / min, The mixture was added dropwise using a metering pump to synthesize a coprecipitation compound of Ni, Mn, and Co (spherical coprecipitation compound). At this time, the temperature of the reaction solution is maintained at 50 ° C., and a sodium hydroxide aqueous solution having a concentration of 6.4 mol / dm 3 is simultaneously dropped so that the pH of the reaction solution is maintained at around 12. In order to react under an active atmosphere, nitrogen gas was bubbled at a flow rate of 1 dm 3 / min.
 前記の共沈化合物を水洗、濾過および乾燥させて、NiとMnとCoとを90:5:5のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・HOと、0.001molのTiOとをエタノール中に分散させてスラリー状にした後、遊星型ボールミルで40分間混合し、室温で乾燥させて混合物を得た。次いで、前記混合物をアルミナ製のるつぼに入れ、2dm/分のドライエアーフロー中で600℃まで加熱し、その温度で2時間保持して予備加熱を行い、更に800℃に昇温して12時間焼成することにより、第1のリチウム含有複合酸化物Bを合成した。得られた第1のリチウム含有複合酸化物Bは、乳鉢で粉砕して粉体とした後、デシケーター中で保存した。 The coprecipitated compound was washed with water, filtered and dried to obtain a hydroxide containing Ni, Mn and Co in a molar ratio of 90: 5: 5. 0.196 mol of this hydroxide, 0.204 mol of LiOH.H 2 O and 0.001 mol of TiO 2 were dispersed in ethanol to form a slurry, and then mixed for 40 minutes with a planetary ball mill. And dried to obtain a mixture. Next, the mixture is put in an alumina crucible, heated to 600 ° C. in a dry air flow of 2 dm 3 / min, held at that temperature for 2 hours for preheating, further heated to 800 ° C. and heated to 12 ° C. The first lithium-containing composite oxide B was synthesized by firing for a period of time. The obtained first lithium-containing composite oxide B was pulverized into a powder in a mortar and then stored in a desiccator.
 この第1のリチウム含有複合酸化物Bについて、その組成分析を前述の実施例1-1と同様にして行い、得られた結果から、前記第1のリチウム含有複合酸化物Bの組成を導出したところ、Li1.02Ni0.895Co0.05Mn0.05Ti0.005で表される組成であることが判明した。 The composition analysis of the first lithium-containing composite oxide B was performed in the same manner as in Example 1-1 described above, and the composition of the first lithium-containing composite oxide B was derived from the obtained results. However, it was found that the composition was represented by Li 1.02 Ni 0.895 Co 0.05 Mn 0.05 Ti 0.005 O 2 .
 <ニッケルを含むリチウム含有複合酸化物Cの合成>
 共沈化合物の合成に使用する混合水溶液中の原料化合物の濃度を調節して、NiとCoとMnとを1:1:1のモル比で含有する水酸化物を合成し、これを用いた以外は、第1のリチウム含有複合酸化物Aの合成と同様にして、第1のリチウム含有複合酸化物Cを合成した。この第1のリチウム含有複合酸化物Cについて、その組成分析を前述の実施例1-1と同様にして行い、得られた結果から、前記第1のリチウム含有複合酸化物Cの組成を導出したところ、Li1.02Ni0.3Co0.3Mn0.3で表される組成であることが判明した。
<Synthesis of nickel-containing lithium-containing composite oxide C>
By adjusting the concentration of the raw material compound in the mixed aqueous solution used for the synthesis of the coprecipitation compound, a hydroxide containing Ni, Co and Mn at a molar ratio of 1: 1: 1 was synthesized and used. Except for the above, a first lithium-containing composite oxide C was synthesized in the same manner as the synthesis of the first lithium-containing composite oxide A. The composition analysis of the first lithium-containing composite oxide C was performed in the same manner as in Example 1-1 described above, and the composition of the first lithium-containing composite oxide C was derived from the obtained results. However, it was found that the composition was represented by Li 1.02 Ni 0.3 Co 0.3 Mn 0.3 O 2 .
 (実施例2-1~2-5)
 <正極の作製>
 前記合成したニッケルを含む第1のリチウム含有複合酸化物Aと、第2のリチウム含有複合酸化物であるLiCoOとを、表3に示す質量比に計量し、ヘンシェルミキサを用いて30分混合し、混合物を得た。得られた混合物を正極活物質として100質量部と、バインダであるPVDFおよびP(TFE-VDF)をN-メチル-2-ピロリドン(NMP)に溶解させた溶液20質量部と、導電助剤である平均繊維長が100nmで、平均繊維径が10nmの炭素繊維1.04質量部と、グラファイト1.04質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。PVDFおよびP(TFE-VDF)のNMP溶液の使用量は、溶解しているPVDFおよびP(TFE-VDF)の量が、前記第1のリチウム含有複合酸化物とLiCoOの混合物と、PVDFと、P(TFE-VDF)と、前記導電助剤との合計(すなわち、正極合剤層の総量)100質量%中、それぞれ、2.34質量%および0.26質量%となる量とした。すなわち、正極合剤層におけるバインダ総量が2.6質量%であり、P(TFE-VDF)とPVDFとの合計100質量%中のP(TFE-VDF)の割合が10質量%である。
(Examples 2-1 to 2-5)
<Preparation of positive electrode>
The first lithium-containing composite oxide A containing nickel and LiCoO 2 that is the second lithium-containing composite oxide are weighed to a mass ratio shown in Table 3 and mixed for 30 minutes using a Henschel mixer. To obtain a mixture. 100 parts by mass of the obtained mixture as a positive electrode active material, 20 parts by mass of a solution obtained by dissolving PVDF and P (TFE-VDF) as binders in N-methyl-2-pyrrolidone (NMP), and a conductive auxiliary agent A 1.04 part by mass carbon fiber having an average fiber length of 100 nm and an average fiber diameter of 10 nm and 1.04 part by mass of graphite are kneaded using a biaxial kneader, and NMP is added to adjust the viscosity. Thus, a positive electrode mixture-containing paste was prepared. The amount of the PVDF and P (TFE-VDF) NMP solution used is such that the amount of the dissolved PVDF and P (TFE-VDF) is the mixture of the first lithium-containing composite oxide and LiCoO 2 , PVDF and , P (TFE-VDF) and the conductive auxiliary agent (ie, the total amount of the positive electrode mixture layer) in 100% by mass, amounts to 2.34% by mass and 0.26% by mass, respectively. That is, the total amount of binder in the positive electrode mixture layer is 2.6% by mass, and the ratio of P (TFE-VDF) in the total of 100% by mass of P (TFE-VDF) and PVDF is 10% by mass.
 前記の正極合剤含有ペーストを、厚みが15μmのアルミニウム箔(正極集電体)の両面に厚みを調節して間欠塗布し、乾燥した後、カレンダ処理を行って全厚が130μmになるように正極合剤層の厚みを調節し、幅が54.5mmになるように切断して正極を作製した。更に、この正極のアルミニウム箔の露出部にタブを溶接してリード部を形成した。ここで、前述の方法で測定した正極合剤層の密度は3.80g/cmであった。 The positive electrode mixture-containing paste is intermittently applied to both sides of an aluminum foil (positive electrode current collector) having a thickness of 15 μm while adjusting the thickness, dried, and then subjected to a calendering process so that the total thickness becomes 130 μm. The thickness of the positive electrode mixture layer was adjusted, and the positive electrode was produced by cutting so as to have a width of 54.5 mm. Further, a tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion. Here, the density of the positive electrode mixture layer measured by the above-described method was 3.80 g / cm 3 .
 <負極の作製>
 平均粒子径D50%が8μmであるSiO表面を炭素材料で被覆した複合体(複合体における炭素材料の量が10質量%)と、平均粒子径D50%が16μmであるグラファイトとを、SiO表面を炭素材料で被覆した複合体の量が3.0質量%となる量で混合した負極活物質:98質量部と、粘度が1500~5000mPa・sの範囲に調整された1質量%濃度のCMC水溶液:100質量部およびSBR:1.0質量部とを、比抵抗が2.0×10Ωcm以上のイオン交換水を溶剤として混合して、水系の負極合剤含有ペーストを調製した。
<Production of negative electrode>
A composite in which the surface of SiO x having an average particle diameter D50% of 8 μm is coated with a carbon material (the amount of the carbon material in the composite is 10 mass%) and graphite having an average particle diameter D50% of 16 μm are combined with SiO x. Negative electrode active material mixed in such an amount that the amount of the composite whose surface was coated with a carbon material was 3.0% by mass: 98 parts by mass, and a 1% by mass concentration whose viscosity was adjusted in the range of 1500 to 5000 mPa · s CMC aqueous solution: 100 parts by mass and SBR: 1.0 part by mass were mixed with ion-exchanged water having a specific resistance of 2.0 × 10 5 Ωcm or more as a solvent to prepare an aqueous negative electrode mixture-containing paste.
 前記の負極合剤含有ペーストを、厚みが8μmの銅箔(負極集電体)の両面に厚みを調節して間欠塗布し、乾燥した後、カレンダ処理を行って全厚が110μmになるように負極合剤層の厚みを調整し、幅が55.5mmになるように切断して負極を作製した。更に、この負極の銅箔の露出部にタブを溶接してリード部を形成した。 The negative electrode mixture-containing paste is intermittently applied on both sides of a copper foil (negative electrode current collector) having a thickness of 8 μm while adjusting the thickness, dried, and then calendered so that the total thickness becomes 110 μm. The thickness of the negative electrode mixture layer was adjusted, and the negative electrode was produced by cutting so as to have a width of 55.5 mm. Further, a tab was welded to the exposed portion of the copper foil of the negative electrode to form a lead portion.
 <セパレータの作製>
 平均粒子径D50%が3μmのベーマイト二次凝集体5kgに、イオン交換水5kgと、分散剤(水系ポリカルボン酸アンモニウム塩、固形分濃度40質量%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで10時間解砕処理をして分散液を調製した。処理後の分散液の一部を120℃で真空乾燥し、走査型電子顕微鏡(SEM)で観察したところ、ベーマイトの形状はほぼ板状であった。また、処理後のベーマイトの平均粒子径は1μmであった。
<Preparation of separator>
To 5 kg of boehmite secondary aggregate having an average particle diameter D50% of 3 μm, 5 kg of ion-exchanged water and 0.5 kg of a dispersant (aqueous polycarboxylic acid ammonium salt, solid content concentration 40% by mass) are added. Dispersion was prepared by crushing for 10 hours with a ball mill with 40 rotations / minute. When a part of the treated dispersion was vacuum dried at 120 ° C. and observed with a scanning electron microscope (SEM), the shape of boehmite was almost plate-like. The average particle size of the boehmite after the treatment was 1 μm.
 前記分散液500gに、増粘剤としてキサンタンガムを0.5g、バインダとして樹脂バインダディスパージョン(変性ポリブチルアクリレート、固形分含量45質量%)を17g加え、スリーワンモーターで3時間攪拌して均一なスラリー[多孔質層(II)形成用スラリー、固形分比率50質量%]を調製した。 To 500 g of the above dispersion, 0.5 g of xanthan gum as a thickener and 17 g of a resin binder dispersion (modified polybutyl acrylate, solid content 45% by mass) as a binder are added and stirred with a three-one motor for 3 hours to form a uniform slurry. [Slurry for forming porous layer (II), solid content ratio: 50% by mass] was prepared.
 リチウム二次電池用PE製微多孔質セパレータ[多孔質層(I):厚み12μm、空孔率40%、平均孔径0.08μm、PEの融点135℃]の片面にコロナ放電処理(放電量40W・分/m)を施し、この処理面に多孔質層(II)形成用スラリーをマイクログラビアコーターによって塗布し、乾燥して厚みが4μmの多孔質層(II)を形成して、積層型のセパレータを得た。このセパレータにおける多孔質層(II)の単位面積あたりの質量は5.5g/mで、ベーマイトの体積含有率は95体積%であり、空孔率は45%であった。 PE microporous separator for lithium secondary batteries [Porous layer (I): thickness 12 μm, porosity 40%, average pore diameter 0.08 μm, PE melting point 135 ° C.] on one side corona discharge treatment (discharge amount 40 W)・ Min / m 2 ), a porous layer (II) forming slurry is applied to the treated surface by a micro gravure coater, and dried to form a porous layer (II) having a thickness of 4 μm. A separator was obtained. The mass per unit area of the porous layer (II) in this separator was 5.5 g / m 2 , the boehmite volume content was 95% by volume, and the porosity was 45%.
 <電池の組み立て>
 前記のようにして得た正極と負極とを、セパレータの多孔質層(II)が正極に面するように介在させつつ重ね、渦巻状に巻回して巻回電極体を作製した。得られた巻回電極体を押しつぶして扁平状にし、厚み5mm、幅42mm、高さ61mmのアルミニウム合金製外装缶に入れた。また、非水電解液として、エチレンカーボネートとエチルメチルカーボネートとジエチルカーボネートとを体積比で1:1:1で混合した溶媒に、LiPFを1.1mol/Lの濃度になるよう溶解させたものに、FECを2.0質量%、VCを1.0質量%、更にトリエチルホスホノアセテートを表3に示す濃度となるようにそれぞれ添加した溶液を調製した。次に、外装缶に前記非水電解液を注入した。
<Battery assembly>
The positive electrode and the negative electrode obtained as described above were stacked with the separator porous layer (II) facing the positive electrode, and wound in a spiral shape to produce a wound electrode body. The obtained wound electrode body was crushed into a flat shape and placed in an aluminum alloy outer can having a thickness of 5 mm, a width of 42 mm, and a height of 61 mm. Further, as a non-aqueous electrolyte, LiPF 6 was dissolved in a solvent in which ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate were mixed at a volume ratio of 1: 1: 1 to a concentration of 1.1 mol / L. A solution was prepared by adding 2.0% by mass of FEC, 1.0% by mass of VC, and further adding triethylphosphonoacetate to the concentrations shown in Table 3. Next, the non-aqueous electrolyte was poured into the outer can.
 非水電解液の注入後に外装缶の封止を行って、図1A、Bに示す構造で、図2に示す外観のリチウム二次電池を作製した。 After injecting the non-aqueous electrolyte, the outer can was sealed, and a lithium secondary battery having the structure shown in FIGS. 1A and 1B and the appearance shown in FIG. 2 was produced.
 (実施例2-6)
 前記合成したニッケルを含む第1のリチウム含有複合酸化物Bと、第2のリチウム含有複合酸化物であるLiCoOとを、0.5:0.5の質量比に計量して混合したものを正極活物質として用いた以外は、実施例2-1と同様にして巻回電極体を作製した。また、前述の方法で測定した正極合剤層の密度は3.80g/cmであった。次に、トリエチルホスホノアセテートの濃度を5.0質量%とした以外は、実施例2-1で使用したものと同様の非水電解液を前記外装缶に注入し、実施例2-1と同様にしてリチウム二次電池を作製した。
(Example 2-6)
A mixture was metered in a weight ratio of 0.5: the a synthesized first lithium-containing composite oxide containing nickel B, and a LiCoO 2 as the second lithium-containing composite oxide, 0.5 A wound electrode body was produced in the same manner as in Example 2-1, except that the positive electrode active material was used. Further, the density of the positive electrode mixture layer measured by the above-described method was 3.80 g / cm 3 . Next, a non-aqueous electrolyte similar to that used in Example 2-1 except that the concentration of triethylphosphonoacetate was 5.0% by mass was poured into the outer can, and Example 2-1 Similarly, a lithium secondary battery was produced.
 (実施例2-7)
 前記合成したニッケルを含む第1のリチウム含有複合酸化物Cのみを正極活物質として用いた以外は、実施例2-1と同様にして巻回電極体を作製した。また、前述の方法で測定した正極合剤層の密度は3.80g/cmであった。次に、実施例2-1で使用したものと同様の非水電解液を前記外装缶に注入し、実施例2-1と同様にしてリチウム二次電池を作製した。
(Example 2-7)
A wound electrode body was produced in the same manner as in Example 2-1, except that only the first lithium-containing composite oxide C containing nickel was used as the positive electrode active material. Further, the density of the positive electrode mixture layer measured by the above-described method was 3.80 g / cm 3 . Next, a non-aqueous electrolyte similar to that used in Example 2-1 was poured into the outer can, and a lithium secondary battery was produced in the same manner as in Example 2-1.
 (実施例2-8)
 前記合成したニッケルを含む第1のリチウム含有複合酸化物Aと、第2のリチウム含有複合酸化物であるLiCoOとを、0.1:0.9の質量比に計量して混合したものを正極活物質として用いたこと、平均粒子径D50%が16μmであるグラファイトのみを負極活物質として用いたこと以外は、実施例2-1と同様にして巻回電極体を作製した。また、前述の方法で測定した正極合剤層の密度は3.80g/cmであった。次に、トリエチルホスホノアセテートの濃度を0.5質量%とした以外は、実施例2-1で使用したものと同様の非水電解液を前記外装缶に注入し、実施例2-1と同様にしてリチウム二次電池を作製した。
(Example 2-8)
What mixed and mixed the 1st lithium containing complex oxide A containing the said nickel and LiCoO2 which is a 2nd lithium containing complex oxide to the mass ratio of 0.1: 0.9. A wound electrode body was produced in the same manner as in Example 2-1, except that it was used as the positive electrode active material and only graphite having an average particle diameter D50% of 16 μm was used as the negative electrode active material. Further, the density of the positive electrode mixture layer measured by the above-described method was 3.80 g / cm 3 . Next, a non-aqueous electrolyte similar to that used in Example 2-1 was poured into the outer can except that the concentration of triethylphosphonoacetate was 0.5% by mass, and Example 2-1 Similarly, a lithium secondary battery was produced.
 (実施例2-9)
 前記合成したニッケルを含む第1のリチウム含有複合酸化物Aと、第2のリチウム含有複合酸化物であるLiCoOとを、0.5:0.5の質量比に計量したものを、ヘンシェルミキサを用いて30分混合して混合物を得た。得られた混合物を正極活物質として100質量部用い、導電助剤としてアセチレンブラック2.08質量部を用いた以外は、実施例2-1と同様にして巻回電極体を作製した。また、前述の方法で測定した正極合剤層の密度は3.40g/cmであった。次に、実施例2-1で使用したものと同様の非水電解液を前記外装缶に注入し、実施例2-1と同様にしてリチウム二次電池を作製した。
(Example 2-9)
A Henschel mixer was prepared by weighing the first lithium-containing composite oxide A containing nickel and the second lithium-containing composite oxide LiCoO 2 to a mass ratio of 0.5: 0.5. Was mixed for 30 minutes to obtain a mixture. A wound electrode body was produced in the same manner as in Example 2-1, except that 100 parts by mass of the obtained mixture was used as the positive electrode active material and 2.08 parts by mass of acetylene black was used as the conductive auxiliary agent. Further, the density of the positive electrode mixture layer measured by the above-described method was 3.40 g / cm 3 . Next, a non-aqueous electrolyte similar to that used in Example 2-1 was poured into the outer can, and a lithium secondary battery was produced in the same manner as in Example 2-1.
 (実施例2-10)
 前記合成したニッケルを含む第1のリチウム含有複合酸化物Aと、第2のリチウム含有複合酸化物であるLiCoOとを、0.5:0.5の質量比に計量したものを、ヘンシェルミキサを用いて30分混合して混合物を得た。得られた混合物を正極活物質として100質量部用い、バインダとしてPVDFのみを用い、正極合剤層におけるPVDFの総量が2.6質量%となるよう調整した以外は、実施例2-1と同様にして巻回電極体を作製した。また、前述の方法で測定した正極合剤層の密度は3.60g/cmであった。次に、実施例2-1で使用したものと同様の非水電解液を前記外装缶に注入し、実施例2-1と同様にしてリチウム二次電池を作製した。
(Example 2-10)
A Henschel mixer was prepared by weighing the first lithium-containing composite oxide A containing nickel and the second lithium-containing composite oxide LiCoO 2 to a mass ratio of 0.5: 0.5. Was mixed for 30 minutes to obtain a mixture. Example 2-1 except that 100 parts by mass of the obtained mixture was used as the positive electrode active material, only PVDF was used as the binder, and the total amount of PVDF in the positive electrode mixture layer was adjusted to 2.6% by mass. Thus, a wound electrode body was produced. Further, the density of the positive electrode mixture layer measured by the above-described method was 3.60 g / cm 3 . Next, a non-aqueous electrolyte similar to that used in Example 2-1 was poured into the outer can, and a lithium secondary battery was produced in the same manner as in Example 2-1.
 (比較例2-1)
 正極活物質として、LiCoOのみを使用した以外は、実施例2-1と同様して、巻回電極体を作製した。また、前述の方法で測定した正極合剤層の密度は3.80g/cmであった。次に、実施例2-1で使用したものと同様の非水電解液を前記外装缶に注入し、実施例2-1と同様にしてリチウム二次電池を作製した。
(Comparative Example 2-1)
A wound electrode body was produced in the same manner as in Example 2-1, except that only LiCoO 2 was used as the positive electrode active material. Further, the density of the positive electrode mixture layer measured by the above-described method was 3.80 g / cm 3 . Next, a non-aqueous electrolyte similar to that used in Example 2-1 was poured into the outer can, and a lithium secondary battery was produced in the same manner as in Example 2-1.
 (比較例2-2)
 非水電解液中のトリエチルホスホノアセテートの濃度を0.3質量%に変更した以外は、実施例2-1と同様にしてリチウム二次電池を作製した。
(Comparative Example 2-2)
A lithium secondary battery was produced in the same manner as in Example 2-1, except that the concentration of triethylphosphonoacetate in the nonaqueous electrolytic solution was changed to 0.3% by mass.
 (比較例2-3)
 トリエチルホスホノアセテートの代わりに、1,3-プロパンスルトンを濃度が2.0質量%となる量で添加した非水電解液を用いたこと以外は、実施例2-1と同様にしてリチウム二次電池を作製した。
(Comparative Example 2-3)
Instead of triethylphosphonoacetate, a lithium non-aqueous electrolyte was used in the same manner as in Example 2-1, except that a non-aqueous electrolyte to which 1,3-propane sultone was added in an amount of 2.0% by mass was used. A secondary battery was produced.
 実施例2-1~2-10および比較例2-1~2-3のリチウム二次電池に使用した正極に係る正極活物質の組成と、前記式(3)で算出した正極活物質の全量中の全リチウムに対する全ニッケルの全モル比率(以下、全Ni/Liと略記する。)と、非水電解液中のホスホノアセテート類化合物の含有量とを表3に示す。 Composition of the positive electrode active material relating to the positive electrode used in the lithium secondary batteries of Examples 2-1 to 2-10 and Comparative Examples 2-1 to 2-3, and the total amount of the positive electrode active material calculated by the above formula (3) Table 3 shows the total molar ratio of total nickel to total lithium (hereinafter abbreviated as total Ni / Li) and the content of the phosphonoacetate compound in the nonaqueous electrolytic solution.
 更に、実施例2-1~2-10および比較例2-1~2-3で作製したリチウム二次電池について、前述の実施例1-1~1-8および比較例1-1~1-5と同様の手法により電池容量(実施例2-1の電池容量に対する相対電池容量)、電池膨れ(電池膨れ率)、高温貯蔵後の容量回復率の評価を行った。また、充放電サイクル特性については、下記のように評価した。その結果を表4に示す。 Further, for the lithium secondary batteries produced in Examples 2-1 to 2-10 and Comparative Examples 2-1 to 2-3, Examples 1-1 to 1-8 and Comparative Examples 1-1 to 1- The battery capacity (relative battery capacity with respect to the battery capacity of Example 2-1), battery swelling (battery swelling ratio), and capacity recovery rate after high temperature storage were evaluated in the same manner as in No. 5. The charge / discharge cycle characteristics were evaluated as follows. The results are shown in Table 4.
 <充放電サイクル特性>
 各電池を初回充放電後、前述の電池容量測定と同じ条件の充電および放電の一連の操作を1サイクルとして充放電を繰り返し、1サイクル目に得られた放電容量に対し、80%の放電容量となったときのサイクル数を調べた。
<Charge / discharge cycle characteristics>
After the initial charge / discharge of each battery, charge / discharge is repeated with the series of operations of charging and discharging under the same conditions as the battery capacity measurement described above as one cycle, and the discharge capacity is 80% of the discharge capacity obtained in the first cycle. The number of cycles was determined.
 前記サイクル数を調査した各電池について、1サイクル目に得られた放電容量に対して50%の放電容量となるまで、更に同様の条件で充放電を繰り返し、その後リチウム二次電池を分解して取り出した正極を、ジメチルカーボネートで洗浄し、乾燥した後、前述したICP法を用いて組成を分析し(検量線法)、得られた結果から、正極活物質の組成を導出して、前記式(3)から正極活物質の全量中の全リチウムに対する全ニッケルの全モル比率(全Ni/Li)を算出し、表4に併記した。 About each battery which investigated the said cycle number, it repeats charging / discharging on the same conditions until it becomes 50% of discharge capacity with respect to the discharge capacity obtained in the 1st cycle, and then disassembles the lithium secondary battery. The positive electrode taken out was washed with dimethyl carbonate and dried, and then the composition was analyzed using the ICP method described above (calibration curve method). From the obtained result, the composition of the positive electrode active material was derived, The total molar ratio (total Ni / Li) of total nickel to total lithium in the total amount of the positive electrode active material was calculated from (3) and listed in Table 4.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表3と表4から、正極活物質として、LiとNiを含む第1のリチウム含有複合酸化物と、第2のリチウム含有複合酸化物を用い、正極活物質の全量中の全リチウムに対する全ニッケルの全モル比率が0.05~1.0であり、且つホスホノアセテート類化合物を0.5~20質量%含む非水電解液を用いたリチウム二次電池であれば、高容量で、高温貯蔵後の電池膨れが小さく、且つ容量回復率も高く、充放電サイクル特性も良好であることが分かる。 From Tables 3 and 4, the first lithium-containing composite oxide containing Li and Ni and the second lithium-containing composite oxide are used as the positive electrode active material, and the total nickel in all lithium in the total amount of the positive electrode active material A lithium secondary battery using a non-aqueous electrolyte containing a phosphonoacetate compound in an amount of 0.05 to 1.0% and a phosphonoacetate compound of 0.5 to 20% by mass is high capacity and high It can be seen that the battery swelling after storage is small, the capacity recovery rate is high, and the charge / discharge cycle characteristics are also good.
 (実施形態2)
 本発明の第2のリチウム二次電池は、正極、負極、非水電解液およびセパレータを備えている。また、前記負極は、集電体と、前記集電体の上に形成された負極合剤層とを含み、前記負極合剤層は、負極活物質を含み、前記負極活物質は、シリコンと酸素とを構成元素に含む材料を含んでいる。更に、前記非水電解液は、ハロゲン置換された環状カーボネートおよび下記一般式(1)で表されるホスホノアセテート類化合物を含み、前記非水電解液において、前記ホスホノアセテート類化合物の含有量は、前記ハロゲン置換された環状カーボネートの含有量以下に設定されている。
(Embodiment 2)
The second lithium secondary battery of the present invention includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator. The negative electrode includes a current collector and a negative electrode mixture layer formed on the current collector, the negative electrode mixture layer includes a negative electrode active material, and the negative electrode active material includes silicon and A material containing oxygen as a constituent element is included. Furthermore, the non-aqueous electrolyte solution includes a halogen-substituted cyclic carbonate and a phosphonoacetate compound represented by the following general formula (1). In the non-aqueous electrolyte solution, the content of the phosphonoacetate compound Is set below the content of the halogen-substituted cyclic carbonate.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 前記一般式(1)中、R、RおよびRは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数1~12のアルキル基であり、nは0~6の整数である。 In the general formula (1), R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom, and n is an integer of 0 to 6 It is.
 前記の通り、SiOを負極活物質として使用した電池では、充放電に伴う体積変化に起因して生じるSiO粒子の粉砕によって、高活性なSiが露出し、これが非水電解液を分解するため、充放電サイクル特性が低下しやすいといった問題がある。 As described above, in the battery using SiO x as the negative electrode active material, highly active Si is exposed by grinding of the SiO x particles generated due to the volume change accompanying charging and discharging, and this decomposes the non-aqueous electrolyte. Therefore, there is a problem that the charge / discharge cycle characteristics are likely to deteriorate.
 そこで、本発明の第2のリチウム二次電池では、ハロゲン置換された環状カーボネートを含有する非水電解液を使用することとした。ハロゲン置換された環状カーボネートは、充放電に伴う体積変化によってSiOの粒子が粉砕して新生面が生じても、これを良好に被覆する皮膜を形成することができる。よって、かかる皮膜によって負極活物質と非水電解液との反応を高度に抑制して、充放電サイクル特性に優れたリチウム二次電池とすることができる。 Therefore, in the second lithium secondary battery of the present invention, a non-aqueous electrolyte containing a halogen-substituted cyclic carbonate is used. The halogen-substituted cyclic carbonate can form a film that satisfactorily coats the SiO x particles by pulverization due to the volume change associated with charge and discharge, resulting in a new surface. Therefore, the reaction between the negative electrode active material and the non-aqueous electrolyte is highly suppressed by such a film, and a lithium secondary battery excellent in charge / discharge cycle characteristics can be obtained.
 しかしながら、ハロゲン置換された環状カーボネートは、負極表面での皮膜形成反応に伴ってガスを発生させるため、電池の膨れを引き起こしやすい。そこで、本発明の第2のリチウム二次電池では、ハロゲン置換された環状カーボネートに加えて、前記一般式(1)で表されるホスホノアセテート類化合物を含有する非水電解液を使用することとした。前記一般式(1)で表されるホスホノアセテート類化合物は、電池の膨れの発生を抑制する作用を有している。そのため、ハロゲン置換された環状カーボネートと共に使用することで、ハロゲン置換された環状カーボネートに起因する電池の膨れの発生を良好に抑制できる。 However, since the halogen-substituted cyclic carbonate generates gas along with the film formation reaction on the negative electrode surface, the battery tends to swell. Therefore, in the second lithium secondary battery of the present invention, a non-aqueous electrolyte containing a phosphonoacetate compound represented by the general formula (1) is used in addition to the halogen-substituted cyclic carbonate. It was. The phosphonoacetate compound represented by the general formula (1) has an action of suppressing the occurrence of battery swelling. Therefore, by using together with the halogen-substituted cyclic carbonate, it is possible to satisfactorily suppress the occurrence of battery swelling caused by the halogen-substituted cyclic carbonate.
 ところが、前記一般式(1)で表されるホスホノアセテート類化合物は、電池の充放電サイクル特性を損なう作用も有しており、例えば、その使用量が多くなると、電池膨れの抑制効果が良好となる一方で、充放電サイクル特性が大きく低下することが判明した。そこで、本発明の第2のリチウム二次電池では、非水電解液におけるハロゲン置換された環状カーボネートの含有量と、前記一般式(1)で表されるホスホノアセテート類化合物の含有量とを調整し、前記ホスホノアセテート類化合物によって引き起こされる充放電サイクル特性の低下も抑制して、ハロゲン置換された環状カーボネートの作用および前記ホスホノアセテート類化合物の作用の両方を有効に引き出すことを可能とし、充放電サイクル特性に優れ、且つ膨れの発生を良好に抑え得るリチウム二次電池の提供を可能とした。 However, the phosphonoacetate compound represented by the general formula (1) also has an effect of impairing the charge / discharge cycle characteristics of the battery. For example, when the amount of use increases, the effect of suppressing the battery swelling is good. On the other hand, it has been found that the charge / discharge cycle characteristics are greatly deteriorated. Therefore, in the second lithium secondary battery of the present invention, the content of the halogen-substituted cyclic carbonate in the non-aqueous electrolyte and the content of the phosphonoacetate compound represented by the general formula (1) are: It is possible to effectively bring out both the action of the halogen-substituted cyclic carbonate and the action of the phosphonoacetate compound by suppressing the deterioration of charge / discharge cycle characteristics caused by the phosphonoacetate compound. Thus, it is possible to provide a lithium secondary battery that is excellent in charge / discharge cycle characteristics and can suppress the occurrence of swelling well.
 〔負極〕
 本発明の第2のリチウム二次電池に係る負極には、例えば、負極活物質、バインダおよび必要に応じて導電助剤などを含む負極合剤層を、集電体の片面または両面に有する構造のものが使用できる。
[Negative electrode]
The negative electrode according to the second lithium secondary battery of the present invention has, for example, a structure in which a negative electrode mixture layer containing a negative electrode active material, a binder, and a conductive auxiliary agent if necessary is provided on one side or both sides of a current collector Can be used.
 本発明の第2のリチウム二次電池の負極に用いる負極活物質は、シリコンと酸素とを構成元素に含む材料を含んでいる。通常、シリコンと酸素とを構成元素に含む材料としては、一般式組成式SiOで表され、前記一般組成式において、0.5≦x≦1.5である材料が用いられる。一般式組成式SiOで表され、0.5≦x≦1.5である材料については、実施形態1で説明したものと同様のものが使用できる。 The negative electrode active material used for the negative electrode of the second lithium secondary battery of the present invention contains a material containing silicon and oxygen as constituent elements. Usually, as a material containing silicon and oxygen as constituent elements, a material represented by the general formula composition formula SiO x and 0.5 ≦ x ≦ 1.5 in the general composition formula is used. As the material represented by the general formula composition formula SiO x and 0.5 ≦ x ≦ 1.5, the same materials as those described in the first embodiment can be used.
 また、負極活物質としては、実施形態1で説明したシリコンと酸素とを構成元素に含む材料と、炭素材料との複合体を使用することもできる。更に、負極活物質には、実施形態1で説明したシリコンと酸素とを構成元素に含む材料と黒鉛質炭素材料とを併用することもできる。 Further, as the negative electrode active material, a composite of a material containing silicon and oxygen described in Embodiment 1 as constituent elements and a carbon material can be used. Furthermore, as the negative electrode active material, the material containing silicon and oxygen as constituent elements described in Embodiment 1 and the graphitic carbon material can be used in combination.
 負極合剤層のバインダ、導電助剤および負極の集電体については、実施形態1で説明したものと同様のものが使用できる。また、負極は、例えば、実施形態1で説明したものと同様の方法で製造できる。更に、負極合剤層は、実施形態1で説明したものと同様の構成とすることができる。 As the binder of the negative electrode mixture layer, the conductive additive, and the current collector of the negative electrode, the same materials as those described in Embodiment 1 can be used. Moreover, a negative electrode can be manufactured by the method similar to what was demonstrated in Embodiment 1, for example. Furthermore, the negative electrode mixture layer can have the same configuration as that described in the first embodiment.
 〔正極〕
 本発明の第2のリチウム二次電池に係る正極には、例えば、正極活物質、バインダおよび導電助剤などを含む正極合剤層を、集電体の片面または両面に有する構造のものが使用できる。
[Positive electrode]
For the positive electrode according to the second lithium secondary battery of the present invention, for example, a positive electrode mixture layer containing a positive electrode active material, a binder, a conductive additive and the like is used on one side or both sides of the current collector. it can.
 <正極活物質>
 本発明の第2のリチウム二次電池の正極に用いる正極活物質には、従来から知られているリチウム二次電池に用いられている正極活物質、すなわち、リチウムイオンを吸蔵・放出可能な材料であれば特に制限はない。例えば、リチウム含有複合酸化物などが使用できる。中でも、高容量であり、且つ熱的安定性にも優れていることから、実施形態1で説明した前記一般組成式(2)で表されるリチウムとニッケルを含むリチウム含有複合酸化物が好ましい。また、正極活物質としては、実施形態1で説明した例えば、LiCoOなどのリチウムコバルト酸化物;LiMnO、LiMnOなどのリチウムマンガン酸化物;LiMn、Li4/3Ti5/3などのスピネル構造のリチウム含有複合酸化物;LiFePOなどのオリビン構造のリチウム含有複合酸化物;これらの酸化物を基本組成とし、その構成元素の一部を他の元素で置換した酸化物;などが使用できる。
<Positive electrode active material>
The positive electrode active material used for the positive electrode of the second lithium secondary battery of the present invention includes a positive electrode active material used for a conventionally known lithium secondary battery, that is, a material capable of inserting and extracting lithium ions. If there is no restriction in particular. For example, a lithium-containing composite oxide can be used. Among them, the lithium-containing composite oxide containing lithium and nickel represented by the general composition formula (2) described in Embodiment 1 is preferable because of its high capacity and excellent thermal stability. Also, as the positive electrode active material, for example described in Embodiment 1, the lithium cobalt oxide such as LiCoO 2; LiMnO 2, lithium manganese oxides such as Li 2 MnO 3; LiMn 2 O 4, Li 4/3 Ti 5 / 3 O 4 and other spinel-structure lithium-containing composite oxides; LiFePO 4 and other olivine-structure lithium-containing composite oxides; These oxides have a basic composition, and some of the constituent elements are replaced with other elements Oxides; etc. can be used.
 正極合剤層のバインダ、導電助剤および正極の集電体については、実施形態1で説明したものと同様のものが使用できる。また、正極は、例えば、実施形態1で説明したものと同様の方法で製造できる。更に、正極合剤層は、実施形態1で説明したものと同様の構成とすることができる。 As the binder of the positive electrode mixture layer, the conductive additive, and the current collector of the positive electrode, the same materials as those described in Embodiment 1 can be used. Moreover, a positive electrode can be manufactured by the method similar to what was demonstrated in Embodiment 1, for example. Furthermore, the positive electrode mixture layer can have the same configuration as that described in the first embodiment.
 〔非水電解液〕
 本発明の第2のリチウム二次電池に係る非水電解液は、ハロゲン置換された環状カーボネートおよび前記一般式(1)で表されるホスホノアセテート類化合物を含有するものを使用する。また、前記非水電解液において、前記ホスホノアセテート類化合物の含有量は、前記ハロゲン置換された環状カーボネートの含有量以下に設定されている。
[Non-aqueous electrolyte]
The non-aqueous electrolyte solution according to the second lithium secondary battery of the present invention uses a halogen-substituted cyclic carbonate and a phosphonoacetate compound represented by the general formula (1). In the non-aqueous electrolyte, the content of the phosphonoacetate compound is set to be equal to or less than the content of the halogen-substituted cyclic carbonate.
 前記ハロゲン置換された環状カーボネートおよび前記一般式(1)で表されるホスホノアセテート類化合物については、実施形態1で説明したものと同様のものが使用できる。 As the halogen-substituted cyclic carbonate and the phosphonoacetate compound represented by the general formula (1), the same compounds as those described in Embodiment 1 can be used.
 非水電解液におけるハロゲン置換された環状カーボネートの含有量は、その使用による効果をより良好に確保する観点から、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。但し、非水電解液中のハロゲン置換された環状カーボネートの含有量が多すぎると、電池の膨れ抑制効果が小さくなる虞がある。よって、電池に使用する非水電解液におけるハロゲン置換された環状カーボネートの含有量は、30質量%以下であることが好ましく、5質量%以下であることがより好ましい。 The content of the halogen-substituted cyclic carbonate in the non-aqueous electrolyte is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, from the viewpoint of better ensuring the effect of its use. Is more preferable. However, if the content of the halogen-substituted cyclic carbonate in the non-aqueous electrolyte is too large, the battery swelling suppression effect may be reduced. Therefore, the content of the halogen-substituted cyclic carbonate in the nonaqueous electrolytic solution used for the battery is preferably 30% by mass or less, and more preferably 5% by mass or less.
 また、非水電解液における前記一般式(1)で表されるホスホノアセテート類化合物の含有量は、その使用による効果をより良好に確保する観点から、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。但し、非水電解液中の前記一般式(1)で表されるホスホノアセテート類化合物の含有量が多すぎると、電池の充放電サイクル特性向上効果が小さくなる虞がある。よって、電池に使用する非水電解液における前記一般式(1)で表されるホスホノアセテート類化合物の含有量は、10質量%以下であることが好ましく、3質量%以下であることがより好ましい。 In addition, the content of the phosphonoacetate compound represented by the general formula (1) in the nonaqueous electrolytic solution may be 0.1% by mass or more from the viewpoint of better securing the effect of its use. Preferably, it is 0.5 mass% or more. However, if the content of the phosphonoacetate compound represented by the general formula (1) in the non-aqueous electrolyte is too large, the effect of improving the charge / discharge cycle characteristics of the battery may be reduced. Therefore, the content of the phosphonoacetate compound represented by the general formula (1) in the nonaqueous electrolytic solution used for the battery is preferably 10% by mass or less, and more preferably 3% by mass or less. preferable.
 また、特に、負極が、負極活物質としてSiOと共に黒鉛質炭素材料を含有している場合には、非水電解液には、ビニレンカーボネート(VC)を更に含有するものを使用することが好ましい。VCは特に炭素材料に有効に作用して、負極表面に形成される皮膜の性状をより良好にするため、より充放電サイクル特性に優れた電池を構成できるようになる。 In particular, when the negative electrode contains a graphite carbon material together with SiO x as the negative electrode active material, it is preferable to use a non-aqueous electrolyte that further contains vinylene carbonate (VC). . In particular, VC effectively acts on the carbon material to improve the properties of the film formed on the negative electrode surface, so that a battery with more excellent charge / discharge cycle characteristics can be configured.
 本発明の第2のリチウム二次電池に使用する非水電解液においては、前記一般式(1)で表されるホスホノアセテート類化合物の含有量をハロゲン置換された環状カーボネートの含有量以下とする。前記の通り、前記一般式(1)で表わされるホスホノアセテート類化合物は、電池の膨れ抑制作用を有する一方で、電池の充放電サイクル特性低下の要因ともなる。しかし、電池に使用する非水電解液中のハロゲン置換された環状カーボネートの含有量を、前記一般式(1)で表わされるホスホノアセテート類化合物の含有量と同じか、それよりも多くすることで、ハロゲン置換された環状カーボネートによる電池の充放電サイクル特性向上作用によって、電池の充放電に伴うSiOの体積変化に起因する充放電サイクル特性の低下を抑制し、前記一般式(1)で表わされるホスホノアセテート類化合物による充放電サイクル特性の低下も良好に抑制することができる。 In the non-aqueous electrolyte used in the second lithium secondary battery of the present invention, the content of the phosphonoacetate compound represented by the general formula (1) is equal to or less than the content of the halogen-substituted cyclic carbonate. To do. As described above, the phosphonoacetate compound represented by the general formula (1) has a battery swelling suppression effect, but also causes deterioration in charge / discharge cycle characteristics of the battery. However, the content of the halogen-substituted cyclic carbonate in the non-aqueous electrolyte used in the battery is the same as or more than the content of the phosphonoacetate compound represented by the general formula (1). Thus, by the effect of improving the charge / discharge cycle characteristics of the battery by the halogen-substituted cyclic carbonate, the deterioration of the charge / discharge cycle characteristics caused by the volume change of SiO x accompanying the charge / discharge of the battery is suppressed. The deterioration of the charge / discharge cycle characteristics due to the represented phosphonoacetate compound can also be satisfactorily suppressed.
 また、前記と同じ理由から、本発明の第2のリチウム二次電池に使用する非水電解液において、VCを含有させる場合には、ハロゲン置換された環状カーボネートの含有量とVCの含有量との合計量よりも、前記一般式(1)で表されるホスホノアセテート類化合物の含有量を少なくすることが好ましい。 For the same reason as described above, in the nonaqueous electrolytic solution used in the second lithium secondary battery of the present invention, when VC is contained, the halogen-substituted cyclic carbonate content and the VC content It is preferable to reduce the content of the phosphonoacetate compound represented by the general formula (1) rather than the total amount.
 更に、非水電解液にVCを含有させる場合、その含有量は、VCの使用による効果をより良好に確保する観点から、0.1質量%以上であることが好ましく、1.0質量%以上であることがより好ましい。但し、非水電解液中のVCの含有量が多すぎると、電池の膨れ抑制効果が小さくなる虞がある。よって、電池に使用する非水電解液におけるVCの含有量は、10質量%以下であることが好ましく、4.0質量%以下であることがより好ましい。 Further, when VC is contained in the non-aqueous electrolyte, the content is preferably 0.1% by mass or more, more preferably 1.0% by mass or more from the viewpoint of better securing the effect of using VC. It is more preferable that However, if the content of VC in the non-aqueous electrolyte is too large, the effect of suppressing battery swelling may be reduced. Therefore, the content of VC in the non-aqueous electrolyte used for the battery is preferably 10% by mass or less, and more preferably 4.0% by mass or less.
 非水電解液に用いるリチウム塩および有機溶媒としては、実施形態1で説明したものと同様のものが使用できる。 As the lithium salt and organic solvent used in the non-aqueous electrolyte, the same ones as described in Embodiment 1 can be used.
 また、非水電解液には、充放電サイクル特性の更なる改善や、高温貯蔵性や耐過充電特性などの安全性を向上させる目的で、無水酸、スルホン酸エステル、ジニトリル、1,3-プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t-ブチルベンゼンなどの添加剤やこれらの誘導体を適宜加えることもできる。 In addition, non-aqueous electrolytes may contain acid anhydrides, sulfonic acid esters, dinitriles, 1,3-methyl ether for the purpose of further improving charge / discharge cycle characteristics and improving safety such as high-temperature storage and overcharge resistance. Additives such as propane sultone, diphenyl disulfide, cyclohexylbenzene, biphenyl, fluorobenzene, t-butylbenzene, and derivatives thereof may be added as appropriate.
 〔セパレータ〕
 本発明の第2のリチウム二次電池に係るセパレータには、実施形態1で説明したものと同様のものが使用できる。
[Separator]
As the separator according to the second lithium secondary battery of the present invention, the same separator as described in Embodiment 1 can be used.
 〔電池の形態〕
 本発明の第2のリチウム二次電池の形態としては、実施形態1で説明したものと同様のものとすることができる。
[Battery form]
The form of the second lithium secondary battery of the present invention can be the same as that described in the first embodiment.
 以下、実施形態2の実施例に基づいて本発明を詳細に述べる。但し、下記実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on examples of the second embodiment. However, the following examples do not limit the present invention.
 (実施例3-1)
 <リチウム含有複合酸化物の合成>
 水酸化ナトリウムの添加によってpHを約12に調整したアンモニア水を反応容器に入れ、これを強攪拌しながら、この中に、硫酸ニッケル、硫酸コバルトおよび硫酸マンガンを、それぞれ、2.4mol/dm、0.8mol/dm、0.8mol/dmの濃度で含有する混合水溶液と、25質量%濃度のアンモニア水とを、それぞれ、23cm/分、6.6cm/分の割合で、定量ポンプを用いて滴下して、NiとCoとMnとの共沈化合物(球状の共沈化合物)を合成した。この際、反応液の温度は50℃に保持し、また、反応液のpHが12付近に維持されるように、6.4mol/dm濃度の水酸化ナトリウム水溶液の滴下も同時に行い、更に不活性雰囲気下で反応させるため、窒素ガスを1dm/分の流量でバブリングした。
Example 3-1
<Synthesis of lithium-containing composite oxide>
Aqueous ammonia whose pH was adjusted to about 12 by adding sodium hydroxide was placed in a reaction vessel, and while vigorously stirring, nickel sulfate, cobalt sulfate and manganese sulfate were each added to 2.4 mol / dm 3. , 0.8 mol / dm 3, a mixed aqueous solution containing a concentration of 0.8 mol / dm 3, and aqueous ammonia 25% strength by weight, respectively, 23cm 3 / min at a rate of 6.6 cm 3 / min, The solution was added dropwise using a metering pump to synthesize a coprecipitation compound of Ni, Co, and Mn (spherical coprecipitation compound). At this time, the temperature of the reaction solution is maintained at 50 ° C., and a 6.4 mol / dm 3 concentration sodium hydroxide aqueous solution is simultaneously added so that the pH of the reaction solution is maintained around 12. In order to react under an active atmosphere, nitrogen gas was bubbled at a flow rate of 1 dm 3 / min.
 前記の共沈化合物を水洗、濾過および乾燥させて、NiとCoとMnとを6:2:2のモル比で含有する水酸化物を得た。この水酸化物0.196molと、0.204molのLiOH・HOとをエタノール中に分散させてスラリー状にした後、遊星型ボールミルで40分間混合し、室温で乾燥させて混合物を得た。次いで、前記混合物をアルミナ製のるつぼに入れ、2dm/分のドライエアーフロー中で600℃まで加熱し、その温度で2時間保持して予備加熱を行い、更に900℃に昇温して12時間焼成することにより、リチウム含有複合酸化物を合成した。 The coprecipitated compound was washed with water, filtered and dried to obtain a hydroxide containing Ni, Co and Mn in a molar ratio of 6: 2: 2. 0.196 mol of this hydroxide and 0.204 mol of LiOH.H 2 O were dispersed in ethanol to form a slurry, and then mixed with a planetary ball mill for 40 minutes and dried at room temperature to obtain a mixture. . Next, the mixture is put in an alumina crucible, heated to 600 ° C. in a dry air flow of 2 dm 3 / min, kept at that temperature for 2 hours for preheating, further heated to 900 ° C. and heated to 12 ° C. The lithium-containing composite oxide was synthesized by firing for a period of time.
 得られたリチウム含有複合酸化物を水で洗浄した後、大気中(酸素濃度が約20体積%)で、850℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム含有複合酸化物は、デシケーター中で保存した。 The obtained lithium-containing composite oxide was washed with water and then heat-treated in the atmosphere (oxygen concentration of about 20% by volume) at 850 ° C. for 12 hours, and then pulverized in a mortar to obtain a powder. The lithium-containing composite oxide after pulverization was stored in a desiccator.
 前記リチウム含有複合酸化物について、原子吸光分析装置で組成を分析したところ、Li1.02Ni0.6Co0.2Mn0.2で表される組成であることが判明した。 When the composition of the lithium-containing composite oxide was analyzed with an atomic absorption spectrometer, it was found that the composition was represented by Li 1.02 Ni 0.6 Co 0.2 Mn 0.2 O 2 .
 <正極の作製>
 前記リチウム含有複合酸化物100質量部と、バインダであるPVDFを10質量%の濃度で含むNMP溶液20質量部と、導電助剤である人造黒鉛1質量部およびアセチレンブラック1質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。
<Preparation of positive electrode>
100 parts by mass of the lithium-containing composite oxide, 20 parts by mass of an NMP solution containing PVDF as a binder at a concentration of 10% by mass, 1 part by mass of artificial graphite and 1 part by mass of acetylene black as conductive assistants, A positive electrode mixture-containing paste was prepared by kneading using a shaft kneader and further adjusting the viscosity by adding NMP.
 前記の正極合剤含有ペーストを、厚みが15μmのアルミニウム箔(正極集電体)の両面に厚みを調節して間欠塗布し、乾燥した後、カレンダ処理を行って全厚が130μmになるように正極合剤層の厚みを調節し、幅が54.5mmになるように切断して正極を作製した。更に、この正極のアルミニウム箔の露出部にタブを溶接してリード部を形成した。 The positive electrode mixture-containing paste is intermittently applied to both sides of an aluminum foil (positive electrode current collector) having a thickness of 15 μm while adjusting the thickness, dried, and then subjected to a calendering process so that the total thickness becomes 130 μm. The thickness of the positive electrode mixture layer was adjusted, and the positive electrode was produced by cutting so as to have a width of 54.5 mm. Further, a tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion.
 <負極の作製>
 平均粒子径D50%が8μmであるSiO表面を炭素材料で被覆した複合体(複合体における炭素材料の量が10質量%)と、平均粒子径D50%が16μmであるグラファイトとを、SiO表面を炭素材料で被覆した複合体の量が0.01質量%となる量で混合した混合物:98質量部と、粘度が1500~5000mPa・sの範囲に調整された1質量%濃度のCMC水溶液:1.0質量部およびSBR:1.0質量部とを、比伝導度が2.0×10Ω/cm以上のイオン交換水を溶剤として混合して、水系の負極合剤含有ペーストを調製した。
<Production of negative electrode>
A composite in which the surface of SiO x having an average particle diameter D50% of 8 μm is coated with a carbon material (the amount of the carbon material in the composite is 10 mass%) and graphite having an average particle diameter D50% of 16 μm are combined with SiO x. Mixture in which the amount of the composite whose surface was coated with a carbon material was mixed in an amount of 0.01% by mass: 98 parts by mass, and a CMC aqueous solution having a concentration of 1% by mass adjusted to a viscosity of 1500 to 5000 mPa · s : 1.0 part by mass and SBR: 1.0 part by mass using ion-exchanged water having a specific conductivity of 2.0 × 10 5 Ω / cm or more as a solvent to prepare an aqueous negative electrode mixture-containing paste. Prepared.
 前記の負極合剤含有ペーストを、厚みが8μmの銅箔(負極集電体)の両面に厚みを調節して間欠塗布し、乾燥した後、カレンダ処理を行って全厚が110μmになるように負極合剤層の厚みを調整し、幅が55.5mmになるように切断して負極を作製した。更に、この負極の銅箔の露出部にタブを溶接してリード部を形成した。 The negative electrode mixture-containing paste is intermittently applied on both sides of a copper foil (negative electrode current collector) having a thickness of 8 μm while adjusting the thickness, dried, and then calendered so that the total thickness becomes 110 μm. The thickness of the negative electrode mixture layer was adjusted, and the negative electrode was produced by cutting so as to have a width of 55.5 mm. Further, a tab was welded to the exposed portion of the copper foil of the negative electrode to form a lead portion.
 <セパレータの作製>
 平均粒子径D50%が1μmのベーマイト5kgに、イオン交換水5kgと、分散剤(水系ポリカルボン酸アンモニウム塩、固形分濃度40質量%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで10時間解砕処理をして分散液を調製した。処理後の分散液の一部を120℃で真空乾燥し、走査型電子顕微鏡(SEM)で観察したところ、ベーマイトの形状はほぼ板状であった。
<Preparation of separator>
Add 5 kg of ion-exchanged water and 0.5 kg of a dispersant (aqueous polycarboxylic acid ammonium salt, solid content concentration 40 mass%) to 5 kg of boehmite with an average particle diameter D50% of 1 μm, and have an internal volume of 20 L and 40 turns. A dispersion was prepared by pulverizing with a ball mill for 10 hours per minute. When a part of the treated dispersion was vacuum dried at 120 ° C. and observed with a scanning electron microscope (SEM), the shape of boehmite was almost plate-like.
 前記分散液500gに、増粘剤としてキサンタンガムを0.5g、バインダとして樹脂バインダディスパージョン(変性ポリブチルアクリレート、固形分含量45質量%)を17g加え、スリーワンモーターで3時間攪拌して均一なスラリー[多孔質層(II)形成用スラリー、固形分比率50質量%]を調製した。 To 500 g of the above dispersion, 0.5 g of xanthan gum as a thickener and 17 g of a resin binder dispersion (modified polybutyl acrylate, solid content 45% by mass) as a binder are added and stirred with a three-one motor for 3 hours to form a uniform slurry. [Slurry for forming porous layer (II), solid content ratio: 50% by mass] was prepared.
 リチウム二次電池用PE製微多孔質セパレータ[多孔質層(I):厚み12μm、空孔率40%、平均孔径0.08μm、PEの融点135℃]の片面にコロナ放電処理(放電量40W・分/m)を施し、この処理面に多孔質層(II)形成用スラリーをマイクログラビアコーターによって塗布し、乾燥して厚みが4μmの多孔質層(II)を形成して、積層型のセパレータを得た。このセパレータにおける多孔質層(II)の単位面積あたりの質量は5.5g/mで、ベーマイトの体積含有率は95体積%であり、空孔率は45%であった。 PE microporous separator for lithium secondary batteries [Porous layer (I): thickness 12 μm, porosity 40%, average pore diameter 0.08 μm, PE melting point 135 ° C.] on one side corona discharge treatment (discharge amount 40 W)・ Min / m 2 ), a porous layer (II) forming slurry is applied to the treated surface by a micro gravure coater, and dried to form a porous layer (II) having a thickness of 4 μm. A separator was obtained. The mass per unit area of the porous layer (II) in this separator was 5.5 g / m 2 , the boehmite volume content was 95% by volume, and the porosity was 45%.
 <電池の組み立て>
 前記のようにして得た正極と負極とを、セパレータの多孔質層(II)が正極に面するように介在させつつ重ね、渦巻状に巻回して巻回電極体を作製した。得られた巻回電極体を押しつぶして扁平状にし、厚み5mm、幅42mm、高さ61mmのアルミニウム合金製外装缶に入れた。また、非水電解液として、エチレンカーボネートとエチルメチルカーボネートとジエチルカーボネートとを体積比で1:1:1で混合した溶媒に、LiPFを濃度1.1mol/Lの濃度になるように溶解させたものに、FEC、トリエチルホスホノアセテートおよびVCを、それぞれの濃度が1.25質量%、1.25質量%、1.75質量%となるように、それぞれ添加した溶液を調製した。次に、外装缶に前記非水電解液を注入した。
<Battery assembly>
The positive electrode and the negative electrode obtained as described above were stacked with the separator porous layer (II) facing the positive electrode, and wound in a spiral shape to produce a wound electrode body. The obtained wound electrode body was crushed into a flat shape and placed in an aluminum alloy outer can having a thickness of 5 mm, a width of 42 mm, and a height of 61 mm. Further, as a non-aqueous electrolyte, LiPF 6 was dissolved in a solvent in which ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate were mixed at a volume ratio of 1: 1: 1 so as to have a concentration of 1.1 mol / L. A solution was prepared by adding FEC, triethylphosphonoacetate, and VC to each sample so that the respective concentrations were 1.25 mass%, 1.25 mass%, and 1.75 mass%. Next, the non-aqueous electrolyte was poured into the outer can.
 非水電解液の注入後に外装缶の封止を行って、図1A、Bに示す構造で、図2に示す外観のリチウム二次電池を作製した。 After injecting the non-aqueous electrolyte, the outer can was sealed, and a lithium secondary battery having the structure shown in FIGS. 1A and 1B and the appearance shown in FIG. 2 was produced.
 (実施例3-2)
 FECの含有量を2.00質量%に、トリエチルホスホノアセテートの含有量を1.50質量%に、VCの含有量を1.50質量%に、それぞれ変更した以外は、実施例3-1と同様にして非水電解液を調製し、この非水電解液を用いた以外は、実施例3-1と同様にしてリチウム二次電池を作製した。
(Example 3-2)
Example 3-1 except that the FEC content was changed to 2.00% by mass, the triethylphosphonoacetate content was changed to 1.50% by mass, and the VC content was changed to 1.50% by mass. A non-aqueous electrolyte was prepared in the same manner as described above, and a lithium secondary battery was produced in the same manner as in Example 3-1, except that this non-aqueous electrolyte was used.
 (実施例3-3)
 FECの含有量を2.00質量%に、トリエチルホスホノアセテートの含有量を2.00質量%に、VCの含有量を2.50質量%に、それぞれ変更した以外は、実施例3-1と同様にして非水電解液を調製し、この非水電解液を用いた以外は、実施例3-1と同様にしてリチウム二次電池を作製した。
Example 3-3
Example 3-1 except that the content of FEC was changed to 2.00% by mass, the content of triethylphosphonoacetate was changed to 2.00% by mass, and the content of VC was changed to 2.50% by mass. A non-aqueous electrolyte was prepared in the same manner as described above, and a lithium secondary battery was produced in the same manner as in Example 3-1, except that this non-aqueous electrolyte was used.
 (実施例3-4)
 トリエチルホスホノアセテートに代えて、トリメチルホスホノアセテートの含有量が1.00質量%となるように使用し、且つFECの含有量を1.00質量%に、VCの含有量を2.00質量%に、それぞれ変更した以外は、実施例3-1と同様にして非水電解液を調製し、この非水電解液を用いた以外は、実施例3-1と同様にしてリチウム二次電池を作製した。
(Example 3-4)
Instead of triethylphosphonoacetate, the trimethylphosphonoacetate content is 1.00% by mass, the FEC content is 1.00% by mass, and the VC content is 2.00% by mass. %, Respectively, except that the non-aqueous electrolyte was prepared in the same manner as in Example 3-1, and a lithium secondary battery was prepared in the same manner as in Example 3-1, except that this non-aqueous electrolyte was used. Was made.
 (実施例3-5)
 FECの含有量を1.25質量%に、トリエチルホスホノアセテートの含有量を0.50質量%に、VCの含有量を1.75質量%に、それぞれ変更した以外は、実施例3-1と同様にして非水電解液を調製し、この非水電解液を用いた以外は、実施例3-1と同様にしてリチウム二次電池を作製した。
(Example 3-5)
Example 3-1 except that the content of FEC was changed to 1.25% by mass, the content of triethylphosphonoacetate was changed to 0.50% by mass, and the content of VC was changed to 1.75% by mass. A non-aqueous electrolyte was prepared in the same manner as described above, and a lithium secondary battery was produced in the same manner as in Example 3-1, except that this non-aqueous electrolyte was used.
 (実施例3-6)
 FECの含有量を1.00質量%に、トリエチルホスホノアセテートの含有量を0.50質量%に、VCの含有量を1.00質量%に、それぞれ変更した以外は、実施例3-1と同様にして非水電解液を調製し、この非水電解液を用いた以外は、実施例3-1と同様にしてリチウム二次電池を作製した。
(Example 3-6)
Example 3-1 except that the FEC content was changed to 1.00% by mass, the triethylphosphonoacetate content was changed to 0.50% by mass, and the VC content was changed to 1.00% by mass. A non-aqueous electrolyte was prepared in the same manner as described above, and a lithium secondary battery was produced in the same manner as in Example 3-1, except that this non-aqueous electrolyte was used.
 (実施例3-7)
 FECに代えて、前記一般式(4)で表され、RおよびRがフッ素(F)で、RおよびRが水素(H)の環状カーボネートの含有量が1.25質量%となるように使用し、且つトリエチルホスホノアセテートの含有量を1.25質量%に、VCの含有量を1.75質量%に、それぞれ変更した以外は、実施例3-1と同様にして非水電解液を調製し、この非水電解液を用いた以外は、実施例3-1と同様にしてリチウム二次電池を作製した。
(Example 3-7)
Instead of FEC, the content of the cyclic carbonate represented by the general formula (4), wherein R 4 and R 5 are fluorine (F), and R 6 and R 7 are hydrogen (H) is 1.25% by mass. In the same manner as in Example 3-1, except that the content of triethylphosphonoacetate was changed to 1.25% by mass and the content of VC was changed to 1.75% by mass. A lithium secondary battery was produced in the same manner as in Example 3-1, except that an aqueous electrolyte was prepared and this nonaqueous electrolyte was used.
 (実施例3-8)
 FECに代えて、前記一般式(4)で表され、RおよびRがFで、RおよびRがHの環状カーボネートの含有量が2.00質量%となるように使用し、トリエチルホスホノアセテートに代えて、トリメチルホスホノアセテートの含有量が2.00質量%となるように使用し、VCの含有量を2.00質量%に変更した以外は、実施例3-1と同様にして非水電解液を調製し、この非水電解液を用いた以外は、実施例3-1と同様にしてリチウム二次電池を作製した。
(Example 3-8)
Instead of FEC, the cyclic carbonate is represented by the general formula (4), R 4 and R 5 are F, and R 6 and R 7 are H. Example 3-1 except that trimethylphosphonoacetate was used instead of triethylphosphonoacetate so that the content of trimethylphosphonoacetate was 2.00% by mass and the VC content was changed to 2.00% by mass. A non-aqueous electrolyte was prepared in the same manner, and a lithium secondary battery was produced in the same manner as in Example 3-1, except that this non-aqueous electrolyte was used.
 (比較例3-1)
 FECに代えて、前記一般式(4)で表され、Rが塩素(Cl)で、R、RおよびRがHの環状カーボネートの含有量が1.00質量%となるように使用し、且つトリエチルホスホノアセテートの含有量を2.00質量%に、VCの含有量を1.00質量%に、それぞれ変更した以外は、実施例3-1と同様にして非水電解液を調製し、この非水電解液を用いた以外は、実施例3-1と同様にしてリチウム二次電池を作製した。
(Comparative Example 3-1)
Instead of FEC, the content of the cyclic carbonate represented by the general formula (4), wherein R 4 is chlorine (Cl), and R 5 , R 6 and R 7 are H is 1.00% by mass. The nonaqueous electrolytic solution was used in the same manner as in Example 3-1, except that the content of triethylphosphonoacetate was changed to 2.00% by mass and the content of VC was changed to 1.00% by mass. A lithium secondary battery was fabricated in the same manner as in Example 3-1, except that this nonaqueous electrolytic solution was used.
 (比較例3-2)
 FECに代えて、前記一般式(4)で表され、RがClで、R、RおよびRがHの環状カーボネートの含有量が1.25質量%となるように使用し、且つトリエチルホスホノアセテートの含有量を2.00質量%に、VCの含有量を1.00質量%に、それぞれ変更した以外は、実施例3-1と同様にして非水電解液を調製し、この非水電解液を用いた以外は、実施例3-1と同様にしてリチウム二次電池を作製した。
(Comparative Example 3-2)
Instead of FEC, it is used so that the content of the cyclic carbonate represented by the general formula (4), R 4 is Cl, and R 5 , R 6 and R 7 are H is 1.25% by mass, A non-aqueous electrolyte was prepared in the same manner as in Example 3-1, except that the triethylphosphonoacetate content was changed to 2.00% by mass and the VC content was changed to 1.00% by mass. A lithium secondary battery was produced in the same manner as in Example 3-1, except that this non-aqueous electrolyte was used.
 (比較例3-3)
 トリメチルホスホノアセテートを使用せず、前記一般式(4)で表され、RおよびRがFで、RおよびRがHの環状カーボネートの含有量を1.00質量%となるように使用した以外は、実施例3-8と同様にして非水電解液を調製し、この非水電解液を用いた以外は、実施例3-1と同様にしてリチウム二次電池を作製した。
(Comparative Example 3-3)
Without using trimethylphosphonoacetate, the content of the cyclic carbonate represented by the general formula (4), wherein R 4 and R 5 are F, and R 6 and R 7 are H is 1.00% by mass. A non-aqueous electrolyte was prepared in the same manner as in Example 3-8 except that the non-aqueous electrolyte was used, and a lithium secondary battery was produced in the same manner as in Example 3-1, except that this non-aqueous electrolyte was used. .
 実施例3-1~3-8および比較例3-1~3-3で作製した各リチウム二次電池について、下記の各評価を行った。これらの結果を、各電池の非水電解液に添加した添加剤の組成と合わせて表5に示す。 The following evaluations were made on the lithium secondary batteries produced in Examples 3-1 to 3-8 and Comparative Examples 3-1 to 3-3. These results are shown in Table 5 together with the composition of the additive added to the non-aqueous electrolyte of each battery.
 <充放電サイクル特性評価>
 各電池を初回充放電後、320mAの電流値で4.2Vになるまで定電流充電を行い、次に、4.2Vで定電圧充電を行った。定電流充電と定電圧充電の総充電時間は3時間とした。続いて、充電後の電池について、320mAの電流値で3.0Vになるまで定電流放電を行った。以上の充電および放電を1サイクルとして、これを200サイクル繰り返して放電容量を求め、その値を1サイクル目の放電容量で除し、百分率で表して、容量維持率を求めた。
<Charge / discharge cycle characteristics evaluation>
After the initial charge and discharge of each battery, constant current charging was performed until the current value of 320 mA reached 4.2 V, and then constant voltage charging was performed at 4.2 V. The total charging time for constant current charging and constant voltage charging was 3 hours. Subsequently, the battery after charging was subjected to constant current discharge until the current value of 320 mA reached 3.0 V. The above charge and discharge were regarded as one cycle, and this was repeated 200 times to obtain the discharge capacity. The value was divided by the discharge capacity at the first cycle and expressed as a percentage to obtain the capacity maintenance ratio.
 <高温貯蔵後の電池の厚み変化の評価>
 各電池を初回充放電後、前記の充放電サイクル特性評価と同じ条件で充電を行った。充電後の各電池を60℃の環境下で120時間貯蔵し、貯蔵前後での電池の厚み変化(膨れ量)を求めた。ここで、電池の厚みとは、前述と同様に、外装缶の幅広側面間の厚みを意味する。
<Evaluation of battery thickness change after high temperature storage>
After the initial charge / discharge of each battery, the battery was charged under the same conditions as in the charge / discharge cycle characteristic evaluation. Each battery after charging was stored for 120 hours in an environment of 60 ° C., and the change in thickness (swelling amount) of the battery before and after storage was determined. Here, the thickness of the battery means the thickness between the wide side surfaces of the outer can, as described above.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 この高温貯蔵後の電池の厚み変化の評価で採用した条件は極めて過酷なものであるため、通常は電池の厚み変化が非常に大きくなる(電池が大きく膨れる)が、表5に示す通り、前記一般式(1)で表されるホスホノアセテート類化合物を含有しない非水電解液を使用した比較例3-3のリチウム二次電池に比べて、実施例3-1~3-8および比較例3-1、3-2のリチウム二次電池では、前記一般式(1)で表されるホスホノアセテート類化合物を含有する非水電解液の作用によって、厚み変化が抑えられている。 Since the conditions adopted in the evaluation of the change in the thickness of the battery after high-temperature storage are extremely severe, the change in the thickness of the battery is usually very large (the battery swells greatly). Examples 3-1 to 3-8 and Comparative Examples were compared with the lithium secondary battery of Comparative Example 3-3 using a non-aqueous electrolyte containing no phosphonoacetate compound represented by the general formula (1) In the lithium secondary batteries 3-1 and 3-2, the thickness change is suppressed by the action of the non-aqueous electrolyte containing the phosphonoacetate compound represented by the general formula (1).
 しかしながら、ハロゲン置換された環状カーボネートの量と前記一般式(1)で表されるホスホノアセテート類化合物の量との関係が不適な非水電解液を使用した比較例3-1、3-2の電池では、充放電サイクル特性評価時の容量維持率が低く、充放電サイクル特性が劣っているのに対し、これらの量の関係が適正な非水電解液を使用した実施例3-1~3-8の電池では、前記容量維持率が高く、充放電サイクル特性も優れている。 However, Comparative Examples 3-1 and 3-2 using a non-aqueous electrolyte in which the relationship between the amount of the halogen-substituted cyclic carbonate and the amount of the phosphonoacetate compound represented by the general formula (1) is inappropriate In the battery of Example 3, the capacity retention rate at the time of charge / discharge cycle characteristics evaluation is low and the charge / discharge cycle characteristics are inferior. In the battery of 3-8, the capacity retention rate is high and the charge / discharge cycle characteristics are also excellent.
 本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、これらに限定はされない。本発明の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。 The present invention can be implemented in forms other than those described above without departing from the spirit of the present invention. The embodiments disclosed in the present application are merely examples, and the present invention is not limited thereto. The scope of the present invention is construed in preference to the description of the appended claims rather than the description of the above specification, and all modifications within the scope equivalent to the claims are construed in the scope of the claims. It is included.
 1 正極
 2 負極
 3 セパレータ
 4 外装缶
 5 絶縁体
 6 巻回電極体
 7 正極リード体
 8 負極リード体
 9 蓋板
10 絶縁パッキング
11 端子
12 絶縁体
13 リード板
14 非水電解液注入口
15 開裂ベント
 
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Exterior can 5 Insulator 6 Winding electrode body 7 Positive electrode lead body 8 Negative electrode lead body 9 Lid board 10 Insulation packing 11 Terminal 12 Insulator 13 Lead board 14 Nonaqueous electrolyte injection port 15 Cleavage vent

Claims (20)

  1.  正極、負極、非水電解液およびセパレータを含むリチウム二次電池であって、
     前記正極は、集電体と、前記集電体の上に形成された正極合剤層とを含み、
     前記正極合剤層は、正極活物質を含み、
     前記正極活物質は、リチウムとニッケルとを含む第1のリチウム含有複合酸化物を含み、
     前記第1のリチウム含有複合酸化物の全量中の前記リチウムに対する前記ニッケルのモル比率が、0.05~1.05であり、
     前記非水電解液は、下記一般式(1)で表されるホスホノアセテート類化合物を0.5~20質量%含むことを特徴とするリチウム二次電池。
    Figure JPOXMLDOC01-appb-C000001
     前記一般式(1)中、R、RおよびRは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数1~12のアルキル基であり、nは0~6の整数である。
    A lithium secondary battery including a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator,
    The positive electrode includes a current collector and a positive electrode mixture layer formed on the current collector,
    The positive electrode mixture layer includes a positive electrode active material,
    The positive electrode active material includes a first lithium-containing composite oxide containing lithium and nickel,
    The molar ratio of the nickel to the lithium in the total amount of the first lithium-containing composite oxide is 0.05 to 1.05;
    The lithium secondary battery, wherein the non-aqueous electrolyte contains 0.5 to 20% by mass of a phosphonoacetate compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In the general formula (1), R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom, and n is an integer of 0 to 6 It is.
  2.  前記第1のリチウム含有複合酸化物は、一般組成式Li1+yMOで表され、
     前記一般組成式において、-0.15≦y≦0.15であり、且つ、Mは、Ni、CoおよびMnを含む元素群を示し、
     前記元素群Mの全元素数に対する、前記元素群Mに含まれるNi、CoおよびMnの元素数の割合を、それぞれa(mol%)、b(mol%)およびc(mol%)としたときに、25≦a≦90、5≦b≦35、5≦c≦35および10≦b+c≦70で表される請求項1に記載のリチウム二次電池。
    The first lithium-containing composite oxide is represented by a general composition formula Li 1 + y MO 2 ,
    In the general composition formula, −0.15 ≦ y ≦ 0.15, and M represents an element group containing Ni, Co, and Mn,
    When the ratio of the number of elements of Ni, Co, and Mn contained in the element group M to the total number of elements in the element group M is a (mol%), b (mol%), and c (mol%), respectively. The lithium secondary battery according to claim 1, represented by: 25 ≦ a ≦ 90, 5 ≦ b ≦ 35, 5 ≦ c ≦ 35, and 10 ≦ b + c ≦ 70.
  3.  前記正極活物質は、リチウムと遷移金属とを含む第2のリチウム含有複合酸化物を更に含む請求項1に記載のリチウム二次電池。 2. The lithium secondary battery according to claim 1, wherein the positive electrode active material further includes a second lithium-containing composite oxide containing lithium and a transition metal.
  4.  前記正極活物質の全量中の全リチウムに対する全ニッケルの全モル比率が、0.05~1.0である請求項3に記載のリチウム二次電池。 The lithium secondary battery according to claim 3, wherein the total molar ratio of total nickel to total lithium in the total amount of the positive electrode active material is 0.05 to 1.0.
  5.  前記正極合剤層の密度が、3.2g/cm以上である請求項1に記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein a density of the positive electrode mixture layer is 3.2 g / cm 3 or more.
  6.  前記正極合剤層の密度が、3.6g/cm以上である請求項1に記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein a density of the positive electrode mixture layer is 3.6 g / cm 3 or more.
  7.  前記非水電解液は、ハロゲン置換された環状カーボネートおよびビニレンカーボネートを更に含む請求項1に記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein the non-aqueous electrolyte further includes a halogen-substituted cyclic carbonate and vinylene carbonate.
  8.  前記負極は、集電体と、前記集電体の上に形成された負極合剤層とを含み、
     前記負極合剤層は、負極活物質を含み、
     前記負極活物質は、シリコンと酸素とを構成元素に含む材料を含む請求項1に記載のリチウム二次電池。
    The negative electrode includes a current collector and a negative electrode mixture layer formed on the current collector,
    The negative electrode mixture layer includes a negative electrode active material,
    The lithium secondary battery according to claim 1, wherein the negative electrode active material includes a material containing silicon and oxygen as constituent elements.
  9.  前記負極は、集電体と、前記集電体の上に形成された負極合剤層とを含み、
     前記負極合剤層は、負極活物質を含み、
     前記負極活物質は、シリコンと酸素とを構成元素に含む材料と、炭素材料との複合体を含む請求項1に記載のリチウム二次電池。
    The negative electrode includes a current collector and a negative electrode mixture layer formed on the current collector,
    The negative electrode mixture layer includes a negative electrode active material,
    The lithium secondary battery according to claim 1, wherein the negative electrode active material includes a composite of a material containing silicon and oxygen as constituent elements and a carbon material.
  10.  前記負極活物質は、黒鉛質炭素材料を更に含む請求項8に記載のリチウム二次電池。 The lithium secondary battery according to claim 8, wherein the negative electrode active material further includes a graphitic carbon material.
  11.  正極、負極、非水電解液およびセパレータを含むリチウム二次電池であって、
     前記負極は、集電体と、前記集電体の上に形成された負極合剤層とを含み、
     前記負極合剤層は、負極活物質を含み、
     前記負極活物質は、シリコンと酸素とを構成元素に含む材料を含み、
     前記非水電解液は、ハロゲン置換された環状カーボネートおよび下記一般式(1)で表されるホスホノアセテート類化合物を含み、
     前記非水電解液において、前記ホスホノアセテート類化合物の含有量が、前記ハロゲン置換された環状カーボネートの含有量以下であることを特徴とするリチウム二次電池。
    Figure JPOXMLDOC01-appb-C000002
     前記一般式(1)中、R、RおよびRは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数1~12のアルキル基であり、nは0~6の整数である。
    A lithium secondary battery including a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator,
    The negative electrode includes a current collector and a negative electrode mixture layer formed on the current collector,
    The negative electrode mixture layer includes a negative electrode active material,
    The negative electrode active material includes a material containing silicon and oxygen as constituent elements,
    The non-aqueous electrolyte includes a halogen-substituted cyclic carbonate and a phosphonoacetate compound represented by the following general formula (1):
    In the non-aqueous electrolyte, the content of the phosphonoacetate compound is less than or equal to the content of the halogen-substituted cyclic carbonate.
    Figure JPOXMLDOC01-appb-C000002
    In the general formula (1), R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 12 carbon atoms which may be substituted with a halogen atom, and n is an integer of 0 to 6 It is.
  12.  前記シリコンと酸素とを構成元素に含む材料は、一般式組成式SiOで表され、
     前記一般組成式において、0.5≦x≦1.5である請求項11に記載のリチウム二次電池。
    The material containing silicon and oxygen as constituent elements is represented by a general formula composition formula SiO x ,
    The lithium secondary battery according to claim 11, wherein 0.5 ≦ x ≦ 1.5 in the general composition formula.
  13.  前記負極活物質は、シリコンと酸素とを構成元素に含む材料と、炭素材料との複合体を含む請求項11に記載のリチウム二次電池。 The lithium secondary battery according to claim 11, wherein the negative electrode active material includes a composite of a material containing silicon and oxygen as constituent elements and a carbon material.
  14.  前記負極活物質は、黒鉛質炭素材料を更に含む請求項11に記載のリチウム二次電池。 The lithium secondary battery according to claim 11, wherein the negative electrode active material further includes a graphitic carbon material.
  15.  前記非水電解液において、前記ハロゲン置換された環状カーボネートの含有量が、0.1~30質量%である請求項11に記載のリチウム二次電池。 The lithium secondary battery according to claim 11, wherein a content of the halogen-substituted cyclic carbonate in the non-aqueous electrolyte is 0.1 to 30% by mass.
  16.  前記非水電解液において、前記ホスホノアセテート類化合物の含有量が、0.1~10質量%である請求項11に記載のリチウム二次電池。 The lithium secondary battery according to claim 11, wherein the content of the phosphonoacetate compound in the non-aqueous electrolyte is 0.1 to 10% by mass.
  17.  前記負極活物質は、黒鉛質炭素材料を更に含み、
     前記非水電解液は、ビニレンカーボネートを更に含む請求項11に記載のリチウム二次電池。
    The negative electrode active material further includes a graphitic carbon material,
    The lithium secondary battery according to claim 11, wherein the non-aqueous electrolyte further includes vinylene carbonate.
  18.  前記非水電解液において、ビニレンカーボネートの含有量が、0.1~10質量%である請求項17に記載のリチウム二次電池。 The lithium secondary battery according to claim 17, wherein the content of vinylene carbonate in the non-aqueous electrolyte is 0.1 to 10% by mass.
  19.  前記正極は、集電体と、前記集電体の上に形成された正極合剤層とを含み、
     前記正極合剤層は、正極活物質を含み、
     前記正極活物質は、リチウム含有複合酸化物を含む請求項11に記載のリチウム二次電池。
    The positive electrode includes a current collector and a positive electrode mixture layer formed on the current collector,
    The positive electrode mixture layer includes a positive electrode active material,
    The lithium secondary battery according to claim 11, wherein the positive electrode active material includes a lithium-containing composite oxide.
  20.  前記リチウム含有複合酸化物は、ニッケルを含む請求項19に記載のリチウム二次電池。
     
    The lithium secondary battery according to claim 19, wherein the lithium-containing composite oxide includes nickel.
PCT/JP2011/067328 2010-07-29 2011-07-28 Lithium secondary battery WO2012014998A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137002446A KR101485382B1 (en) 2010-07-29 2011-07-28 Lithium secondary battery
CN2011800371612A CN103038928A (en) 2010-07-29 2011-07-28 Lithium secondary battery
JP2012526574A JPWO2012014998A1 (en) 2010-07-29 2011-07-28 Lithium secondary battery

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-171220 2010-07-29
JP2010171220 2010-07-29
JP2011002721 2011-01-11
JP2011-002721 2011-01-11
JP2011071444 2011-03-29
JP2011-071444 2011-03-29

Publications (1)

Publication Number Publication Date
WO2012014998A1 true WO2012014998A1 (en) 2012-02-02

Family

ID=45530198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067328 WO2012014998A1 (en) 2010-07-29 2011-07-28 Lithium secondary battery

Country Status (4)

Country Link
JP (1) JPWO2012014998A1 (en)
KR (1) KR101485382B1 (en)
CN (1) CN103038928A (en)
WO (1) WO2012014998A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047747A1 (en) * 2011-09-29 2013-04-04 日立マクセル株式会社 Lithium secondary battery
JP2013242997A (en) * 2012-05-18 2013-12-05 Shin Etsu Chem Co Ltd Lithium ion secondary battery
KR20140000167A (en) * 2012-06-22 2014-01-02 히다치 막셀 가부시키가이샤 Lithium secondary battery
WO2014054355A1 (en) * 2012-10-03 2014-04-10 日立マクセル株式会社 Sealed cell and method for manufacturing same
JPWO2012141270A1 (en) * 2011-04-12 2014-07-28 宇部興産株式会社 Non-aqueous electrolyte and power storage device using the same
WO2014141932A1 (en) * 2013-03-12 2014-09-18 日立マクセル株式会社 Lithium secondary battery
JP2014194930A (en) * 2013-02-27 2014-10-09 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution, and nonaqueous electrolytic battery arranged by use thereof
JP2015050168A (en) * 2013-09-04 2015-03-16 日立マクセル株式会社 Lithium secondary battery
WO2015111710A1 (en) * 2014-01-24 2015-07-30 日立マクセル株式会社 Non-aqueous secondary battery
WO2015163356A1 (en) * 2014-04-22 2015-10-29 三菱化学株式会社 Positive electrode active material for non-aqueous secondary cell, and non-aqueous secondary cell
KR20150125928A (en) * 2013-02-27 2015-11-10 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
KR20160001651A (en) * 2014-06-26 2016-01-06 주식회사 엘지화학 Lithium secondary battery
WO2018179526A1 (en) * 2017-03-29 2018-10-04 株式会社村田製作所 Secondary cell, cell pack, electric vehicle, power storage system, electric tool, and electronic device
JP2019175786A (en) * 2018-03-29 2019-10-10 マクセルホールディングス株式会社 Nonaqueous electrolyte battery
JP2020095956A (en) * 2018-12-06 2020-06-18 三菱ケミカル株式会社 Nonaqueous electrolytic secondary battery
JP2022545000A (en) * 2019-09-11 2022-10-24 エルジー エナジー ソリューション リミテッド Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
WO2023277055A1 (en) * 2021-06-29 2023-01-05 ダイキン工業株式会社 Composition for forming electrode, electrode and secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638292A (en) * 2013-11-11 2015-05-20 日立麦克赛尔株式会社 Lithium secondary battery
CN104638297A (en) * 2013-11-11 2015-05-20 日立麦克赛尔株式会社 Lithium secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053083A (en) * 2005-07-21 2007-03-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and method of manufacturing same
JP2007165108A (en) * 2005-12-14 2007-06-28 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2008262908A (en) * 2007-03-19 2008-10-30 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution and non-aqueous electrolytic solution battery
JP2009070615A (en) * 2007-09-11 2009-04-02 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4236390B2 (en) * 2001-04-19 2009-03-11 三洋電機株式会社 Lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053083A (en) * 2005-07-21 2007-03-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and method of manufacturing same
JP2007165108A (en) * 2005-12-14 2007-06-28 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2008262908A (en) * 2007-03-19 2008-10-30 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution and non-aqueous electrolytic solution battery
JP2009070615A (en) * 2007-09-11 2009-04-02 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032200B2 (en) * 2011-04-12 2016-11-24 宇部興産株式会社 Non-aqueous electrolyte and power storage device using the same
JPWO2012141270A1 (en) * 2011-04-12 2014-07-28 宇部興産株式会社 Non-aqueous electrolyte and power storage device using the same
US9570777B2 (en) 2011-09-29 2017-02-14 Hitachi Maxell, Ltd. Lithium secondary battery
JPWO2013047747A1 (en) * 2011-09-29 2015-03-26 日立マクセル株式会社 Lithium secondary battery
WO2013047747A1 (en) * 2011-09-29 2013-04-04 日立マクセル株式会社 Lithium secondary battery
JP2013242997A (en) * 2012-05-18 2013-12-05 Shin Etsu Chem Co Ltd Lithium ion secondary battery
EP2665111A3 (en) * 2012-05-18 2016-03-16 Shin-Etsu Chemical Co., Ltd. Lithium ion secondary battery
CN103515666A (en) * 2012-06-22 2014-01-15 日立麦克赛尔株式会社 Lithium secondary battery
KR102044438B1 (en) * 2012-06-22 2019-11-13 맥셀 홀딩스 가부시키가이샤 Lithium secondary battery
CN103515666B (en) * 2012-06-22 2017-03-01 日立麦克赛尔株式会社 Lithium secondary battery
KR20140000167A (en) * 2012-06-22 2014-01-02 히다치 막셀 가부시키가이샤 Lithium secondary battery
WO2014054355A1 (en) * 2012-10-03 2014-04-10 日立マクセル株式会社 Sealed cell and method for manufacturing same
JP5913611B2 (en) * 2012-10-03 2016-04-27 日立マクセル株式会社 Sealed battery and method for manufacturing the same
JP2014194930A (en) * 2013-02-27 2014-10-09 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution, and nonaqueous electrolytic battery arranged by use thereof
JP2018142556A (en) * 2013-02-27 2018-09-13 三菱ケミカル株式会社 Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery using them
KR102167579B1 (en) * 2013-02-27 2020-10-19 미쯔비시 케미컬 주식회사 Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
US11942601B2 (en) 2013-02-27 2024-03-26 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
US11424482B2 (en) 2013-02-27 2022-08-23 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
KR20150125928A (en) * 2013-02-27 2015-11-10 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
CN105009349A (en) * 2013-03-12 2015-10-28 日立麦克赛尔株式会社 Lithium secondary battery
JP2014199796A (en) * 2013-03-12 2014-10-23 日立マクセル株式会社 Lithium secondary battery
WO2014141932A1 (en) * 2013-03-12 2014-09-18 日立マクセル株式会社 Lithium secondary battery
KR102180458B1 (en) * 2013-03-12 2020-11-18 맥셀 홀딩스 가부시키가이샤 Lithium secondary battery
KR20150127069A (en) * 2013-03-12 2015-11-16 히다치 막셀 가부시키가이샤 Lithium secondary battery
JP2015050168A (en) * 2013-09-04 2015-03-16 日立マクセル株式会社 Lithium secondary battery
JPWO2015111710A1 (en) * 2014-01-24 2017-03-23 日立マクセル株式会社 Non-aqueous secondary battery
WO2015111710A1 (en) * 2014-01-24 2015-07-30 日立マクセル株式会社 Non-aqueous secondary battery
US10361432B2 (en) 2014-01-24 2019-07-23 Maxell Holdings, Ltd. Non-aqueous secondary battery
JPWO2015163356A1 (en) * 2014-04-22 2017-04-20 三菱化学株式会社 Cathode active material for non-aqueous secondary battery and non-aqueous secondary battery
WO2015163356A1 (en) * 2014-04-22 2015-10-29 三菱化学株式会社 Positive electrode active material for non-aqueous secondary cell, and non-aqueous secondary cell
JP2019165010A (en) * 2014-04-22 2019-09-26 三菱ケミカル株式会社 Nonaqueous secondary battery
KR101697008B1 (en) * 2014-06-26 2017-01-16 주식회사 엘지화학 Lithium secondary battery
US10263248B2 (en) 2014-06-26 2019-04-16 Lg Chem, Ltd. Lithium secondary battery
KR20160001651A (en) * 2014-06-26 2016-01-06 주식회사 엘지화학 Lithium secondary battery
WO2018179526A1 (en) * 2017-03-29 2018-10-04 株式会社村田製作所 Secondary cell, cell pack, electric vehicle, power storage system, electric tool, and electronic device
JP2019175786A (en) * 2018-03-29 2019-10-10 マクセルホールディングス株式会社 Nonaqueous electrolyte battery
JP2020095956A (en) * 2018-12-06 2020-06-18 三菱ケミカル株式会社 Nonaqueous electrolytic secondary battery
JP7345376B2 (en) 2018-12-06 2023-09-15 三菱ケミカル株式会社 Nonaqueous electrolyte secondary battery
JP2022545000A (en) * 2019-09-11 2022-10-24 エルジー エナジー ソリューション リミテッド Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP7350416B2 (en) 2019-09-11 2023-09-26 エルジー エナジー ソリューション リミテッド Non-aqueous electrolyte for lithium secondary batteries and lithium secondary batteries containing the same
WO2023277055A1 (en) * 2021-06-29 2023-01-05 ダイキン工業株式会社 Composition for forming electrode, electrode and secondary battery

Also Published As

Publication number Publication date
CN103038928A (en) 2013-04-10
KR20130033425A (en) 2013-04-03
KR101485382B1 (en) 2015-01-26
JPWO2012014998A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP5922665B2 (en) Lithium secondary battery
JP4868556B2 (en) Lithium secondary battery
WO2012014998A1 (en) Lithium secondary battery
KR101181944B1 (en) Non-aqueous secondary battery
JP6253411B2 (en) Lithium secondary battery
JP6112858B2 (en) Nonaqueous electrolyte secondary battery
WO2015111710A1 (en) Non-aqueous secondary battery
JP2011243558A (en) Lithium secondary battery positive electrode and lithium secondary battery
JP6059019B2 (en) Nonaqueous electrolyte secondary battery
KR20130048181A (en) Lithium secondary battery
JP5031065B2 (en) Lithium ion secondary battery
JP5851801B2 (en) Lithium secondary battery
JP5523506B2 (en) Method for producing lithium ion secondary battery
JP5566825B2 (en) Lithium secondary battery
JP2013149451A (en) Lithium secondary battery
JP6063705B2 (en) Nonaqueous electrolyte secondary battery
JP5978024B2 (en) Non-aqueous secondary battery
JP5845096B2 (en) Lithium secondary battery
JP2014049372A (en) Lithium ion secondary battery
JP5658122B2 (en) Lithium secondary battery
JP2013118068A (en) Lithium secondary battery
JP5785653B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037161.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812587

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012526574

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137002446

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812587

Country of ref document: EP

Kind code of ref document: A1