JPH10188993A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH10188993A
JPH10188993A JP8355643A JP35564396A JPH10188993A JP H10188993 A JPH10188993 A JP H10188993A JP 8355643 A JP8355643 A JP 8355643A JP 35564396 A JP35564396 A JP 35564396A JP H10188993 A JPH10188993 A JP H10188993A
Authority
JP
Japan
Prior art keywords
expanded graphite
positive electrode
secondary battery
lithium
conductive agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8355643A
Other languages
Japanese (ja)
Inventor
Tomohiro Inoue
智博 井上
Masahiro Yanai
將浩 谷内
Yoshitaka Hayashi
嘉隆 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP8355643A priority Critical patent/JPH10188993A/en
Publication of JPH10188993A publication Critical patent/JPH10188993A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a utilization factor of an active material in a positive electrode so as to provide a secondary battery having high capacity by including a conductive agent, which is formed by including a predetermined quantity of expanded graphite or crushed material of the compression molding of the expanded graphite, in a positive electrode of a non-aqueous electrolyte secondary battery using lithium included composite oxide for positive electrode active material. SOLUTION: A non-aqueous electrolyte secondary battery is formed of a positive electrode, in which lithium-containing manganese composite oxide is used as an active material and in which conductive agent, and binder agent are included and conductive polymer is included at need, an electrolyte layer of high molecular solid, which includes the non-aqueous electrolyte, and a negative electrode, which can store and release lithium. At this stage, as a conductive agent to be included in the positive electrode, crushed material of expanded graphite at 5wt.% or less is used. As the expanded graphite crushed material, an expanded graphite crushed material having mean particle diameter of 1-30μm, specific surface area of 10m<2> /g or more and true density of 2.00g/cm<3> is desirable from the view point of dispersebility, film-forming and adhesiveness, and an expanded graphite crushed material having a crystal layer interval of d002 of 0.337nm or less and crystallite size in the c-axis direction Lc of 10nm or more is desirable from viewpoint of conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来技術】近年の電子機器の小型化、薄型化、軽量化
の進歩は目ざましいものがあり、とりわけOA分野にお
いてはデスクトップ型からラップトップ型、ノートブッ
ク型へと小型軽量化している。加えて、電子手帳、電子
スチルカメラ等の新しい小型電子機器の分野も出現し、
さらには従来のハードディスク、フロッピーディスクの
小型化に加えて新しいメモリーメディアであるメモリー
カードの開発も進められている。このような電子機器の
小型化、薄型化、軽量化の波の中でこれらの電力をささ
える二次電池にも高性能化が要求されてきている。この
ような要望の中、鉛蓄電池やニッカド電池に代わる高エ
ネルギー密度電池としてリチウム二次電池の開発が急速
に進められてきた。
2. Description of the Related Art In recent years, there has been remarkable progress in downsizing, thinning, and lightening of electronic devices. Particularly in the OA field, the size and weight of electronic devices have been reduced from desktop type to laptop type and notebook type. In addition, new small electronic devices such as electronic notebooks and electronic still cameras have emerged,
Furthermore, in addition to miniaturization of conventional hard disks and floppy disks, development of a new memory medium, a memory card, is also underway. In the wave of the miniaturization, thinning, and weight reduction of such electronic devices, there is a demand for higher performance of secondary batteries that support these electric powers. Under such demands, development of lithium secondary batteries as high energy density batteries replacing lead storage batteries and nickel cadmium batteries has been rapidly advanced.

【0003】これらに用いる負極活物質としては、リチ
ウム金属を電極として用いると、高起電力が得られ、軽
量で高密度化しやすいが、充放電によって、デンドライ
トが生成し、これが電解液を分解するなどの悪影響を与
え、さらに、このデンドライトが成長すると正極に達
し、電池内短絡を起こすという問題点があった。そこ
で、リチウム合金を負極として用いると、このような問
題は緩和されるが、二次電池として満足できるような容
量が得られなかった。このため、負極活物質として、リ
チウムを吸蔵放出でき、安全性の高い炭素材料を用いる
ことが提案され、今日まで多くの研究がなされてきた。
たとえば、特開平2−66856に負極活物質として、
フルフリル樹脂を1100℃で燃焼した導電性炭素材料
を用いることが提案されている。また、特開昭61−2
77515には、芳香族ポリイミドを不活性雰囲気下で
2000℃以上の温度で熱処理して得られる導電性炭素
材料を負極活物質に用いることが開示され、さらに、特
開平4−115457には易黒鉛性球状炭素を黒鉛化し
たものを負極活物質に用いることが開示されている。さ
らに、特開昭61−77275ではフェノール系高分子
を熱処理したポリアセン構造の絶縁性あるいは半導体性
の炭素材料を電極に用いた二次電池が開示されている。
When a lithium metal is used as an electrode as a negative electrode active material for these, a high electromotive force is obtained, light weight and high density are easily obtained, but dendrite is generated by charging and discharging, and this decomposes an electrolytic solution. In addition, when the dendrite grows, it reaches the positive electrode and causes a short circuit in the battery. Thus, when a lithium alloy is used as the negative electrode, such a problem is alleviated, but a capacity sufficient as a secondary battery cannot be obtained. For this reason, it has been proposed to use a highly safe carbon material capable of inserting and extracting lithium as the negative electrode active material, and much research has been made to date.
For example, Japanese Patent Application Laid-Open No. 2-66656 discloses a negative electrode active material.
It has been proposed to use a conductive carbon material obtained by burning furfuryl resin at 1100 ° C. Also, Japanese Unexamined Patent Publication No.
No. 77515 discloses that a conductive carbon material obtained by heat-treating an aromatic polyimide at a temperature of 2000 ° C. or more in an inert atmosphere is used as a negative electrode active material. The use of graphitized spheroidal carbon as a negative electrode active material is disclosed. Further, Japanese Patent Application Laid-Open No. 61-77275 discloses a secondary battery in which an insulating or semiconductive carbon material having a polyacene structure obtained by heat-treating a phenolic polymer is used for an electrode.

【0004】一方、正極活物質としては、TiS2、M
oS2、Co26、V25、MnO2、CoO2などの遷
移金属酸化物、あるいは遷移金属カルコゲン化合物など
があり、無機材料を活物質とした例が数多く研究されて
きた。さらに、最近では、高エネルギー化のために作動
電圧が4Vを示す、リチウムコバルト酸化物、リチウム
ニッケル酸化物等、LiMO2で示される層状構造を有
する複合酸化物、またはLiM24で示されるスピネル
構造を有するリチウム複合酸化物が提案されている(特
公昭63−59507、特公平8−21431)。これ
らのリチウム複合酸化物は、炭酸塩、水酸化物、硝酸塩
等を出発原料として、高温で焼成することにより合成さ
れる。これらの活物質は、結着剤を溶解した溶媒中で、
導電性を付与するための導電剤とともに混合分散して、
集電体上に塗布乾燥して電極を作製する。ここで、導電
剤には、これまで天然黒鉛、人造黒鉛等が一般的に用い
られてきたが、これらは、十分な導電性が得られる含有
量にすると、活物質の含有量が減ることになり、高容量
化には不利であり、一方、導電剤の含有量を減らすと、
十分な導電性が得られず、正極活物質の利用率が低く、
やはり、容量が低下してしまった。
On the other hand, TiS 2 , M
There are transition metal oxides such as oS 2 , Co 2 S 6 , V 2 O 5 , MnO 2 , and CoO 2 , or transition metal chalcogen compounds, and many examples using inorganic materials as active materials have been studied. Furthermore, recently, it is represented by a composite oxide having a layered structure represented by LiMO 2 , such as lithium cobalt oxide, lithium nickel oxide, or LiM 2 O 4, which has an operating voltage of 4 V for increasing energy. Lithium composite oxides having a spinel structure have been proposed (JP-B-63-59507, JP-B-8-21431). These lithium composite oxides are synthesized by firing at a high temperature using carbonates, hydroxides, nitrates and the like as starting materials. These active materials, in a solvent in which the binder is dissolved,
Mixed and dispersed with a conductive agent to impart conductivity,
An electrode is produced by coating and drying on a current collector. Here, as the conductive agent, natural graphite, artificial graphite, and the like have been generally used so far. However, if these contents are set to obtain sufficient conductivity, the content of the active material is reduced. It is disadvantageous for increasing the capacity, while reducing the content of the conductive agent,
Insufficient conductivity was obtained, the utilization rate of the positive electrode active material was low,
After all, the capacity has dropped.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、正極
中の活物質の利用率を高めて、高容量な非水電解質二次
電池を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high capacity nonaqueous electrolyte secondary battery by increasing the utilization of an active material in a positive electrode.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するに
は、正極用導電剤が、膨張黒鉛、または膨張黒鉛あるい
は膨張黒鉛の圧縮成形物の粉砕物を含んでいると、その
含有量が少量であっても、正極活物質の利用率を最大に
高めて、高容量な非水電解質二次電池が得られることを
見出し、この知見に基づいて、本発明に到達し、前記の
技術課題を解決することができた。以下、本発明の非水
電解質二次電池について説明する。
Means for Solving the Problems To achieve the above object, if the conductive agent for the positive electrode contains expanded graphite or a pulverized product of expanded graphite or a compression molded product of expanded graphite, the content is reduced. However, the maximum utilization rate of the positive electrode active material is maximized, and a high-capacity non-aqueous electrolyte secondary battery is found to be obtained.Based on this finding, the present invention has been achieved, and the above technical problem has been solved. Could be solved. Hereinafter, the non-aqueous electrolyte secondary battery of the present invention will be described.

【0007】1.導電剤 本発明で用いる導電剤は、前述のとおり、膨張黒鉛、ま
たは膨張黒鉛あるいは膨張黒鉛の圧縮成形物の粉砕物を
含んで構成されるものである。前記膨張黒鉛は公知の方
法によって得られるものが使用でき、特にその種類には
制限はないが、例えば、天然黒鉛、キッシュ黒鉛、熱分
解黒鉛等の高結晶化した黒鉛を濃硫酸と硝酸の混酸、濃
硫酸と過マンガン酸カリウムの混酸、濃硫酸と過酸化水
素水の混酸等の強酸化性溶液に浸漬させる化学処理、電
解処理等の酸化処理を行ない、黒鉛−硫酸層間化合物を
生成させ、水洗、乾燥してから急速加熱して黒鉛結晶の
C軸方向に膨張させたものが挙げられる。
[0007] 1. Conductive agent As described above, the conductive agent used in the present invention is configured to include expanded graphite or a pulverized product of expanded graphite or a compression molded product of expanded graphite. As the expanded graphite, those obtained by a known method can be used, and the kind thereof is not particularly limited. For example, natural graphite, quiche graphite, highly crystallized graphite such as pyrolytic graphite is mixed with concentrated sulfuric acid and nitric acid. Perform a chemical treatment of immersing in a strong oxidizing solution such as a mixed acid of concentrated sulfuric acid and potassium permanganate, a mixed acid of concentrated sulfuric acid and hydrogen peroxide, an oxidation treatment such as an electrolytic treatment, and generate a graphite-sulfuric acid intercalation compound. Washed with water, dried, and rapidly heated to expand the graphite crystal in the C-axis direction.

【0008】前記膨張黒鉛あるいは膨張黒鉛の圧縮成形
物の粉砕物は、膨張黒鉛あるいは膨張黒鉛の圧縮成形物
を粉砕することにより得られるが、膨張黒鉛を粉砕する
場合、そのまま粉砕してもよいが、シート状、ブロック
状、リング状等の任意の形状に圧縮成形したものを粉砕
した方が、そのまま粉砕するよりも粉砕効率が良い。粉
砕については、公知の機械的な粉砕法により行なうこと
ができる。そして、塗料の分散性、成膜性、塗布膜の接
着性等の点から、これらの平均粒径は、1〜30μm、
比表面積が10m2/g以上、真密度が2.00g/c
3以上であることが好ましい。また、導電性という点
からは、結晶層間距離d002が0.337nm以下、C
軸方向の結晶子の大きさLcが10nm以上であること
が好ましい。これらは、導電剤として単独で用いても、
通常の天然黒鉛、人造黒鉛と混合して用いても良い。前
記本発明の導電剤は、通常、正極全重量の5重量%以下
の量で使用される。
The above-mentioned expanded graphite or a compressed product of the expanded graphite can be obtained by pulverizing the expanded graphite or the compression-molded product of the expanded graphite. When the expanded graphite is pulverized, it may be pulverized as it is. Compression molding into an arbitrary shape such as a sheet, a block, a ring, or the like, has better crushing efficiency than crushing as it is. The pulverization can be performed by a known mechanical pulverization method. In view of the dispersibility of the coating material, film forming property, adhesiveness of the coating film, etc., these average particle diameters are 1 to 30 μm,
Specific surface area is 10 m 2 / g or more, true density is 2.00 g / c
It is preferably at least m 3 . Further, from the viewpoint of conductivity, the distance d 002 between crystal layers is 0.337 nm or less, and C
It is preferable that the size Lc of the crystallite in the axial direction is 10 nm or more. These can be used alone as a conductive agent,
It may be used by mixing with ordinary natural graphite and artificial graphite. The conductive agent of the present invention is generally used in an amount of 5% by weight or less based on the total weight of the positive electrode.

【0009】2.正極活物質および正極 以下、本発明で用いる電池の構成について説明する。本
発明の電池において用いられる正極活物質はTiS2
MoS2、Co26、V25、MnO2、CoO2などの
遷移金属酸化物、遷移金属カルコゲン化合物およびこれ
らとLiとの複合体(Li複合酸化物;LiCoO2
LiNiO2、LiFeO2、LiMn24、また、C
o、Ni、Fe、Mnの一部を他の元素Xで置き換えた
LiCoXO2、LiNiXO2、LiFeXO2、Li
Mn2XO4等)等の無機活物質が挙げられる。なかでも
Li含有複合酸化物、特にLi含有Mn複合酸化物は、
前述のように本発明の前記導電剤との相性が良く、少量
で極めて良好な導電性を示し、これらは、例えば炭酸
塩、水酸化物、硝酸塩等を出発原料として、高温で焼成
することにより合成される。
[0009] 2. Positive Electrode Active Material and Positive Electrode Hereinafter, the configuration of the battery used in the present invention will be described. The positive electrode active material used in the battery of the present invention is TiS 2 ,
Transition metal oxides such as MoS 2 , Co 2 S 6 , V 2 O 5 , MnO 2 , and CoO 2 , transition metal chalcogen compounds, and complexes thereof with Li (Li composite oxide; LiCoO 2 ,
LiNiO 2 , LiFeO 2 , LiMn 2 O 4 , and C
o, LiCoXO 2 , LiNiXO 2 , LiFeXO 2 , Li in which a part of Ni, Fe, Mn is replaced by another element X
Inorganic active materials such as Mn 2 XO 4 ). Among them, Li-containing composite oxides, especially Li-containing Mn composite oxides,
As described above, it has good compatibility with the conductive agent of the present invention, and shows extremely good conductivity in a small amount.For example, carbonate, hydroxide, nitrate or the like as a starting material, by firing at a high temperature. Synthesized.

【0010】これら無機正極活物質には、導電性高分子
などの他の活物質を含有してもよい。例えば、LiMn
24、LiMn(2-a)a4などの無機活物質は、それ
だけでは導電性が悪く、自己成形性がないため、導電
剤、結着剤を大量に添加する必要がある。一方、ポリア
セチレン、ポリピロール、ポリアニリンなどの導電性高
分子材料は軽量性、加工性などの利点を持ち合わせてい
るが、体積当りのエネルギー密度が低いという欠点を持
っている。そのため、前記無機活物質および導電性高分
子の互いの欠点を補う方法として、前記両者の複合体電
極が提案されている(特開昭63−102162、特開
昭63−314763、特開平3−298067、特開
平4−322057、特開平6−68866、特開平6
−318452)。本発明の前記導電剤は、前記のよう
な導電性高分子との無機活物質の複合化電極に使用する
と、非常に良好な塗布膜が形成でき、極めて効果的であ
る。
[0010] These inorganic positive electrode active materials may contain other active materials such as conductive polymers. For example, LiMn
Inorganic active materials such as 2 O 4 and LiMn (2-a) X a O 4 alone have poor conductivity and do not have self-molding properties, so that it is necessary to add a large amount of a conductive agent and a binder. On the other hand, conductive polymer materials such as polyacetylene, polypyrrole, and polyaniline have advantages such as light weight and workability, but have a drawback of low energy density per volume. Therefore, as a method of compensating for the disadvantages of the inorganic active material and the conductive polymer, composite electrodes of the inorganic active material and the conductive polymer have been proposed (JP-A-63-102162, JP-A-63-314763, JP-A-63-314763, 298067, JP-A-4-322257, JP-A-6-68866, JP-A-6-68866
-318452). When the conductive agent of the present invention is used for a composite electrode of an inorganic active material and a conductive polymer as described above, a very good coating film can be formed and is extremely effective.

【0011】このような導電性高分子との複合化の場合
にも、本発明の導電剤は、非常に良好な塗布膜が形成で
き、極めて効果的である。これらの活物質は、上記導電
性高分子を含有しない場合には、結着剤を溶解した溶媒
中で、本発明の導電剤を加え混合分散して、集電体上に
塗布乾燥して電極を作製する。前記結着剤としては、テ
フロン、ポリエチレン、ニトリルゴム、ポリブタジエ
ン、ブチルゴム、ポリスチレン、スチレン/ブタジエン
ゴム、ニトロセルロース、シアノエチルセルロース、ポ
リアクリロニトリル、ポリフッ化ビニル、ポリフッ化ビ
ニリデン、ポリクロロプレン、ポリビニルピリジンなど
が挙げられ、これらは、単独で用いられたり、または混
合、さらに、共重合などによって、耐電解液性を強化し
て用いられる。従って、電解液に溶解、または反応しな
ければ前記のものに限定されるものではない。また、こ
れらの結着剤の含有量は、1〜20重量%が好ましい。
[0011] Even in the case of such a composite with a conductive polymer, the conductive agent of the present invention can form a very good coating film and is extremely effective. When these active materials do not contain the conductive polymer, in a solvent in which the binder is dissolved, the conductive agent of the present invention is added, mixed and dispersed, coated on a current collector and dried to form an electrode. Is prepared. Examples of the binder include Teflon, polyethylene, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene / butadiene rubber, nitrocellulose, cyanoethylcellulose, polyacrylonitrile, polyvinyl fluoride, polyvinylidene fluoride, polychloroprene, and polyvinylpyridine. These may be used alone, or may be used by enhancing the resistance to an electrolytic solution by mixing or further copolymerization. Accordingly, the present invention is not limited to the above-mentioned ones unless it dissolves or reacts in the electrolytic solution. The content of these binders is preferably 1 to 20% by weight.

【0012】3.負極活物質および負極 本発明の非水電解質二次電池に用いられる負極材料とし
ては、リチウム金属、Pb、Bi、Snなどの低融点金
属とLiとの合金、Li−Al合金などのリチウム合
金、炭素材料などが用いられる。これらの中で炭素材料
が最も好ましく、この例としては、フェノール、ポリイ
ミドなどの合成高分子、天然高分子を400〜800℃
の還元雰囲気で焼成することにより得られる絶縁性ない
し半導体炭素体、石炭、ピッチ、合成高分子、あるいは
天然高分子を800から1300℃での還元雰囲気で焼
成することにより得られる導電性炭素体、コークス、ピ
ッチ、合成高分子、天然高分子を2000℃以上の温度
で還元雰囲気下焼成することにより得られるもの、およ
び天然黒鉛などの黒鉛系炭素体が挙げられ、これらに限
定されるものではなく、さらにこれらは単独、あるいは
二種類以上を混合して用いてもよい。炭素体のシート化
は、炭素体と、前記正極の場合と同様な結着剤から湿式
抄紙法を用いたり炭素材料に適当な結着剤を混合した塗
料から塗布法により作製される。
3. Negative electrode active material and negative electrode As the negative electrode material used in the non-aqueous electrolyte secondary battery of the present invention, lithium metal, Pb, Bi, an alloy of Li and a low melting point metal such as Sn, a lithium alloy such as a Li-Al alloy, A carbon material or the like is used. Among these, a carbon material is most preferable. Examples of this are synthetic polymers such as phenol and polyimide and natural polymers at 400 to 800 ° C.
An insulating or semiconductive carbon body obtained by firing in a reducing atmosphere, coal, pitch, a synthetic polymer, or a conductive polymer obtained by firing in a reducing atmosphere at 800 to 1300 ° C., Coke, pitch, synthetic polymers, those obtained by firing natural polymers at a temperature of 2000 ° C. or more in a reducing atmosphere, and graphite-based carbon bodies such as natural graphite, but are not limited thereto. These may be used alone or as a mixture of two or more. The carbon body is formed into a sheet by a wet papermaking method using a carbon body and the same binder as in the case of the positive electrode, or by a coating method using a coating material in which an appropriate binder is mixed with a carbon material.

【0013】前記正負極電極は、これを必要に応じて集
電体に塗布、接着、圧着等の方法により担持することに
より製造することができる。
The positive / negative electrode can be manufactured by supporting the current collector on a current collector by a method such as application, adhesion, and pressure bonding as required.

【0014】4.正負極集電体 本発明に使用する正極集電体としては例えばステンレス
鋼、金、白金、ニッケル、アルミニウム、モリブデン、
チタンなどの金属シート、金属箔、金属網、パンチング
メタル、エキスパンドメタル、あるいは金属メッキ繊
維、金属蒸着線、金属含有合成繊維などからなる網や不
織布が挙げられる。中でも電気伝導度、化学的安定性、
電気化学的安定性、経済性、加工性などを考えるとアル
ミニウム、ステンレスを用いることが特に好ましい。更
に好ましくはその軽量性、電気化学的安定性からアルミ
ニウムが好ましい。
4. Positive and negative electrode current collector As the positive electrode current collector used in the present invention, for example, stainless steel, gold, platinum, nickel, aluminum, molybdenum,
Examples include a metal sheet such as titanium, a metal foil, a metal net, a punching metal, an expanded metal, a net made of metal-plated fiber, metal-deposited wire, metal-containing synthetic fiber, and a nonwoven fabric. Among them, electrical conductivity, chemical stability,
It is particularly preferable to use aluminum or stainless steel in consideration of electrochemical stability, economy, workability, and the like. Aluminum is more preferred because of its light weight and electrochemical stability.

【0015】さらに本発明に使用される正極集電体層お
よび/または負極集電体層の表面は粗面化してあること
が好ましい。粗面化を施すことにより活物質層の接触面
積が大きくなるとともに密着性も向上し電池としてのイ
ンピーダンスを下げる効果がある。また、塗料溶液を用
いての電極作成においては粗面化処理を施すことにより
活物質と集電体の密着性を大きく向上させることができ
る。粗面化処理としてはエメリー紙による研磨、ブラス
ト処理、化学的あるいは電気化学的エッチングがあり、
これにより集電体を粗面化することができる。特にステ
ンレス鋼の場合はブラスト処理、アルミニウムの場合は
エッチング処理したエッチドアルミニウムを用いるのが
好ましい。アルミニウムは柔らかい金属であるためブラ
スト処理では効果的な粗面化処理を施すことが難しく、
アルミニウム自体の変形を招いてしまう。これに対し
て、エッチング処理はアルミニウムの変形やその強度自
体を下げることなく、ミクロのオーダーで表面を効果的
に粗面化することが可能であり、アルミニウムの粗面化
としては最も好ましい方法である。
Further, the surface of the positive electrode current collector layer and / or the negative electrode current collector layer used in the present invention is preferably roughened. By performing the surface roughening, the contact area of the active material layer is increased and the adhesiveness is improved, which has the effect of lowering the impedance as a battery. Further, in the preparation of an electrode using a coating solution, the adhesion between the active material and the current collector can be greatly improved by performing a surface roughening treatment. Roughening treatments include polishing with emery paper, blasting, chemical or electrochemical etching,
Thereby, the current collector can be roughened. In particular, in the case of stainless steel, it is preferable to use blasted aluminum, and in the case of aluminum, it is preferable to use etched aluminum. Since aluminum is a soft metal, it is difficult to perform effective surface roughening by blasting,
This causes deformation of the aluminum itself. On the other hand, the etching treatment can effectively roughen the surface on the order of micrometer without reducing the deformation of aluminum and its strength itself, and is the most preferable method for roughening aluminum. is there.

【0016】5.非水電解液 非水電解液を構成する電解質塩としては、LiCl
4、LiAsF6、LiPF6、LiBF4、LiBr、
LiCF3SO3、LiN(CF3SO22、LiC(C
3SO23などが挙げられ、特に限定されるものでは
ない。電解質濃度としては、使用する電極、電解液によ
って異なるが、0.1〜10mol/lが好ましい。そ
して、非水電解液を構成する溶媒としては、たとえば、
テトラヒドロフラン、2−メチルテトラヒドロフラン、
1,4−ジオキサン、ジメトキシエタンなどのエーテル
類、ジメチルホルムアミド、ジメチルアセトアミドなど
のアミド類、アセトニトリル、ベンゾニトリルなどのニ
トリル類、ジメチルスルホキシスルホランなどの硫黄化
合物、ジメチルカーボネート、ジエチルカーボネート、
メチルエチルカーボネート、メチルイソプロピルカーボ
ネートなどの鎖状炭酸エステル類、エチレンカーボネー
ト、プロピレンカーボネート、ブチレンカーボネートな
どの環状炭酸エステル類などが挙げられるが、これらに
限定されるものではなく、また、これらは単独でも、2
種類以上を混合して用いても良い。
5. Non-aqueous electrolyte The electrolyte salt constituting the non-aqueous electrolyte is LiCl.
O 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiBr,
LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (C
F 3 SO 2 ) 3 and the like are not particularly limited. The electrolyte concentration varies depending on the electrode and electrolyte used, but is preferably 0.1 to 10 mol / l. And as the solvent constituting the non-aqueous electrolyte, for example,
Tetrahydrofuran, 2-methyltetrahydrofuran,
1,4-dioxane, ethers such as dimethoxyethane, dimethylformamide, amides such as dimethylacetamide, acetonitrile, nitriles such as benzonitrile, sulfur compounds such as dimethylsulfoxysulfolane, dimethyl carbonate, diethyl carbonate,
Methyl ethyl carbonate, chain carbonates such as methyl isopropyl carbonate, ethylene carbonate, propylene carbonate, cyclic carbonates such as butylene carbonate and the like, but are not limited thereto, and these alone , 2
More than one kind may be mixed and used.

【0017】また、本発明では高分子固体電解質を用い
る場合にも大きな効果があり、ポリエチレンオキサイ
ド、ポリプロピレンオキサイド、ポリフッ化ビニリデ
ン、ポリアクリロニトリルなどのポリマーマトリックス
として、これらに電解質塩を溶解した複合体、あるい
は、さらに溶媒を含有するゲル架橋体、低分子量ポリエ
チレンオキサイド、クラウンエーテルなどのイオン解離
基をポリマー主鎖にグラフト化した高分子固体電解質、
高分子量重合体に前記電解液を含有させたゲル状高分子
固体電解質などが挙げられる。
In the present invention, there is also a great effect when a solid polymer electrolyte is used. As a polymer matrix such as polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, and polyacrylonitrile, a composite in which an electrolyte salt is dissolved, Alternatively, a crosslinked gel containing a solvent, a low molecular weight polyethylene oxide, a polymer solid electrolyte in which an ion dissociating group such as a crown ether is grafted to the polymer main chain,
A gel-like polymer solid electrolyte in which the above-mentioned electrolytic solution is contained in a high-molecular-weight polymer is exemplified.

【0018】本発明の電池においてはセパレーターを使
用することができる。セパレーターとしては電解質溶液
のイオン移動に対して低抵抗であり、かつ溶液保持に優
れたものを使用するのがよい。そのようなセパレーター
例としてはガラス繊維、フィルター、ポリエステル、テ
フロン、ポリフロン、ポリプロピレンなどの高分子繊維
からなる不織布フィルター、ガラス繊維とそれらの高分
子繊維を混用した不織布フィルターなどを挙げることが
できる。
In the battery of the present invention, a separator can be used. As the separator, it is preferable to use a separator having a low resistance to the ion transfer of the electrolyte solution and having an excellent solution retention. Examples of such a separator include a glass fiber, a filter, a nonwoven fabric filter made of a polymer fiber such as polyester, Teflon, polyflon, and polypropylene, and a nonwoven fabric filter in which the glass fiber is mixed with the polymer fiber.

【0019】[0019]

【実施例】【Example】

実施例1 Li2CO3とCoCO3を、1.5/1のモル比で混合
して、空気中900℃で5時間焼成することにより、L
iCoO2を合成した。さらに、天然黒鉛50gを98
重量%の濃硫酸500gに入れて撹拌し、25重量%の
過酸化水素水を加えて、黒鉛層間化合物を得た。そし
て、これを水洗乾燥して800℃に加熱して200倍に
膨張させた膨張黒鉛を作製した。この膨張黒鉛をロール
でシート状に圧縮成形して、ジェットミルで平均粒径
7.5μmに粉砕して、膨張黒鉛の圧縮成形物の粉砕物
を作製した。これのd002は、0.336nm、Lcは
42nm、比表面積20m2/g、真密度2.25g/
cm3であった。
Example 1 Li 2 CO 3 and CoCO 3 were mixed at a molar ratio of 1.5 / 1 and calcined in air at 900 ° C. for 5 hours to obtain L
iCoO 2 was synthesized. In addition, 50 g of natural graphite
The mixture was stirred in 500 g of concentrated sulfuric acid at 500% by weight, and 25% by weight of hydrogen peroxide was added to obtain a graphite intercalation compound. Then, this was washed with water, dried and heated to 800 ° C. to produce expanded graphite expanded 200 times. This expanded graphite was compression-molded into a sheet shape using a roll, and pulverized to an average particle size of 7.5 μm with a jet mill to prepare a pulverized product of a compression-molded product of expanded graphite. Its d 002 is 0.336 nm, Lc is 42 nm, specific surface area is 20 m 2 / g, and true density is 2.25 g / g.
cm 3 .

【0020】ポリフッ化ビニリデン(PVDF)4重量
部をN−メチルピロリドン67重量部に溶解して、上記
LiCoO2 89重量部、上記膨張黒鉛の圧縮成形物の
粉砕物7重量部を加えて、ロールミル法にて、不活性雰
囲気下で混合分散して、正極用塗料を調製した。これ
を、大気中にてドクターブレードを用いて、20μmA
l箔上に塗布し、130℃20分間乾燥させ、ロールプ
レスして、膜厚50μmの正極を作製した。以上のよう
に作製した正極(Φ20mm)と、対極にLi金属、セ
パレータとしてポリプロピレン多孔膜を電解液には、L
iPF6のエチレンカーボネート/ジメチルカーボネー
ト(5/5、体積比)溶液 2.0mol/lを用い
て、コインセルを作製し、充放電試験を行った。充放電
試験は北斗電工製HJ−201B充放電測定装置を用い
て、1.5mAの電流で電池電圧が4.2Vになるまで
充電し、10分の休止後、1.5mAの電流で、電池電
圧が3.0Vまで放電し、放電容量を測定し、放電容量
密度(mAh/cm3)を求めて、表1に示した。
4 parts by weight of polyvinylidene fluoride (PVDF) are dissolved in 67 parts by weight of N-methylpyrrolidone, 89 parts by weight of the above LiCoO 2 and 7 parts by weight of a pulverized product of the above-mentioned expanded graphite are added to a roll mill. The mixture was mixed and dispersed under an inert atmosphere by a method to prepare a coating for a positive electrode. Using a doctor blade in the atmosphere,
This was coated on a 1 foil, dried at 130 ° C. for 20 minutes, and roll-pressed to produce a 50 μm-thick positive electrode. The positive electrode (Φ20 mm) prepared as described above, a Li metal as a counter electrode, a polypropylene porous membrane as a separator, and L
Using 2.0 mol / l of a solution of iPF 6 in ethylene carbonate / dimethyl carbonate (5/5, volume ratio), a coin cell was prepared, and a charge / discharge test was performed. The charge / discharge test was performed using a Hokuto Denko HJ-201B charge / discharge measurement device at a current of 1.5 mA until the battery voltage reached 4.2 V. The battery was discharged to a voltage of 3.0 V, the discharge capacity was measured, and the discharge capacity density (mAh / cm 3 ) was obtained.

【0021】実施例2 LiOH、Ni(OH)2、Co(OH)2を、1.0/
0.9/0.1のモル比で混合し、空気中800℃で2
4時間焼成して、LiNi0.9Co0.12を合成し、こ
れを正極活物質とした以外は、実施例1と同様である。
Example 2 LiOH, Ni (OH) 2 and Co (OH) 2 were added in a ratio of 1.0 /
Mix at a molar ratio of 0.9 / 0.1 and in air at 800 ° C for 2 hours.
This was the same as Example 1 except that LiNi 0.9 Co 0.1 O 2 was synthesized by baking for 4 hours, and this was used as the positive electrode active material.

【0022】実施例3 Li2CO3、Mn23を1/2モル比で混合して、空気
中で850℃10時間焼成して、LiMn24を合成し
た。さらに、実施例1と同様な膨張黒鉛をロールでシー
ト状に圧縮成形して、ジェットミルで平均粒径1.1μ
mに粉砕して、膨張黒鉛の圧縮成形物の粉砕物を作製し
た。これのd002は、0.336nm、Lcは55n
m、比表面積32m2/g、真密度2.26g/cm3
あった。ポリフッ化ビニリデン(PVDF)3重量部を
N−メチルピロリドン67重量部に溶解して、上記Li
CoO2 94重量部、上記膨張黒鉛の圧縮成形物の粉砕
物3重量部を加えて、ロールミル法にて、不活性雰囲気
下で混合分散して、正極用塗料を調製した。これを、大
気中にてドクターブレードを用いて、20μmAl箔上
に塗布し、130℃20分間乾燥させ、ロールプレスし
て、膜厚50μmの正極を作製した。
EXAMPLE 3 LiMn 2 O 4 was synthesized by mixing Li 2 CO 3 and Mn 2 O 3 at a モ ル molar ratio and firing at 850 ° C. for 10 hours in air. Further, the same expanded graphite as in Example 1 was compression-molded into a sheet by a roll, and the average particle size was 1.1 μm by a jet mill.
m to obtain a pulverized product of a compression molded product of expanded graphite. Its d 002 is 0.336 nm and Lc is 55 n
m, specific surface area was 32 m 2 / g, and true density was 2.26 g / cm 3 . 3 parts by weight of polyvinylidene fluoride (PVDF) are dissolved in 67 parts by weight of N-methylpyrrolidone,
94 parts by weight of CoO 2 and 3 parts by weight of a pulverized product of the above-mentioned expanded graphite compression-molded product were added and mixed and dispersed under an inert atmosphere by a roll mill method to prepare a coating for a positive electrode. This was applied on a 20 μm Al foil in the atmosphere using a doctor blade, dried at 130 ° C. for 20 minutes, and roll-pressed to produce a 50 μm-thick positive electrode.

【0023】以下、実施例1と同様にして電池を作製
し、評価を行なった。 実施例4 導電剤として、実施例3において、膨張黒鉛の圧縮成形
物の粉砕物の平均粒径が4.6μm、d002が0.33
6nm、Lcは48nm、比表面積27m2/g、真密
度2.25g/cm3である以外は同様のものを用い
た。
Hereinafter, a battery was prepared and evaluated in the same manner as in Example 1. Example 4 As a conductive agent, in Example 3, the average particle size of the pulverized product of the compression molded product of expanded graphite was 4.6 μm, and d 002 was 0.33.
The same thing was used except that 6 nm, Lc was 48 nm, the specific surface area was 27 m 2 / g, and the true density was 2.25 g / cm 3 .

【0024】実施例5 導電剤として実施例3において、膨張黒鉛の圧縮成形物
の粉砕物の平均粒径が16.0μm、d002が0.33
6nm、Lcは41nm、比表面積24m2/g、真密
度2.23g/cm3である以外は同様のものを用い
た。
Example 5 In Example 3, the average particle diameter of the pulverized product of the expanded graphite was 16.0 μm, and d 002 was 0.33.
The same thing was used except that 6 nm, Lc was 41 nm, the specific surface area was 24 m 2 / g, and the true density was 2.23 g / cm 3 .

【0025】実施例6 導電剤として実施例3において、膨張黒鉛の圧縮成形物
の粉砕物の平均粒径が27.0μm、d002が0.33
7nm、Lcは15nm、比表面積16m2/g、真密
度2.09g/cm3である以外は同様のものを用い
た。
Example 6 The average particle size of the pulverized product of the compression molded product of expanded graphite in Example 3 was 27.0 μm and d 002 was 0.33 in Example 3 as a conductive agent.
The same thing was used except that 7 nm, Lc was 15 nm, the specific surface area was 16 m 2 / g, and the true density was 2.09 g / cm 3 .

【0026】実施例7 正極活物質として、Li2CO3、Mn23、Fe2
3を、1/1.8/0.2のモル比で混合し、空気中で
750℃8時間焼成して、LiMn1.8Fe0.24を合
成した。以下、これを正極活物質として用いた以外は実
施例5と同様にして、電池を作製した。
Example 7 Li 2 CO 3 , Mn 2 O 3 , Fe 2 O
3 were mixed in a molar ratio of 1 / 1.8 / 0.2 and calcined in air at 750 ° C for 8 hours to synthesize LiMn 1.8 Fe 0.2 O 4 . Hereinafter, a battery was fabricated in the same manner as in Example 5, except that this was used as the positive electrode active material.

【0027】実施例8 ポリアニリン7重量部をN−メチルピロリドン67重量
部に溶解して、V2590重量部、上記膨張黒鉛の圧縮
成形物の粉砕物3重量部を加えて、ロールミル法にて、
不活性雰囲気下で混合分散して、正極用塗料を調製し
た。これを、大気中にてドクターブレードを用いて、2
0μmAl箔上に塗布し、120℃20分間乾燥させ、
ロールプレスして、膜厚50μmの正極を作製した。以
上のように作製した正極(Φ20mm)と、対極にLi
金属、セパレータとしてポリプロピレン多孔膜を電解液
には、LiPF6のエチレンカーボネート/ジメチルカ
ーボネート(5/5、体積比)溶液 2.0mol/l
を用いて、コインセルを作製し、充放電試験を行った。
充放電試験は北斗電工製HJ−201B充放電測定装置
を用いて、0.5mAの電流で電池電圧が3.7Vにな
るまで充電し、10分の休止後、0.5mAの電流で、
電池電圧が2.5Vまで放電し、放電容量を測定し、放
電容量密度(mAh/cm3)を求めて、表1に示し
た。
Example 8 7 parts by weight of polyaniline were dissolved in 67 parts by weight of N-methylpyrrolidone, and 90 parts by weight of V 2 O 5 and 3 parts by weight of a pulverized product of the above-mentioned expanded graphite compression molded product were added. At
The mixture was mixed and dispersed in an inert atmosphere to prepare a coating for a positive electrode. Using a doctor blade in the atmosphere,
Coated on a 0 μm Al foil, dried at 120 ° C. for 20 minutes,
Roll pressing was performed to produce a positive electrode having a thickness of 50 μm. The positive electrode (Φ20 mm) prepared as described above and Li
As a metal and a porous polypropylene membrane as a separator, an electrolyte solution of LiPF 6 in ethylene carbonate / dimethyl carbonate (5/5, volume ratio) 2.0 mol / l
Was used to produce a coin cell, and a charge / discharge test was performed.
The charge / discharge test was performed using a Hokuto Denko HJ-201B charge / discharge measurement device at a current of 0.5 mA until the battery voltage reached 3.7 V. After a pause of 10 minutes, a current of 0.5 mA was used.
The battery was discharged to a voltage of 2.5 V, the discharge capacity was measured, and the discharge capacity density (mAh / cm 3 ) was determined.

【0028】実施例9 LiPF6を20重量部、エチレンカーボネート/ジメ
チルカーボネート(5/5体積比)70重量部を混合し
電解液を調製した。これに、ポリオキシエチレンアクリ
レート12.8重量部、トリメチロールプロパントリア
クリレート0.2重量部、ベンゾインイソプロピルエー
テル0.02重量部を添加して混合溶解し、光重合性溶
液を調製した。また、ポリフッ化ビニリデン(PVD
F)3重量部を、N−メチルピロリドン65重量部に溶
解して、コークス2500℃焼成品32重量部を加え
て、ロールミル法にて、不活性雰囲気下で混合分散し
て、負極用塗料を調製した。これを、大気中にて、ドク
ターブレードを用いて、20μm銅箔上に塗布し、12
0℃20分間乾燥させ、膜厚85μmの負極を作製し
た。そして、実施例5で作製した正極、および上記負極
を50×80mmに裁断して、上記光重合性溶液を浸透
させ、高圧水銀灯を照射して、電解液を固体化した。こ
れらを積層して、発電要素部に均一に圧力をかけつつ、
三辺を熱封止した後、残りの一辺を減圧下、封止して電
池を作製した。充放電試験は北斗電工製HJ−201B
充放電測定装置を用いて、5mAの電流で電池電圧が
3.0〜4.2Vで充放電を行い、放電容量を表2に示
した。
Example 9 An electrolyte was prepared by mixing 20 parts by weight of LiPF 6 and 70 parts by weight of ethylene carbonate / dimethyl carbonate (5/5 by volume). 12.8 parts by weight of polyoxyethylene acrylate, 0.2 parts by weight of trimethylolpropane triacrylate, and 0.02 parts by weight of benzoin isopropyl ether were added thereto, mixed and dissolved to prepare a photopolymerizable solution. In addition, polyvinylidene fluoride (PVD)
F) 3 parts by weight were dissolved in 65 parts by weight of N-methylpyrrolidone, 32 parts by weight of a coke calcined at 2500 ° C. were added, and mixed and dispersed under an inert atmosphere by a roll mill method to prepare a negative electrode coating material. Prepared. This was applied on a 20 μm copper foil in the atmosphere using a doctor blade,
After drying at 0 ° C. for 20 minutes, a negative electrode having a thickness of 85 μm was prepared. Then, the positive electrode and the negative electrode prepared in Example 5 were cut into 50 × 80 mm, the photopolymerizable solution was infiltrated, and irradiated with a high-pressure mercury lamp to solidify the electrolytic solution. By stacking these, applying pressure evenly to the power generation element part,
After heat sealing three sides, the remaining one side was sealed under reduced pressure to produce a battery. The charge and discharge test was made by Hokuto Denko HJ-201B
Using a charge / discharge measuring device, charge / discharge was performed at a battery voltage of 3.0 to 4.2 V at a current of 5 mA, and the discharge capacity was shown in Table 2.

【0029】比較例1 実施例1において、正極導電剤を人造黒鉛(ロンザ社製
KS−6)とした以外は同様である。
Comparative Example 1 Example 1 was the same as Example 1 except that the positive electrode conductive agent was artificial graphite (KS-6 manufactured by Lonza).

【0030】比較例2 実施例2において、正極導電剤を人造黒鉛(スーペリア
社製デサルコ♯9039)とした以外は同様である。
Comparative Example 2 Example 2 was the same as Example 2 except that the positive electrode conductive agent was artificial graphite (Desarco # 9039 manufactured by Superior).

【0031】比較例3 実施例6において、正極導電剤を人造黒鉛(ロンザ社製
KS−6)とした以外は同様である。
Comparative Example 3 The procedure was the same as in Example 6, except that the positive electrode conductive agent was artificial graphite (KS-6 manufactured by Lonza).

【0032】比較例4 実施例7において、正極導電剤を人造黒鉛(スーペリア
社製デサルコ♯9039)とした以外は同様である。
Comparative Example 4 The procedure was the same as in Example 7, except that the positive electrode conductive agent was artificial graphite (Desarco # 9039 manufactured by Superior).

【0033】比較例5 実施例8において、正極導電剤を人造黒鉛(ロンザ社製
KS−6)とした以外は同様である。
Comparative Example 5 Example 8 was the same as Example 8 except that the positive electrode conductive agent was artificial graphite (KS-6 manufactured by Lonza).

【0034】比較例6 実施例9において、正極導電剤を人造黒鉛(ロンザ社製
KS−6)とした以外は同様である。
Comparative Example 6 Example 9 was the same as Example 9 except that the positive electrode conductive agent was artificial graphite (KS-6 manufactured by Lonza).

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【効果】【effect】

〔請求項1〕正極の導電性が向上し、また、塗料の分散
性が向上したことにより、高容量な非水電解質二次電池
が得られた。 〔請求項2〕特に、塗料の分散性向上により、成膜性の
向上、高容量化につながった。 〔請求項3〕特に、導電剤の導電性向上により、高容量
化につながった。 〔請求項4〕活物質含有量を増やすことが可能となり、
高容量化につながった。 〔請求項5〕特に、塗料の分散性向上により、成膜性の
向上、高容量化につながった。 〔請求項6〕活物質含有量を増やすことが可能となり、
高容量化につながった。 〔請求項7、8〕リチウム含有複合酸化物の特性を有効
に引き出すことが可能となり、高容量化につながった。
〔請求項9〕 導電性高分子との分散性が良好で、活物質の特性を有効
に引き出すことが可能となり、高容量化につながった。 〔請求項10〕高分子固体電解質とのマッチングも優れ
ており、高分子固体電解質を用いることによる容量の低
下が見られなかった。
[Claim 1] A high capacity non-aqueous electrolyte secondary battery is obtained by improving the conductivity of the positive electrode and the dispersibility of the coating material. [Claim 2] In particular, the improvement in the dispersibility of the paint leads to the improvement of the film forming property and the increase in the capacity. [Claim 3] In particular, improvement in the conductivity of the conductive agent has led to an increase in capacity. [Claim 4] The active material content can be increased,
This led to higher capacity. [Claim 5] In particular, the improvement in the dispersibility of the paint leads to the improvement of the film forming property and the increase of the capacity. [Claim 6] It is possible to increase the active material content,
This led to higher capacity. [Claims 7 and 8] The characteristics of the lithium-containing composite oxide can be effectively brought out, leading to an increase in capacity.
[Claim 9] The dispersibility with the conductive polymer is good, and it is possible to effectively bring out the characteristics of the active material, leading to an increase in capacity. [Claim 10] The matching with the polymer solid electrolyte is also excellent, and no decrease in capacity due to the use of the polymer solid electrolyte was observed.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも正極、非水電解液を含有する
電解質層およびリチウムを吸蔵放出可能な負極からなる
非水電解質二次電池において、正極が導電剤を含有し、
該導電剤が膨張黒鉛を含んで構成されたものであること
を特徴とする二次電池。
1. A non-aqueous electrolyte secondary battery comprising at least a positive electrode, an electrolyte layer containing a non-aqueous electrolyte, and a negative electrode capable of inserting and extracting lithium, wherein the positive electrode contains a conductive agent,
A secondary battery, wherein the conductive agent comprises expanded graphite.
【請求項2】 膨張黒鉛が膨張黒鉛または膨張黒鉛の圧
縮成形物の粉砕物であって、その平均粒径が1〜30μ
mである請求項1記載の二次電池。
2. The expanded graphite is a pulverized product of expanded graphite or a compression molded product of expanded graphite, and has an average particle size of 1 to 30 μm.
The secondary battery according to claim 1, wherein m is m.
【請求項3】 膨張黒鉛または膨張黒鉛の圧縮成形物の
粉砕物の結晶層間距離d002が0.337nm以下で、
C軸方向の結晶子の大きさLcが10nm以上である請
求項1または2記載の二次電池。
3. The inter-crystal distance d 002 of expanded graphite or a pulverized product of a compression-molded product of expanded graphite is 0.337 nm or less,
3. The secondary battery according to claim 1, wherein the size Lc of the crystallite in the C-axis direction is 10 nm or more.
【請求項4】 膨張黒鉛または膨張黒鉛の圧縮成形物の
粉砕物の比表面積が10m2/g以上である請求項1、
2または3記載の二次電池。
4. A specific surface area of the expanded graphite or a pulverized product of a compression-molded product of the expanded graphite is 10 m 2 / g or more.
4. The secondary battery according to 2 or 3.
【請求項5】 膨張黒鉛または膨張黒鉛の圧縮成形物の
粉砕物の真密度が2.00g/cm3以上である請求項
1、2、3または4記載の二次電池。
5. The secondary battery according to claim 1, wherein the true density of the expanded graphite or the pulverized product of the expanded molded product of the expanded graphite is 2.00 g / cm 3 or more.
【請求項6】 膨張黒鉛または膨張黒鉛の圧縮成形物の
粉砕物の正極中での含有量が正極全重量の5重量%以下
である請求項1、2、3、4または5記載の二次電池。
6. The secondary material according to claim 1, wherein the content of the expanded graphite or the pulverized product of the compressed molded product of the expanded graphite in the positive electrode is 5% by weight or less of the total weight of the positive electrode. battery.
【請求項7】 正極活物質がリチウム含有複合酸化物で
ある請求項1、2、3、4、5または6記載の二次電
池。
7. The secondary battery according to claim 1, wherein the positive electrode active material is a lithium-containing composite oxide.
【請求項8】 リチウム含有複合酸化物が、リチウム含
有マンガン複合酸化物である請求項7記載の二次電池。
8. The secondary battery according to claim 7, wherein the lithium-containing composite oxide is a lithium-containing manganese composite oxide.
【請求項9】 正極が導電性高分子を含有しているもの
である請求項1、2、3、4、5、6、7または8記載
の二次電池。
9. The secondary battery according to claim 1, wherein the positive electrode contains a conductive polymer.
【請求項10】 電解質層が、高分子固体電界質層であ
る請求項1、2、3、4、5、6、7、8または9記載
の二次電池。
10. The secondary battery according to claim 1, wherein the electrolyte layer is a solid polymer electrolyte layer.
JP8355643A 1996-12-24 1996-12-24 Non-aqueous electrolyte secondary battery Pending JPH10188993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8355643A JPH10188993A (en) 1996-12-24 1996-12-24 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8355643A JPH10188993A (en) 1996-12-24 1996-12-24 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH10188993A true JPH10188993A (en) 1998-07-21

Family

ID=18445028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8355643A Pending JPH10188993A (en) 1996-12-24 1996-12-24 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH10188993A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034673A1 (en) * 1998-01-07 1999-07-15 Eveready Battery Company, Inc. Alkaline cell having a cathode incorporating expanded graphite
WO2000002280A1 (en) * 1998-07-06 2000-01-13 Tdk Corporation Electrode for nonaqueous electrolyte battery
EP0977291A1 (en) * 1998-07-29 2000-02-02 VARTA Aktiengesllschaft Positive electrode of a lithium ion cell for use at high load
JP2006185792A (en) * 2004-12-28 2006-07-13 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery and its charging method
EP1852927A1 (en) * 2006-05-06 2007-11-07 BIOTRONIK CRM Patent AG Electrode for a lithium battery and method for manufacturing the same
JP2010199076A (en) * 2010-04-16 2010-09-09 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its charging method
CN102918684A (en) * 2010-05-28 2013-02-06 巴斯夫欧洲公司 Use of expanded graphite in lithium/sulphur batteries
CN113168968A (en) * 2018-12-10 2021-07-23 松下知识产权经营株式会社 Electrode for electrochemical device and electrochemical device
CN114613985A (en) * 2022-03-07 2022-06-10 宁波容百新能源科技股份有限公司 High-voltage nickel-manganese material with high single crystal dispersibility as well as preparation method and application thereof
WO2023058774A1 (en) * 2021-10-08 2023-04-13 Secカーボン株式会社 Graphite particles

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828064B1 (en) 1998-01-07 2004-12-07 Eveready Battery Company, Inc. Alkaline cell having a cathode incorporating enhanced graphite
WO1999034673A1 (en) * 1998-01-07 1999-07-15 Eveready Battery Company, Inc. Alkaline cell having a cathode incorporating expanded graphite
WO2000002280A1 (en) * 1998-07-06 2000-01-13 Tdk Corporation Electrode for nonaqueous electrolyte battery
EP1098379A1 (en) * 1998-07-06 2001-05-09 TDK Corporation Electrode for nonaqueous electrolyte battery
US6824924B1 (en) 1998-07-06 2004-11-30 Tdk Corporation Electrode for nonaqueous electrolyte battery
EP1098379A4 (en) * 1998-07-06 2007-05-30 Tdk Corp Electrode for nonaqueous electrolyte battery
JP4529288B2 (en) * 1998-07-06 2010-08-25 Tdk株式会社 Nonaqueous electrolyte secondary battery electrode
EP0977291A1 (en) * 1998-07-29 2000-02-02 VARTA Aktiengesllschaft Positive electrode of a lithium ion cell for use at high load
JP4530843B2 (en) * 2004-12-28 2010-08-25 三洋電機株式会社 Nonaqueous electrolyte secondary battery and charging method thereof
JP2006185792A (en) * 2004-12-28 2006-07-13 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery and its charging method
EP1852927A1 (en) * 2006-05-06 2007-11-07 BIOTRONIK CRM Patent AG Electrode for a lithium battery and method for manufacturing the same
US7794882B2 (en) 2006-05-06 2010-09-14 Biotronik Crm Patent Ag Electrode for a lithium battery and method for producing the same
JP2010199076A (en) * 2010-04-16 2010-09-09 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its charging method
CN102918684A (en) * 2010-05-28 2013-02-06 巴斯夫欧洲公司 Use of expanded graphite in lithium/sulphur batteries
JP2013527579A (en) * 2010-05-28 2013-06-27 ビーエーエスエフ ソシエタス・ヨーロピア How to use expanded graphite in lithium-sulfur batteries
CN113168968A (en) * 2018-12-10 2021-07-23 松下知识产权经营株式会社 Electrode for electrochemical device and electrochemical device
CN113168968B (en) * 2018-12-10 2023-02-03 松下知识产权经营株式会社 Electrode for electrochemical device and electrochemical device
WO2023058774A1 (en) * 2021-10-08 2023-04-13 Secカーボン株式会社 Graphite particles
CN114613985A (en) * 2022-03-07 2022-06-10 宁波容百新能源科技股份有限公司 High-voltage nickel-manganese material with high single crystal dispersibility as well as preparation method and application thereof

Similar Documents

Publication Publication Date Title
JPH1197027A (en) Nonaqueous electrolyte secondary cell
JP2002075364A (en) Positive electrode active material, its manufacturing method, nonaqueous electrolyte battery, and manufacturing method of battery
JPH05174818A (en) Manufacture of nonaqueous electrolyte secondary battery and negative electrode active material thereof
JPH11120992A (en) Nonaqueous electrolyte secondary battery
JP2002117833A (en) Nonaqueous electrolyte secondary battery
JP2004146253A (en) Negative electrode and battery, and manufacturing method of these
JP2002110163A (en) Method for manufacturing positive electrode active material and nonaqueous electrolytic battery
US7981545B2 (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
JP2017520892A (en) Positive electrode for lithium battery
JP2004171901A (en) Nonaqueous secondary battery, negative electrode therefor, manufacturing method thereof, and electronic device using nonaqueous secondary battery
JP3512549B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
JP2003229125A (en) Non-aqueous electrolyte battery
JPH1167215A (en) Nonaqueous electrolyte secondary battery
JP2001266876A (en) Positive electrode active material and non-aqueous electrolyte battery and manufacturing method of these
JPH1167216A (en) Nonaqueous electrolyte secondary battery
JPH10188993A (en) Non-aqueous electrolyte secondary battery
JPH0845498A (en) Nonaqueous electrolytic liquid secondary battery
JP4724911B2 (en) Nonaqueous electrolyte secondary battery
JP5172089B2 (en) Method for producing negative electrode for lithium ion secondary battery
JP2004299944A (en) Graphite particle, its producing method, lithium ion secondary battery and negative electrode material for it
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP4870419B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, lithium ion secondary battery negative electrode and lithium ion secondary battery
KR100820057B1 (en) Positive active material for a lithium secondary battery, method of preparing the same, and lithium secondary battery coprising the same
JP3573899B2 (en) Non-aqueous electrolyte secondary battery
JPH1173964A (en) Nonaqueous electrolyte secondary battery