JPH1167215A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH1167215A
JPH1167215A JP9242148A JP24214897A JPH1167215A JP H1167215 A JPH1167215 A JP H1167215A JP 9242148 A JP9242148 A JP 9242148A JP 24214897 A JP24214897 A JP 24214897A JP H1167215 A JPH1167215 A JP H1167215A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
carbon
electrode
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9242148A
Other languages
Japanese (ja)
Inventor
Tomohiro Inoue
智博 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP9242148A priority Critical patent/JPH1167215A/en
Publication of JPH1167215A publication Critical patent/JPH1167215A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery with high adhesion of a coating film of a negative active material to a current collector, high capacity, and high cycle characteristics. SOLUTION: In a secondary battery having a positive electrode, an electrolyte layer containing a nonaqueous electrolyte, and a carbon negative electrode capable of absorbing/releasing lithium, a water soluble polymer is used as a binder for the negative electrode. The content of the binder is 4 wt.% or less based on the total weight of the carbon negative electrode. As an example, natural graphite is added to pure water solution of polyvinyl alcohol having a polymerization degree of 1,700, they are mixed and dispersed in an inert atmosphere by a roll mill process to prepare a coating composition for the positive electrode. The coating composition is applied to a 20 μm thick copper foil in the atmosphere, dried at 120 deg.C for 10 minutes, pressed with a roll to form the electrode having a film thickness of 60 μm. This electrode, a counter electrode of a lithium plate, and the electrolyte made of LiPF6 nonaqueous solvent solution are used to constitute the battery. As a result, adhesion of the coating film to the current collector in the carbon negative electrode is greatly increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高容量でサイクル
特性に優れた非水電解質二次電池に関するものである。
The present invention relates to a non-aqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics.

【0002】[0002]

【従来の技術】近年の電子機器の小型化、薄型化、軽量
化の進歩は目覚ましいものがあり、とりわけOA分野に
おいては、デスクトップ型からラップトップ型、ノート
ブック型へと小型軽量化している。加えて、電子手帳、
電子スチールカメラ等の新しい小型電子機器の分野も出
現し、さらには従来のハードディスク、フロッピーディ
スクの小型化に加えて、新しいメモリーメディアである
メモリーカードの開発も進められている。このような電
子機器の小型化、薄型化、軽量化の波の中で、これらの
電力を支える二次電池にも高性能化が要求されてきてい
る。このような要望の中、鉛蓄電池やニッカド電池に代
わる高エネルギー密度電池として、リチウム二次電池の
開発が急速に進められてきた。
2. Description of the Related Art In recent years, there has been remarkable progress in downsizing, thinning, and lightening of electronic devices. In particular, in the OA field, the size and weight of electronic devices have been reduced from desktop type to laptop type and notebook type. In addition, an electronic organizer,
The field of new small electronic devices such as electronic still cameras has emerged, and in addition to the miniaturization of conventional hard disks and floppy disks, the development of memory cards, which are new memory media, is also underway. In the wave of downsizing, thinning, and weight reduction of such electronic devices, secondary batteries supporting these electric powers are also required to have higher performance. Under such demands, development of lithium secondary batteries has rapidly progressed as a high energy density battery replacing lead storage batteries and nickel cadmium batteries.

【0003】リチウム二次電池に用いる正極活物質とし
ては、TiS2 ,MoS2 ,Co26 ,V2 5 ,M
nO2 ,CoO2 などの遷移金属酸化物、あるいは遷移
金属カルコゲン化合物などがあり、無機材料を活物質と
した例が数多く研究されてきた。さらに、最近では、高
エネルギー化のために作動電圧が4Vを示す、リチウム
コバルト酸化物、リチウムニッケル酸化物等、LiMO
2 で示される層状構造を有する複合酸化物、または、L
iM2 4 で示されるスピネル構造を有する複合酸化物
が提案されている(特公昭63−59507号公報、特
公平8−21431号公報)。
As a positive electrode active material used for a lithium secondary battery, TiS 2 , MoS 2 , Co 2 S 6 , V 2 O 5 , M
There are transition metal oxides such as nO 2 and CoO 2 , transition metal chalcogen compounds, and the like, and many examples using inorganic materials as active materials have been studied. Further, recently, LiMO such as lithium cobalt oxide, lithium nickel oxide, etc., exhibiting an operating voltage of 4 V for higher energy.
Composite oxide having a layered structure represented by 2, or, L
A composite oxide having a spinel structure represented by iM 2 O 4 has been proposed (JP-B-63-59507, JP-B-8-21431).

【0004】一方、負極活物質(負極)としてリチウム
金属を用いると、高起電力が得られ、軽量で高密度化し
やすいが、充放電によってデンドライトが生成し、これ
が電解液を分解するなどの悪影響を与え、さらに、この
デンドライトが成長すると正極に達し、電池内短絡を起
こすという問題点があった。このような問題は、リチウ
ム合金を負極として用いると緩和されるが、二次電池と
して満足できるような容量が得られなかった。このた
め、負極活物質として、リチウムを吸蔵放出でき、安全
性の高い炭素材料を用いることが提案され、今日まで多
くの研究がなされてきた。
On the other hand, when lithium metal is used as the negative electrode active material (negative electrode), a high electromotive force can be obtained, light weight and high density can be easily achieved, but dendrite is generated by charging and discharging, which has an adverse effect such as decomposition of the electrolyte. In addition, when the dendrite grows, it reaches the positive electrode and causes a short circuit in the battery. Such a problem is mitigated when a lithium alloy is used as the negative electrode, but a capacity sufficient for a secondary battery cannot be obtained. For this reason, it has been proposed to use a highly safe carbon material capable of inserting and extracting lithium as the negative electrode active material, and much research has been made to date.

【0005】たとえば、特開平2−66856号公報に
は、負極活物質として、フルフリル樹脂を1100℃で
燃焼した導電性炭素材料を用いることが提案されてい
る。また、特開昭61−277515号公報には、芳香
族ポリイミドを不活性雰囲気下で2000℃以上の温度
で熱処理して得られる導電性炭素材料を負極活物質に用
いることが開示され、さらに、特開平4−111545
7号公報には、易黒鉛性球状炭素を黒鉛化したものを負
極活物質に用いることが開示されている。さらに、特開
昭61−77275号公報には、フェノール系高分子を
熱処理したポリアセン構造の絶縁性、あるいは半導体性
の炭素材料を電極に用いた二次電池が開示されている。
これらの活物質を用いた負極は、現在では主に溶媒に適
当な結着剤を混合分散した塗料から塗工法により作製さ
れるのが一般的である。
For example, Japanese Patent Application Laid-Open No. 2-66656 proposes using a conductive carbon material obtained by burning a furfuryl resin at 1100 ° C. as a negative electrode active material. Further, JP-A-61-277515 discloses that a conductive carbon material obtained by heat-treating an aromatic polyimide at a temperature of 2000 ° C. or more in an inert atmosphere is used as a negative electrode active material. JP-A-4-111545
No. 7 discloses that graphitizable spheroidal carbon is used as a negative electrode active material. Further, Japanese Patent Application Laid-Open No. 61-77275 discloses a secondary battery in which an insulating or semiconductive carbon material having a polyacene structure obtained by heat-treating a phenolic polymer is used for an electrode.
At present, a negative electrode using these active materials is generally manufactured by a coating method mainly from a paint in which a suitable binder is mixed and dispersed in a solvent.

【0006】[0006]

【発明が解決しようとする課題】しかし、炭素材料を用
いた電極では、塗膜と集電体との接着性に難点があり、
電池製造中や使用中に塗膜にクラックが入ったり、塗膜
が剥離したりするという問題点があり、これまで、特
に、負極については、種々の結着剤の検討がなされてき
た。たとえば、ポリフッ化ビニリデンを中心としたある
特定の樹脂を用いたり(特開平4−249860、同4
−363865、同5−190178、同6−1182
3、同6−223833の各号公報)、いくつかの機能
を持たせた共重合体を用いたり(特開平4−29406
0号公報、同7−37619号公報)、数種類の樹脂の
混合体を用いたりする(特開平6−52861、同6−
203836、同6−275279、同4−34296
6の各号公報)例が開示されている。
However, an electrode using a carbon material has a problem in adhesion between a coating film and a current collector.
There is a problem that the coating film is cracked or the coating film is peeled off during the production or use of the battery, and various binders have been studied particularly for the negative electrode. For example, a specific resin centering on polyvinylidene fluoride may be used (see JP-A-4-249860 and JP-A-4-249860).
-363865, 5-190178, 6-1182
No. 3, No. 6-223833), or use of a copolymer having some functions (Japanese Patent Laid-Open No. 4-29406).
No. 0, No. 7-37619), and a mixture of several kinds of resins (JP-A-6-52861, JP-A-6-52661).
203836, 6-275279, 4-34296
No. 6) is disclosed.

【0007】しかし、前記接着性を向上させると電池容
量が低下するなどの問題があり、接着性と電池特性の両
者を同時に向上させることができる結着剤は、いまだ得
られていない。従って、本発明の目的は、接着性が良好
であるとともに、電池特性の優れた非水電解質二次電池
を提供することである。
[0007] However, there is a problem that the battery capacity is reduced when the adhesion is improved, and a binder capable of simultaneously improving both the adhesion and the battery characteristics has not been obtained. Accordingly, an object of the present invention is to provide a non-aqueous electrolyte secondary battery that has good adhesiveness and excellent battery characteristics.

【0008】[0008]

【課題を解決するための手段】本発明者は、負極用結着
剤として水溶性高分子を用いることにより、塗膜と集電
体との接着性が良好となり、電池特性の優れた非水電解
質二次電池が得られることを見い出した。また、(1)
水溶性高分子の中では、ポリビニルアルコールが最も効
果的であること、(2)電極中の結着剤の含有量が4w
t%以下でも、その効果は十分認められること、(3)
負極活物質として、C軸方向の面間隔d002が3.4
0Å以下の炭素材料を用いる場合、ホウ素を含有する炭
素材料を使用する場合、2種類以上の炭素材料を混合し
て用いる場合(特に、それらの平均粒径が異なると
き)、電解質層が高分子固体電解質の場合に、それぞれ
本発明の目的を効果的に達成できることを確認した。
Means for Solving the Problems The present inventors have found that by using a water-soluble polymer as a binder for a negative electrode, the adhesion between the coating film and the current collector is improved, and the non-aqueous solution having excellent battery characteristics is obtained. It has been found that an electrolyte secondary battery can be obtained. Also, (1)
Among the water-soluble polymers, polyvinyl alcohol is the most effective. (2) The content of the binder in the electrode is 4 w
Even at less than t%, the effect is sufficiently recognized. (3)
As the negative electrode active material, the plane distance d002 in the C-axis direction is 3.4.
When a carbon material of 0 ° or less is used, a carbon material containing boron is used, or a mixture of two or more carbon materials is used (especially when their average particle diameters are different), the electrolyte layer is made of a polymer. It has been confirmed that the purpose of the present invention can be effectively achieved in the case of a solid electrolyte.

【0009】すなわち、請求項1に記載の非水電解質二
次電池は、正極、非水電解液を含有する電解質層、およ
びリチウムを吸蔵放出可能な炭素負極を備えてなる二次
電池において、負極用結着剤が水溶性高分子からなるこ
とを特徴とする。
That is, a non-aqueous electrolyte secondary battery according to claim 1 is a secondary battery comprising a positive electrode, an electrolyte layer containing a non-aqueous electrolyte, and a carbon negative electrode capable of inserting and extracting lithium. The binder for use is made of a water-soluble polymer.

【0010】請求項2に記載の非水電解質二次電池は、
請求項1において、水溶性高分子がポリビニルアルコー
ルであることを特徴とする。
A non-aqueous electrolyte secondary battery according to claim 2 is
In claim 1, the water-soluble polymer is polyvinyl alcohol.

【0011】請求項3に記載の非水電解質二次電池は、
請求項1において、前記炭素負極を構成する負極活物質
と前記負極用結着剤との合計量(100重量部)に対す
る該負極用結着剤の含有量が、4重量部以下であること
を特徴とする。
A non-aqueous electrolyte secondary battery according to claim 3 is
2. The method according to claim 1, wherein the content of the negative electrode binder relative to the total amount (100 parts by weight) of the negative electrode active material and the negative electrode binder constituting the carbon negative electrode is 4 parts by weight or less. Features.

【0012】請求項4に記載の非水電解質二次電池は、
請求項1において前記炭素負極を構成する負極活物質
は、C軸方向の面間隔d002が3.40Å以下の炭素
材料であることを特徴とする。
A non-aqueous electrolyte secondary battery according to claim 4 is
In the first aspect, the negative electrode active material constituting the carbon negative electrode is a carbon material having a surface distance d002 in the C-axis direction of 3.40 ° or less.

【0013】請求項5に記載の非水電解質二次電池は、
請求項1において前記炭素負極を構成する負極活物質
が、ホウ素を含有する炭素材料であることを特徴とす
る。
A non-aqueous electrolyte secondary battery according to claim 5 is
The negative electrode active material constituting the carbon negative electrode according to claim 1 is a carbon material containing boron.

【0014】請求項6に記載の非水電解質二次電池は、
請求項1において前記炭素負極を構成する負極活物質
が、2種類以上の炭素材料を混合したものであることを
特徴とする。
A non-aqueous electrolyte secondary battery according to claim 6 is
In claim 1, the negative electrode active material constituting the carbon negative electrode is a mixture of two or more carbon materials.

【0015】請求項7に記載の非水電解質二次電池は、
請求項6において2種類以上の炭素材料は、平均粒径が
互いに異なるものであることを特徴とする。
A non-aqueous electrolyte secondary battery according to claim 7 is
In claim 6, the two or more types of carbon materials have different average particle diameters.

【0016】請求項8に記載の非水電解質二次電池は、
請求項1において、電解質層が高分子固体電解質層であ
ることを特徴とする。
A non-aqueous electrolyte secondary battery according to claim 8 is
Claim 1 is characterized in that the electrolyte layer is a solid polymer electrolyte layer.

【0017】[0017]

【発明の実施の形態】まず、本発明で用いる負極用結着
剤について説明する。負極用結着剤として用いる水溶性
高分子に求められる特性としては、電極中でリチウムの
移動を妨げないこと、電解液に対して安定であり不溶で
あること、また、吸湿性が少ないことなどが挙げられ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a binder for a negative electrode used in the present invention will be described. The properties required of the water-soluble polymer used as the binder for the negative electrode include not hindering the movement of lithium in the electrode, being stable and insoluble in the electrolyte, and having little hygroscopicity. Is mentioned.

【0018】これら水溶性高分子の具体例としては、ポ
リビニルアルコール、ポリエチレンオキシド、ポリプロ
ピレンオキシド、ポリビニルピロリドン、スチレン−無
水マレイン酸共重合体の加水分解物またはその水溶性
塩、メチルセルロース、カルボキシメチルセルロース、
またはその水溶性塩、ポリアクリル酸またはその水溶性
塩などが挙げられるが、上記要求を満たすものであれば
これらに限定されるものではない。ただし、ポリビニル
アルコールがより効果的であり、重合度が高く、けん化
度の高いものほど良い。これらは単独、または2種類以
上を混合して用いる。水溶性塩はリチウム塩、ナトリウ
ム塩、アンモニウム塩、アミン塩などが挙げられるが、
リチウム塩が好ましい。
Specific examples of these water-soluble polymers include polyvinyl alcohol, polyethylene oxide, polypropylene oxide, polyvinyl pyrrolidone, a hydrolyzate of a styrene-maleic anhydride copolymer or a water-soluble salt thereof, methylcellulose, carboxymethylcellulose, and the like.
Or a water-soluble salt thereof, polyacrylic acid or a water-soluble salt thereof, and the like, but are not limited thereto as long as the above requirements are satisfied. However, polyvinyl alcohol is more effective, the higher the degree of polymerization and the higher the degree of saponification, the better. These may be used alone or as a mixture of two or more. Water-soluble salts include lithium salts, sodium salts, ammonium salts, amine salts and the like,
Lithium salts are preferred.

【0019】これらの結着剤を水やアルコールなどの極
性溶媒に溶解し、以下で説明する負極活物質と混合分散
して、集電体上に塗工乾操して電極を作製する。本発明
では主に水溶液を用いるため、有機溶媒を用いる従来の
塗工よりも、環境、安全面において大きなメリットにな
る。これらの結着剤と負極活物質との合計量(100w
t%)に対する当該結着剤の含有量は、1〜20wt%
が好ましく、特に、本発明の負極用結着剤では、含有量
が少なくても良好な接着性が得られるため、4wt%以
下でもかまわない。
These binders are dissolved in a polar solvent such as water or alcohol, mixed and dispersed with a negative electrode active material described below, and coated and dried on a current collector to produce an electrode. In the present invention, since an aqueous solution is mainly used, it is a great advantage in terms of environment and safety as compared with conventional coating using an organic solvent. The total amount of these binders and the negative electrode active material (100 w
t%), the content of the binder is 1 to 20 wt%.
In particular, in the binder for a negative electrode of the present invention, even if the content is small, good adhesiveness can be obtained, so that it may be 4 wt% or less.

【0020】本発明の電池に用いられる負極材料(負極
活物質)としては、前述のように、コークス、ピッチ、
合成高分子、天然高分子を500〜3000℃で還元雰
囲気下焼成して得られるもの、および天然黒鉛などの黒
鉛系炭素体などが挙げられる。特に本発明で効果的な、
C軸方向の面間隔d002が、3.40Å以下の炭素材
料としては、コークス、ピッチ、合成高分子、天然高分
子を2000℃以上で焼成することによって得たもの、
天然黒鉛などが挙げられる。
The negative electrode material (negative electrode active material) used in the battery of the present invention includes coke, pitch,
Examples thereof include those obtained by firing a synthetic polymer and a natural polymer at 500 to 3000 ° C. in a reducing atmosphere, and graphite-based carbon bodies such as natural graphite. Especially effective in the present invention,
Examples of the carbon material having a surface distance d002 in the C-axis direction of 3.40 ° or less include those obtained by calcining coke, pitch, synthetic polymer, and natural polymer at 2000 ° C. or more.
Natural graphite and the like.

【0021】本発明の結着剤が特に有効に作用する負極
材料は、天然黒鉛、およびホウ素を含有した炭素材料で
ある。さらに、接着性の向上、電極特性の向上等の理由
から、2種類以上の炭素材料を混合して用いる場合、特
にそれらの平均粒径が異なる場合にも本発明の結着剤は
効果的である。炭素材料の平均粒径は1〜50μmが好
ましく、3〜20μmが特に好ましい。
The negative electrode material to which the binder of the present invention works particularly effectively is a carbon material containing natural graphite and boron. Furthermore, the binder of the present invention is effective when two or more kinds of carbon materials are mixed and used, especially when their average particle diameters are different from each other for reasons of improvement in adhesiveness and improvement in electrode characteristics. is there. The average particle size of the carbon material is preferably 1 to 50 μm, and particularly preferably 3 to 20 μm.

【0022】本発明の電池において用いられる正極活物
督はTiS2 ,MoS2 ,Co2 6 ,V2 5 ,Mn
2 ,CoO2 等の遷移金属酸化物、遷移金属カルコゲ
ン化合物及びこれらとLiとの複合体が挙げられる。こ
のLi複合酸化物としては、LiCoO2 ,LiNiO
2 ,LiFeO2 ,LiMn2 4 または、これらのL
i複合酸化物のCo,Ni,Fe,Mnの一部を他の元
素Xに置き換えたもの、すなわちLiCo1-n
n 2 ,LiNi1-n n 2 ,LiFe1-n
n 2 ,LiMn2-n n 4 等が挙げられる。特に、
これらLi含有複合酸化物は、本発明の結着剤との相性
が良く、少量で極めて良好な接着性を示し、炭酸塩、水
酸化物、硝酸塩等を出発原料として、高温で焼成するこ
とにより合成される。
The positive electrode active material used in the battery of the present invention is TiS 2 , MoS 2 , Co 2 S 6 , V 2 O 5 , Mn.
Examples thereof include transition metal oxides such as O 2 and CoO 2 , transition metal chalcogen compounds, and complexes of these with Li. Examples of the Li composite oxide include LiCoO 2 and LiNiO.
2 , LiFeO 2 , LiMn 2 O 4 or their L
Co, Ni, Fe, and Mn in the i-composite oxide are partially replaced with another element X, that is, LiCo 1-n X
n O 2, LiNi 1-n X n O 2, LiFe 1-n X
n O 2, LiMn 2-n X n O 4 , and the like. Especially,
These Li-containing composite oxides have good compatibility with the binder of the present invention, exhibit extremely good adhesiveness in a small amount, and are fired at a high temperature using carbonates, hydroxides, nitrates and the like as starting materials. Synthesized.

【0023】これらの正極活物質を(必要に応じて導電
剤とともに)、結着剤を溶解した溶媒中に加えて混合分
散し、該分散液を集電体上に塗工乾燥して電極を作製す
る。前記導電剤としては、構成された電池系内において
化学変化を起こさない電子伝導性材料であれば良く、天
然黒鉛、人造黒鉛などが、通常用いられる。
These positive electrode active materials (and, if necessary, a conductive agent) are added to a solvent in which a binder is dissolved, mixed and dispersed, and the resulting dispersion is coated on a current collector and dried to form an electrode. Make it. The conductive agent may be an electron conductive material that does not cause a chemical change in the battery system configured, and natural graphite, artificial graphite, and the like are usually used.

【0024】本発明に使用する正負極集電体としては、
例えば、ステンレス鋼、金、白金、ニッケル、アルミニ
ウム、モリブデン、チタン等の金属シート、金属箔、金
属網、パンチングメタル、エキスパンドメタル、あるい
は金属メッキ繊維、金属蒸着線、金属含有合成繊維等か
らなる網や不織布が挙げられる。なかでも電気伝導度、
化学的・電気化学安定性、経済性、加工性等を考えると
アルミニウム、ステンレス鋼を用いることが特に好まし
い。さらに好ましくは、その軽量性、電気化学的安定性
からアルミニウムが好ましい。
The positive and negative electrode current collectors used in the present invention include:
For example, a metal sheet of stainless steel, gold, platinum, nickel, aluminum, molybdenum, titanium, etc., a metal foil, a metal net, a punching metal, an expanded metal, or a metal plating fiber, a metal-deposited wire, a metal-containing synthetic fiber, etc. And nonwoven fabrics. Among them, electrical conductivity,
It is particularly preferable to use aluminum or stainless steel in consideration of chemical / electrochemical stability, economy, workability, and the like. More preferably, aluminum is preferred because of its light weight and electrochemical stability.

【0025】さらに本発明に使用される正極集電体層、
および負極集電体層の表面は粗面化してあることが好ま
しい。粗面化を施すことにより活物質層との接触面積が
大きくなるとともに、活物質層の密着性が向上し、電池
としてのインピーダンスが下がる効果がある。また、塗
料溶液を用いての電極作製においては、粗面化処理を施
すことにより活物質と集電体との密着性を大きく向上さ
せることができる。
Further, the positive electrode current collector layer used in the present invention,
The surface of the negative electrode current collector layer is preferably roughened. By performing the surface roughening, the contact area with the active material layer is increased, the adhesion of the active material layer is improved, and the impedance as a battery is reduced. In the preparation of an electrode using a coating solution, the adhesion between the active material and the current collector can be significantly improved by performing a surface roughening treatment.

【0026】粗面化処理としてはエメリー紙による研
磨、ブラスト処理、化学的あるいは電気化学的エッチン
グがあり、これにより集電体を粗面化することができ
る。特にステンレス鋼の場合はブラスト処理が好まし
く、アルミニウムの場合はエッチング処理したエッチド
アルミニウムが好ましい。アルミニウムはやわらかい金
属であるため、ブラスト処理では効果的な粗面化処理を
施すことができないで、アルミニウム自体が変形してし
まう。これに対してエッチング処理は、アルミニウムを
変形させたり、その強度を大きく下げたりすることがな
く、μmオーダーで表面を効果的に粗面化することが可
能であり、アルミニウムの粗面化としては最も好ましい
方法である。
Examples of the surface roughening treatment include polishing with an emery paper, blasting, and chemical or electrochemical etching, whereby the current collector can be roughened. In particular, in the case of stainless steel, blasting is preferred, and in the case of aluminum, etched aluminum is preferred. Since aluminum is a soft metal, an effective surface roughening cannot be performed by blasting, and aluminum itself is deformed. On the other hand, the etching treatment can effectively roughen the surface in the order of μm without deforming the aluminum or greatly reducing the strength thereof. This is the most preferred method.

【0027】最後に、本発明に使用される非水電解液で
あるが、まず、電解質塩としては、LiClO4 ,Li
AsF6 ,LiPF6 ,LiBF4 ,LiBr,LiC
3SO3 ,LiN(CF3 SO2 2 ,LiC(CF
3 SO2 3 などが挙げられるが、特に限定されるもの
ではない。電解質濃度は使用する電極、電解液によって
異なるが、0.1〜10mol/lが好ましい。
Finally, regarding the non-aqueous electrolyte used in the present invention, first, as the electrolyte salt, LiClO 4 , Li
AsF 6 , LiPF 6 , LiBF 4 , LiBr, LiC
F 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF
3 SO 2 ) 3 and the like, but are not particularly limited. The electrolyte concentration varies depending on the electrode and electrolyte used, but is preferably 0.1 to 10 mol / l.

【0028】そして、電解液を構成する溶媒としては、
たとえば、テトラヒドロフラン、2−メチルテトラヒド
ロフラン、1,4−ジオキサン、ジメトキシエタンなど
のエーテル類、ジメチルホルムアミド、ジメチルアセト
アミドなどのアミド類、アセトニトリル、ベンゾニトリ
ルなどのニトリル類、ジメチルスルホキシスルホランな
どの硫黄化合物、ジメチルカ−ボネート、ジエチルカ−
ボネート、メチルエチルカーボネート、メチルイソプロ
ピルカーボネートなどの鎖状炭酸エステル類、エチレン
カーボネート、プロピレンカーボネート、ブチレンカー
ボネートなどの環状炭酸エステル類などが挙げられる
が、これらに限定されるものではなく、これらは単独
で、または2種類以上を混合して用いることができる。
And, as a solvent constituting the electrolytic solution,
For example, ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane and dimethoxyethane, amides such as dimethylformamide and dimethylacetamide, acetonitrile, nitriles such as benzonitrile, sulfur compounds such as dimethylsulfoxysulfolane, Dimethyl carbonate, diethyl carbonate
Carbonates such as carbonates, methyl ethyl carbonate and methyl isopropyl carbonate, and cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate, but are not limited thereto. , Or a mixture of two or more types.

【0029】また、本発明では高分子固体電解質を用い
る場合にも大きな効果があり、ポリエチレンオキサイ
ド、ポリプロピレンオキサイド、ポリフッ化ビニリデ
ン、ポリアクリロニトリルなどのポリマーマトリックス
として、これらに電解質塩を溶解した複合体、あるい
は、さらに溶媒を含有するゲル架橋体、低分子量ポリエ
チレンオキサイド、クラウンエーテルなどのイオン解離
基をポリマー主鎖にグラフト化した高分子固体電解質、
高分子量重合体に前記電解液を含有させたゲル状高分子
固体電解質などが挙げられる。
In the present invention, there is also a great effect when a solid polymer electrolyte is used. As a polymer matrix such as polyethylene oxide, polypropylene oxide, polyvinylidene fluoride and polyacrylonitrile, a composite in which an electrolyte salt is dissolved, Alternatively, a crosslinked gel containing a solvent, a low molecular weight polyethylene oxide, a polymer solid electrolyte in which an ion dissociating group such as a crown ether is grafted to the polymer main chain,
A gel-like polymer solid electrolyte in which the above-mentioned electrolytic solution is contained in a high-molecular-weight polymer is exemplified.

【0030】本発明の電池においてはセパレーターを使
用することもできる。セパレーターとしては、電解質溶
液のイオン移動に対して低抵抗であり、且つ、溶液保持
に優れたものを使用するのがよい。そのようなセパレー
ターとしては、ガラス繊維、フィルター、ポリエステ
ル、テフロン、ポリフロン、ポリプロピレン等の高分子
繊維からなる不織布フィルター、ガラス繊維とそれらの
高分子繊維を混用した不織布フィルターなどを挙げるこ
とができる。
In the battery of the present invention, a separator can be used. As the separator, it is preferable to use a separator which has low resistance to ion movement of the electrolyte solution and is excellent in holding the solution. Examples of such a separator include a glass fiber, a filter, a nonwoven fabric filter made of a polymer fiber such as polyester, Teflon, polyflon, and polypropylene, and a nonwoven fabric filter in which the glass fiber and the polymer fiber are mixed.

【0031】[0031]

【実施例】【Example】

〔実施例1〕ポリビニルアルコール(重合度1700、
けん化度99.3mol%以上)6重量部を純水233
重量部に加熱溶解し、天然黒鉛(d002は3.355
Å)94重量部を加えて、ロールミル法にて不活性雰囲
気下で混合分散して、負極用塗料を調製した。これを、
大気中にて、ドクターブレードを用いて、20μm銅箔
上に塗布し、120℃・10分間乾燥させ、ロールプレ
スして膜厚60μmの電極を作製した。
Example 1 Polyvinyl alcohol (degree of polymerization 1700,
6 parts by weight of pure water 233
Heated and dissolved in parts by weight, natural graphite (d002 is 3.355
Iv) 94 parts by weight were added and mixed and dispersed under an inert atmosphere by a roll mill method to prepare a coating material for a negative electrode. this,
It was applied on a copper foil of 20 μm in air using a doctor blade, dried at 120 ° C. for 10 minutes, and roll-pressed to produce an electrode having a thickness of 60 μm.

【0032】この負極について接着性を評価し、結果を
[表1]に示した。接着性の評価では、前記負極表面に
テープを貼り、これを一定の力を加えて剥がした場合の
塗布面(負極活物質)の剥がれの状況を判定した。さら
に、対極をLi板とし、電解液にはLiPF6 のエチレ
ンカーボネート/ジメチルカーボネート(5/5、体積
比)溶液2.0mol/lを用いて電池を構成し、その
充放電試験を行なった。
The adhesiveness of the negative electrode was evaluated, and the results are shown in Table 1. In the evaluation of the adhesiveness, a tape was applied to the surface of the negative electrode, and the state of peeling of the application surface (negative electrode active material) when the tape was peeled off by applying a certain force was determined. Further, a battery was formed using a Li plate as a counter electrode and 2.0 mol / l of an ethylene carbonate / dimethyl carbonate (5/5, volume ratio) solution of LiPF 6 as an electrolytic solution, and a charge / discharge test was performed.

【0033】充放電試験では、東洋システムTOSCA
T3000U充放電測定装置を用いて、1.4mA/c
2 の電流で、0Vまでの定電流定電圧充電を行い、1
0分の休止後、1.4mA/cm2 の電流で、電池電圧
が0.8Vになるまで定電流放電し、以下この充放電を
繰り返した。この際の、初期と200サイクル目の放電
容量密度を[表1]に示した。
In the charge / discharge test, Toyo System TOSCA
Using a T3000U charge / discharge measurement device, 1.4 mA / c
With constant current and constant voltage charging up to 0 V with a current of m 2 ,
After a pause of 0 minutes, the battery was discharged at a constant current of 1.4 mA / cm 2 until the battery voltage reached 0.8 V, and this charge / discharge was repeated. At this time, the discharge capacity densities at the initial stage and at the 200th cycle are shown in [Table 1].

【0034】〔実施例2〕ポリビニルアルコール(重合
度1700、けん化度98〜99mol%以上)4重量
部を純水185重量部に加熱溶解し、ホウ素を4.5%
含有した石油ピッチコークスの2500℃焼成物(d0
02は3356Å)96重量部を加え、ロールミル法に
て不活性雰囲気下で混合分散して、負極用塗料を調製し
た。以下実施例1と同様に負極の塗工作製および電池作
製を行い、負極の接着性および電極特性を評価した。
Example 2 4 parts by weight of polyvinyl alcohol (polymerization degree: 1700, saponification degree: 98-99 mol% or more) were dissolved by heating in 185 parts by weight of pure water, and boron was 4.5% by weight.
2,500 ° C fired petroleum pitch coke (d0
02 was added at 3356 °) and 96 parts by weight were mixed and dispersed under an inert atmosphere by a roll mill method to prepare a coating material for a negative electrode. Thereafter, in the same manner as in Example 1, coating and production of the negative electrode were performed, and the adhesiveness and electrode characteristics of the negative electrode were evaluated.

【0035】〔実施例3〕ポリビニルアルコール(重合
度2000、けん化度98〜99mol%以上)3.5
重量部を純水185重量部に加熱溶解し、ホウ素を4.
5%含有した石油ピッチコークスの2500℃焼成物
(d002は3.356Å)96.5重量部を加え、ロ
ールミル法にて不活性雰囲気下で混合分散して、負極用
塗料を調製した。以下実施例1と同様に負極の塗工作製
および電池作製を行い、負極の接着性および電極特性を
評価した。
Example 3 3.5 of polyvinyl alcohol (degree of polymerization: 2,000, saponification degree: 98-99 mol% or more)
3 parts by weight are dissolved in 185 parts by weight of pure water while heating to obtain boron.
96.5 parts by weight of a calcined product of petroleum pitch coke containing 5% at 2500 ° C. (d002 is 3.356 °) was added and mixed and dispersed under an inert atmosphere by a roll mill method to prepare a coating for a negative electrode. Thereafter, in the same manner as in Example 1, coating and production of the negative electrode were performed, and the adhesiveness and electrode characteristics of the negative electrode were evaluated.

【0036】〔実施例4〕ポリビニルアルコール(重合
度1700、けん化度98〜99mol%以上)3重量
部を純水185重量部に加熱溶解し、メソカーボンマイ
クロビーズの2800℃焼成品(d002は3.380
Å)97重量部を加え、ロールミル法にて不活性雰囲気
下で混合分散して、負極用塗料を調製した。以下実施例
1と同様に負極の塗工作製および電池作製を行い、負極
の接着性および電極特性を評価した。
Example 4 3 parts by weight of polyvinyl alcohol (degree of polymerization: 1700, saponification degree: 98 to 99 mol% or more) were dissolved by heating in 185 parts by weight of pure water, and mesocarbon microbeads were baked at 2800 ° C. (d002 is 3 .380
Ii) 97 parts by weight were added and mixed and dispersed under an inert atmosphere by a roll mill method to prepare a negative electrode coating material. Thereafter, in the same manner as in Example 1, coating and production of the negative electrode were performed, and the adhesiveness and electrode characteristics of the negative electrode were evaluated.

【0037】〔実施例5〕ポリビニルアルコール(重合
度1700、けん化度98〜99mol%以上)4重量
部を純水212重量部に加熱溶解し、天然黒鉛(d00
2は3.355Å、平均粒径は20.0μm)48重量
部と、フリュードコークスの2500℃焼成品(d00
2は3.370Å、平均粒径は7.0μm)48重量部
とを加え、ロールミル法にて不活性雰囲気下で混合分散
して、負極用塗料を調製した。以下実施例1と同様に負
極の塗工作製および電池作製を行い、負極の接着性およ
び電極特性を評価した。
Example 5 4 parts by weight of polyvinyl alcohol (polymerization degree: 1700, saponification degree: 98-99 mol% or more) were dissolved by heating in 212 parts by weight of pure water, and natural graphite (d00
2 is 3.355 °, average particle size is 20.0 μm) and 48 parts by weight of a fluid coke calcined product at 2500 ° C. (d00
2 was 3.370 °, average particle size was 7.0 μm) and 48 parts by weight, and mixed and dispersed under an inert atmosphere by a roll mill method to prepare a coating for a negative electrode. Thereafter, in the same manner as in Example 1, coating and production of the negative electrode were performed, and the adhesiveness and electrode characteristics of the negative electrode were evaluated.

【0038】〔実施例6〕ヒドロキシエチルセルロース
3重量部を純水185重量部に加熱溶解し、ホウ素を
4.5%含有した石油ピッチコークスの2500℃焼成
物(d002は3.356Å)97重量部を加え、ロー
ルミル法にて不活性雰囲気下で混合分散して負極用塗料
を調製した。以下実施例1と同様に負極の塗工作製およ
び電池作製を行い、負極の接着性および電極特性を評価
した。
Example 6 3 parts by weight of hydroxyethyl cellulose were dissolved in 185 parts by weight of pure water under heating, and 97 parts by weight of a petroleum pitch coke containing 4.5% boron at 2500 ° C. (d002: 3.356 °) Was added and mixed and dispersed under an inert atmosphere by a roll mill method to prepare a coating material for a negative electrode. Thereafter, in the same manner as in Example 1, coating and production of the negative electrode were performed, and the adhesiveness and electrode characteristics of the negative electrode were evaluated.

【0039】〔実施例7〕メチルセルロース4重量部を
純水212重量部に加熱溶解し、メソカーボンマイクロ
ビーズの2800℃焼成品(d002は3.380Å、
平均粒径は5.6μm)48重量部と、天然黒鉛(d0
02は3.355Å、平均粒径は20.0μm)48重
量部とを加え、ロールミル法にて不活性雰囲気下で混合
分散して、負極用塗料を調製した。以下実施例1と同様
に負極の塗工作製および電池作製を行い、負極の接着性
および電極特性を評価した。
Example 7 4 parts by weight of methylcellulose were dissolved by heating in 212 parts by weight of pure water, and mesocarbon microbeads were calcined at 2800 ° C. (d002 was 3.380 ° C .;
48 parts by weight of an average particle size of 5.6 μm) and natural graphite (d0
02 was 3.355 ° and the average particle size was 20.0 μm), and the mixture was mixed and dispersed under an inert atmosphere by a roll mill method to prepare a negative electrode paint. Thereafter, in the same manner as in Example 1, coating and production of the negative electrode were performed, and the adhesiveness and electrode characteristics of the negative electrode were evaluated.

【0040】〔実施例8〕スチレン−無水マレイン酸共
重合体Li塩2.5重量部を純水80重量部に加熱溶解
し、ポリイミドの1000℃焼成品(d002は3.7
50Å)97.5重量部を加え、ロールミル法にて不活
性雰囲気下で混合分散して、負極用塗料を調製した。以
下実施例1と同様に負極の塗工作製および電池作製を行
い、負極の接着性および電極特性を評価した。なお、電
極特性の評価では、2.1mA/cm2 の電流で、0V
までの定電流定電圧充電を行い、10分の休止後、2.
1mA/cm2 の電流で、電池電圧が0.8Vになるま
で定電流放電し、以下この充放電を繰り返した。この際
の、初期と200サイクル目の放電容量密度を[表1]
に示した。
Example 8 2.5 parts by weight of a Li salt of a styrene-maleic anhydride copolymer were dissolved in 80 parts by weight of pure water while heating, and the polyimide was calcined at 1000 ° C. (d002 is 3.7).
50 °) 97.5 parts by weight were added and mixed and dispersed under an inert atmosphere by a roll mill method to prepare a negative electrode paint. Thereafter, in the same manner as in Example 1, coating and production of the negative electrode were performed, and the adhesiveness and electrode characteristics of the negative electrode were evaluated. In the evaluation of the electrode characteristics, at a current of 2.1 mA / cm 2 , 0 V
After charging for 10 minutes, constant current and constant voltage charging until 2.
The battery was discharged at a constant current of 1 mA / cm 2 until the battery voltage reached 0.8 V, and this charge / discharge was repeated. In this case, the discharge capacity densities at the initial stage and at the 200th cycle are shown in [Table 1].
It was shown to.

【0041】〔実施例9〕ポリフッ化ビニリデン(PV
DF)4重量部をN−メチルピロリドン40重量部に溶
解し、LiCoO2 51重量部および、導電性黒鉛5重
量部を加えて、ロールミル法にて不活性雰囲気下で混合
分散して、正極用塗料を調製した。これを、大気中にて
ドクターブレードを用いて20μmAl箔上に塗布し、
120℃・10分間乾燥させ、ロールプレスして、膜厚
60μmの電極(正極)を作製した。
Example 9 Polyvinylidene fluoride (PV
DF) 4 parts by weight of N-methylpyrrolidone were dissolved in 40 parts by weight, 51 parts by weight of LiCoO 2 and 5 parts by weight of conductive graphite were added, and mixed and dispersed under an inert atmosphere by a roll mill method for a positive electrode. A paint was prepared. This is applied on a 20 μm Al foil using a doctor blade in the air,
The film was dried at 120 ° C. for 10 minutes and roll-pressed to produce an electrode (positive electrode) having a thickness of 60 μm.

【0042】次に、LiPF6 20重量部と、エチレン
カーボネート/ジメチルカーボネート(5/5体積比)
70重量部とを混合し、電解液を調製した。これにポリ
オキシエチレンアクリレート12.8重量部、トリメチ
ルプロパンアクリレート0.2重量部、およびペンゾイ
ンイソプロピルエーテル0.02重量部を添加して混合
溶解し、光重合性溶液を調製した。上記正極、および実
施例1で作製した負極に上記光重合性溶液を浸透させ、
高圧水銀灯を照射して電解液を固体化した。これらを積
層し、発電要素部に均一に圧力をかけつつ、三辺を熱封
止した後、残りの一辺を減圧下で封止して電池を作製し
た。
Next, 20 parts by weight of LiPF 6 and ethylene carbonate / dimethyl carbonate (5/5 volume ratio)
And 70 parts by weight to prepare an electrolyte solution. 12.8 parts by weight of polyoxyethylene acrylate, 0.2 parts by weight of trimethylpropane acrylate, and 0.02 parts by weight of benzoin isopropyl ether were added thereto and mixed and dissolved to prepare a photopolymerizable solution. The positive electrode, and the negative electrode produced in Example 1 was impregnated with the photopolymerizable solution,
The electrolyte was solidified by irradiation with a high-pressure mercury lamp. These were laminated and heat-sealed on three sides while uniformly applying pressure to the power generation element part, and then the remaining one side was sealed under reduced pressure to produce a battery.

【0043】充放電試験では、東洋システム製TOSC
AT3000U型充放電測定装置を用い、電流が10m
A、電池電圧が3.0〜4.2Vで充放電を繰り返し
た。この際の、初期と200サイクル目の放電容量を
[表2]に示した。
In the charge / discharge test, TOSC TOSC manufactured by Toyo System Co., Ltd.
Using an AT3000U type charge / discharge measuring device, the current is 10m
A, charging and discharging were repeated at a battery voltage of 3.0 to 4.2V. The initial and 200th cycle discharge capacities at this time are shown in [Table 2].

【0044】〔比較例1〕実施例1において、負極結着
剤をポリフッ化ビニリデン(PVDF)とし、塗工溶媒
を純水からN−メチルピロリドンとした以外は実施例1
と同様にした。
Comparative Example 1 Example 1 was repeated except that the negative electrode binder was polyvinylidene fluoride (PVDF) and the coating solvent was N-methylpyrrolidone from pure water.
Same as.

【0045】〔比較例2〕実施例2において、負極結着
剤をポリフッ化ビニリデン(PVDF)とし、塗工溶媒
を純水からN−メチルピロリドンとした以外は実施例2
と同様にした。
Comparative Example 2 Example 2 was repeated except that the negative electrode binder was polyvinylidene fluoride (PVDF) and the coating solvent was N-methylpyrrolidone from pure water.
Same as.

【0046】〔比較例3〕ポリビニルピリジン−アクリ
レート共重合体3重量部と、へキサメチレンジイソシア
ネート0.01重量部とをN−メチルピロリドン185
重量部に溶解し、メソカーボンマイクロビーズの280
0℃焼成品(d002は3.380Å)97重量部を加
え、ロールミル法にて不活性雰囲気下で混合分散して、
負極用塗料を調製した。これを大気中にて、ドクターブ
レードを用いて、20μm銅箔上に塗布し、130℃・
20分間乾燥させ、ロールプレスして膜厚60μmの電
極を作製した。以下実施例1と同様に負極の接着性およ
び電極特性を評価した。
Comparative Example 3 N-methylpyrrolidone (185 parts) was prepared by mixing 3 parts by weight of a polyvinylpyridine-acrylate copolymer and 0.01 parts by weight of hexamethylene diisocyanate.
280 parts of mesocarbon microbeads
97 parts by weight of a baked product at 0 ° C. (d002 is 3.380 °) was added and mixed and dispersed under an inert atmosphere by a roll mill method.
A paint for a negative electrode was prepared. This was applied in air to a 20 μm copper foil using a doctor blade,
It was dried for 20 minutes and roll-pressed to produce an electrode having a thickness of 60 μm. Thereafter, in the same manner as in Example 1, the adhesiveness of the negative electrode and the electrode characteristics were evaluated.

【0047】〔比較例4〕実施例5において、負極結着
剤をポリフッ化ビニリデン(PVDF)とし、塗工溶媒
を純水からN−メチルピロリドンとした以外は実施例5
と同様にした。
Comparative Example 4 Example 5 was repeated except that the negative electrode binder was polyvinylidene fluoride (PVDF) and the coating solvent was N-methylpyrrolidone from pure water.
Same as.

【0048】〔比較例5〕実施例7において、負極結着
剤をポリフッ化ビニリデン(PVDF)とし、塗工溶媒
を純水からN−メチルピロリドンとした以外は実施例7
と同様にした。
Comparative Example 5 Example 7 was repeated except that the negative electrode binder was polyvinylidene fluoride (PVDF) and the coating solvent was N-methylpyrrolidone from pure water.
Same as.

【0049】〔比較例6〕実施例8において、負極結着
剤をポリ酢酸ビニルとし、塗工溶媒を純水からN−メチ
ルピロリドンとした以外は実施例8と同様にした。
Comparative Example 6 The procedure of Example 8 was repeated, except that the negative electrode binder was polyvinyl acetate, and the coating solvent was N-methylpyrrolidone from pure water.

【0050】〔比較例7〕実施例9において、負極とし
て比較例1で作製したものを用いた以外は実施例9と同
様にした。
Comparative Example 7 The procedure of Example 9 was repeated, except that the negative electrode prepared in Comparative Example 1 was used.

【0051】[0051]

【表1】 接着性評価基準: ○:塗膜表面の一部が剥離する △:塗膜の層間で分離剥離する ×:塗膜が集電体から剥離する[Table 1] Adhesion evaluation criteria: ○: Part of coating film surface peels off △: Separation and peeling between layers of coating film ×: Peeling film from current collector

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【発明の効果】以上の説明で明らかなように、本発明に
よれば以下の効果が得られる。 (1)請求項1,2 正極と、非水電解液を含有する電解質層と、リチウムを
吸蔵放出可能な炭素負極とを備えてなる二次電池におい
て、負極用結着剤として水溶性高分子からなるものを用
いたため、炭素負極構成用の塗膜と集電体との接着性が
極めて良好となったので、高容量で、サイクル特性の優
れた非水電解質二次電池が得られる。
As apparent from the above description, the following effects can be obtained according to the present invention. (1) A secondary battery comprising a positive electrode, a positive electrode, an electrolyte layer containing a non-aqueous electrolyte, and a carbon negative electrode capable of inserting and extracting lithium, wherein a water-soluble polymer is used as a negative electrode binder. Since the use of a material consisting of the above, the adhesion between the coating film for forming the carbon negative electrode and the current collector became extremely good, so that a non-aqueous electrolyte secondary battery having high capacity and excellent cycle characteristics was obtained.

【0054】(2)請求項3 炭素負極を構成する負極活物質と前記負極用結着剤との
合計量に対する、この負極用結着剤の含有量を4wt%
以下としたので、電極中の活物質含有量を増やすことが
可能となり、特に高容量化した非水電解質二次電池を提
供することができる。
(2) Claim 3 The content of the negative electrode binder is 4 wt% with respect to the total amount of the negative electrode active material and the negative electrode binder constituting the carbon negative electrode.
Because of the following, the content of the active material in the electrode can be increased, and a nonaqueous electrolyte secondary battery with a particularly high capacity can be provided.

【0055】(3)請求項4,5 請求項4では、C軸方向の面間隔d002が3.40Å
以下の炭素材料を負極活物質として用い、請求項5で
は、ホウ素を含有する炭素材料を負極活物質として用い
ので、いずれも電池の高容量化を容易に達成することが
できる。
(3) Claims 4 and 5 In claim 4, the surface distance d002 in the C-axis direction is 3.40 °.
The following carbon materials are used as the negative electrode active material, and in claim 5, the carbon material containing boron is used as the negative electrode active material, so that the capacity of the battery can be easily increased in any case.

【0056】(4)請求項6,7 請求項6では、炭素負極を構成する負極活物質が、2種
類以上の炭素材料を混合したものであるため、また請求
項7では、2種類以上の炭素材料の平均粒径が互いに異
なるため、緻密で接着性の優れた活物質層を形成するこ
とができて、電池の高容量化および、サイクル特性の向
上が達成できる。
(4) Claims 6 and 7 In claim 6, the negative electrode active material constituting the carbon negative electrode is a mixture of two or more kinds of carbon materials. Since the carbon materials have different average particle diameters, a dense active material layer having excellent adhesiveness can be formed, and a higher capacity of the battery and improved cycle characteristics can be achieved.

【0057】(5)請求項8 請求項1の電池では、高分子固体電解質と他の構成部材
とのマッチングに優れているので、高分子固体電解質層
を電解質層として用いることができ、電池容量の低下が
発生しないという効果がある。
(5) Claim 8 In the battery according to claim 1, since the polymer solid electrolyte is excellent in matching with other constituent members, the polymer solid electrolyte layer can be used as the electrolyte layer, and the battery capacity can be improved. There is an effect that the decrease of the image does not occur.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C01B 31/02 101 C01B 31/02 101B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // C01B 31/02 101 C01B 31/02 101B

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 正極、非水電解液を含有する電解質層、
およびリチウムを吸蔵放出可能な炭素負極を備えてなる
二次電池において、負極用結着剤が水溶性高分子からな
ることを特徴とする非水電解質二次電池。
A positive electrode, an electrolyte layer containing a non-aqueous electrolyte,
And a carbon negative electrode capable of inserting and extracting lithium, wherein the binder for the negative electrode comprises a water-soluble polymer.
【請求項2】 請求項1において、水溶性高分子がポリ
ビニルアルコールであることを特徴とする非水電解質二
次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the water-soluble polymer is polyvinyl alcohol.
【請求項3】 請求項1において、前記炭素負極を構成
する負極活物質と前記負極用結着剤との合計量に対する
該負極用結着剤の含有量が、4wt%以下であることを
特徴とする非水電解質二次電池。
3. The negative electrode binder according to claim 1, wherein the content of the negative electrode binder relative to the total amount of the negative electrode active material and the negative electrode binder constituting the carbon negative electrode is 4 wt% or less. Non-aqueous electrolyte secondary battery.
【請求項4】 請求項1において前記炭素負極を構成す
る負極活物質は、C軸方向の面間隔d002が3.40
Å以下の炭素材料であることを特徴とする非水電解質二
次電池。
4. The negative electrode active material constituting the carbon negative electrode according to claim 1, wherein a surface distance d002 in the C-axis direction is 3.40.
非 A non-aqueous electrolyte secondary battery characterized by the following carbon materials.
【請求項5】 請求項1において前記炭素負極を構成す
る負極活物質が、ホウ素を含有する炭素材料であること
を特徴とする非水電解質二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material constituting the carbon negative electrode is a carbon material containing boron.
【請求項6】 請求項1において前記炭素負極を構成す
る負極活物質が、2種類以上の炭素材料を混合したもの
であることを特徴とする非水電解質二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material constituting the carbon negative electrode is a mixture of two or more carbon materials.
【請求項7】 請求項6において2種類以上の炭素材料
は、平均粒径が互いに異なるものであることを特徴とす
る非水電解質二次電池。
7. The non-aqueous electrolyte secondary battery according to claim 6, wherein the two or more types of carbon materials have different average particle diameters.
【請求項8】 請求項1において、電解質層が高分子固
体電解質層であることを特徴とする非水電解質二次電
池。
8. The non-aqueous electrolyte secondary battery according to claim 1, wherein the electrolyte layer is a solid polymer electrolyte layer.
JP9242148A 1997-08-22 1997-08-22 Nonaqueous electrolyte secondary battery Pending JPH1167215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9242148A JPH1167215A (en) 1997-08-22 1997-08-22 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9242148A JPH1167215A (en) 1997-08-22 1997-08-22 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH1167215A true JPH1167215A (en) 1999-03-09

Family

ID=17085043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9242148A Pending JPH1167215A (en) 1997-08-22 1997-08-22 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH1167215A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056815A1 (en) * 1999-03-23 2000-09-28 Nisshinbo Industries, Inc. Composition for ionically conductive solid polymer, ionically conductive solid polyelectrolyte, binder resin, and secondary battery
JP2001357885A (en) * 2000-06-13 2001-12-26 Toyota Central Res & Dev Lab Inc Lithium secondary battery
KR100481229B1 (en) * 2002-07-04 2005-04-07 마이크로파우더 주식회사 Method of fabricating electrode of Lithium secondary battery and Lithium secondary battery with the electrode
WO2007083896A1 (en) * 2006-01-18 2007-07-26 Lg Chem, Ltd. Electrode material containing polyvinyl alcohol as binder and rechargeable lithium battery comprising the same
WO2008030001A1 (en) * 2006-09-04 2008-03-13 Lg Chem, Ltd. Electrode material containing mixture of polyvinyl alcohol of high degree of polymerization and polyvinyl pyrrolidone as binder and lithium secondary battery employed with the same
JP2009238681A (en) * 2008-03-28 2009-10-15 Nissan Motor Co Ltd Electrode for lithium-ion battery
JP2012064574A (en) * 2010-09-17 2012-03-29 Samsung Sdi Co Ltd Binder composition for lithium secondary battery, and lithium secondary battery electrode and lithium secondary battery including the same
JP2012212621A (en) * 2011-03-31 2012-11-01 Mitsui Chemicals Inc Binder for electrochemical cell, and paste and electrode comprising the binder
KR101225882B1 (en) 2007-12-21 2013-01-24 주식회사 엘지화학 Anode for secondary battery
JP2016181414A (en) * 2015-03-24 2016-10-13 株式会社東芝 Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
WO2017094719A1 (en) * 2015-11-30 2017-06-08 日本電気株式会社 Lithium ion secondary battery
US9685678B2 (en) 2013-02-05 2017-06-20 A123 Systems, LLC Electrode materials with a synthetic solid electrolyte interface
WO2017210573A1 (en) * 2016-06-02 2017-12-07 Wildcat Discovery Technologies, Inc. High voltage electrolyte additives
US10756337B2 (en) 2015-11-30 2020-08-25 Nec Corporation Lithium ion secondary battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056815A1 (en) * 1999-03-23 2000-09-28 Nisshinbo Industries, Inc. Composition for ionically conductive solid polymer, ionically conductive solid polyelectrolyte, binder resin, and secondary battery
JP2001357885A (en) * 2000-06-13 2001-12-26 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP4547587B2 (en) * 2000-06-13 2010-09-22 株式会社豊田中央研究所 Lithium secondary battery
KR100481229B1 (en) * 2002-07-04 2005-04-07 마이크로파우더 주식회사 Method of fabricating electrode of Lithium secondary battery and Lithium secondary battery with the electrode
WO2007083896A1 (en) * 2006-01-18 2007-07-26 Lg Chem, Ltd. Electrode material containing polyvinyl alcohol as binder and rechargeable lithium battery comprising the same
US8585921B2 (en) 2006-01-18 2013-11-19 Lg Chem, Ltd. Electrode material containing polyvinyl alcohol as binder and rechargeable lithium battery comprising the same
TWI406445B (en) * 2006-01-18 2013-08-21 Lg Chemical Ltd Electrode material containing polyvinyl alcohol as binder and rechargeable lithium battery comprising the same
WO2008030001A1 (en) * 2006-09-04 2008-03-13 Lg Chem, Ltd. Electrode material containing mixture of polyvinyl alcohol of high degree of polymerization and polyvinyl pyrrolidone as binder and lithium secondary battery employed with the same
JP2010503174A (en) * 2006-09-04 2010-01-28 エルジー・ケム・リミテッド Electrode material containing a mixture of polyvinyl alcohol and polyvinyl pyrrolidone having a high degree of polymerization as a binder, and a lithium secondary battery using the same
US7846583B2 (en) 2006-09-04 2010-12-07 Lg Chem, Ltd. Electrode material containing mixture of polyvinyl alcohol of high degree of polymerization and polyvinyl pyrrolidone as binder and lithium secondary battery employed with the same
KR101225882B1 (en) 2007-12-21 2013-01-24 주식회사 엘지화학 Anode for secondary battery
JP2009238681A (en) * 2008-03-28 2009-10-15 Nissan Motor Co Ltd Electrode for lithium-ion battery
CN102412401A (en) * 2010-09-17 2012-04-11 三星Sdi株式会社 Binder composition for rechargeable lithium battery, and electrode and rechargeable lithium battery including the same
JP2012064574A (en) * 2010-09-17 2012-03-29 Samsung Sdi Co Ltd Binder composition for lithium secondary battery, and lithium secondary battery electrode and lithium secondary battery including the same
US9413009B2 (en) 2010-09-17 2016-08-09 Samsung Sdi Co., Ltd. Binder composition for rechargeable lithium battery, and electrode and rechargeable lithium battery including the same
JP2012212621A (en) * 2011-03-31 2012-11-01 Mitsui Chemicals Inc Binder for electrochemical cell, and paste and electrode comprising the binder
US9685678B2 (en) 2013-02-05 2017-06-20 A123 Systems, LLC Electrode materials with a synthetic solid electrolyte interface
JP2016181414A (en) * 2015-03-24 2016-10-13 株式会社東芝 Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
WO2017094719A1 (en) * 2015-11-30 2017-06-08 日本電気株式会社 Lithium ion secondary battery
JPWO2017094719A1 (en) * 2015-11-30 2018-09-13 日本電気株式会社 Lithium ion secondary battery
US10707519B2 (en) 2015-11-30 2020-07-07 Nec Corporation Lithium ion secondary battery
US10756337B2 (en) 2015-11-30 2020-08-25 Nec Corporation Lithium ion secondary battery
WO2017210573A1 (en) * 2016-06-02 2017-12-07 Wildcat Discovery Technologies, Inc. High voltage electrolyte additives
US11258098B2 (en) 2016-06-02 2022-02-22 Wildcat Discovery Technologies, Inc. High voltage electrolyte additives

Similar Documents

Publication Publication Date Title
KR100905369B1 (en) Negative electrode for lithium ion secondary battery, process for producing the same, lithium ion secondary battery and process for producing the same
JPH1197027A (en) Nonaqueous electrolyte secondary cell
JPH11120992A (en) Nonaqueous electrolyte secondary battery
JPH1173947A (en) Electrode for battery and its manufacture
JPH0997625A (en) Nonaqueous electrolytic secondary battery and manufacture thereof
JPH1167215A (en) Nonaqueous electrolyte secondary battery
JP3512549B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
JPH1167216A (en) Nonaqueous electrolyte secondary battery
JP3500245B2 (en) Gel-like solid electrolyte secondary battery
JP3668579B2 (en) Slurry for electrode
JP4152279B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2001319647A (en) Positive electrode for lithium secondary battery and lithium ion battery using the same
JPH10188993A (en) Non-aqueous electrolyte secondary battery
JP3632943B2 (en) Electrode and nonaqueous electrolyte battery using this electrode
JPH09237623A (en) Nonaqueous electrolyte secondary battery
JPH1173964A (en) Nonaqueous electrolyte secondary battery
JP3573899B2 (en) Non-aqueous electrolyte secondary battery
JPH10199509A (en) Solid electrolyte battery
JP2004047487A (en) Cathode for lithium secondary battery and lithium secondary battery using the same
JPH09320599A (en) Nonaqueous electrolyte secondary battery
JPH10188985A (en) Nonaqueous electrolyte secondary battery
JP2000348729A (en) Positive electrode plate for lithium secondary battery, its manufacture and lithium secondary battery manufactured by using the positive electrode plate
JP2002075330A (en) Nonaqueous secondary battery and its manufacturing method
JPH10334888A (en) Negative electrode for use in nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative electrode
JP3512543B2 (en) Non-aqueous electrolyte secondary battery