JP4152279B2 - Negative electrode for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Negative electrode for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP4152279B2
JP4152279B2 JP2003303047A JP2003303047A JP4152279B2 JP 4152279 B2 JP4152279 B2 JP 4152279B2 JP 2003303047 A JP2003303047 A JP 2003303047A JP 2003303047 A JP2003303047 A JP 2003303047A JP 4152279 B2 JP4152279 B2 JP 4152279B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
lithium ion
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003303047A
Other languages
Japanese (ja)
Other versions
JP2005071918A (en
Inventor
靖 間所
仁美 羽多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2003303047A priority Critical patent/JP4152279B2/en
Publication of JP2005071918A publication Critical patent/JP2005071918A/en
Application granted granted Critical
Publication of JP4152279B2 publication Critical patent/JP4152279B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池用負極およびリチウムイオン二次電池に関するものである。   The present invention relates to a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery.

高電圧、高エネルギー密度という優れた特性を有するリチウムイオン二次電池は、電子機器の電源として現在広く普及している。リチウムイオン二次電池の負極材料としては、充放電特性に優れ、高い放電容量と電位平坦性とを示す黒鉛が主流となっている([特許文献1])。負極材料として使用される黒鉛(黒鉛質粒子)としては、天然黒鉛、人造黒鉛などの黒鉛粒子、さらにはタール、ピッチを原料としたメソフェーズ小球体などを熱処理して得られるメソフェーズ系黒鉛質粒子が挙げられる。   Lithium ion secondary batteries having excellent characteristics such as high voltage and high energy density are now widely used as power sources for electronic devices. As a negative electrode material of a lithium ion secondary battery, graphite having excellent charge / discharge characteristics and high discharge capacity and potential flatness has become the mainstream ([Patent Document 1]). The graphite (graphite particles) used as the negative electrode material includes graphite particles such as natural graphite and artificial graphite, and mesophase-based graphite particles obtained by heat-treating mesophase spherules using tar and pitch as raw materials. Can be mentioned.

近年、電子機器の小型化あるいは高性能化に伴い、負極材料としての黒鉛に対して、放電容量や初期充放電効率を劣化させることなく、急速充放電特性やサイクル特性を向上させることが要求されている。しかしながら、上記負極材料としての天然黒鉛は、放電容量が高い反面、鱗片状の形状に起因して負極を形成した際に、配向しやすい。それゆえに、電解液が負極内部にまで浸透せず、リチウムイオンの吸蔵・離脱反応が負極表面でしか行われなくなるため、急速充放電特性が低下する。さらに、負極表面に析出した金属リチウムがサイクル特性や安全性の低下を引き起こす。   In recent years, with the downsizing and high performance of electronic devices, it has been required to improve rapid charge / discharge characteristics and cycle characteristics without deteriorating discharge capacity and initial charge / discharge efficiency with respect to graphite as a negative electrode material. ing. However, the natural graphite as the negative electrode material has a high discharge capacity, but is easily oriented when the negative electrode is formed due to the scale-like shape. Therefore, the electrolytic solution does not penetrate into the inside of the negative electrode, and the lithium ion storage / release reaction can be performed only on the surface of the negative electrode, so that the rapid charge / discharge characteristics are deteriorated. Furthermore, metallic lithium deposited on the negative electrode surface causes deterioration of cycle characteristics and safety.

一方、メソフェーズピッチを熱処理して得られる黒鉛質粒子、特にメソフェーズ小球体の黒鉛化物粒子は球状または球状に近い形状を有し、負極形成時にランダムに積層する。それゆえに、電解液が負極内部にまで浸透し、リチウムイオンの吸蔵・離脱反応が均一に行われるため、良好なサイクル特性および急速充放電特性を示す。しかし、球状粒子の場合、鱗片状粒子に比べて粒子と集電体との接点が少なくなるため、電子伝導性が低下するという問題があり、この点でまだまだ改善の必要がある。   On the other hand, graphite particles obtained by heat-treating mesophase pitch, particularly graphitized particles of mesophase spherules, have a spherical shape or a shape close to a spherical shape, and are randomly laminated when forming the negative electrode. Therefore, the electrolyte solution penetrates into the inside of the negative electrode, and the occlusion / release reaction of lithium ions is performed uniformly, so that good cycle characteristics and rapid charge / discharge characteristics are exhibited. However, in the case of spherical particles, the contact between the particles and the current collector is smaller than that of the scaly particles, so that there is a problem that the electron conductivity is lowered, and there is still a need for improvement in this respect.

鱗片状粒子を用いる場合の改善策として、特許文献2では、負極の表面層の平均粒子径を1〜10μm、負極の集電体に接する層の平均粒子径を10〜30μmとすることで、電解液の浸透性と電子伝導性を両立させる非水電解液二次電池用電極が開示されている。しかしながら、粒子径の小さい鱗片状粒子は比表面積が非常に大きく、電解液との接触面積が増大することにより、初期充放電効率や安全性が低下する。   As an improvement measure when using scaly particles, in Patent Document 2, the average particle size of the surface layer of the negative electrode is 1 to 10 μm, and the average particle size of the layer in contact with the current collector of the negative electrode is 10 to 30 μm. An electrode for a non-aqueous electrolyte secondary battery that achieves both electrolyte permeability and electronic conductivity is disclosed. However, the scaly particles having a small particle diameter have a very large specific surface area, and the initial charge / discharge efficiency and safety are reduced by increasing the contact area with the electrolytic solution.

球状粒子を用いる場合の改善策として、特許文献3では、集電体に接する負極活物質層には鱗片状黒鉛を含有し、負極表面の活物質層には球状黒鉛を含有する非水電解液二次電池用電極が開示されている。しかしながら、異種形状の黒鉛を二層に塗布した場合、接合部の密着性が悪くなり、充放電を繰返すうちに、剥離するといった問題が生じる。   As an improvement measure in the case of using spherical particles, Patent Document 3 discloses a non-aqueous electrolyte solution containing scaly graphite in the negative electrode active material layer in contact with the current collector and containing spherical graphite in the active material layer on the negative electrode surface. A secondary battery electrode is disclosed. However, when different types of graphite are applied in two layers, the adhesiveness of the joint is deteriorated, and there arises a problem of peeling during repeated charging and discharging.

特公昭62−23433号公報Japanese Examined Patent Publication No. 62-23433 特開平10−27600号公報JP-A-10-27600 特開平9−213372号公報JP-A-9-213372

本発明の目的は、放電容量、初期充放電効率や安全性を低下させることなく、優れた急速充放電特性を示すリチウムイオン二次電池を得ることができるリチウムイオン二次電池用負極、および該負極を用いて、前記特性を発揮するリチウムイオン二次電池を提供することにある。   An object of the present invention is to provide a negative electrode for a lithium ion secondary battery capable of obtaining a lithium ion secondary battery exhibiting excellent rapid charge / discharge characteristics without reducing discharge capacity, initial charge / discharge efficiency and safety, and An object of the present invention is to provide a lithium ion secondary battery that exhibits the above characteristics using a negative electrode.

本発明は、活物質として黒鉛質粒子、特に球状の黒鉛化物粒子を含み、活物質層の厚み方向の黒鉛質粒子の粒子径が異なる電極をリチウムイオン二次電池用負極として用いることにより、前記問題点を解決できることを知見して到達したものである。   The present invention uses an electrode containing graphite particles, especially spherical graphitized particles as an active material, and having different particle diameters of graphite particles in the thickness direction of the active material layer as a negative electrode for a lithium ion secondary battery. It was achieved by knowing that the problem could be solved.

本発明は、活物質として黒鉛質粒子を含む活物質層と、該活物質層を保持する集電体とからなるリチウムイオン二次電池用負極であって、前記活物質層の集電体側に含まれる前記黒鉛質粒子の平均粒子径が、前記活物質層の負極表面側に含まれる前記黒鉛質粒子の平均粒子径より小さく、前記活物質層の集電体側に含まれる前記黒鉛質粒子の平均粒子径が1〜20μm、前記活物質層の負極表面側に含まれる前記黒鉛質粒子の平均粒子径が20μm超、40μm以下であり、前記活物質層の集電体側に含まれる前記黒鉛質粒子の、活物質層の黒鉛質粒子全体に対する割合が10〜30質量%であることを特徴とするリチウムイオン二次電池用負極である。 The present invention is a negative electrode for a lithium ion secondary battery comprising an active material layer containing graphite particles as an active material, and a current collector that holds the active material layer, on the current collector side of the active material layer the average particle diameter of the graphite particles that contain the rather smaller than the average particle diameter of the graphite particles contained in the negative electrode surface side of the active material layer, the graphite particles contained in the current collector side of the active material layer The graphite has an average particle size of 1 to 20 μm, the average particle size of the graphite particles contained on the negative electrode surface side of the active material layer is more than 20 μm and 40 μm or less, and the graphite contained on the current collector side of the active material layer The negative electrode for a lithium ion secondary battery is characterized in that the ratio of the solid particles to the entire graphite particles of the active material layer is 10 to 30% by mass .

本発明のリチウムイオン二次電池用負極は、前記黒鉛質粒子がメソフェーズ小球体の黒鉛化物粒子を含むことが好ましい。   In the negative electrode for a lithium ion secondary battery of the present invention, it is preferable that the graphite particles include mesophase small sphere graphitized particles.

また、本発明は、前記いずれかのリチウムイオン二次電池用負極を用いることを特徴とするリチウムイオン二次電池である。   The present invention also provides a lithium ion secondary battery using any one of the negative electrodes for lithium ion secondary batteries.

本発明のリチウムイオン二次電池用負極を用いると、放電容量および初期充放電効率を低下させることなく、優れた急速充放電特性を示すリチウムイオン二次電池を得ることができる。また本発明のリチウムイオン二次電池は、高い放電容量と高い初期充放電効率を有するとともに、優れた急速充放電特性を有するため、これを搭載する各種電子機器の小型化、高性能化に有効である。   When the negative electrode for a lithium ion secondary battery of the present invention is used, a lithium ion secondary battery exhibiting excellent rapid charge / discharge characteristics can be obtained without reducing the discharge capacity and initial charge / discharge efficiency. In addition, the lithium ion secondary battery of the present invention has a high discharge capacity, a high initial charge / discharge efficiency, and an excellent rapid charge / discharge characteristic. Therefore, it is effective for downsizing and improving the performance of various electronic devices equipped with the lithium ion secondary battery. It is.

以下に、本発明をさらに詳細に説明する。
リチウムイオン二次電池は、通常、非水電解質、負極および正極を主たる電池構成要素とし、これら要素が、例えば、電池缶内に封入されている。負極および正極はそれぞれリチウムイオンの担持体として作用する。充電時にはリチウムイオンが負極中に吸蔵され、放電時には負極からリチウムイオンが離脱する電池機構によっている。
The present invention is described in further detail below.
In general, a lithium ion secondary battery includes a nonaqueous electrolyte, a negative electrode, and a positive electrode as main battery components, and these elements are enclosed in a battery can, for example. The negative electrode and the positive electrode each act as a lithium ion carrier. The battery mechanism is such that lithium ions are occluded in the negative electrode during charging, and lithium ions are released from the negative electrode during discharging.

(負極)
本発明のリチウムイオン二次電池用負極は、活物質として黒鉛質粒子を必須成分とし、該活物質を含む活物質層と、該活物質層を保持する集電体とから構成される。特に前記黒鉛質粒子としては、メソフェーズ小球体の黒鉛化物粒子を含むものが好ましい。メソフェーズ小球体の黒鉛化物粒子以外に、天然黒鉛を加工、造粒したものや、これに樹脂やピッチ等の炭素質物を被覆したもの等も用いることができる。
(Negative electrode)
The negative electrode for a lithium ion secondary battery of the present invention comprises graphite particles as an essential component as an active material, an active material layer containing the active material, and a current collector that holds the active material layer. In particular, the graphite particles preferably include mesophase small sphere graphitized particles. In addition to graphitized particles of mesophase spherules, those obtained by processing and granulating natural graphite, and those coated with a carbonaceous material such as resin or pitch can also be used.

本発明において、前記黒鉛質粒子の形状は、特に限定されず、球状、塊状、鱗片状等のものが使用可能である。なかでも球状のものが好ましい。ここで球状とは、黒鉛質粒子の長径とそれに直交する短径の比(アスペクト比:長径/短径)が2以下のもの、特に好ましくは1.5以下のものを言う。
前記黒鉛質粒子が球状であると、負極内に適度な空隙を確保でき、電解液の浸透性を低下させることがない。その結果、急速充放電特性が向上する。また、球状粒子を用いることにより、比表面積を小さく維持しつつ、活物質の含有量を増加させることができるので、初期充放電効率を低下させることがない。
In the present invention, the shape of the graphite particles is not particularly limited, and those having a spherical shape, a block shape, a scale shape and the like can be used. Of these, spherical ones are preferred. Here, the term “spherical” refers to those in which the ratio of the major axis of the graphite particles to the minor axis orthogonal thereto (aspect ratio: major axis / minor axis) is 2 or less, particularly preferably 1.5 or less.
When the graphite particles are spherical, an appropriate gap can be secured in the negative electrode, and the permeability of the electrolytic solution is not lowered. As a result, rapid charge / discharge characteristics are improved. Moreover, since the content of the active material can be increased while maintaining the specific surface area small by using the spherical particles, the initial charge / discharge efficiency is not lowered.

メソフェーズ小球体の黒鉛化物粒子の製造方法を例示すると、石炭系または石油系ピッチ類を350〜450℃で熱処理した際に、ピッチ中に生成する光学的異方性小球体を、不活性雰囲気の流動下、350〜600℃で熱処理した後、最終的に1000℃以上、好ましくは2000〜3200℃の温度で熱処理(焼成・黒鉛化)して製造されるものである。   An example of a method for producing graphitized particles of mesophase spherules is as follows. Optically anisotropic spherules produced in pitch when heat treating coal-based or petroleum-based pitches at 350 to 450 ° C. After the heat treatment at 350 to 600 ° C. under flow, the heat treatment (firing and graphitization) is finally performed at a temperature of 1000 ° C. or higher, preferably 2000 to 3200 ° C.

本発明のリチウムイオン二次電池用負極は、活物質層のうち、集電体側に含まれる前記黒鉛質粒子の平均粒子径が、活物質層の反集電体側つまり負極表面側に含まれる前記黒鉛質粒子の平均粒子径より小さいことが必要である。すなわち、活物質層のうち集電体側に、負極表面側に比べて粒径の小さな粒子を配することで、黒鉛質粒子と集電体間の接点増加により密着性が高められ、電子伝導性が向上し、急速充放電特性が向上する。また、負極表面側の粒子は、集電体側の粒子に比べて粒子径が大きいため比表面積が小さく、電解液との接触面積が小さくなり、電解液の分解反応に伴う初期充放電効率の低下や安全性の低下を抑えることができる。さらに、黒鉛質粒子そのものには、その性状を変化させるような特別な処理を何ら施さないため、黒鉛質に由来する高い放電容量を損なうことがない。ここで、集電体側とは、活物質層の集電体と接する面から少なくとも10μmの範囲、負極表面側とは、負極表面から少なくとも10μmの範囲とすることが好ましい。この範囲に含まれる黒鉛質粒子の平均粒子径は走査型電子顕微鏡を用いた活物質層の断面観察によって比較することができる。   In the negative electrode for a lithium ion secondary battery of the present invention, the average particle size of the graphite particles contained in the current collector side of the active material layer is included in the anti-current collector side of the active material layer, that is, the negative electrode surface side. It is necessary to be smaller than the average particle size of the graphite particles. That is, by arranging particles having a smaller particle size on the current collector side of the active material layer than on the negative electrode surface side, the adhesion is increased by increasing the contact between the graphite particles and the current collector, and the electron conductivity And quick charge / discharge characteristics are improved. In addition, the negative electrode surface side particles have a larger specific particle size than the current collector side particles, so the specific surface area is small, the contact area with the electrolyte solution is small, and the initial charge / discharge efficiency is reduced due to the decomposition reaction of the electrolyte solution. And a decrease in safety can be suppressed. Further, since the graphite particles themselves are not subjected to any special treatment that changes their properties, the high discharge capacity derived from the graphite is not impaired. Here, the current collector side is preferably in the range of at least 10 μm from the surface of the active material layer in contact with the current collector, and the negative electrode surface side is preferably in the range of at least 10 μm from the negative electrode surface. The average particle diameter of the graphite particles included in this range can be compared by observing the cross section of the active material layer using a scanning electron microscope.

前述した本発明のリチウムイオン二次電池用負極は、次のようにして製造することができる。すなわち、集電体の片面または両面に、平均粒子径1〜20μm、特に好ましくは1〜15μmの黒鉛質粒子に、後述する結合剤および溶媒を加えた負極合剤ペーストを塗布した後、さらに重ねて平均粒子径20μm超40μm以下、特に好ましくは20μm超35μm以下の黒鉛質粒子を含む負極合剤ペーストを塗布し、乾燥、加圧した後、所定の大きさに成形する。 The negative electrode for a lithium ion secondary battery of the present invention described above can be produced as follows. That is, after applying a negative electrode mixture paste in which a binder and a solvent described later are added to graphite particles having an average particle diameter of 1 to 20 μm, particularly preferably 1 to 15 μm, on one or both surfaces of the current collector, the average particle diameter superimposed 20μm greater, 40 [mu] m or less, particularly preferably by applying a negative electrode mixture paste containing 20μm greater, 35 [mu] m below graphite particles, drying, after pressurizing, molded into a predetermined size.

集電体の片面または両面に塗布する黒鉛質粒子の平均粒子径が1μmより小さいと、比表面積が増大して後述する負極合剤ペーストを作製する際、多量の溶媒が必要となり、塗工性が著しく低下することがある。また、初期充放電効率が低下し、安全性の面でも不利である。平均粒子径が20μmを超えると、集電体との接点が充分に確保されにくく、急速充放電特性が低下することがある。
また、さらに重ねて塗布する黒鉛質粒子の平均粒子径が20μm未満になると、電解液の浸透が阻害され、急速充放電効率が低下することがある。また、この平均粒子径が40μm超になると、後述する負極合剤ペーストを作製した際、沈降しやすい粒子が増え、粒子が均一に分散した負極を作製することが困難になる虞がある。この製造方法において、平均粒子径とは、レーザー回折法により測定した粒度分布の累積度数が体積百分率で50%となる粒子径を言う。
When the average particle diameter of the graphite particles applied to one or both sides of the current collector is smaller than 1 μm, the specific surface area increases, and a large amount of solvent is required when preparing the negative electrode mixture paste described later. May be significantly reduced. Further, the initial charge / discharge efficiency is lowered, which is disadvantageous in terms of safety. When the average particle diameter exceeds 20 μm, it is difficult to ensure sufficient contact with the current collector, and the rapid charge / discharge characteristics may be deteriorated.
Further, when the average particle diameter of the graphite particles to be further applied is less than 20 μm, the penetration of the electrolytic solution is hindered, and the rapid charge / discharge efficiency may be lowered. Moreover, when this average particle diameter exceeds 40 micrometers, when producing the negative mix paste mentioned later, there exists a possibility that the particle | grains which are easy to settle increase and it may become difficult to produce the negative electrode with which the particle | grains were disperse | distributed uniformly. In this production method, the average particle diameter means a particle diameter at which the cumulative frequency of the particle size distribution measured by the laser diffraction method is 50% by volume.

本発明において、活物質層全体の厚みは50〜150μmとすることが好ましい。また、前述のようにして、平均粒子径の小さい黒鉛質粒子を含む負極合剤ペーストを集電体上に塗布し、乾燥して形成される活物質層は5〜50μm、そして平均粒子径の大きい黒鉛質粒子を含む負極合剤ペーストをさらに重ねて塗布し形成される活物質層は20〜100μmとするように塗布することが好ましい。さらにこの二重構造の該二層の中間に傾斜的な粒子径分布を有してもよい。   In the present invention, the thickness of the entire active material layer is preferably 50 to 150 μm. In addition, as described above, the active material layer formed by applying a negative electrode mixture paste containing graphite particles having a small average particle diameter on a current collector and drying is 5 to 50 μm, and the average particle diameter is The active material layer formed by further applying a negative electrode mixture paste containing large graphite particles is preferably applied so as to have a thickness of 20 to 100 μm. Further, it may have a gradient particle size distribution between the two layers of this double structure.

さらに、前述したリチウムイオン二次電池用負極の製造法において、集電体上に塗布する平均粒子径の小さい黒鉛質粒子の活物質層の黒鉛質粒子全体に対する割合が、10〜30質量%となるように製造するこの割合が10質量%未満であると黒鉛質粒子と集電体との接点が充分に確保されにくく、また30質量%を超えると電解液の浸透が阻害され、いずれも急速充放電効率の低下につながる。 Furthermore, in the above-described method for producing a negative electrode for a lithium ion secondary battery, the ratio of the active material layer of the graphite particles having a small average particle diameter applied on the current collector to the entire graphite particles is 10 to 30% by mass. To be manufactured . If this ratio is less than 10% by mass, it is difficult to ensure a sufficient contact between the graphite particles and the current collector, and if it exceeds 30% by mass, the penetration of the electrolytic solution is hindered. Leads to.

負極の製造は、通常の成形方法に準じて行うことができるが、化学的、電気化学的に安定な負極を得ることができる方法であれば何ら制限されない。
また、負極の製造時には、前記黒鉛質粒子に結合剤を加えた負極合剤を用いることができる。結合剤としては、電解質に対して化学的安定性、電気化学的安定性を有するものを用いるのが好ましく、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリビニルアルコール、さらにはカルボキシメチルセルロースなどが用いられる。これらを併用することもできる。結合剤は通常、負極合剤の全量中の1〜20質量%程度の量で用いられるのが好ましい。
The production of the negative electrode can be performed according to a normal molding method, but is not limited as long as it is a method capable of obtaining a chemically and electrochemically stable negative electrode.
Moreover, the negative electrode mixture which added the binder to the said graphite particle can be used at the time of manufacture of a negative electrode. As the binder, those having chemical stability and electrochemical stability with respect to the electrolyte are preferably used. For example, fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene, polyvinyl alcohol, For example, carboxymethylcellulose is used. These can also be used together. In general, the binder is preferably used in an amount of about 1 to 20% by mass in the total amount of the negative electrode mixture.

負極の製造の具体例として、活物質である前記黒鉛質粒子を結合剤と混合することによって、負極合剤を調製し、この負極合剤を通常、集電体の片面、または両面に塗布することで、活物質層を形成し、負極とすることができる。
負極の製造には、負極製造用の公知の溶媒を用いることができる。すなわち、負極合剤に溶媒を加え負極合剤ペーストとし、これを集電体に塗布、乾燥すれば、活物質層が均一かつ強固に集電体に接着される。より具体的には、例えば、前記黒鉛質粒子とポリテトラフルオロエチレン等のフッ素系樹脂粉末とを、イソプロピルアルコール等の溶媒中で混合、混練した後、得られた負極合剤ペーストを塗布し、乾燥すればよい。
As a specific example of manufacturing a negative electrode, a negative electrode mixture is prepared by mixing the graphite particles as an active material with a binder, and this negative electrode mixture is usually applied to one or both sides of a current collector. Thus, an active material layer can be formed to form a negative electrode.
For production of the negative electrode, a known solvent for producing the negative electrode can be used. That is, when a solvent is added to the negative electrode mixture to form a negative electrode mixture paste, which is applied to the current collector and dried, the active material layer is uniformly and firmly adhered to the current collector. More specifically, for example, after mixing and kneading the graphite particles and fluorine-based resin powder such as polytetrafluoroethylene in a solvent such as isopropyl alcohol, the obtained negative electrode mixture paste is applied, What is necessary is just to dry.

前記黒鉛質粒子と、ポリフッ化ビニリデン等のフッ素系樹脂粉末またはカルボキシルメチルセルロース等の水溶性結合剤とを、N−メチルピロリドン、ジメチルホルムアルデヒドまたは水、アルコール等の溶媒と混合して、負極合剤ペーストとし、これを塗布することもできる。   A negative electrode mixture paste obtained by mixing the graphite particles with a fluorine-based resin powder such as polyvinylidene fluoride or a water-soluble binder such as carboxymethyl cellulose with a solvent such as N-methylpyrrolidone, dimethylformaldehyde or water, alcohol, etc. This can also be applied.

また、前記黒鉛質粒子と、ポリエチレン、ポリビニルアルコールなどの樹脂粉末とを乾式混合し、金型内でホットプレス成形することもできる。
活物質層を形成した後、プレス等の加圧を行うと、活物質層と集電体との接着強度をさらに高めることができる。さらに、加圧後、所望する負極形状に成形することによって、本発明の負極を得ることができる。
Also, the graphite particles and resin powder such as polyethylene and polyvinyl alcohol can be dry mixed and hot press molded in a mold.
When pressurization such as pressing is performed after forming the active material layer, the adhesive strength between the active material layer and the current collector can be further increased. Furthermore, the negative electrode of the present invention can be obtained by molding into a desired negative electrode shape after pressurization.

負極に用いる集電体の形状としては、特に限定されないが、箔状またはメッシュ、エキスパンドメタル等の網状のもの等が挙げられる。集電体の材質としては、銅、ステンレス、ニッケル等を挙げることができる。集電体の厚みは、箔状の場合、5〜20μm程度が好適である。   The shape of the current collector used for the negative electrode is not particularly limited, and examples thereof include a foil shape or a net shape such as a mesh or an expanded metal. Examples of the material for the current collector include copper, stainless steel, and nickel. In the case of a foil shape, the thickness of the current collector is preferably about 5 to 20 μm.

また、本発明は、前記リチウムイオン二次電池用負極を用いて形成されるリチウムイオン二次電池でもある。
本発明のリチウムイオン二次電池は、前記負極を用いること以外は特に限定されず、他の電池構成要素については一般的なリチウムイオン二次電池の要素に準ずる。
Moreover, this invention is also a lithium ion secondary battery formed using the said negative electrode for lithium ion secondary batteries.
The lithium ion secondary battery of the present invention is not particularly limited except that the negative electrode is used, and other battery components conform to the elements of a general lithium ion secondary battery.

(正極)
本発明のリチウムイオン二次電池に使用される正極材(正極活物質)としては、リチウム化合物が用いられるが、十分量のリチウムを吸蔵・離脱し得るものを選択するのが好ましい。そのようなリチウム化合物は、リチウム含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物およびそのリチウム化合物などのリチウム含有化合物、一般式M1 x 2 6 8-y (式中Xは0≦X≦4の数、Yは0≦Y≦1の数、M1 、M2 は遷移金属などの金属を表す)で表されるシェブレル相化合物、活性炭、活性炭素繊維などである。バナジウム酸化物はV2 5 、V6 13、V2 4 、V3 8 で示されるものなどである。
(Positive electrode)
As the positive electrode material (positive electrode active material) used for the lithium ion secondary battery of the present invention, a lithium compound is used, but it is preferable to select a material that can occlude and release a sufficient amount of lithium. Such lithium compounds include lithium-containing transition metal oxides, transition metal chalcogenides, vanadium oxides and lithium-containing compounds such as lithium compounds thereof, general formula M 1 x M 2 O 6 S 8-y (where X is A number of 0 ≦ X ≦ 4, Y is a number of 0 ≦ Y ≦ 1, and M 1 and M 2 represent a metal such as a transition metal), activated carbon, activated carbon fiber, and the like. Examples of the vanadium oxide include those represented by V 2 O 5 , V 6 O 13 , V 2 O 4 , and V 3 O 8 .

リチウム含有遷移金属酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶した複合酸化物であってもよい。複合酸化物は単独で使用しても、2種類以上を組合わせて使用してもよい。リチウム含有遷移金属酸化物は、具体的には、LiM1 1-x2 x 2 (式中Xは0≦X≦1の数であり、M1 、M2 は少なくとも一種の遷移金属元素である)、またはLiM1 2-y2 y 4 (式中Yは0≦Y≦1の数であり、M1 、M2 は少なくとも一種の遷移金属元素である)で示される。式中、M1 、M2 で示される遷移金属元素は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどであり、好ましい具体例はLiCoO2 、LiNiO2 、LiMnO2 、LiNi0.9 Co0.1 2 、LiNi0.5 Mn0.5 2 などである。 The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a composite oxide in which lithium and two or more transition metals are dissolved. The composite oxide may be used alone or in combination of two or more. Specifically, the lithium-containing transition metal oxide is LiM 1 1-x M 2 x O 2 (wherein X is a number satisfying 0 ≦ X ≦ 1, and M 1 and M 2 are at least one kind of transition metal element) Or LiM 1 2-y M 2 y O 4 (wherein Y is a number satisfying 0 ≦ Y ≦ 1, and M 1 and M 2 are at least one transition metal element). In the formula, transition metal elements represented by M 1 and M 2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn and the like, and preferred specific examples are LiCoO 2 and LiNiO 2. LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Mn 0.5 O 2 and the like.

また、リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、塩類または水酸化物を出発原料とし、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素含有雰囲気下600〜1000℃の温度で焼成することにより得ることができる。   The lithium-containing transition metal oxide is, for example, lithium, a transition metal oxide, salt or hydroxide as a starting material, and these starting materials are mixed according to the composition of the desired metal oxide, and an oxygen-containing atmosphere It can be obtained by firing at a temperature of 600 to 1000 ° C. below.

本発明のリチウムイオン二次電池においては、正極活物質は上記化合物を単独で使用しても2種類以上併用してもよい。また、正極中に、炭酸リチウム等の炭酸塩を添加することもできる。   In the lithium ion secondary battery of the present invention, the positive electrode active material may be used alone or in combination of two or more. Moreover, carbonates, such as lithium carbonate, can also be added in a positive electrode.

正極は、例えば、上記化合物と結合剤および導電剤よりなる正極合剤を集電体の片面または両面に塗布することで正極合剤層を形成することにより得られる。結合剤としては、負極で例示したものがいずれも使用可能である。導電剤としては、黒鉛やカーボンブラックなどの炭素材料が用いられる。   The positive electrode can be obtained, for example, by forming a positive electrode mixture layer by applying a positive electrode mixture comprising the above compound, a binder and a conductive agent to one or both sides of a current collector. As the binder, any of those exemplified for the negative electrode can be used. As the conductive agent, a carbon material such as graphite or carbon black is used.

正極も、負極と同様に、正極合剤を溶媒中に分散させることで正極合剤ペーストにし、この正極合剤ペーストを集電体に塗布・乾燥することによって正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス等の加圧を行ってもよい。これにより正極合剤層が均一かつ強固に集電体に接着される。   Similarly to the negative electrode, the positive electrode mixture may be formed into a positive electrode mixture paste by dispersing the positive electrode mixture in a solvent, and this positive electrode mixture paste may be applied to a current collector and dried to form a positive electrode mixture layer. In addition, after forming the positive electrode mixture layer, pressurization such as pressing may be further performed. Thereby, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.

集電体の形状は特に限定されず、箔状、またはメッシュ、エキスパンダブルメタル等の網状のものが用いられる。集電体の材質は、例えば、アルミニウム箔、ステンレス箔、ニッケル箔等である。その厚さは10〜40μmであるのが好ましい。   The shape of the current collector is not particularly limited, and a foil shape or a net shape such as a mesh or an expandable metal is used. Examples of the material of the current collector include aluminum foil, stainless steel foil, and nickel foil. The thickness is preferably 10 to 40 μm.

(電解質)
本発明のリチウムイオン二次電池に用いられる電解質は、溶媒と電解質塩からなる有機系電解質や、高分子化合物と電解質塩とからなる高分子電解質である。電解質塩としては、例えば、LiPF6 、LiBF4 、LiAsF6 、LiClO4 、LiB(C6 5 )、LiCl、LiBr、LiCF3 SO3 、LiCH3 SO3 、LiN(CF3 SO2 2 、LiC(CF3 SO2 3 、LiN(CF3 CH2 OSO2 2 、LiN(CF3 CF3 OSO2 2 ,LiN(HCF2 CF2 CH2 OSO2 2 ,LiN((CF3 2 CHOSO2 2 ,LiB[(C6 3 (CF3 2 4 ,LiN(SO2 CF3 2 、LiC(SO2 CF3 3 、LiAlCl4 、LiSiF6 などのリチウム塩を用いることができる。特にLiPF6 およびLiBF4 が酸化安定性の点から好ましい。有機系電解質質中の電解質塩濃度は0.1〜5mol/l であるのが好ましく、0.5〜3.0mol/l であるのがより好ましい。
(Electrolytes)
The electrolyte used in the lithium ion secondary battery of the present invention is an organic electrolyte composed of a solvent and an electrolyte salt, or a polymer electrolyte composed of a polymer compound and an electrolyte salt. As the electrolyte salt, e.g., LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiB (C 6 H 5), LiCl, LiBr, LiCF 3 SO 3, LiCH 3 SO 3, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 3 OSO 2 ) 2 , LiN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LiN ((CF 3 ) 2 CHOSO 2 ) 2 , LiB [(C 6 H 3 (CF 3 ) 2 ] 4 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 and other lithium salts are used. In particular, LiPF 6 and LiBF 4 are preferred from the viewpoint of oxidation stability, and the electrolyte salt concentration in the organic electrolyte is preferably 0.1 to 5 mol / l, and preferably 0.5 to 3.0 mol / l. l better to be Arbitrariness.

有機系電解質質の溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1,1−または1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1,3−ジオキソフラン、4−メチルー1,3−ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリン、エチレングリコール、サルファイト、ジメチルサルファイト等の非プロトン性有機溶媒を用いることができる。   Examples of the organic electrolyte solvent include carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, and 2-methyltetrahydrofuran. , Γ-butyrolactone, 1,3-dioxofuran, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, nitriles such as acetonitrile, chloronitrile and propionitrile, boric acid Trimethyl, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, benzo bromide Le, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazoline, ethylene glycol, can be used sulfite, aprotic organic solvents such as dimethyl sulfite.

非水電解質を高分子固体電解質、高分子ゲル電解質などの高分子電解質とする場合には、マトリクスとして可塑剤(非水電解液)でゲル化された高分子を用いる。該マトリクスを構成する高分子化合物としては、ポリ(エチレンオキサイド)やその架橋体などのエーテル系高分子化合物、ポリメタクリレートなどのメタクリレート系高分子化合物、ポリアクリレートなどのアクリレート系高分子化合物、ポリビニリデンフルオライド(PVDF)やビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物が好ましい。これらを混合して使用することもできる。酸化還元安定性などの観点から、PVDFやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物が特に好ましい。   When the nonaqueous electrolyte is a polymer electrolyte such as a polymer solid electrolyte or a polymer gel electrolyte, a polymer gelled with a plasticizer (nonaqueous electrolyte) is used as a matrix. Examples of the polymer compound constituting the matrix include ether polymer compounds such as poly (ethylene oxide) and cross-linked products thereof, methacrylate polymer compounds such as polymethacrylate, acrylate polymer compounds such as polyacrylate, and polyvinylidene. Fluorine polymer compounds such as fluoride (PVDF) and vinylidene fluoride-hexafluoropropylene copolymer are preferred. These can also be mixed and used. From the viewpoint of oxidation-reduction stability, a fluorine-based polymer compound such as PVDF or vinylidene fluoride-hexafluoropropylene copolymer is particularly preferable.

前記高分子固体電解質または高分子ゲル電解質には可塑剤が配合されるが、可塑剤としては、前記の電解質塩や非水溶媒が使用可能である。高分子ゲル電解質の場合、非水電解液中の可塑剤である電解質塩の濃度は0.1〜5mol/l であるのが好ましく、0.5〜2.0mol/l であるのがより好ましい。   A plasticizer is blended in the polymer solid electrolyte or the polymer gel electrolyte. As the plasticizer, the electrolyte salt and the non-aqueous solvent can be used. In the case of a polymer gel electrolyte, the concentration of the electrolyte salt that is a plasticizer in the non-aqueous electrolyte is preferably 0.1 to 5 mol / l, more preferably 0.5 to 2.0 mol / l. .

固体電解質の製造方法は特に制限されないが、例えば、マトリクスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して高分子化合物を溶融する方法、有機溶剤に高分子化合物、リチウム塩および非水溶媒(可塑剤)を溶解させた後、有機溶剤を蒸発させる方法、および高分子電解質の原料となる重合性モノマー、リチウム塩および非水溶媒(可塑剤)を混合し、混合物に紫外線、電子線または分子線などを照射して重合させ高分子電解質を製造する方法などを挙げることができる。
また、前記固体電解質中の非水溶媒(可塑剤)の添加率は10〜90質量%が好ましく、30〜80質量%がより好ましい。10質量%未満であると導電率が低くなり、90質量%を超えると機械的強度が弱くなり、成膜しにくくなる。
The method for producing the solid electrolyte is not particularly limited. For example, the polymer compound constituting the matrix, the lithium salt and the nonaqueous solvent (plasticizer) are mixed and heated to melt the polymer compound. Method of evaporating organic solvent after dissolving molecular compound, lithium salt and non-aqueous solvent (plasticizer), and mixing of polymerizable monomer, lithium salt and non-aqueous solvent (plasticizer) as raw material for polymer electrolyte And a method of producing a polymer electrolyte by polymerizing the mixture by irradiating the mixture with ultraviolet rays, electron beams or molecular beams.
Moreover, 10-90 mass% is preferable and, as for the addition rate of the nonaqueous solvent (plasticizer) in the said solid electrolyte, 30-80 mass% is more preferable. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be weak and film formation will be difficult.

(セパレータ)
本発明のリチウムイオン二次電池においては、セパレータを使用することができる。セパレータの材質は特に限定されないが、織布、不織布、合成樹脂製微多孔膜などが例示される。合成樹脂製微多孔膜が好適であるが、中でもポリオレフィン系微多孔膜が、膜厚、膜強度、膜抵抗などの点から好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜などである。
(Separator)
In the lithium ion secondary battery of the present invention, a separator can be used. Although the material of a separator is not specifically limited, A woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. are illustrated. A synthetic resin microporous membrane is preferred, and among these, a polyolefin-based microporous membrane is preferred from the standpoints of film thickness, membrane strength, membrane resistance, and the like. Specifically, it is a microporous film made of polyethylene and polypropylene, or a microporous film in which these are combined.

本発明のリチウムイオン二次電池においては、黒鉛のエッジ面と呼ばれる層状構造の端面が露出していないメソフェーズ小球体を負極用黒鉛質材料として用いた場合には、ゲル電解質を用いることができる。
ゲル電解質二次電池は、前記黒鉛質粒子を含有する負極と、正極およびゲル電解質を、例えば、負極、ゲル電解質、正極の順で積層し、電池の外装材内に収容することで構成される。さらに負極と正極の外側にゲル電解質を配するようにしてもよい。特に本発明の負極に用いるゲル電解質二次電池では、ゲル電解質にプロピレンカーボネートを含有することができる。一般にプロピレンカーボネートは黒鉛に対して電気的分解反応が激しいが、本発明の負極に対しては分解反応性が低い。
In the lithium ion secondary battery of the present invention, a gel electrolyte can be used when mesophase spherules that are not exposed at the end face of the layered structure called the graphite edge face are used as the negative electrode graphite material.
The gel electrolyte secondary battery is configured by laminating the negative electrode containing the graphite particles, the positive electrode, and the gel electrolyte in the order of, for example, the negative electrode, the gel electrolyte, and the positive electrode, and accommodating them in the battery exterior material. . Further, a gel electrolyte may be disposed outside the negative electrode and the positive electrode. In particular, in the gel electrolyte secondary battery used for the negative electrode of the present invention, the gel electrolyte can contain propylene carbonate. In general, propylene carbonate has a strong electrolysis reaction with respect to graphite, but has a low decomposition reactivity with respect to the negative electrode of the present invention.

さらに、本発明のリチウムイオン二次電池の構造は特に制限されず、その形状、形態について特に限定されるものではなく、用途、搭載機器、要求される充放電容量等に応じて、円筒型、角型、コイン型、ボタン型のいずれの形状または形態のものでもよい。より安全性の高い密閉型非水電解質電池を得るためには、過充電等の異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものであるのが好ましい。高分子固体電解質電池や高分子ゲル電解質電池の場合には、ラミネートフィルムに封入した構造とすることもできる。   Furthermore, the structure of the lithium ion secondary battery of the present invention is not particularly limited, and is not particularly limited with respect to its shape and form, depending on the application, mounted equipment, required charge / discharge capacity, etc., cylindrical type, Any shape or form of a square shape, a coin shape, or a button shape may be used. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to provide means for detecting an increase in the internal pressure of the battery and shutting off the current when an abnormality such as overcharge occurs. In the case of a polymer solid electrolyte battery or a polymer gel electrolyte battery, a structure enclosed in a laminate film can also be used.

以下に、本発明を実施例および比較例によって具体的に説明する。なお実施例および比較例は黒鉛質粒子を含有する作用電極(負極)と、リチウム箔よりなる対極(正極)によって電池系が構成された単極評価用の評価電池での実験である。実電池は、本発明の目的に基づき、公知の方法に準じて製造することができる。
なお、用いた黒鉛質粒子の平均粒子径は、前述したように、レーザー回折式粒度分布計により測定した粒度分布の累積度数が体積百分率で50%となる粒子径とした。また、用いた黒鉛質粒子のアスペクト比は黒鉛質粒子の300倍の走査型電子顕微鏡写真をイメージアナライザー(東洋紡績株式会社製)を用いて画像処理し、任意の50個の黒鉛質粒子のアスペクト比(長径とその直交方向の短径の比)の平均値とした。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In addition, an Example and a comparative example are experiment in the evaluation battery for single electrode evaluation by which the battery system was comprised by the working electrode (negative electrode) containing a graphite particle, and the counter electrode (positive electrode) which consists of lithium foil. A real battery can be manufactured according to a well-known method based on the objective of this invention.
In addition, the average particle diameter of the used graphite particle | grains was made into the particle diameter from which the cumulative frequency of the particle size distribution measured with the laser diffraction type particle size distribution meter becomes 50% by volume as mentioned above. In addition, the aspect ratio of the graphite particles used was 300 times that of the graphite particles and image processing was performed using an image analyzer (manufactured by Toyobo Co., Ltd.). The average value of the ratio (ratio of the major axis to the minor axis in the orthogonal direction) was used.

(実施例1)
(作用電極(負極)の作製)
メソフェーズ小球体(JFEケミカル株式会社製、KMFC)を3000℃に加熱し、黒鉛化して黒鉛質粒子粉末を得た。該粉末を分級して、粒度調整し、アスペクト比が1.1であり、異なる平均粒子径(10μm、23μm)を有する2種の黒鉛質粒子粉末を得た。得られたそれぞれの黒鉛質粒子粉末に、結合剤の含有率が4質量%となるように結合剤としてポリフッ化ビニリデンを混合し、これに、さらに溶媒N−メチルピロリドンを加え、ホモミキサーを用いて、回転数2000rpm で30分間攪拌して、有機溶剤系負極合剤ペースト2種を調製した。
(Example 1)
(Production of working electrode (negative electrode))
Mesophase spherules (manufactured by JFE Chemical Co., Ltd., KMFC) were heated to 3000 ° C. and graphitized to obtain graphite particle powder. The powder was classified and the particle size was adjusted to obtain two types of graphite particles having an aspect ratio of 1.1 and different average particle sizes (10 μm and 23 μm). Polyvinylidene fluoride was mixed as a binder so that the content of the binder was 4% by mass to each obtained graphite particle powder, and a solvent N-methylpyrrolidone was further added thereto, and a homomixer was used. Then, two kinds of organic solvent-based negative electrode mixture pastes were prepared by stirring for 30 minutes at a rotational speed of 2000 rpm.

平均粒子径が10μmの黒鉛質粒子を含む負極合剤ペーストを、集電体(銅箔)上に塗布し、ついで、平均粒子径が23μmの黒鉛質粒子を含む負極合剤ペーストをさらに塗布した。その後、真空中90℃で溶媒を揮発させ、乾燥し、負極合剤層を形成した。その後、ハンドプレスによって加圧し、銅箔と活物質層を直径15.5mmの円柱状に打抜いて、集電体と、該集電体に保持された厚み80μmの活物質層からなる作用電極(負極)を作製した。平均粒子径が10μmの黒鉛質粒子を含む活物質層(集電体側)の黒鉛質粒子の、活物質層全体の黒鉛質粒子に対する割合は15質量%となるようした。
加圧後の活物質層の断面を走査型電子顕微鏡観察(倍率500倍)により、活物質層全体の膜厚と、黒鉛質粒子の最大粒子径を集電体側10μmまでと、負極表面側50μmまでについてそれぞれ測定した。黒鉛質粒子の最大粒子径の10視野の平均値を平均粒子径とした。
A negative electrode mixture paste containing graphite particles having an average particle diameter of 10 μm was applied on a current collector (copper foil), and then a negative electrode mixture paste containing graphite particles having an average particle diameter of 23 μm was further applied. . Thereafter, the solvent was volatilized at 90 ° C. in vacuum and dried to form a negative electrode mixture layer. Thereafter, pressure is applied by a hand press, a copper foil and an active material layer are punched into a cylindrical shape having a diameter of 15.5 mm, and a working electrode comprising a current collector and an active material layer having a thickness of 80 μm held by the current collector (Negative electrode) was produced. The ratio of the graphite particles in the active material layer (current collector side) containing graphite particles having an average particle diameter of 10 μm to the graphite particles in the entire active material layer was set to 15% by mass.
By observing the cross section of the active material layer after pressurization with a scanning electron microscope (magnification 500 times), the thickness of the entire active material layer and the maximum particle size of the graphite particles are up to 10 μm on the current collector side and 50 μm on the negative electrode surface side. Each was measured. The average value of 10 visual fields of the maximum particle diameter of the graphite particles was defined as the average particle diameter.

(対極(正極)の作製)
リチウム金属箔をニッケルネットに押し付け、直径15.5mmの円形状に打抜いて、ニッケルネットからなる集電体と該集電体に密着したリチウム金属箔からなる対極を作製した。
(Preparation of counter electrode (positive electrode))
The lithium metal foil was pressed against a nickel net and punched into a circular shape with a diameter of 15.5 mm to produce a current collector made of nickel net and a counter electrode made of lithium metal foil in close contact with the current collector.

(電解質、セパレータ)
エチレンカーボネート33vol%とメチルエチルカーボネート67vol%を混合してなる混合溶媒に、LiPF6 を1mol/dm3 となる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔体に含浸させ、電解液が含浸したセパレータを作製した。
(Electrolyte, separator)
LiPF 6 was dissolved at a concentration of 1 mol / dm 3 in a mixed solvent obtained by mixing 33 vol% ethylene carbonate and 67 vol% methyl ethyl carbonate to prepare a non-aqueous electrolyte. The obtained nonaqueous electrolytic solution was impregnated into a polypropylene porous body to produce a separator impregnated with the electrolytic solution.

(評価電池)
評価電池として、図1に示すボタン型二次電池を作製した。
外装カップ1と外装缶3とは、その周縁部において、絶縁ガスケット6を介してかしめられた密閉構造を有する。その内部に外装缶3の側面から順に、ニッケルネットからなる集電体7aおよびリチウム箔4よりなる円盤状の対極(正極)9、電解液が含浸したセパレータ5、活物質層2および銅箔からなる集電材7bからなる円盤状の作用電極(負極)8が積層されている。
(Evaluation battery)
A button-type secondary battery shown in FIG. 1 was produced as an evaluation battery.
The exterior cup 1 and the exterior can 3 have a sealed structure that is caulked with an insulating gasket 6 at the peripheral edge thereof. From the side of the outer can 3, the disc-shaped counter electrode (positive electrode) 9 made of nickel net, the lithium foil 4, the separator 5 impregnated with the electrolyte, the active material layer 2, and the copper foil A disc-shaped working electrode (negative electrode) 8 made of a current collector 7b is laminated.

評価電池は 電解液を含浸させたセパレータ5を、作用電極(負極)8と対極(正極)9との間に挟んで積層した後、作用電極(負極)8を外装カップ1内に、対極(正極)9を外装缶3内に収容して、外装カップ1と外装缶3とを合わせ、外装カップ1と外装缶3の周縁部を絶縁ガスケット6を介してかしめ密閉して作製した。
評価電池は、実電池において、負極用活物質として使用可能な黒鉛質粒子を含有する作用電極(負極)8と、対極(正極)9とから構成される電池である。
In the evaluation battery, the separator 5 impregnated with the electrolytic solution was laminated between the working electrode (negative electrode) 8 and the counter electrode (positive electrode) 9, and then the working electrode (negative electrode) 8 was placed in the exterior cup 1 with the counter electrode ( The positive electrode) 9 was accommodated in the outer can 3, the outer cup 1 and the outer can 3 were combined, and the outer cup 1 and the outer can 3 were caulked and sealed with an insulating gasket 6.
The evaluation battery is a battery composed of a working electrode (negative electrode) 8 containing graphite particles that can be used as a negative electrode active material and a counter electrode (positive electrode) 9 in an actual battery.

(充放電試験)
評価電池について、25℃の温度下で下記のような充放電試験を行った。
0.9mAの電流値で回路電圧が0mVに達するまで定電流充電を行い、回路電圧が0mVに達した時点で定電圧充電に切替え、さらに電流値が20μAになるまで充電を続けた。その間の通電量から充電容量を求めた。その後、120分間休止した。次に、0.9mAの電流値で回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。これを第1サイクルとした。次式から初期充放電効率を計算した。なお、この試験では、リチウムイオンを黒鉛質粒子へ吸蔵する過程を充電、離脱する過程を放電とした。
(Charge / discharge test)
The evaluation battery was subjected to the following charge / discharge test at a temperature of 25 ° C.
The constant current charging was performed until the circuit voltage reached 0 mV at a current value of 0.9 mA. When the circuit voltage reached 0 mV, switching was made to constant voltage charging, and the charging was continued until the current value reached 20 μA. The charging capacity was determined from the amount of electricity applied during that time. Then, it rested for 120 minutes. Next, constant current discharge was performed until the circuit voltage reached 1.5 V at a current value of 0.9 mA, and the discharge capacity was determined from the amount of current applied during this period. This was the first cycle. The initial charge / discharge efficiency was calculated from the following equation. In this test, the process of occluding lithium ions in the graphite particles was charged and the process of detaching was regarded as discharge.

初期充放電効率(%)=(第1サイクルの放電容量/第1サイクルの充電容量)×
100
ここで、放電容量の100%を1時間で充電または放電する充放電レートを1Cと呼ぶことにする。すなわち、放電容量の100%を充電または放電するのに10時間かければ0.1Cであり、30分かければ2Cである。
0.5Cのレートで充電を行い、次式から急速充電効率を計算した。
急速充電効率(%)=(0.5Cでの定電流充電容量/第1サイクルの放電容量)× 100
また、1.5Cのレートで放電を行い、次式から急速放電効率を計算した。
急速放電効率(%)=(1.5Cでの定電流放電容量/第1サイクルの放電容量)× 100
電池特性(放電容量、初期充放電効率、急速充電効率および急速放電効率)についての評価結果を表1に示した。
Initial charge / discharge efficiency (%) = (first cycle discharge capacity / first cycle charge capacity) ×
100
Here, the charge / discharge rate at which 100% of the discharge capacity is charged or discharged in one hour is referred to as 1C. That is, 0.1 C if it takes 10 hours to charge or discharge 100% of the discharge capacity, and 2 C if it takes 30 minutes.
Charging was performed at a rate of 0.5 C, and quick charging efficiency was calculated from the following equation.
Rapid charge efficiency (%) = (constant current charge capacity at 0.5 C / discharge capacity of the first cycle) × 100
Moreover, discharge was performed at a rate of 1.5 C, and the rapid discharge efficiency was calculated from the following equation.
Rapid discharge efficiency (%) = (constant current discharge capacity at 1.5 C / first cycle discharge capacity) × 100
Table 1 shows the evaluation results for battery characteristics (discharge capacity, initial charge / discharge efficiency, rapid charge efficiency, and rapid discharge efficiency).

(実施例2、3、比較例3、4
実施例1において、平均粒子径が小さい黒鉛質粒子を含む負極合剤ペーストの黒鉛質粒子の平均粒子径、平均粒子径が大きい黒鉛質粒子を含む負極合剤ペーストの黒鉛質粒子の平均粒子径、および平均粒子径が小さい黒鉛質粒子を含む負極合剤ペーストの黒鉛質粒子の黒鉛質粒子全体に対する割合を表1に示すように変更する以外は、実施例1と同様に、負極合剤ペーストを調製し、負極およびリチウムイオン二次電池を作製した。これに対する電池特性についての評価結果を表1に示した。
(Examples 2 and 3, Comparative Examples 3 and 4 )
In Example 1, the average particle diameter of the graphite particles of the negative electrode mixture paste containing graphite particles having a small average particle diameter, the average particle diameter of the graphite particles of the negative electrode mixture paste containing graphite particles having a large average particle diameter The negative electrode mixture paste was the same as in Example 1, except that the ratio of the negative electrode mixture paste containing graphite particles having a small average particle diameter to the total graphite particles of the graphite particles was changed as shown in Table 1. And a negative electrode and a lithium ion secondary battery were produced. Table 1 shows the evaluation results for the battery characteristics.

(実施例
メソフェーズ小球体に替えて石油系生コークス粒子を機械的に加工して球体に調整した。これを350℃の空気中で酸化させ、3000℃に加熱し、黒鉛化して、球状人造黒鉛粉末を得た。該粉末を分級して、粒度調整し、アスペクト比が1.3であり、異なる平均粒子径(13μm、28μm)を有する2種の黒鉛質粒子粉末を得た。これを用いて、平均粒子径が13μmの黒鉛質粒子を含む活物質層(集電体側)の黒鉛質粒子の、活物質層全体の黒鉛質粒子に対する割合を表1に示すように変更する以外は、実施例1と同様に負極合剤ペーストを調製し、負極およびリチウムイオン二次電池を作製した。これに対する電池特性についての評価結果を表1に示した。
(Example 4 )
Instead of mesophase spheres, petroleum-based raw coke particles were mechanically processed to prepare spheres. This was oxidized in air at 350 ° C., heated to 3000 ° C. and graphitized to obtain spherical artificial graphite powder. The powder was classified and the particle size was adjusted to obtain two types of graphite particles having an aspect ratio of 1.3 and different average particle sizes (13 μm and 28 μm). Using this, the ratio of the graphite particles in the active material layer (current collector side) containing graphite particles having an average particle diameter of 13 μm to the graphite particles in the entire active material layer is changed as shown in Table 1. Prepared a negative electrode mixture paste in the same manner as in Example 1 to produce a negative electrode and a lithium ion secondary battery. Table 1 shows the evaluation results for the battery characteristics.

(比較例1〜2)
実施例1において、用いた黒鉛質粒子を表1に示すように、集電体側の黒鉛質粒子の平均粒子径を表面側の黒鉛質粒子の平均粒子径と同じかまたは大きくなるように変更する以外は、実施例1と同様に、負極合剤ペーストを調製し、負極およびリチウムイオン二次電池を作製した。これに対する電池特性についての評価結果を表1に示した。
(Comparative Examples 1-2)
In Example 1, as shown in Table 1, the used graphite particles are changed so that the average particle diameter of the current-side graphite particles is the same as or larger than the average particle diameter of the surface-side graphite particles. Except for the above, a negative electrode mixture paste was prepared in the same manner as in Example 1, and a negative electrode and a lithium ion secondary battery were produced. Table 1 shows the evaluation results for the battery characteristics.

実施例1〜のリチウムイオン二次電池は、集電体側の黒鉛質粒子の平均粒子径が表面側の黒鉛質粒子の平均粒子径より小さいため高い放電容量を有し、かつ高い初期充放電効率とともに比較例1、2に比べ高い急速充放電効率を有することがわかる。 The lithium ion secondary batteries of Examples 1 to 4 have a high discharge capacity because the average particle diameter of the graphite particles on the current collector side is smaller than the average particle diameter of the graphite particles on the surface side, and high initial charge / discharge It turns out that it has high rapid charge / discharge efficiency compared with the comparative examples 1 and 2 with efficiency.

Figure 0004152279
Figure 0004152279

充放電試験に用いるためのボタン型評価電池の構造を示す断面図である。It is sectional drawing which shows the structure of the button type evaluation battery for using for a charging / discharging test.

符号の説明Explanation of symbols

1 外装カップ
2 活物質層
3 外装缶
4 リチウム箔
5 セパレータ
6 絶縁ガスケット
7a,7b 集電体
8 作用電極(負極)
9 対極(正極)
DESCRIPTION OF SYMBOLS 1 Exterior cup 2 Active material layer 3 Exterior can 4 Lithium foil 5 Separator 6 Insulating gasket 7a, 7b Current collector 8 Working electrode (negative electrode)
9 Counter electrode (positive electrode)

Claims (4)

活物質として黒鉛質粒子を含む活物質層と、該活物質層を保持する集電体とからなるリチウムイオン二次電池用負極であって、前記活物質層の集電体側に含まれる前記黒鉛質粒子の平均粒子径が、前記活物質層の負極表面側に含まれる前記黒鉛質粒子の平均粒子径より小さく、前記活物質層の集電体側に含まれる前記黒鉛質粒子の平均粒子径が1〜20μm、前記活物質層の負極表面側に含まれる前記黒鉛質粒子の平均粒子径が20μm超、40μm以下であり、前記活物質層の集電体側に含まれる前記黒鉛質粒子の、活物質層の黒鉛質粒子全体に対する割合が10〜30質量%であることを特徴とするリチウムイオン二次電池用負極。 A negative electrode for a lithium ion secondary battery comprising an active material layer containing graphite particles as an active material and a current collector that holds the active material layer, the graphite contained on the current collector side of the active material layer the average particle diameter of quality particles, an average particle diameter of the negative electrode surface rather smaller than the average particle diameter of the graphite particles contained, the graphite particles contained in the current collector side of the active material layer of the active material layer 1 to 20 μm, the average particle diameter of the graphite particles contained on the negative electrode surface side of the active material layer is more than 20 μm and 40 μm or less, and the graphite particles contained on the current collector side of the active material layer, A negative electrode for a lithium ion secondary battery, wherein the ratio of the active material layer to the entire graphite particles is 10 to 30% by mass . 前記活物質層の厚みが50〜150μmであることを特徴とする請求項1に記載のリチウムイオン二次電池用負極。 The negative electrode for a lithium ion secondary battery according to claim 1, wherein the active material layer has a thickness of 50 to 150 μm . 前記黒鉛質粒子がメソフェーズ小球体の黒鉛化物粒子を含むことを特徴とする請求項1または2に記載のリチウムイオン二次電池用負極。 Claim 1 or negative electrode for a lithium ion secondary battery according to 2 wherein the graphite particles is characterized in that it comprises a graphite product particles mesophase microspheres. 請求項1〜3のいずれかに記載のリチウムイオン二次電池用負極を用いることを特徴とするリチウムイオン二次電池。 A lithium ion secondary battery using the negative electrode for a lithium ion secondary battery according to claim 1.
JP2003303047A 2003-08-27 2003-08-27 Negative electrode for lithium ion secondary battery and lithium ion secondary battery Expired - Lifetime JP4152279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303047A JP4152279B2 (en) 2003-08-27 2003-08-27 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003303047A JP4152279B2 (en) 2003-08-27 2003-08-27 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2005071918A JP2005071918A (en) 2005-03-17
JP4152279B2 true JP4152279B2 (en) 2008-09-17

Family

ID=34407154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303047A Expired - Lifetime JP4152279B2 (en) 2003-08-27 2003-08-27 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4152279B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210003A (en) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd Electrode for battery
JP4752574B2 (en) * 2006-03-30 2011-08-17 ソニー株式会社 Negative electrode and secondary battery
JP4665931B2 (en) * 2007-03-29 2011-04-06 Tdk株式会社 Anode and lithium ion secondary battery
JP4513822B2 (en) * 2007-03-30 2010-07-28 Tdk株式会社 Electrode and electrochemical device
WO2012077176A1 (en) * 2010-12-06 2012-06-14 トヨタ自動車株式会社 Lithium ion secondary battery and process for manufacture of lithium ion secondary battery
CN104854699B (en) * 2012-12-03 2017-09-01 富士胶片株式会社 Solid photographic element holding substrate and its manufacture method, solid-state image sensor
CN105122507B (en) * 2013-03-29 2018-03-06 三洋电机株式会社 Rechargeable nonaqueous electrolytic battery
US10629909B2 (en) 2015-12-08 2020-04-21 Gs Yuasa International Ltd. Energy storage device
KR102347000B1 (en) * 2019-01-03 2022-01-05 주식회사 엘지에너지솔루션 Negative electrode active material for secondary battery, negative electrode including same and manufacturing method thereof
JP7187661B2 (en) * 2019-03-01 2022-12-12 ビークルエナジージャパン株式会社 Electrodes for lithium secondary batteries and lithium secondary batteries
CN110660965B (en) * 2019-08-29 2021-12-17 孚能科技(赣州)股份有限公司 Negative plate and preparation method thereof, lithium ion battery and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626105B2 (en) * 2000-08-28 2011-02-02 日産自動車株式会社 Lithium ion secondary battery
JP4136344B2 (en) * 2001-09-05 2008-08-20 アオイ電子株式会社 Lithium secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005071918A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
KR101733323B1 (en) Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries using same, and lithium ion secondary battery
JP6316466B2 (en) Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP3868231B2 (en) Carbon material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2010129363A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6585238B2 (en) Method for producing carbonaceous coated graphite particles for negative electrode material of lithium ion secondary battery
JP2019019048A (en) Manufacturing method of carbonaceous coated graphite particle, carbonaceous coated graphite particle, anode for lithium ion secondary battery, and lithium ion secondary battery
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
JP4152279B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2011243567A (en) Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6162482B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6278870B2 (en) Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same
JP4723830B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5172089B2 (en) Method for producing negative electrode for lithium ion secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP5066132B2 (en) Polycrystalline mesocarbon microsphere graphitized product, negative electrode active material, and lithium ion secondary battery
JP6322525B2 (en) Method for producing carbon-coated graphite particles
JP7189109B2 (en) Method for producing carbonaceous-coated graphite particles
JP2002134111A (en) Carbon material for lithium ion secondary battery negative electrode and lithium ion secondary battery
JP6085259B2 (en) Method for producing carbon-coated graphite particles for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP2017075091A (en) Free carbon graphite particle and production method therefor, lithium ion secondary cattery anode and lithium ion secondary cattery
JP4335596B2 (en) Method for producing polycrystalline mesocarbon microsphere graphitized product
WO2016194355A1 (en) Carbonaceous coated graphite particles for negative-electrode material of lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP4143354B2 (en) Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery
JP2005281098A (en) Method for manufacturing carbon material, negative electrode for rechargeable lithium-ion battery, and rechargeable lithium-ion battery
JP2005289661A (en) Carbon material, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4152279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

EXPY Cancellation because of completion of term