JP2011243567A - Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP2011243567A
JP2011243567A JP2011088937A JP2011088937A JP2011243567A JP 2011243567 A JP2011243567 A JP 2011243567A JP 2011088937 A JP2011088937 A JP 2011088937A JP 2011088937 A JP2011088937 A JP 2011088937A JP 2011243567 A JP2011243567 A JP 2011243567A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
ion secondary
lithium ion
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011088937A
Other languages
Japanese (ja)
Inventor
Yasushi Madokoro
靖 間所
Kunihiko Eguchi
邦彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2011088937A priority Critical patent/JP2011243567A/en
Publication of JP2011243567A publication Critical patent/JP2011243567A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a carbonaceous material with which high discharge capacity and high initial charge/discharge efficiency, and further superior rate characteristics and cycle characteristics are obtained.SOLUTION: The present invention relates to the negative electrode material for the lithium ion secondary battery which has a graphite core material 12 made of a graphite material with high crystallinity and a carbonaceous coating layer 16 with low crystallinity covering a surface of the core material, and has no pore 14 on its surface, in which the graphite core material has pores and is in a substantially spherical shape in a state of a single particle having no carbonaceous coating layer. A pore volume of pores of 0.01-100 μm measured by a mercury penetration method after the negative electrode material for the lithium ion secondary battery is pulverized is 0.05-0.4 cm/g. When dof the negative electrode material for the lithium ion secondary battery is equal to or less than 0.3360 nm, an R value (I(1360)/I(1580)) of the negative electrode material for the lithium ion secondary battery in a Raman spectrum is 0.3-1.0.

Description

本発明は、炭素質材料を含むリチウムイオン二次電池用負極材料、ならびにリチウムイオン二次電池用負極、およびその負極を用いた高容量、高充放電効率でレート特性、サイクル特性に優れるリチウムイオン二次電池に関する。   The present invention relates to a negative electrode material for a lithium ion secondary battery containing a carbonaceous material, a negative electrode for a lithium ion secondary battery, and a lithium ion excellent in rate characteristics and cycle characteristics with high capacity, high charge / discharge efficiency using the negative electrode. The present invention relates to a secondary battery.

近年、電子機器の小型化あるいは高性能化に伴い、電池のさらなる高エネルギー密度化が求められている。そのような状況の中、他の二次電池に比べてエネルギー密度の高いリチウムイオン二次電池が特に注目されている。リチウムイオン二次電池は、負極、正極および非水電解質を主たる構成要素としており、リチウムイオンが放電過程および充電過程で負極と正極との間を移動することで二次電池として作用する。現在、上記のリチウムイオン二次電池の負極材料には黒鉛が広く用いられている。
黒鉛は結晶性が高いほど放電容量が大きくなるが、結晶性の発達につれてエッジ面と呼ばれる反応活性部位も増大するため、初回充放電時の不可逆容量が増大するおそれがある。また、電池の高容量化には電極の高密度化が必須であるが、結晶性の発達は粒子の軟質化も招くため、黒鉛粒子を塗布した電極をプレスすると粒子が容易に押し潰され一方向に配向してしまう。このような粒子配向は電解液の浸透性やリチウムイオンの拡散性を低下させるため、レート特性やサイクル特性の低下を引き起こすおそれがある。
In recent years, with the miniaturization or high performance of electronic devices, there has been a demand for higher energy density of batteries. In such a situation, a lithium ion secondary battery having a higher energy density than other secondary batteries has attracted particular attention. The lithium ion secondary battery has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main components, and acts as a secondary battery by moving lithium ions between the negative electrode and the positive electrode during a discharging process and a charging process. Currently, graphite is widely used as a negative electrode material for the lithium ion secondary battery.
As the crystallinity of graphite increases, the discharge capacity increases. However, as the crystallinity develops, the reactive active site called the edge surface also increases, which may increase the irreversible capacity during the first charge / discharge. In addition, it is essential to increase the density of the electrodes in order to increase the capacity of the battery. However, since the development of crystallinity leads to softening of the particles, pressing the electrode coated with graphite particles causes the particles to be easily crushed. Oriented in the direction. Such particle orientation decreases the permeability of the electrolytic solution and the diffusibility of lithium ions, which may cause a decrease in rate characteristics and cycle characteristics.

特許文献1には、黒鉛の粉砕等で得られる特定の構造パラメータを有する芯材に被覆層を形成する炭素材の製造方法が記載されている。芯材の形状について記載がないが、特定の構造パラメータを有する芯材を再現性よく得ることが困難である。   Patent Document 1 describes a method for producing a carbon material in which a coating layer is formed on a core material having specific structural parameters obtained by grinding graphite or the like. Although there is no description about the shape of the core material, it is difficult to obtain a core material having specific structural parameters with good reproducibility.

特許文献2では、扁平な黒鉛粒子が複数、非平行に集合または結合した材料が記載されている。この材料においても、前述したような黒鉛の高結晶性に由来する特性低下は免れないが、非平行に集合または結合させることで粒子配向の軽減を図っている。しかしながら最近のリチウムイオン二次電池では高容量化のために一層の電極高密度化が必要となっており、そのために電極に対して高いプレス圧力が印加されるような状況では、やはり粒子の潰れに起因する配向性の増大と、それにともなう電池特性の低下が生じてしまう。
特許文献3には、扁平な黒鉛粒子が複数、非平行に集合または結合したことを特徴とする材料が開示されている。
特許文献4には、複数の扁平状の黒鉛質微粒子が集合または結合した塊状構造と、黒鉛質粒子の表面上に形成された炭素質とを備えた負極材が記載されている。
特許文献5には、粒子を複数含む複合粒子とこれを覆う被覆層とを有する二次電池用電極材料が記載され、電極材料の表面は空孔を有している。
Patent Document 2 describes a material in which a plurality of flat graphite particles are assembled or bonded non-parallelly. Even in this material, the characteristic deterioration due to the high crystallinity of graphite as described above is unavoidable, but the particle orientation is reduced by gathering or bonding non-parallelly. However, in recent lithium ion secondary batteries, it is necessary to further increase the electrode density in order to increase the capacity. For this reason, in a situation where a high pressing pressure is applied to the electrode, the particles are still crushed. As a result, the orientation is increased and the battery characteristics are lowered.
Patent Document 3 discloses a material characterized in that a plurality of flat graphite particles are aggregated or bonded non-parallelly.
Patent Document 4 describes a negative electrode material having a massive structure in which a plurality of flat graphite fine particles are aggregated or bonded, and a carbonaceous material formed on the surface of the graphite particles.
Patent Document 5 describes a secondary battery electrode material having composite particles containing a plurality of particles and a coating layer covering the particles, and the surface of the electrode material has pores.

特許文献6は、黒鉛質粉末、炭素、金属珪素の混合物を焼成して得た母材に炭素前駆体又は炭素前駆体とカーボンブラックとの混合物を被覆した二次電池用負極活物質が記載されている。
特許文献7は、気孔を有する黒鉛コアと、気孔内に金属ナノ粒子と非晶質カーボンとを有する二次電池用陰極活物質が記載されている。
Patent Document 6 describes a negative electrode active material for a secondary battery in which a base material obtained by firing a mixture of graphite powder, carbon, and metal silicon is coated with a carbon precursor or a mixture of a carbon precursor and carbon black. ing.
Patent Document 7 describes a cathode active material for a secondary battery having a graphite core having pores and metal nanoparticles and amorphous carbon in the pores.

上記のように従来技術では種々の炭素材料によるリチウムイオン二次電池用負極材料の記載があるが、さらに高性能の材料が望まれている。   As described above, in the prior art, there are descriptions of negative electrode materials for lithium ion secondary batteries using various carbon materials, but higher performance materials are desired.

特開平10−36108号公報Japanese Patent Laid-Open No. 10-36108 特許第3213575号公報Japanese Patent No. 3213575 特開平10−236809号公報Japanese Patent Laid-Open No. 10-236809 再表WO2005/024980号公報Reissue WO2005 / 024980 特開2005−158721号公報JP 2005-158721 A 特開2008−186732号公報JP 2008-186732 A 特開2009−266795号公報JP 2009-266795 A

本発明は、上記のような状況を鑑みてなされたものであり、すなわち、リチウムイオン二次電池用負極材料に用いた場合に、高い放電容量および高い初回充放電効率、さらに優れたレート特性(急速充放電効率)とサイクル特性を得ることが可能な炭素質材料を提供することを目的とする。また、その炭素質材料の製造方法と、その炭素質材料を含有する負極、およびその負極を用いたリチウムイオン二次電池を提供することを目的とする。   The present invention has been made in view of the above situation, that is, when used as a negative electrode material for a lithium ion secondary battery, a high discharge capacity, a high initial charge / discharge efficiency, and an excellent rate characteristic ( An object is to provide a carbonaceous material capable of obtaining rapid charge / discharge efficiency and cycle characteristics. Moreover, it aims at providing the manufacturing method of the carbonaceous material, the negative electrode containing the carbonaceous material, and the lithium ion secondary battery using the negative electrode.

本発明者は、上記目的を達成すべく鋭意検討した結果、特定の形状および特性を有する高結晶性の黒鉛質からなる黒鉛質芯材と該芯材の表面を被覆する低結晶性の炭素質被覆層とを有する負極材料が、上記特性に優れていることを知見し本発明に至った。
すなわち本発明は、以下を提供する。
(1)高結晶性の黒鉛質からなる黒鉛質芯材と該芯材の表面を被覆する低結晶性の炭素質被覆層とを有するリチウムイオン二次電池用負極材料であって、
リチウムイオン二次電池用負極材料の表面は細孔がなく、黒鉛質芯材は細孔を有し、
黒鉛質芯材は、炭素質被覆層を有さない単独粒子の状態で略球状であり、
黒鉛質芯材の細孔容積は、リチウムイオン二次電池用負極材料を粉砕後、水銀圧入法で測定した0.01〜100μmの細孔の容積が、0.05〜0.4cm/g、
リチウムイオン二次電池用負極材料のd002:0.3360nm以下で、
リチウムイオン二次電池用負極材料のR値(波長514.5nmのアルゴンイオンレーザーを用いたラマンスペクトルにおける、1580cm−1のピーク強度(I1580)に対する1360cm−1のピーク強度(I1360)の比(I1360/I1580)):0.3〜1.0であるリチウムイオン二次電池用負極材料。
As a result of intensive studies to achieve the above object, the present inventor has found that a graphite core material made of highly crystalline graphite having a specific shape and characteristics and a low crystalline carbonaceous material covering the surface of the core material The present inventors have found that a negative electrode material having a coating layer is excellent in the above characteristics, and have reached the present invention.
That is, the present invention provides the following.
(1) A negative electrode material for a lithium ion secondary battery, comprising a graphite core material made of highly crystalline graphite and a low crystalline carbonaceous coating layer covering the surface of the core material,
The surface of the negative electrode material for lithium ion secondary batteries has no pores, the graphite core has pores,
The graphite core is substantially spherical in the form of a single particle having no carbonaceous coating layer,
The pore volume of the graphite core material is such that the pore volume of 0.01 to 100 μm measured by the mercury intrusion method after pulverizing the negative electrode material for a lithium ion secondary battery is 0.05 to 0.4 cm 3 / g. ,
D 002 of the negative electrode material for a lithium ion secondary battery: 0.3360 nm or less,
The ratio of the R value of the negative electrode material for a lithium ion secondary battery (in the Raman spectrum using argon ion laser with a wavelength of 514.5 nm, a peak intensity of 1360 cm -1 to the peak intensity of 1580cm -1 (I1580) (I1360) (I1360 / I1580)): A negative electrode material for a lithium ion secondary battery that is 0.3 to 1.0.

(2)上記(1)に記載のリチウムイオン二次電池用負極材料を用いたリチウムイオン二次電池負極。
(3)前記負極の電極密度が、1.7〜1.9g/cmであることを特徴とする(2)に記載のリチウムイオン二次電池負極。
(4)上記(2)または(3)に記載の負極を有するリチウムイオン二次電池。
(5)無機微粒子と炭素質前駆体の混合物を2500℃以上で加熱して、前記無機微粒子を分解、蒸発させて細孔を得るとともに前記炭素質前駆体を黒鉛化して、細孔を有する黒鉛質芯材を得る黒鉛化工程と、前記黒鉛化工程で得られた黒鉛質芯材の表面に炭素質前駆体を付着させる付着工程と、前記付着工程で炭素質前駆体を付着された黒鉛質芯材を1100℃以上、1500℃以下の温度で加熱して、黒鉛質芯材の表面に空隙のない炭素質被覆層を有する負極材料を得る焼成工程を有することを特徴とする上記(1)に記載のリチウムイオン二次電池用負極材料の製造方法。
(2) A lithium ion secondary battery negative electrode using the lithium ion secondary battery negative electrode material described in (1) above.
(3) The lithium ion secondary battery negative electrode according to (2), wherein the negative electrode has an electrode density of 1.7 to 1.9 g / cm 3 .
(4) A lithium ion secondary battery having the negative electrode according to (2) or (3).
(5) A mixture of inorganic fine particles and a carbonaceous precursor is heated at 2500 ° C. or higher to decompose and evaporate the inorganic fine particles to obtain pores and graphitize the carbonaceous precursor to obtain graphite having pores. A graphitization step for obtaining a porous core material, an attachment step for attaching a carbonaceous precursor to the surface of the graphite core material obtained in the graphitization step, and a graphitic material to which a carbonaceous precursor is attached in the attachment step The above (1) characterized by comprising a firing step of heating the core material at a temperature of 1100 ° C. or higher and 1500 ° C. or lower to obtain a negative electrode material having a carbonaceous coating layer having no voids on the surface of the graphite core material. The manufacturing method of the negative electrode material for lithium ion secondary batteries as described in 2 ..

本発明は、リチウムイオン二次電池用負極材料として良好な放電容量、初回充放電効率、レート特性およびサイクル特性を有する炭素質材料を提供する。そのため、本発明の炭素質材料を用いてなるリチウムイオン二次電池は、近年の電池の高エネルギー密度化に対する要望を満たし、搭載する機器の小型化および高性能化に有効である。   The present invention provides a carbonaceous material having good discharge capacity, initial charge / discharge efficiency, rate characteristics, and cycle characteristics as a negative electrode material for a lithium ion secondary battery. Therefore, the lithium ion secondary battery using the carbonaceous material of the present invention satisfies the recent demand for higher energy density of the battery, and is effective in reducing the size and performance of the mounted equipment.

本発明の負極炭素質材料の模式的断面図である。It is typical sectional drawing of the negative electrode carbonaceous material of this invention. 本発明の負極の電池特性を評価するための評価電池の断面図である。It is sectional drawing of the evaluation battery for evaluating the battery characteristic of the negative electrode of this invention.

以下、本発明をより具体的に説明する。
本発明のリチウムイオン二次電池用負極材料(以下負極炭素質材料または炭素質材料ということがある)10は、図1に模式図で断面を示すように、結晶性の異なる少なくとも二つの部位を有する炭素質粒子であって、内部の黒鉛質芯材12の結晶性が表面の炭素質被覆層16の結晶性に比べて高く、該黒鉛質芯材である高結晶性部位が扁平または鱗片状粒子の集合体ではなく、さらに炭素質被覆層16は空隙を有さず、該高結晶性部位に空隙または細孔14を有することを特徴とする。
Hereinafter, the present invention will be described more specifically.
The negative electrode material for a lithium ion secondary battery (hereinafter sometimes referred to as negative electrode carbonaceous material or carbonaceous material) 10 according to the present invention has at least two parts having different crystallinity as shown in a cross-sectional view in FIG. The graphite core material 12 has high crystallinity compared to the crystallinity of the carbonaceous coating layer 16 on the surface, and the highly crystalline portion of the graphite core material is flat or scaly. The carbonaceous coating layer 16 is not an aggregate of particles, and the carbonaceous coating layer 16 has no voids and has voids or pores 14 in the highly crystalline part.

[負極炭素質材料]
本発明の負極炭素質材料は、体積換算の平均粒子径で、1〜100μm、特に1〜50μm、さらに1〜30μmであることが好ましい。1μm以上であれば負極の充填密度を高められるため体積当たりの放電容量が向上し、100μm以下であればサイクル特性やレート特性が向上するからである。体積換算の平均粒子径とは、レーザー回折式粒度分布計により粒度分布の累積度数が体積百分率で50%となる粒子径である。
[Negative carbonaceous material]
The negative electrode carbonaceous material of the present invention has an average particle diameter in terms of volume and is preferably 1 to 100 μm, particularly 1 to 50 μm, and more preferably 1 to 30 μm. If the thickness is 1 μm or more, the filling density of the negative electrode can be increased, so that the discharge capacity per volume is improved, and if it is 100 μm or less, cycle characteristics and rate characteristics are improved. The average particle diameter in terms of volume is a particle diameter at which the cumulative frequency of particle size distribution is 50% by volume by a laser diffraction particle size distribution meter.

本発明の負極炭素質材料の比表面積は10m/g以下、特に5m/g以下、さらに3.5m/g以下であることが好ましい。比表面積が前記範囲内であれば、初回充放電効率が向上するからである。
また、負極炭素質材料の平均的な結晶性は、X線広角回折法における炭素網面層の面間隔(d002)および結晶子のC軸方向の大きさ(Lc)から判定することができる。すなわち、CuKα線をX線源、高純度シリコンを標準物質に使用して、炭素質材料に対し(002)回折ピークを測定し、そのピーク位置およびその半値幅から、それぞれd002、Lcを算出する。算出方法は学振法に従うものであり、具体的な方法は「炭素繊維」(近代編集社、昭和61年3月発行)733から742頁などに記載されている。
本発明の負極炭素質材料の黒鉛構造の発達度合いの指標となるX線回折法によるd002およびLcは、高い放電容量を発現させる観点から、d002≦0.3360nmであり、Lc≧40nmであるのが好ましく、d002≦0.3359nm、Lc≧50nmであるのが特に好ましい。d002>0.3360nm、Lc<40nmである場合には、黒鉛構造の発達の程度が低いため、リチウムイオン二次電池の負極として用いたときに、リチウムのドープ量が少なく、高い放電容量を得られないことがある。
The specific surface area of the negative electrode carbonaceous material of the present invention is preferably 10 m 2 / g or less, particularly 5 m 2 / g or less, and more preferably 3.5 m 2 / g or less. If the specific surface area is within the above range, the initial charge / discharge efficiency is improved.
The average crystallinity of the negative electrode carbonaceous material can be determined from the interplanar spacing (d 002 ) of the carbon network layer and the size of the crystallite in the C-axis direction (Lc) in the X-ray wide angle diffraction method. . That is, using a CuKα ray as an X-ray source and high-purity silicon as a standard substance, a (002) diffraction peak is measured for a carbonaceous material, and d 002 and Lc are calculated from the peak position and its half width, respectively. To do. The calculation method is in accordance with the Gakushin Law, and a specific method is described in “Carbon Fiber” (Modern Editorial Company, published in March 1986), pages 733 to 742.
From the viewpoint of developing a high discharge capacity, d 002 and Lc, which are indicators of the degree of development of the graphite structure of the negative electrode carbonaceous material of the present invention, are d 002 ≦ 0.3360 nm and Lc ≧ 40 nm. It is preferable that d 002 ≦ 0.3359 nm and Lc ≧ 50 nm are particularly preferable. When d 002 > 0.3360 nm and Lc <40 nm, the degree of development of the graphite structure is low. Therefore, when it is used as the negative electrode of a lithium ion secondary battery, the lithium doping amount is small and a high discharge capacity is obtained. It may not be obtained.

本発明の負極炭素質材料は、アルゴンレーザーラマンスペクトルによる1580cm−1に対する1360cm−1のピーク強度比であるR値が0.3〜1.0である。これは、表面の結晶性が低いことを意味し、前記ピーク強度比が前記範囲内であれば、初回充放電効率が向上するとともに、レート特性やサイクル特性が向上するからである。R値は、0.35〜0.8であることが好ましく、0.35〜0.65であることがさらに好ましい。
本発明の負極炭素質材料は、本発明の目的を損なわない範囲で、異種の黒鉛質材料、非晶質ハードカーボンなどの炭素質材料・有機物、金属、金属化合物などを混合しても、内包しても、被覆してもよい。また、本発明の炭素質材料は、液相、気相、固相における各種化学的処理、熱処理、物理的処理、酸化処理などを施されてもよい。
Negative electrode carbonaceous material of the invention, R value is the peak intensity ratio of 1360 cm -1 relative to 1580 cm -1 with an argon laser Raman spectrum is 0.3 to 1.0. This means that the surface crystallinity is low, and if the peak intensity ratio is within the above range, the initial charge / discharge efficiency is improved and the rate characteristics and cycle characteristics are improved. The R value is preferably 0.35 to 0.8, and more preferably 0.35 to 0.65.
The negative electrode carbonaceous material of the present invention can be contained within the range not impairing the object of the present invention by mixing different types of graphite materials, carbonaceous materials such as amorphous hard carbon, organic matter, metals, metal compounds, etc. Or you may coat. The carbonaceous material of the present invention may be subjected to various chemical treatments in the liquid phase, gas phase, and solid phase, heat treatment, physical treatment, oxidation treatment, and the like.

<黒鉛質芯材>
本発明の炭素質材料の高結晶性部位である黒鉛質芯材は、炭素質被覆層を有さない単独粒子の状態で略球状であり、鱗片状、扁平状ではない。アスペクト比は3以下、好ましくは1〜2、より好ましくは1〜1.8未満である。アスペクト比の測定は、黒鉛質芯材粒子をSEM観察し、50個の長軸と短軸との比を測定して平均して算出する。
黒鉛質芯材は、単独粒子でもよく複数の粒子が集合または結合している造粒体であってもよい。
黒鉛質芯材粒子の結晶度は、負極炭素質材料と同様に、d002およびLcで示すことができ、d002は、0.3360nm以下、Lcは、40nm以上であることが好ましい。
黒鉛質芯材には細孔が存在する。後に説明するように本発明の低結晶性の炭素質被覆層には空隙または細孔が存在しないので本発明の空隙率は負極炭素質材料全体で測定することができ負極炭素質材料を粉砕したうえで水銀圧入法を適用して測定する。
黒鉛質芯材の細孔容積は、負極炭素質材料を粉砕後、水銀圧入法で測定した0.01〜100μmの細孔の容積が、0.05〜0.4cm/g、である。
粒子内部の黒鉛質芯材の細孔がこの範囲であると充電にともなう膨張を吸収するとともに、電解液の保持機能も果たし、高速充電時にもリチウムイオンが枯渇することはない。黒鉛質芯材の細孔容積は、好ましくは、0.08〜0.4cm/g、より好ましくは、0.1〜0.4cm/gの範囲である。
ここで、黒鉛質芯材の細孔容積の単位cm/gの質量当たりのgは、黒鉛質芯材の質量を示す。黒鉛質芯材の質量は、負極炭素質材料のTG(重量減少)量を測定して低結晶性炭素質被覆層の割合を求め、負極炭素質材料の質量から低結晶性炭素質被覆層の質量を差引いた量から求めた。TG(重量減少)測定は実施例の欄において詳細に記載する。
黒鉛質芯材に存在する細孔の形状や存在状態は限定されず、細孔は分散して存在してもよいし、中心付近に存在してもよいし、黒鉛質芯材の表面まで到達している空隙であってもよい。
<Graphitic core>
The graphite core material, which is a highly crystalline part of the carbonaceous material of the present invention, is substantially spherical in the form of single particles not having a carbonaceous coating layer, and is not scale-like or flat. The aspect ratio is 3 or less, preferably 1 to 2, more preferably less than 1 to 1.8. The aspect ratio is calculated by observing the graphite core material particles with an SEM and measuring and averaging the ratio of 50 major axes and minor axes.
The graphite core material may be a single particle or a granulated body in which a plurality of particles are aggregated or bonded.
Similarly to the negative electrode carbonaceous material, the crystallinity of the graphite core particles can be expressed by d 002 and Lc, and d 002 is preferably 0.3360 nm or less and Lc is preferably 40 nm or more.
There are pores in the graphite core. As will be described later, since the voids or pores do not exist in the low crystalline carbonaceous coating layer of the present invention, the porosity of the present invention can be measured for the entire negative electrode carbonaceous material and the negative electrode carbonaceous material is pulverized. In addition, the mercury intrusion method is applied.
The pore volume of the graphite core material is such that the pore volume of 0.01 to 100 μm measured by mercury porosimetry after pulverizing the negative electrode carbonaceous material is 0.05 to 0.4 cm 3 / g.
If the pores of the graphite core material inside the particles are within this range, the expansion associated with charging is absorbed and the electrolyte is retained, so that lithium ions are not depleted even during high-speed charging. The pore volume of the graphite core material is preferably 0.08 to 0.4 cm 3 / g, more preferably 0.1 to 0.4 cm 3 / g.
Here, g per unit mass of the pore volume of the graphite core material cm 3 / g indicates the mass of the graphite core material. The mass of the graphite core material is obtained by measuring the amount of TG (weight reduction) of the negative electrode carbonaceous material to obtain the ratio of the low crystalline carbonaceous coating layer, and calculating the ratio of the low crystalline carbonaceous coating layer from the mass of the negative carbonaceous material. It calculated | required from the quantity which deducted mass. The TG (weight loss) measurement is described in detail in the Examples section.
The shape and state of the pores existing in the graphite core material are not limited, and the pores may be dispersed, may be present near the center, or reach the surface of the graphite core material. It may be a void.

<炭素質被覆層>
黒鉛質芯材12の表面には低結晶性の炭素質被覆層16がある。本発明の負極炭素質材料10における低結晶性部位である炭素質被覆層の質量百分率は負極炭素質材料全体の1〜50質量%、好ましくは1〜20質量%、さらに好ましくは1〜10質量%である。前記質量百分率は、TG(重量減少)測定などで求めることができる。
本発明において、炭素質被覆層には実質的に細孔が存在しない。これは、負極炭素質材料を1万倍〜10万倍でSEM観察し細孔が認められないことで確認することができる。炭素質被覆層に細孔を設けない理由(または、表層に空隙が存在するときの問題点)は、表層は電極をプレスした際に負極炭素質材料粒子が押し潰されることを防ぎ、電極内での粒子配向を抑制している。
しかし該表層に細孔が存在すると、表層自体の強度が低下することによって粒子配向抑制効果が低下したり、さらに割れやヒビの発生によって二次電池の充放電効率が低下するおそれがある。
<Carbonaceous coating layer>
There is a low crystalline carbonaceous coating layer 16 on the surface of the graphite core 12. The mass percentage of the carbonaceous coating layer which is a low crystalline part in the negative electrode carbonaceous material 10 of the present invention is 1 to 50 mass%, preferably 1 to 20 mass%, more preferably 1 to 10 mass% of the whole negative electrode carbonaceous material. %. The mass percentage can be obtained by TG (weight loss) measurement or the like.
In the present invention, the carbonaceous coating layer is substantially free of pores. This can be confirmed by SEM observation of the negative electrode carbonaceous material at 10,000 to 100,000 times and no pores. The reason why pores are not provided in the carbonaceous coating layer (or problems when voids exist in the surface layer) is that the surface layer prevents the negative electrode carbonaceous material particles from being crushed when the electrode is pressed, In this case, the particle orientation is suppressed.
However, if pores are present in the surface layer, the strength of the surface layer itself may decrease, thereby reducing the effect of suppressing particle orientation, and further, the charge / discharge efficiency of the secondary battery may decrease due to generation of cracks or cracks.

[製造方法]
本発明の負極炭素質材料は、結晶性の異なる少なくとも二つの部位を有する炭素質粒子であって、内部の結晶性が表面の結晶性に比べて高く、該高結晶性部位が鱗片状粒子の集合体ではなく、さらに該高結晶性部位に細孔を有する炭素質材料を製造し得る方法であれば、いかなる方法によって製造されてもよい。本発明の製造方法の一例を以下に示す。
[Production method]
The negative electrode carbonaceous material of the present invention is a carbonaceous particle having at least two parts having different crystallinity, the internal crystallinity is higher than the surface crystallinity, and the highly crystalline part is a scaly particle. It may be produced by any method as long as it is a method capable of producing a carbonaceous material having pores in the highly crystalline portion instead of an aggregate. An example of the production method of the present invention is shown below.

炭素前駆体溶液(例えば、コールタールピッチをタール中油に溶かしたものなど)にシリカや酸化鉄などの無機微粒子(平均粒子直径:0.01〜0.3μm)を分散したのち溶媒を除去し、得られたピッチと無機微粒子の混合物を2500℃以上の温度で黒鉛化処理することによって、ピッチ部分が黒鉛化するとともに無機微粒子が揮発し内部に細孔が形成される。この黒鉛化物を適当な粒子径になるよう粉砕・分級し黒鉛質芯材を得たのち、再度前記と同様の炭素質材料溶液に分散したのち溶媒を除去し、得られたピッチと黒鉛化物の混合物を1100℃以上〜1500℃以下で熱処理して炭化することによって、前記黒鉛化物(黒鉛質芯材)の表面に低結晶性層が被覆された複合化物が形成される。
黒鉛化処理温度は2500℃〜4000℃が好ましく、より好ましくは2500℃〜3500℃である。この範囲であると黒鉛質芯材の結晶性と細孔の程度が適切である。
熱処理温度は1100℃超〜1500℃以下が好ましい。上記温度範囲であると、R値が十分低い負極炭素質材料が得られる。低結晶性層の表面の細孔の有無は、使用する炭素前駆体溶液、具体的にはピッチの種類、粘度、乾燥条件(温度、圧力)を変えることで制御でき、低結晶性層には空隙や細孔ができないように制御する。この複合化物を適当な粒子径となるように分級することで目的の負極炭素質材料粒子を得ることができる。低結晶性の被覆層に細孔がないことは粒子断面をSEM観察することで確認できる。
After dispersing inorganic fine particles (average particle diameter: 0.01 to 0.3 μm) such as silica and iron oxide in a carbon precursor solution (for example, coal tar pitch dissolved in oil in tar), the solvent is removed, The resulting mixture of pitch and inorganic fine particles is graphitized at a temperature of 2500 ° C. or higher, whereby the pitch portion is graphitized and the inorganic fine particles are volatilized to form pores therein. After pulverizing and classifying this graphitized product to an appropriate particle size to obtain a graphite core material, it is dispersed again in the same carbonaceous material solution as described above, and then the solvent is removed. By heat-treating the mixture at 1100 ° C. to 1500 ° C. for carbonization, a composite in which the surface of the graphitized product (graphite core material) is coated with a low crystalline layer is formed.
The graphitization temperature is preferably 2500 ° C to 4000 ° C, more preferably 2500 ° C to 3500 ° C. Within this range, the crystallinity and the degree of pores of the graphite core material are appropriate.
The heat treatment temperature is preferably more than 1100 ° C. to 1500 ° C. or less. When the temperature is within the above range, a negative electrode carbonaceous material having a sufficiently low R value is obtained. The presence or absence of pores on the surface of the low crystalline layer can be controlled by changing the carbon precursor solution used, specifically the pitch type, viscosity, and drying conditions (temperature, pressure). Control to prevent voids and pores. The target negative electrode carbonaceous material particles can be obtained by classifying the composite to have an appropriate particle size. The absence of pores in the low crystalline coating layer can be confirmed by SEM observation of the particle cross section.

本発明の炭素質材料における低結晶性部位の質量百分率は負極炭素質材料全体の1〜50質量%、好ましくは1〜20質量%、さらに好ましくは1〜10質量%である。前記質量百分率は、TG(重量減少)測定などで求めることができる。
本発明の負極炭素質材料を用いた場合に、初回充放電効率、レート特性、サイクル特性などが改良されるメカニズムについては明らかではないが、次のように推定される。すなわち、表面に低結晶性部位を有するため、黒鉛エッジ面での電解液分解が生じにくい。また、表面の低結晶性部位は内部の高結晶性部位に比べて硬質であり、電極をプレスした際に粒子が押し潰されることを防ぎ、電極内での粒子配向を抑制する。さらに粒子内部の黒鉛質芯材の細孔は充電にともなう膨張を吸収するとともに、電解液の保持機能も果たし、高速充電時にもリチウムイオンが枯渇することはない。これらの要因によって良好なレート特性やサイクル特性が発現するものと考えられる。
The mass percentage of the low crystalline part in the carbonaceous material of the present invention is 1 to 50% by mass, preferably 1 to 20% by mass, and more preferably 1 to 10% by mass with respect to the whole negative electrode carbonaceous material. The mass percentage can be obtained by TG (weight loss) measurement or the like.
When the negative electrode carbonaceous material of the present invention is used, the mechanism by which the initial charge / discharge efficiency, rate characteristics, cycle characteristics and the like are improved is not clear, but is estimated as follows. That is, since the surface has a low crystalline part, the electrolytic solution is hardly decomposed on the graphite edge surface. In addition, the low crystalline portion on the surface is harder than the internal high crystalline portion, preventing the particles from being crushed when the electrode is pressed, and suppressing the particle orientation in the electrode. Further, the pores of the graphite core material inside the particles absorb expansion due to charging, and also serve to retain the electrolyte, so that lithium ions are not depleted even during high-speed charging. It is considered that favorable rate characteristics and cycle characteristics are expressed by these factors.

[負極]
本発明は前記負極炭素質材料を含有するリチウムイオン二次電池用負極であり、また該負極を用いるリチウムイオン二次電池である。
<結合剤>
本発明のリチウムイオン二次電池用の負極は、通常の負極の成形方法に準じて作製されるが、化学的、電気化学的に安定な負極を得ることができる方法であれば何ら制限されない。負極の作製時には、本発明の負極炭素質材料に結合剤を加えて、予め調製した負極合剤を用いることが好ましい。結合剤としては、電解質に対して、化学的および電気化学的に安定性を示すものが好ましく、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系樹脂粉末、ポリエチレン、ポリビニルアルコールなどの樹脂粉末、カルボキシメチルセルロースなどが用いられる。これらを併用することもできる。結合剤は、通常、負極合剤の全量中の1〜20質量%程度の割合で用いられる。
負極の電極密度は、集電材の厚さをt[cm]、単位面積あたりの質量をW[g/cm]とし、本発明の負極炭素質材料の質量割合をP[%]とする結合剤との負極合剤ペーストを塗布し、加圧して製造した厚さt[cm]の負極を、所定の面積S[cm]で打抜き、この打抜き後の負極の質量をW[g]としたとき、下記式により求めることができる。なお、前記質量は上皿式の自動天秤、厚さはマイクロメーターで測定した値である。
電極密度[g/cm]={(W/S−W)/(t−t)}×(P/100)で示され、1.5〜2.0g/cmが好ましく、1.7〜1.9g/cmがより好ましい。
[Negative electrode]
The present invention is a negative electrode for a lithium ion secondary battery containing the negative electrode carbonaceous material, and a lithium ion secondary battery using the negative electrode.
<Binder>
The negative electrode for a lithium ion secondary battery of the present invention is produced according to a normal negative electrode molding method, but is not limited as long as it is a method capable of obtaining a chemically and electrochemically stable negative electrode. When preparing the negative electrode, it is preferable to use a negative electrode mixture prepared in advance by adding a binder to the negative electrode carbonaceous material of the present invention. As the binder, those showing chemical and electrochemical stability with respect to the electrolyte are preferable. For example, fluorine-based resin powders such as polytetrafluoroethylene and polyvinylidene fluoride, and resin powders such as polyethylene and polyvinyl alcohol Carboxymethyl cellulose and the like are used. These can also be used together. A binder is normally used in the ratio of about 1-20 mass% in the whole quantity of a negative electrode mixture.
The electrode density of the negative electrode is such that the thickness of the current collector is t 1 [cm], the mass per unit area is W 1 [g / cm 2 ], and the mass ratio of the negative electrode carbonaceous material of the present invention is P [%]. A negative electrode mixture having a thickness t 2 [cm] manufactured by applying and pressing a negative electrode mixture paste with a binder to be punched is punched out in a predetermined area S [cm 2 ], and the mass of the negative electrode after punching is defined as W 2. When [g], it can be obtained by the following formula. In addition, the said mass is the value measured with the top plate type automatic balance and thickness with the micrometer.
Electrode density [g / cm 3 ] = {(W 2 / S−W 1 ) / (t 2 −t 1 )} × (P / 100), preferably 1.5 to 2.0 g / cm 3 1.7 to 1.9 g / cm 3 is more preferable.

<負極の製造>
より具体的には、まず、本発明の負極炭素質材料を分級などにより所望の粒度に調整し、結合剤と混合して得た混合物を溶剤に分散させ、ペースト状にして負極合剤を調製する。すなわち、本発明の負極材料と、結合剤を、水、イソピロピルアルコール、N−メチルピロリドン、ジメチルホルムアミドなどの溶剤と混合して得たスラリーを、公知の撹拌機、混合機、混練機、ニーダーなどを用いて攪拌混合して、ペーストを調製する。該ペーストを、集電材の片面または両面に塗布し、乾燥すれば、負極合剤層が均一かつ強固に接着した負極が得られる。負極合剤層の膜厚は10〜200μm、好ましくは20〜100μmである。
また、本発明の負極は、本発明の炭素質材料と、ポリエチレン、ポリビニルアルコールなどの樹脂粉末を乾式混合し、金型内でホットプレス成型して作製することもできる。
負極合剤層を形成した後、プレス加圧などの圧着を行うと、負極合剤層と集電体との接着強度をより高めることができる。
<Manufacture of negative electrode>
More specifically, first, the negative electrode carbonaceous material of the present invention is adjusted to a desired particle size by classification, etc., and the mixture obtained by mixing with a binder is dispersed in a solvent to prepare a negative electrode mixture in the form of a paste. To do. That is, a slurry obtained by mixing the negative electrode material of the present invention and a binder with a solvent such as water, isopropyl alcohol, N-methylpyrrolidone, dimethylformamide, and the like, a known stirrer, mixer, kneader, A paste is prepared by stirring and mixing using a kneader or the like. When the paste is applied to one or both sides of the current collector and dried, a negative electrode in which the negative electrode mixture layer is uniformly and firmly bonded is obtained. The film thickness of the negative electrode mixture layer is 10 to 200 μm, preferably 20 to 100 μm.
The negative electrode of the present invention can also be produced by dry-mixing the carbonaceous material of the present invention and resin powders such as polyethylene and polyvinyl alcohol and hot pressing in a mold.
When the negative electrode mixture layer is formed and then pressure bonding such as pressurization is performed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased.

負極の作製に用いる集電体の形状としては、特に限定されることはないが、箔状、メッシュ、エキスパンドメタルなどの網状などである。集電材の材質としては、銅、ステンレス、ニッケルなどが好ましい。集電体の厚みは、箔状の場合で5〜20μm程度であるのが好ましい。
なお、本発明の負極は、本発明の目的を損なわない範囲で、異種の黒鉛質材料、非晶質ハードカーボンなどの炭素質材料、有機物、金属、金属化合物などを混合しても、内包しても、被覆しても、または積層してもよい。
The shape of the current collector used for producing the negative electrode is not particularly limited, but may be a foil shape, a mesh shape, a net shape such as expanded metal, or the like. The material for the current collector is preferably copper, stainless steel, nickel or the like. The thickness of the current collector is preferably about 5 to 20 μm in the case of a foil.
It should be noted that the negative electrode of the present invention can be included even if different types of graphite materials, carbonaceous materials such as amorphous hard carbon, organic substances, metals, metal compounds, and the like are mixed within a range that does not impair the object of the present invention. Alternatively, it may be coated or laminated.

[正極]
正極は、例えば正極材料と結合剤および導電剤よりなる正極合剤を集電体の表面に塗布することにより形成される。正極の材料(正極活物質)は、充分量のリチウムを吸蔵/離脱し得るものを選択するのが好ましく、リチウム含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物およびそのリチウム化合物などのリチウム含有化合物、一般式MMo8-Y(式中Mは少なくとも一種の遷移金属元素であり、Xは0≦X≦4、Yは0≦Y≦1の範囲の数値である)で表されるシェブレル相化合物、活性炭、活性炭素繊維などである。バナジウム酸化物は、V、V13、V、Vで示されるものである。
[Positive electrode]
The positive electrode is formed, for example, by applying a positive electrode mixture comprising a positive electrode material, a binder and a conductive agent to the surface of the current collector. The positive electrode material (positive electrode active material) is preferably selected from materials that can occlude / release a sufficient amount of lithium, and lithium such as lithium-containing transition metal oxides, transition metal chalcogenides, vanadium oxides, and lithium compounds thereof. containing compound, the general formula M x Mo 6 S 8-Y (M in the formula is a transition metal element of at least one, X is 0 ≦ X ≦ 4, Y is a number in the range from 0 ≦ Y ≦ 1) Chevrel phase compounds, activated carbon, activated carbon fibers and the like. Vanadium oxide is one represented by V 2 O 5, V 6 O 13, V 2 O 4, V 3 O 8.

リチウム含有遷移金属酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。複合酸化物は単独で使用しても、2種類以上を組合わせて使用してもよい。リチウム含有遷移金属酸化物は、具体的には、LiM 1-X (式中M、Mは少なくとも一種の遷移金属元素であり、Xは0≦X≦1の範囲の数値である)、またはLiM 1-Y (式中M、Mは少なくとも一種の遷移金属元素であり、Yは0≦Y≦1の範囲の数値である)で示される。M、Mで示される遷移金属元素は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどであり、好ましいのはCo、Fe、Mn、Ti、Cr、V、Alなどである。好ましい具体例は、LiCoO、LiNiO、LiMnO、LiNi0.9Co0.1、LiNi0.5Co0.5などである。 The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. The composite oxide may be used alone or in combination of two or more. Specifically, the lithium-containing transition metal oxide is LiM 1 1-X M 2 x O 2 (wherein M 1 and M 2 are at least one transition metal element, and X is in a range of 0 ≦ X ≦ 1. LiM 1 1-Y M 2 Y O 4 (wherein M 1 and M 2 are at least one transition metal element, and Y is a value in the range of 0 ≦ Y ≦ 1). Indicated. The transition metal elements represented by M 1 and M 2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, etc., preferably Co, Fe, Mn, Ti, Cr , V, Al, etc. Preferred examples include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2 , and the like.

<正極の製造>
リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、水酸化物、塩類等を出発原料とし、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素雰囲気下600〜1000℃の温度で焼成することにより得ることができる。
正極活物質は、前記化合物を単独で使用しても2種類以上併用してもよい。例えば、正極中に炭酸リチウム等の炭酸塩を添加することができる。また、正極を形成するに際しては、従来公知の導電剤や結着剤などの各種添加剤を適宜に使用することができる。
正極は、前記正極材料、結合剤、および正極に導電性を付与するための導電剤よりなる正極合剤を、集電体の両面に塗布して正極合剤層を形成して作製される。結合剤としては、負極の作製に使用されるものと同じものが使用可能である。導電剤としては、黒鉛化物、カーボンブラックなど公知のものが使用される。
集電体の形状は特に限定されないが、箔状またはメッシュ、エキスパンドメタル等の網状等のものが用いられる。集電体の材質は、アルミニウム、ステンレス、ニッケル等である。その厚さは10〜40μmのものが好適である。
正極も負極と同様に、正極合剤を溶剤中に分散させペースト状にし、このペースト状の正極合剤を集電体に塗布、乾燥して正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス加圧等の圧着を行ってもよい。これにより正極合剤層が均一且つ強固に集電材に接着される。
<Production of positive electrode>
Examples of the lithium-containing transition metal oxide include lithium, transition metal oxides, hydroxides, salts, and the like as starting materials, and these starting materials are mixed in accordance with the composition of the desired metal oxide, and are mixed under an oxygen atmosphere. It can be obtained by firing at a temperature of ˜1000 ° C.
The positive electrode active material may be used alone or in combination of two or more. For example, a carbonate such as lithium carbonate can be added to the positive electrode. Moreover, when forming a positive electrode, conventionally well-known various additives, such as a electrically conductive agent and a binder, can be used suitably.
The positive electrode is produced by applying a positive electrode mixture comprising the positive electrode material, a binder, and a conductive agent for imparting conductivity to the positive electrode on both sides of the current collector to form a positive electrode mixture layer. As the binder, the same one as that used for producing the negative electrode can be used. As the conductive agent, known materials such as graphitized materials and carbon black are used.
The shape of the current collector is not particularly limited, but a foil shape or a mesh shape such as a mesh or expanded metal is used. The material of the current collector is aluminum, stainless steel, nickel or the like. The thickness is preferably 10 to 40 μm.
Similarly to the negative electrode, the positive electrode mixture may be formed in a paste by dispersing the positive electrode mixture in a solvent, and the paste-like positive electrode mixture may be applied to a current collector and dried to form a positive electrode mixture layer. After forming the agent layer, pressure bonding such as press pressing may be further performed. As a result, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.

[非水電解質]
本発明のリチウムイオン二次電池に用いられる非水電解質としては、通常の非水電解液に使用される電解質塩である、LiPF、LiBF、LiA、LiClO、LiB(C)、LiCl、LiBr、LiCFSO、LiCHSO、LiN(CFSO、LiC(CFSO、LiN(CFCHOSO、LiN(CFCFOSO、LiN(HCFCFCHOSO、LiN((CFCHOSO、LiB[{C(CF}]、LiAlCl、LiSiFなどのリチウム塩を用いることができる。
酸化安定性の点からは、特に、LiPF、LiBFが好ましい。
電解液中の電解質塩濃度は0.1〜5mo1/1が好ましく、0.5〜3.0mol/1がより好ましい。
非水電解質は液状の非水電解質としてもよく、固体電解質またはゲル電解質などの高分子電解質としてもよい。前者の場合、非水電解質電池は、いわゆるリチウムイオン二次電池として構成され、後者の場合は、非水電解質電池は高分子固体電解質、高分子ゲル電解質電池などの高分子電解質電池として構成される。
[Nonaqueous electrolyte]
The non-aqueous electrolyte used in the lithium ion secondary battery of the present invention, an electrolyte salt used in the conventional non-aqueous electrolyte, LiPF 6, LiBF 4, LiA s F 6, LiClO 4, LiB (C 6 H 5), LiCl, LiBr, LiCF 3 SO 3, LiCH 3 SO 3, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) 3, LiN (CF 3 CH 2 OSO 2) 2, LiN (CF 3 CF 2 OSO 2) 2, LiN (HCF 2 CF 2 CH 2 OSO 2) 2, LiN ((CF 3) 2 CHOSO 2) 2, LiB [{C 6 H 3 (CF 3) 2}] 4, LiAlCl 4 and lithium salts such as LiSiF 6 can be used.
From the viewpoint of oxidation stability, LiPF 6 and LiBF 4 are particularly preferable.
The electrolyte salt concentration in the electrolytic solution is preferably 0.1 to 5 mo1 / 1, and more preferably 0.5 to 3.0 mol / 1.
The non-aqueous electrolyte may be a liquid non-aqueous electrolyte or a polymer electrolyte such as a solid electrolyte or a gel electrolyte. In the former case, the non-aqueous electrolyte battery is configured as a so-called lithium ion secondary battery, and in the latter case, the non-aqueous electrolyte battery is configured as a polymer electrolyte battery such as a polymer solid electrolyte or a polymer gel electrolyte battery. .

非水電解質液を調製するための溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1、1−または1、2−ジメトキシエタン、1、2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1、3−ジオキソラン、4−メチル−1、3−ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒などを用いることができる。   As a solvent for preparing the nonaqueous electrolyte solution, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, acetonitrile, chloronitrile, propionitrile, etc. Nitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, Benzoyl, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, aprotic organic solvents such as dimethyl sulfite may be used.

非水電解質を高分子固体電解質または高分子ゲル電解質などの高分子電解質とする場合には、マトリクスとして可塑剤(非水電解液)でゲル化された高分子を用いることが好ましい。前記マトリクスを構成する高分子としては、ポリエチレンオキサイドやその架橋体などのエーテル系高分子化合物、ポリメタクリレート系高分子化合物、ポリアクリレート系高分子化合物、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物などを用いることが特に好ましい。
前記高分子固体電解質または高分子ゲル電解質には、可塑剤が配合されるが、該可塑剤としては、前記の電解質塩や非水溶媒が使用可能である。高分子ゲル電解質の場合、可塑剤である非水電解液中の電解質塩濃度は0.1〜5mol/1が好ましく、0.5〜2.0mol/1がより好ましい。
When the non-aqueous electrolyte is a polymer electrolyte such as a polymer solid electrolyte or a polymer gel electrolyte, it is preferable to use a polymer gelled with a plasticizer (non-aqueous electrolyte) as a matrix. Examples of the polymer constituting the matrix include ether-based polymer compounds such as polyethylene oxide and cross-linked products thereof, polymethacrylate-based polymer compounds, polyacrylate-based polymer compounds, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene. It is particularly preferable to use a fluorine-based polymer compound such as a copolymer.
The polymer solid electrolyte or polymer gel electrolyte is mixed with a plasticizer, and as the plasticizer, the electrolyte salt and the non-aqueous solvent can be used. In the case of a polymer gel electrolyte, the concentration of the electrolyte salt in the nonaqueous electrolytic solution that is a plasticizer is preferably 0.1 to 5 mol / 1, and more preferably 0.5 to 2.0 mol / 1.

高分子固体電解質の作製方法は特に限定されないが、例えば、マトリクスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して高分子化合物を溶融する方法、有機溶剤に高分子化合物、リチウム塩、および非水溶媒(可塑剤)を溶解させた後、混合用有機溶剤を蒸発させる方法、重合性モノマー、リチウム塩および非水溶媒(可塑剤)を混合し、混合物に紫外線、電子線または分子線などを照射して、重合性モノマーを重合させ、ポリマーを得る方法などを挙げることができる。
ここで、前記固体電解質中の非水溶媒(可塑剤)の割合は10〜90質量%が好ましく、30〜80質量%がより好ましい。10質量%未満であると導電率が低くなり、90質量%を超えると機械的強度が弱くなり、成膜しにくくなる。
The method for producing the polymer solid electrolyte is not particularly limited. For example, a method of mixing a polymer compound constituting a matrix, a lithium salt, and a nonaqueous solvent (plasticizer) and heating to melt the polymer compound, an organic solvent A method in which a polymer compound, a lithium salt, and a non-aqueous solvent (plasticizer) are dissolved in, and an organic solvent for mixing is evaporated, a polymerizable monomer, a lithium salt, and a non-aqueous solvent (plasticizer) are mixed, and the mixture is mixed Examples thereof include a method of polymerizing a polymerizable monomer by irradiating an ultraviolet ray, an electron beam, a molecular beam or the like to obtain a polymer.
Here, the ratio of the non-aqueous solvent (plasticizer) in the solid electrolyte is preferably 10 to 90% by mass, and more preferably 30 to 80% by mass. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be weak and film formation will be difficult.

[セパレータ]
本発明のリチウムイオン二次電池においては、セパレータを使用することもできる。セパレータの材質は特に限定されるものではないが、例えば、織布、不織布、合成樹脂製微多孔膜などを用いることができる。前記セパレータの材質としては、合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面で好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等が好適である。
[Separator]
In the lithium ion secondary battery of the present invention, a separator can also be used. Although the material of a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. can be used. As a material for the separator, a microporous membrane made of synthetic resin is suitable. Among them, a polyolefin microporous membrane is suitable in terms of thickness, membrane strength, and membrane resistance. Specifically, polyethylene and polypropylene microporous membranes, or microporous membranes composed of these are suitable.

[リチウムイオン二次電池]
本発明のリチウムイオン二次電池は、上述した構成の負極、正極および非水電解質を、例えば、負極、非水電解質、正極の順で積層し、電池の外装材内に収容することで構成される。さらに、負極と正極の外側に非水電解質を配するようにしてもよい。
また、本発明のリチウムイオン二次電池の構造は特に限定されず、その形状、形態についても特に限定されるものではなく、用途、搭載機器、要求される充放電容量などに応じて、円筒型、角型、コイン型、ボタン型などの中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものを用いることが好ましい。
リチウムイオン二次電池が高分子固体電解質電池や高分子ゲル電解質電池の場合には、ラミネートフィルムに封入した構造とすることもできる。
[Lithium ion secondary battery]
The lithium ion secondary battery of the present invention is configured by laminating the negative electrode, the positive electrode, and the nonaqueous electrolyte having the above-described configuration in the order of, for example, the negative electrode, the nonaqueous electrolyte, and the positive electrode, and accommodating the laminate in the battery exterior material. The Further, a non-aqueous electrolyte may be disposed outside the negative electrode and the positive electrode.
In addition, the structure of the lithium ion secondary battery of the present invention is not particularly limited, and the shape and form thereof are not particularly limited, and are cylindrical, depending on the application, mounted equipment, required charge / discharge capacity, and the like. , Square shape, coin shape, button shape, and the like. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to use a battery equipped with means for detecting an increase in the internal pressure of the battery and shutting off the current when an abnormality such as overcharging occurs.
In the case where the lithium ion secondary battery is a polymer solid electrolyte battery or a polymer gel electrolyte battery, a structure in which the lithium ion secondary battery is enclosed in a laminate film may be used.

次に本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。また以下の実施例および比較例では、図2に示すように、少なくとも表面の一部に本発明の負極炭素質材料が付着した集電体(負極)7bとリチウム箔よりなる対極(正極)4から構成される単極評価用のボタン型二次電池を作製して評価した。実電池は、本発明の概念に基づき、公知の方法に準じて作製することができる。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. In the following examples and comparative examples, as shown in FIG. 2, a current collector (negative electrode) 7b having a negative electrode carbonaceous material of the present invention attached to at least a part of the surface and a counter electrode (positive electrode) 4 made of lithium foil. A button-type secondary battery for single electrode evaluation composed of An actual battery can be produced according to a known method based on the concept of the present invention.

〔実施例1〕
[炭素質材料の作製]
二軸加熱ニーダーを用いて、コールタールピッチ(JFEケミカル(株)製、PK−E)にタール中油を混合した溶液に酸化鉄微粒子(平均粒子直径:0.05μm)を加え、150℃で1時間混練した。その際、固形分比率(質量比、以下同様)がコールタールピッチ:酸化鉄微粒子で、95:5となるように調製した。混練後、真空にして該混練物中の溶媒を除去した。
得られた混練物をカッターミルを用いて1mm程度に粗粉砕したのち黒鉛るつぼに入れ、アルゴン雰囲気下、まず500℃で6時間保持して揮発分を5%以下にまで低減したのち、3000℃で3時間かけて黒鉛化した。
この黒鉛化物を平均粒径が10μmとなるようにアトマイザーで粉砕し、得られた黒鉛質芯材粒子を、SEM観察して50個の長軸・短軸の比をアスペクト比として求めた。結果を表1に記載した。該黒鉛質芯材粒子のd002は、0.3357nmであった。
次に、黒鉛質芯材を前記同様に二軸加熱ニーダーでコールタールピッチ溶液と150℃で1時間混練した。その際、固形分比率がコールタールピッチ:該黒鉛質芯材で、10:90となるように調製した。混練後、常圧で加熱して該混練物中の溶媒を除去した。
得られた混練物を黒鉛るつぼに入れ、アルゴン雰囲気下、まず500℃で6時間保持して揮発分を5%以下にまで低減したのち、1500℃で3時間かけて炭化した。この混練物を平均粒径が20μmとなるようにアトマイザーで粉砕し、目的の炭素質材料を得た。
[Example 1]
[Production of carbonaceous materials]
Using a biaxial heating kneader, iron oxide fine particles (average particle diameter: 0.05 μm) were added to a solution obtained by mixing coal oil with coal tar pitch (manufactured by JFE Chemical Co., Ltd., PK-E). Kneaded for hours. At that time, the solid content ratio (mass ratio, the same applies hereinafter) was prepared from coal tar pitch: iron oxide fine particles and 95: 5. After kneading, a vacuum was applied to remove the solvent in the kneaded product.
The obtained kneaded material is roughly pulverized to about 1 mm using a cutter mill and then placed in a graphite crucible. First, the mixture is held at 500 ° C. for 6 hours in an argon atmosphere to reduce the volatile content to 5% or less, and then 3000 ° C. And graphitized for 3 hours.
The graphitized product was pulverized with an atomizer so that the average particle size was 10 μm, and the obtained graphite core material particles were observed with an SEM to determine the ratio of 50 major axes to minor axes as an aspect ratio. The results are shown in Table 1. The d 002 of the graphite core material particles was 0.3357 nm.
Next, the graphite core material was kneaded with a coal tar pitch solution at 150 ° C. for 1 hour using a biaxial heating kneader in the same manner as described above. At that time, the solid content ratio was adjusted to 10:90 with coal tar pitch: the graphite core material. After kneading, the solvent in the kneaded product was removed by heating at normal pressure.
The obtained kneaded material was put in a graphite crucible and first held at 500 ° C. for 6 hours under an argon atmosphere to reduce the volatile content to 5% or less, and then carbonized at 1500 ° C. for 3 hours. This kneaded product was pulverized with an atomizer so that the average particle size was 20 μm, and the intended carbonaceous material was obtained.

[負極合剤ペーストの作製]
前記炭素質材料90質量%と、ポリフッ化ビニリデン10質量%をN−メチルピロリドンに入れ、ホモミキサーを用いて2000rpmで30分間攪拌混合し、有機溶剤系負極合剤を調製した。
[作用電極(負極)の作製]
前記負極合剤ペーストを銅箔に均一な厚さで塗布し、真空中90℃で溶剤を揮発させ、乾燥し、負極合剤層をハンドプレスによって加圧した。銅箔と負極合剤層を直径15.5mmの円柱状に打抜いて、集電体と、該集電体に密着した負極合剤とからなる作用電極(負極)を作製した。
[Preparation of negative electrode mixture paste]
90% by mass of the carbonaceous material and 10% by mass of polyvinylidene fluoride were placed in N-methylpyrrolidone, and stirred and mixed at 2000 rpm for 30 minutes using a homomixer to prepare an organic solvent-based negative electrode mixture.
[Production of working electrode (negative electrode)]
The negative electrode mixture paste was applied to a copper foil with a uniform thickness, the solvent was volatilized in a vacuum at 90 ° C., dried, and the negative electrode mixture layer was pressed by a hand press. The copper foil and the negative electrode mixture layer were punched into a cylindrical shape having a diameter of 15.5 mm to prepare a working electrode (negative electrode) composed of a current collector and a negative electrode mixture adhered to the current collector.

[対極(正極)の作製]
リチウム金属箔をニッケルネットに押付け、直径15.5mmの円形状に打抜いて、ニッケルネットからなる集電体と、この集電体に密着したリチウム金属箔(厚み0.5mm)からなる対極(正極)を作製した。
[電解液、セパレータ]
エチレンカーボネート33vo1%−メチルエチルカーボネート67vol%の混合溶剤に、LiPFを1mol/Lとなる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔質体(厚み20μm)に含浸させ、電解液が含浸したセパレータを作製した。
[Production of counter electrode (positive electrode)]
A lithium metal foil is pressed against a nickel net and punched into a circular shape with a diameter of 15.5 mm. A current collector made of nickel net and a counter electrode made of a lithium metal foil (thickness 0.5 mm) in close contact with the current collector ( Positive electrode) was prepared.
[Electrolyte, separator]
LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate 33 vol 1% -methyl ethyl carbonate 67 vol% to prepare a non-aqueous electrolyte. The obtained nonaqueous electrolytic solution was impregnated into a polypropylene porous body (thickness 20 μm) to produce a separator impregnated with the electrolytic solution.

[評価電池の作製]
評価電池として図2に示すボタン型二次電池を作製した。
外装カップ1と外装缶3は、その周縁部において絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。その内部に外装缶3の内面から順に、ニッケルネットからなる集電体7a、リチウム箔よりなる円筒状の対極(正極)4、電解液が含浸されたセパレータ5、Siが付着した銅箔からなる集電体7bが積層された電池系である。
前記評価電池は電解液を含浸させたセパレータ5を集電体7bと、集電体7aに密着した対極4との間に挟んで積層した後、集電体7bを外装カップ1内に、対極4を外装缶3内に収容して、外装カップ1と外装缶3とを合わせ、さらに、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉して作製した。
基材、炭素質材料の物性等は以下の方法により測定した。測定結果・評価結果を表1に示した。
[Production of evaluation battery]
A button-type secondary battery shown in FIG. 2 was produced as an evaluation battery.
The exterior cup 1 and the exterior can 3 were sealed by interposing an insulating gasket 6 at the peripheral portion thereof and caulking both peripheral portions. In the inside, in order from the inner surface of the outer can 3, a current collector 7 a made of nickel net, a cylindrical counter electrode (positive electrode) 4 made of lithium foil, a separator 5 impregnated with an electrolytic solution, and a copper foil with Si attached thereto. It is a battery system in which the current collector 7b is laminated.
In the evaluation battery, the separator 5 impregnated with the electrolytic solution was laminated between the current collector 7b and the counter electrode 4 in close contact with the current collector 7a, and then the current collector 7b was placed in the outer cup 1 4 is accommodated in the outer can 3, the outer cup 1 and the outer can 3 are combined, and further, an insulating gasket 6 is interposed between the outer peripheral portion of the outer cup 1 and the outer can 3, and both peripheral portions are caulked and sealed. And made.
The physical properties of the base material and the carbonaceous material were measured by the following methods. The measurement results and evaluation results are shown in Table 1.

[炭素質材料の表面観察]
負極炭素質材料を樹脂に埋め込んで研磨した。低結晶性炭素質被覆層の断面(内部)または負極炭素質材料の外表面をSEM観察(倍率:1万倍)し空隙の有無を確認した。結果は、表1に示すように、実施例では負極炭素質材料の外表面の細孔は認められなかった。なお表面以外の黒鉛質芯材の細孔は前述のように粒子を粉砕後水銀圧入法で測定した。
[TG(重量減少)測定]
試料を窒素雰囲気中10℃/分で600℃まで昇温し、600℃に到達した段階で流入ガスを窒素ガスから窒素と空気が50:50(vol%比)の混合ガスに切替え、1.5時間保持した。その後、室温まで冷却し、残った試料の質量を測定し、質量減少した割合を求めた。この質量減少の割合を被覆層の割合とした。
[炭素質材料のX線回折]
CuKα線をX線源、高純度シリコンを標準物質に使用して(002)回折ピークを測定し、そのピーク位置およびその半値幅から、それぞれd002を算出した。算出方法は学振法(日本学術振興会第117委員会が定めた測定法)に従うものであり、具体的には「炭素繊維」(大谷杉郎著、近代編集社、昭和61年3月発行)の733〜742頁などに記載されている方法に拠った。
[ラマン分光]
炭素質材料のラマン分光によるR値は、ラマン分光分析器[NR−1100:日本分光(株)製]を用い・励起光は波長514.5nmのアルゴンレーザーで、照射面積は30μmΦで分析し、Dバンド1360cm−1ピークの強度(ID)、Gバンド1580cm−1のピーク強度(IG)を測定した。そして強度比ID/IGをR値とした。
[Surface observation of carbonaceous materials]
A negative electrode carbonaceous material was embedded in a resin and polished. The cross section (inside) of the low crystalline carbonaceous coating layer or the outer surface of the negative electrode carbonaceous material was observed by SEM (magnification: 10,000 times) to confirm the presence or absence of voids. As a result, as shown in Table 1, pores on the outer surface of the negative electrode carbonaceous material were not recognized in the examples. The pores of the graphite core other than the surface were measured by a mercury intrusion method after pulverizing the particles as described above.
[TG (weight loss) measurement]
The sample was heated to 600 ° C. at a rate of 10 ° C./min in a nitrogen atmosphere, and when the temperature reached 600 ° C., the inflow gas was switched from nitrogen gas to a mixed gas of nitrogen and air of 50:50 (vol% ratio). Hold for 5 hours. Then, it cooled to room temperature, measured the mass of the remaining sample, and calculated | required the ratio which the mass decreased. The ratio of this mass reduction was taken as the ratio of the coating layer.
[X-ray diffraction of carbonaceous materials]
A (002) diffraction peak was measured using CuKα ray as an X-ray source and high-purity silicon as a standard substance, and d 002 was calculated from the peak position and half width thereof. The calculation method follows the Japan Science and Technology Act (measurement method defined by the 117th Committee of the Japan Society for the Promotion of Science). Specifically, “Carbon Fiber” (written by Suguro Otani, Modern Editorial Company, published in March 1986) ) Pp. 733-742 and the like.
[Raman spectroscopy]
The R value of the carbonaceous material by Raman spectroscopy is analyzed using a Raman spectrometer [NR-1100: manufactured by JASCO Corporation]. D band 1360 cm -1 peak intensity (ID), to measure the peak intensity of G-band 1580cm -1 (IG). And intensity ratio ID / IG was made into R value.

[充放電試験]
回路電圧が0mVに達するまで0.9mAの定電流充電を行った後、回路電圧が0mVに達した時点で定電圧充電に切替え、さらに電流値が20μAになるその間の通電量から充電容量を求めた。その後、10分間休止した。次に0.9mAの電流値で回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。これを第1サイクルとした。次いで充電電流を0.5C、放電電流を2Cとして、第1サイクルと同様に充放電を行った。0.5C、2Cの電流値は、第1サイクルの放電容量と負極の活物質重量から計算した。
初回充放電ロスは次式(1)から計算した。
初回充放電ロス=第1サイクルの充電容量一第1サイクルの放電容量…(1)
また、2C放電率は次式(2)から計算した。
2C放電率(%)=100×(2C電流値における放電容量/第1サイクルの放電容量)…(2)
なおこの試験では、リチウムイオンを負極材料に吸蔵する過程を充電、負極材料からリチウムイオンが脱離する過程を放電とした。
[Charge / discharge test]
After constant current charging of 0.9 mA until the circuit voltage reaches 0 mV, switching to constant voltage charging when the circuit voltage reaches 0 mV, and the charge capacity is obtained from the amount of current during which the current value reaches 20 μA. It was. Then, it rested for 10 minutes. Next, constant current discharge was performed until the circuit voltage reached 1.5 V at a current value of 0.9 mA, and the discharge capacity was determined from the amount of electricity supplied during this period. This was the first cycle. Next, charging and discharging were performed in the same manner as in the first cycle with a charging current of 0.5 C and a discharging current of 2 C. The current values of 0.5C and 2C were calculated from the discharge capacity of the first cycle and the weight of the negative electrode active material.
The first charge / discharge loss was calculated from the following equation (1).
Initial charge / discharge loss = charge capacity of the first cycle-discharge capacity of the first cycle (1)
The 2C discharge rate was calculated from the following equation (2).
2C discharge rate (%) = 100 × (discharge capacity at 2C current value / discharge capacity of first cycle) (2)
In this test, the process of occluding lithium ions in the negative electrode material was charged, and the process of detaching lithium ions from the negative electrode material was discharge.

[サイクル特性]
また、サイクル特性は以下のように測定した。回路電圧が0mVに達するまで0.5C電流値で定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた後、10分間休止した。次に0.5Cの電流値で、回路電圧が1.5Vに達するまで定電流放電を行った。この充放電を50回繰り返し、得られた放電容量から、次式を用いてサイクル特性を計算した。
サイクル特性=(第50サイクルにおける放電容量/第1サイクルにおける放電容量)×100
[電極密度]
集電材の厚さをt[cm]、単位面積あたりの質量をW[g/cm]とし、負極炭素質材料の質量割合をP[%]とする結合剤との負極合剤ペーストを塗布し、加圧して製造した厚さt[cm]の負極を、所定の面積S[cm]で打抜き、この打抜き後の負極の質量をW[g]としたとき、下記式により求めることができる。なお、前記質量は上皿式の自動天秤、厚さはマイクロメーターで測定した値である。
電極密度[g/cm]={(W/S−W)/(t−t)}×(P/100)
[Cycle characteristics]
The cycle characteristics were measured as follows. After constant current charging at a 0.5 C current value until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA, and then rested for 10 minutes. Next, constant current discharge was performed at a current value of 0.5 C until the circuit voltage reached 1.5V. This charging / discharging was repeated 50 times, and the cycle characteristics were calculated from the obtained discharge capacity using the following equation.
Cycle characteristics = (discharge capacity in the 50th cycle / discharge capacity in the first cycle) × 100
[Electrode density]
Negative electrode mixture paste with a binder in which the thickness of the current collector is t 1 [cm], the mass per unit area is W 1 [g / cm 2 ], and the mass ratio of the negative electrode carbonaceous material is P [%] When a negative electrode having a thickness t 2 [cm] produced by applying and pressing is applied with a predetermined area S [cm 2 ], and the mass of the negative electrode after punching is W 2 [g], the following formula It can ask for. In addition, the said mass is the value measured with the top plate type automatic balance and thickness with the micrometer.
Electrode density [g / cm 3 ] = {(W 2 / S−W 1 ) / (t 2 −t 1 )} × (P / 100)

〔実施例2〕
実施例1において酸化鉄微粒子をシリカ微粒子(平均粒子直径:0.05μm)に替える以外は実施例1と同様にして炭素質材料(リチウムイオン二次電池用負極材料)を作製して、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った。評価結果を同じく表1に示した。
[Example 2]
A carbonaceous material (a negative electrode material for a lithium ion secondary battery) was prepared in the same manner as in Example 1 except that the iron oxide fine particles were changed to silica fine particles (average particle diameter: 0.05 μm) in Example 1, and the negative electrode composite was prepared. The preparation of the agent, the production of the negative electrode, the production of the lithium ion secondary battery and the characteristics evaluation were performed. The evaluation results are also shown in Table 1.

〔実施例3〕
二軸加熱ニーダーを用いて、フェノール樹脂(住友ベークライト(株)製)のエタノール溶液に酸化鉄微粒子(平均粒子直径:0.05μm)を加え、50℃で1時間混練した。その際、固形分比率がフェノール樹脂:酸化鉄微粒子で、95:5となるように調製した。混練後、真空にして該混練物中の溶媒を除去した。得られた混錬物を実施例1と同様の条件で黒鉛化して粉砕し、黒鉛化芯材(d002:0.3359nm)を作製した。該黒鉛化芯材をコールタールピッチ溶液を用いて、実施例1と同様に、炭素質材料(リチウムイオン二次電池用負極材料)を作製し、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った。評価結果を同じく表1に示した。
〔実施例4〕
実施例1で作製した黒鉛質芯材を、実施例1と同じ条件でコールタールピッチ溶液と混錬後1100℃で3時間かけて炭化して、炭素質材料(リチウムイオン二次電池用負極材料)を作製した。実施例1と同様に、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った。評価結果を同じく表1に示した。
Example 3
Using a biaxial heating kneader, iron oxide fine particles (average particle diameter: 0.05 μm) were added to an ethanol solution of a phenol resin (manufactured by Sumitomo Bakelite Co., Ltd.) and kneaded at 50 ° C. for 1 hour. At that time, the solid content ratio was 95: 5 with phenol resin: iron oxide fine particles. After kneading, a vacuum was applied to remove the solvent in the kneaded product. The obtained kneaded material was graphitized under the same conditions as in Example 1 and pulverized to produce a graphitized core material (d 002 : 0.3359 nm). Using the coal-tar pitch solution as the graphitized core material, a carbonaceous material (a negative electrode material for a lithium ion secondary battery) is prepared in the same manner as in Example 1 to prepare a negative electrode mixture, a negative electrode, and lithium ions. A secondary battery was fabricated and evaluated. The evaluation results are also shown in Table 1.
Example 4
The graphite core material produced in Example 1 was kneaded with a coal tar pitch solution under the same conditions as in Example 1 and then carbonized at 1100 ° C. for 3 hours to produce a carbonaceous material (a negative electrode material for a lithium ion secondary battery). ) Was produced. In the same manner as in Example 1, preparation of the negative electrode mixture, preparation of the negative electrode, preparation of the lithium ion secondary battery, and property evaluation were performed. The evaluation results are also shown in Table 1.

〔実施例5〕
実施例1において、二軸加熱ニーダーを用いて、コールタールピッチにタール中油を混合した溶液に酸化鉄微粒子を加え、150℃で1時間混練する際、固形分比率をコールタールピッチ:酸化鉄微粒子で、98:2とする以外は実施例1と同様にして炭素材料(リチウムイオン二次電池用負極材料)を作製して、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った、評価結果を同じく表1に示した。
Example 5
In Example 1, using a biaxial heating kneader, iron oxide fine particles were added to a solution obtained by mixing oil in tar with coal tar pitch, and when the mixture was kneaded at 150 ° C. for 1 hour, the solid content ratio was changed to coal tar pitch: iron oxide fine particles. Thus, a carbon material (a negative electrode material for a lithium ion secondary battery) was prepared in the same manner as in Example 1 except that the ratio was 98: 2, and a negative electrode mixture was prepared, a negative electrode was manufactured, and a lithium ion secondary battery was manufactured. Table 1 also shows the evaluation results obtained by evaluating the characteristics.

〔実施例6〕
実施例1において、二軸加熱ニーダーを用いて、コールタールピッチにタール中油を混合した溶液に酸化鉄微粒子を加え、150℃で1時間混練する際、固形分比率をコールタールピッチ:酸化鉄微粒子で、97:3とする以外は実施例1と同様にして炭素材料(リチウムイオン二次電池用負極材料)を作製して、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った、評価結果を同じく表1に示した。
Example 6
In Example 1, using a biaxial heating kneader, iron oxide fine particles were added to a solution obtained by mixing oil in tar with coal tar pitch, and when the mixture was kneaded at 150 ° C. for 1 hour, the solid content ratio was changed to coal tar pitch: iron oxide fine particles. Thus, a carbon material (a negative electrode material for a lithium ion secondary battery) was prepared in the same manner as in Example 1 except that the ratio was 97: 3, and a negative electrode mixture was prepared, a negative electrode was manufactured, and a lithium ion secondary battery was manufactured. Table 1 also shows the evaluation results obtained by evaluating the characteristics.

〔実施例7〕
実施例1において、二軸加熱ニーダーを用いて、コールタールピッチにタール中油を混合した溶液に酸化鉄微粒子を加え、150℃で1時間混練する際、固形分比率をコールタールピッチ:酸化鉄微粒子で、94:6とする以外は実施例1と同様にして炭素材料(リチウムイオン二次電池用負極材料)を作製して、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った、評価結果を同じく表1に示した。
Example 7
In Example 1, using a biaxial heating kneader, iron oxide fine particles were added to a solution obtained by mixing oil in tar with coal tar pitch, and when the mixture was kneaded at 150 ° C. for 1 hour, the solid content ratio was changed to coal tar pitch: iron oxide fine particles. Thus, a carbon material (a negative electrode material for a lithium ion secondary battery) was prepared in the same manner as in Example 1 except that the ratio was 94: 6, and a negative electrode mixture, a negative electrode, and a lithium ion secondary battery were prepared. Table 1 also shows the evaluation results obtained by evaluating the characteristics.

〔実施例8〕
実施例1において、黒鉛質芯材を二軸加熱ニーダーでコールタールピッチ溶液と150℃で1時間混練する際、固形分比率がコールタールピッチ:該黒鉛質芯材で、5:95となるように調製する以外は実施例1と同様にして炭素材料(リチウムイオン二次電池用負極材料)を作製して、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った、評価結果を同じく表1に示した。
Example 8
In Example 1, when the graphite core material was kneaded with the coal tar pitch solution at 150 ° C. for 1 hour with a biaxial heating kneader, the solid content ratio was 5:95 with the coal tar pitch: the graphite core material. A carbon material (a negative electrode material for a lithium ion secondary battery) is prepared in the same manner as in Example 1 except that the preparation of the negative electrode mixture is performed. The evaluation results performed are also shown in Table 1.

〔実施例9〕
実施例1で作製した黒鉛質芯材を、実施例1と同じ条件でコールタールピッチ溶液と混練後900℃で3時間かけて炭化する以外は実施例1と同様にして炭素材料(リチウムイオン二次電池用負極材料)を作製して、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った、評価結果を同じく表1に示した。なお実施例で用いた黒鉛質芯材のLcの値は50nm以上であった。
Example 9
The carbonaceous material (lithium ion 2) was prepared in the same manner as in Example 1 except that the graphite core material produced in Example 1 was carbonized at 900 ° C. for 3 hours after kneading with a coal tar pitch solution under the same conditions as in Example 1. A negative electrode material for a secondary battery) was prepared, and a negative electrode mixture, a negative electrode, a lithium ion secondary battery, and characteristics were evaluated. The evaluation results are also shown in Table 1. The Lc value of the graphite core material used in the examples was 50 nm or more.

〔比較例1〕
天然黒鉛(ユニオンカーボン(株)製、BF15A、リン片状、d002:0.3357nm)と酸化鉄微粒子(平均粒子直径0.05μm)を95:5に混合したものを、二軸加熱ニーダーでコールタールピッチ溶液と150℃で1時間混練した。その際、固形分比率がコールタールピッチ:該混合物が、10:90となるように調製した。混練後、真空にして該混練物中の溶媒を除去した。得られた混練物を黒鉛るつぼに入れ、アルゴン雰囲気下、まず500℃で6時間保持して揮発分を5%以下にまで低減したのち、1500℃で3時間かけて炭化し粉砕して、炭化物粉末を得た。実施例1と同様にして、得られた炭化物粉末とコールタールピッチ溶液とを混錬し、実施例1と同様にして、炭素質材料(リチウムイオン二次電池用負極材料)を作製して、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った。評価結果を同じく表1に示した。
[Comparative Example 1]
A mixture of natural graphite (manufactured by Union Carbon Co., Ltd., BF15A, flake shaped, d 002 : 0.3357 nm) and iron oxide fine particles (average particle diameter 0.05 μm) at 95: 5 is mixed with a biaxial heating kneader. It knead | mixed with the coal tar pitch solution at 150 degreeC for 1 hour. At that time, the solid content ratio was adjusted to be coal tar pitch: the mixture was 10:90. After kneading, a vacuum was applied to remove the solvent in the kneaded product. The obtained kneaded material is put into a graphite crucible, and first kept at 500 ° C. for 6 hours under an argon atmosphere to reduce the volatile content to 5% or less, then carbonized and pulverized at 1500 ° C. for 3 hours. A powder was obtained. In the same manner as in Example 1, the obtained carbide powder and coal tar pitch solution were kneaded, and in the same manner as in Example 1, a carbonaceous material (a negative electrode material for a lithium ion secondary battery) was produced. Preparation of a negative electrode mixture, preparation of a negative electrode, preparation of a lithium ion secondary battery, and characteristic evaluation were performed. The evaluation results are also shown in Table 1.

〔比較例2〕
実施例1において、コールタールピッチと酸化鉄の混練物を2000℃で熱処理する以外は実施例1と同様にして、黒鉛質芯材粒子(d002:0.3363nm)を作製した。実施例1と同様にして、該黒鉛質芯材粒子とコールタールピッチ溶液とを混錬し、実施例1と同様にして、炭素質材料(リチウムイオン二次電池用負極材料)を作製して、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った。評価結果を同じく表1に示した。
〔比較例3〕
実施例1と同じ条件で黒鉛質芯材粒子(d002:0.3358nm)を作製した。実施例1において、該黒鉛質芯材粒子とコールタールピッチとを2500℃で熱処理する以外は実施例1と同様に、炭素質材料(リチウムイオン二次電池用負極材料)を作製し、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った。評価結果を同じく表1に示した。
[Comparative Example 2]
In Example 1, graphite core particles (d 002 : 0.3363 nm) were prepared in the same manner as in Example 1 except that the kneaded mixture of coal tar pitch and iron oxide was heat-treated at 2000 ° C. In the same manner as in Example 1, the graphite core material particles and coal tar pitch solution were kneaded, and in the same manner as in Example 1, a carbonaceous material (a negative electrode material for a lithium ion secondary battery) was produced. The preparation of the negative electrode mixture, the production of the negative electrode, the production of the lithium ion secondary battery, and the characteristics evaluation were performed. The evaluation results are also shown in Table 1.
[Comparative Example 3]
Graphite core particles (d 002 : 0.3358 nm) were produced under the same conditions as in Example 1. In Example 1, a carbonaceous material (a negative electrode material for a lithium ion secondary battery) was prepared in the same manner as in Example 1 except that the graphite core particles and coal tar pitch were heat-treated at 2500 ° C. The preparation of the agent, the production of the negative electrode, the production of the lithium ion secondary battery and the characteristics evaluation were performed. The evaluation results are also shown in Table 1.

〔比較例4〕
実施例1の黒鉛化処理:3000℃で3時間かけて黒鉛化処理をし、その後の処理を行わずに、平均粒径が20μmとなるようにアトマイザーで粉砕し、低結晶性被覆層のない炭素質材料を得た。他の工程は実施例1と同様に、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った。評価結果を同じく表1に示した。
〔比較例5〕
実施例1において、黒鉛質芯材粒子とコールタールピッチ溶液との混錬物を、加熱、真空下で混錬物中の溶媒を除去する以外は、実施例1と同様にして炭素質材料(リチウムイオン二次電池用負極材料)を作製し、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った。評価結果を同じく表1に示した。
〔比較例6〕
天然黒鉛(ユニオンカーボン(株)製、BF15A、リン片状、d002:0.3357nm)と酸化鉄微粒子(平均粒子直径0.05μm)を95:5に混合したものを、二軸加熱ニーダーでコールタールピッチ溶液と150℃で1時間混練した。その際、固形分比率がコールタールピッチ:該混合物で、10:90となるように調製した。混練後、真空にして該混練物中の溶媒を除去した。得られた混練物を黒鉛るつぼに入れ、アルゴン雰囲気下、まず500℃で6時間保持して揮発分を5%以下にまで低減したのち、3000℃で3時間かけて黒鉛化した。
得られた黒鉛化物を粉砕して粉砕物を作製した。これを用いて負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った。評価結果を同じく表1に示した。
[Comparative Example 4]
Graphitization treatment of Example 1: Graphitization treatment at 3000 ° C. for 3 hours, followed by pulverization with an atomizer so that the average particle diameter becomes 20 μm without performing the subsequent treatment, and there is no low crystalline coating layer A carbonaceous material was obtained. In the other steps, as in Example 1, preparation of the negative electrode mixture, preparation of the negative electrode, preparation of the lithium ion secondary battery, and characteristic evaluation were performed. The evaluation results are also shown in Table 1.
[Comparative Example 5]
In Example 1, except that the kneaded product of the graphite core material particles and the coal tar pitch solution is heated and the solvent in the kneaded product is removed under vacuum, and the carbonaceous material ( A negative electrode material for a lithium ion secondary battery) was prepared, and a negative electrode mixture, a negative electrode, a lithium ion secondary battery, and characteristics were evaluated. The evaluation results are also shown in Table 1.
[Comparative Example 6]
A mixture of natural graphite (manufactured by Union Carbon Co., Ltd., BF15A, flake shaped, d 002 : 0.3357 nm) and iron oxide fine particles (average particle diameter 0.05 μm) at 95: 5 is mixed with a biaxial heating kneader. It knead | mixed with the coal tar pitch solution at 150 degreeC for 1 hour. At that time, the solid content ratio was adjusted to 10:90 with the coal tar pitch: the mixture. After kneading, a vacuum was applied to remove the solvent in the kneaded product. The obtained kneaded material was put into a graphite crucible, and first kept at 500 ° C. for 6 hours under an argon atmosphere to reduce the volatile content to 5% or less, and then graphitized at 3000 ° C. for 3 hours.
The obtained graphitized product was pulverized to prepare a pulverized product. Using this, preparation of a negative electrode mixture, preparation of a negative electrode, preparation of a lithium ion secondary battery, and characteristic evaluation were performed. The evaluation results are also shown in Table 1.

〔比較例7〕
比較例6と同様にして作製した黒鉛化物粉砕物(黒鉛質芯材粒子に相当する)とコールタールピッチ溶液との混錬物を実施例1と同様にして炭化し、炭素質材料(リチウムイオン二次電池用負極材料)を作製し、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った。評価結果を同じく表1に示した。
[Comparative Example 7]
A kneaded product of a pulverized graphitized material (corresponding to graphite core particles) and a coal tar pitch solution produced in the same manner as in Comparative Example 6 was carbonized in the same manner as in Example 1 to obtain a carbonaceous material (lithium ion). A negative electrode material for a secondary battery) was prepared, and a negative electrode mixture was prepared, a negative electrode was manufactured, a lithium ion secondary battery was manufactured, and characteristics were evaluated. The evaluation results are also shown in Table 1.

〔比較例8〕
実施例1において、二軸加熱ニーダーを用いて、コールタールピッチにタール中油を混合した溶液に酸化鉄微粒子を加え、150℃で1時間混練する際、固形分比率をコールタールピッチ:酸化鉄微粒子で、99.5:0.5とする以外は実施例1と同様にして炭素材料(リチウムイオン二次電池用負極材料)を作製して、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った、評価結果を同じく表1に示した。
[Comparative Example 8]
In Example 1, using a biaxial heating kneader, iron oxide fine particles were added to a solution obtained by mixing oil in tar with coal tar pitch, and when the mixture was kneaded at 150 ° C. for 1 hour, the solid content ratio was changed to coal tar pitch: iron oxide fine particles. Thus, a carbon material (a negative electrode material for a lithium ion secondary battery) was prepared in the same manner as in Example 1 except that 99.5: 0.5 was set, and a negative electrode mixture was prepared, a negative electrode was prepared, and lithium ion two Table 1 also shows the evaluation results of the production and characteristic evaluation of the secondary battery.

〔比較例9〕
実施例1において、二軸加熱ニーダーを用いて、コールタールピッチにタール中油を混合した溶液に酸化鉄微粒子を加え、150℃で1時間混練する際、固形分比率をコールタールピッチ:酸化鉄微粒子で、90:10とする以外は実施例1と同様にして炭素材料(リチウムイオン二次電池用負極材料)を作製して、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った、評価結果を同じく表1に示した。
[Comparative Example 9]
In Example 1, using a biaxial heating kneader, iron oxide fine particles were added to a solution obtained by mixing oil in tar with coal tar pitch, and when the mixture was kneaded at 150 ° C. for 1 hour, the solid content ratio was changed to coal tar pitch: iron oxide fine particles. Thus, a carbon material (a negative electrode material for a lithium ion secondary battery) was produced in the same manner as in Example 1 except that the ratio was 90:10, and a negative electrode mixture was prepared, a negative electrode was produced, and a lithium ion secondary battery was produced. Table 1 also shows the evaluation results obtained by evaluating the characteristics.

実施例1と比較例1との比較から、負極炭素質材料の黒鉛質芯材の粒子そのものに細孔が存在しないと、2C放電率やサイクル特性に劣ることがわかる。
実施例1と比較例2との比較から、負極炭素質材料の黒鉛質芯材の結晶性が低いと、放電容量に劣ることがわかる。
実施例1と比較例3との比較から、負極炭素質材料の表面近傍の結晶性が高いと、初回充放電ロス、2C放電率、サイクル特性に劣ることがわかる。
From the comparison between Example 1 and Comparative Example 1, it can be seen that the 2C discharge rate and the cycle characteristics are inferior if the graphite core material particles of the negative electrode carbonaceous material do not have pores.
From a comparison between Example 1 and Comparative Example 2, it is found that the discharge capacity is inferior when the graphite core material of the negative electrode carbonaceous material has low crystallinity.
From comparison between Example 1 and Comparative Example 3, it can be seen that when the crystallinity near the surface of the negative electrode carbonaceous material is high, the initial charge / discharge loss, 2C discharge rate, and cycle characteristics are inferior.

Figure 2011243567
Figure 2011243567

本発明の負極炭素質材料は、その特性を活かして、小型から大型までの高性能リチウムイオン二次電池に使用することができる。   The negative electrode carbonaceous material of the present invention can be used for high-performance lithium ion secondary batteries ranging from small to large, taking advantage of the characteristics.

1 外装カップ
2 作用電極
3 外装缶
4 対極
5 電解質溶液含浸セパレータ
6 絶縁ガスケット
7a、7b 集電体
10 負極炭素質材料
12 黒鉛質芯材
14 細孔
16 炭素質被覆層
DESCRIPTION OF SYMBOLS 1 Exterior cup 2 Working electrode 3 Exterior can 4 Counter electrode 5 Electrolyte solution impregnation separator 6 Insulation gasket 7a, 7b Current collector 10 Negative electrode carbonaceous material 12 Graphite core material 14 Pore 16 Carbonaceous coating layer

Claims (5)

高結晶性の黒鉛質からなる黒鉛質芯材と該芯材の表面を被覆する低結晶性の炭素質被覆層とを有するリチウムイオン二次電池用負極材料であって、
リチウムイオン二次電池用負極材料の表面は細孔がなく、黒鉛質芯材は細孔を有し、
黒鉛質芯材は、炭素質被覆層を有さない単独粒子の状態で略球状であり、
黒鉛質芯材の細孔容積は、リチウムイオン二次電池用負極材料を粉砕後、水銀圧入法で測定した0.01〜100μmの細孔の容積が、0.05〜0.4cm/g、
リチウムイオン二次電池用負極材料のd002:0.3360nm以下で、
リチウムイオン二次電池用負極材料のR値(波長514.5nmのアルゴンイオンレーザーを用いたラマンスペクトルにおける、1580cm−1のピーク強度(I1580)に対する1360cm−1のピーク強度(I1360)の比(I1360/I1580)):0.3〜1.0であるリチウムイオン二次電池用負極材料。
A negative electrode material for a lithium ion secondary battery having a graphite core material made of highly crystalline graphite and a low crystalline carbonaceous coating layer covering the surface of the core material,
The surface of the negative electrode material for lithium ion secondary batteries has no pores, the graphite core has pores,
The graphite core is substantially spherical in the form of a single particle having no carbonaceous coating layer,
The pore volume of the graphite core material is such that the pore volume of 0.01 to 100 μm measured by the mercury intrusion method after pulverizing the negative electrode material for a lithium ion secondary battery is 0.05 to 0.4 cm 3 / g. ,
D 002 of the negative electrode material for a lithium ion secondary battery: 0.3360 nm or less,
The ratio of the R value of the negative electrode material for a lithium ion secondary battery (in the Raman spectrum using argon ion laser with a wavelength of 514.5 nm, a peak intensity of 1360 cm -1 to the peak intensity of 1580cm -1 (I1580) (I1360) (I1360 / I1580)): A negative electrode material for a lithium ion secondary battery that is 0.3 to 1.0.
請求項1に記載のリチウムイオン二次電池用負極材料を用いたリチウムイオン二次電池負極。   A lithium ion secondary battery negative electrode using the negative electrode material for a lithium ion secondary battery according to claim 1. 前記負極の電極密度が、1.7〜1.9g/cmであることを特徴とする請求項2に記載のリチウムイオン二次電池負極。 3. The lithium ion secondary battery negative electrode according to claim 2, wherein an electrode density of the negative electrode is 1.7 to 1.9 g / cm 3 . 請求項2または3に記載の負極を有するリチウムイオン二次電池。   The lithium ion secondary battery which has a negative electrode of Claim 2 or 3. 無機微粒子と炭素質前駆体の混合物を2500℃以上で加熱して、前記無機微粒子を分解、蒸発させて細孔を得るとともに前記炭素質前駆体を黒鉛化して、細孔を有する黒鉛質芯材を得る黒鉛化工程と、前記黒鉛化工程で得られた黒鉛質芯材の表面に炭素質前駆体を付着させる付着工程と、前記付着工程で炭素質前駆体を付着された黒鉛質芯材を1100℃以上、1500℃以下の温度で加熱して、黒鉛質芯材の表面に空隙のない炭素質被覆層を有する負極材料を得る焼成工程を有することを特徴とする請求項1に記載のリチウムイオン二次電池用負極材料の製造方法。   A mixture of inorganic fine particles and carbonaceous precursor is heated at 2500 ° C. or higher to decompose and evaporate the inorganic fine particles to obtain pores and graphitize the carbonaceous precursor to have a graphite core material having pores A graphitization step for obtaining a carbonaceous precursor on the surface of the graphite core obtained in the graphitization step, and a graphite core to which the carbonaceous precursor is attached in the attachment step 2. The lithium according to claim 1, further comprising a firing step of heating at a temperature of 1100 ° C. or more and 1500 ° C. or less to obtain a negative electrode material having a carbonaceous coating layer having no voids on the surface of the graphite core material. A method for producing a negative electrode material for an ion secondary battery.
JP2011088937A 2010-04-20 2011-04-13 Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Pending JP2011243567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011088937A JP2011243567A (en) 2010-04-20 2011-04-13 Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010096823 2010-04-20
JP2010096823 2010-04-20
JP2011088937A JP2011243567A (en) 2010-04-20 2011-04-13 Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2011243567A true JP2011243567A (en) 2011-12-01

Family

ID=45410000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011088937A Pending JP2011243567A (en) 2010-04-20 2011-04-13 Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2011243567A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077653A1 (en) * 2010-12-08 2012-06-14 日本コークス工業株式会社 Negative electrode material for lithium ion secondary batteries, and method for producing same
CN103367709A (en) * 2012-03-30 2013-10-23 索尼公司 Battery, negative electrode for battery, battery pack, electronic apparatus and electric vehicle
JP2018156931A (en) * 2017-03-17 2018-10-04 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2019175712A (en) * 2018-03-28 2019-10-10 三星エスディアイ株式会社Samsung SDI Co., Ltd. Lithium ion secondary battery
WO2021181973A1 (en) * 2020-03-13 2021-09-16 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN113644241A (en) * 2021-07-15 2021-11-12 恒大新能源技术(深圳)有限公司 Composite graphite negative electrode material, preparation method thereof and secondary battery
CN115092930A (en) * 2022-06-23 2022-09-23 北京航空航天大学 K x C y Preparation method of battery cathode material, battery cathode material and battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059040A1 (en) * 2001-01-25 2002-08-01 Hitachi Chemical Co., Ltd. Artificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery
JP2006059690A (en) * 2004-08-20 2006-03-02 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2007173222A (en) * 2005-11-25 2007-07-05 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2008010316A (en) * 2006-06-29 2008-01-17 Sharp Corp Lithium ion secondary battery
JP2009533835A (en) * 2007-05-29 2009-09-17 エルエス エムトロン リミテッド Anode material for secondary battery and secondary battery using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059040A1 (en) * 2001-01-25 2002-08-01 Hitachi Chemical Co., Ltd. Artificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery
JP2006059690A (en) * 2004-08-20 2006-03-02 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2007173222A (en) * 2005-11-25 2007-07-05 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2008010316A (en) * 2006-06-29 2008-01-17 Sharp Corp Lithium ion secondary battery
JP2009533835A (en) * 2007-05-29 2009-09-17 エルエス エムトロン リミテッド Anode material for secondary battery and secondary battery using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077653A1 (en) * 2010-12-08 2012-06-14 日本コークス工業株式会社 Negative electrode material for lithium ion secondary batteries, and method for producing same
JP5898628B2 (en) * 2010-12-08 2016-04-06 日本コークス工業株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same
US9312532B2 (en) 2010-12-08 2016-04-12 Nippon Coke & Engineering Co., Ltd. Negative electrode material for lithium ion secondary batteries, and method for producing same
CN103367709A (en) * 2012-03-30 2013-10-23 索尼公司 Battery, negative electrode for battery, battery pack, electronic apparatus and electric vehicle
JP2018156931A (en) * 2017-03-17 2018-10-04 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7024439B2 (en) 2017-03-17 2022-02-24 Tdk株式会社 Negative negative for lithium ion secondary battery and lithium ion secondary battery
JP2019175712A (en) * 2018-03-28 2019-10-10 三星エスディアイ株式会社Samsung SDI Co., Ltd. Lithium ion secondary battery
WO2021181973A1 (en) * 2020-03-13 2021-09-16 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN113644241A (en) * 2021-07-15 2021-11-12 恒大新能源技术(深圳)有限公司 Composite graphite negative electrode material, preparation method thereof and secondary battery
CN115092930A (en) * 2022-06-23 2022-09-23 北京航空航天大学 K x C y Preparation method of battery cathode material, battery cathode material and battery

Similar Documents

Publication Publication Date Title
KR101733323B1 (en) Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries using same, and lithium ion secondary battery
JP6412520B2 (en) Carbonaceous coated graphite particles for lithium ion secondary battery anode material, lithium ion secondary battery anode and lithium ion secondary battery
JP6507395B2 (en) Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6585238B2 (en) Method for producing carbonaceous coated graphite particles for negative electrode material of lithium ion secondary battery
JP2005243508A (en) Composite graphite particles for rechargeable lithium-ion battery cathode material, negative pole and rechargeable lithium-ion battery
JP2011243567A (en) Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018092916A (en) Carbonous coated graphite particles for lithium ion secondary battery negative electrode material, method for manufacturing the same, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
JP4839180B2 (en) Carbon powder and manufacturing method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6162482B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP4996827B2 (en) Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5156195B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6278870B2 (en) Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same
JP5133543B2 (en) Method for producing mesocarbon microsphere graphitized material
JP6322525B2 (en) Method for producing carbon-coated graphite particles
JP2017075091A (en) Free carbon graphite particle and production method therefor, lithium ion secondary cattery anode and lithium ion secondary cattery
JP6085259B2 (en) Method for producing carbon-coated graphite particles for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery
WO2016194355A1 (en) Carbonaceous coated graphite particles for negative-electrode material of lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP5865273B2 (en) Method for producing graphite material
JP4628007B2 (en) Carbon material manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4143354B2 (en) Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery
JP2004083398A (en) Polycrystalline mesocarbon microsphere graphitized article, its manufacturing method, and lithium-ion secondary battery
JP2019160791A (en) Method for manufacturing carbon-coated graphite particles for lithium ion secondary battery negative electrode material, carbon-coated graphite particles for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150407