JP2006059690A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2006059690A
JP2006059690A JP2004240879A JP2004240879A JP2006059690A JP 2006059690 A JP2006059690 A JP 2006059690A JP 2004240879 A JP2004240879 A JP 2004240879A JP 2004240879 A JP2004240879 A JP 2004240879A JP 2006059690 A JP2006059690 A JP 2006059690A
Authority
JP
Japan
Prior art keywords
negative electrode
cumulative
pore
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004240879A
Other languages
Japanese (ja)
Other versions
JP4776190B2 (en
Inventor
Asako Sato
麻子 佐藤
Koichi Matsumoto
浩一 松本
Shota Endo
昌太 遠藤
Kaoru Hosobuchi
馨 細渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004240879A priority Critical patent/JP4776190B2/en
Publication of JP2006059690A publication Critical patent/JP2006059690A/en
Application granted granted Critical
Publication of JP4776190B2 publication Critical patent/JP4776190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery improved in charge and discharge cycle life. <P>SOLUTION: The non-aqueous electrolyte secondary battery comprises a positive electrode, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte. The negative electrode has a pore volume of 0.15-0.35 cc/g at the pore diameter 10 μm or less, has a peak in the pore diameter 0.4-3.5 μm in the increased volume pore distribution, and the tilting at the accumulation 40-60% of the accumulation pore distribution curve in the range of pore diameter 0.001-10 μm is in the range 1.5-4.5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery.

近年、VTR、携帯電話、パソコンなどの各種電子機器、コードレスの携帯型電子機器の小型、軽量化に伴い、それら機器の電源の高エネルギー密度の要求が高まり、負極活物質に金属リチウムを使用したリチウム二次電池や、負極にカーボンを用いた軽量の二次電池(例えば特許文献1)などの非水電解質二次電池が提案されている。   In recent years, various electronic devices such as VTRs, mobile phones, personal computers, and cordless portable electronic devices have become smaller and lighter, and the demand for high energy density of these devices has increased, and metal lithium has been used as the negative electrode active material. Nonaqueous electrolyte secondary batteries such as lithium secondary batteries and lightweight secondary batteries using carbon for the negative electrode (for example, Patent Document 1) have been proposed.

負極に使用するカーボンとして、コークス、グラファイト、樹脂焼成体、熱分解気相炭素等、種々の炭素質材料を用いることが提案されており、この負極を用いると共に正極にLiCoO2、LiNiO2、LiMn24等のカルコゲン化合物を用いたリチウムイオン二次電池が実用化されている。 As carbon used for the negative electrode, it has been proposed to use various carbonaceous materials such as coke, graphite, resin fired body, pyrolytic vapor phase carbon, etc., and using this negative electrode, LiCoO 2 , LiNiO 2 , LiMn are used for the positive electrode. A lithium ion secondary battery using a chalcogen compound such as 2 O 4 has been put into practical use.

リチウムイオン二次電池は、負極の炭素質材料の素材によって種々の特徴を有する。例えば、特許文献2のように繊維径の断面方向にラメラ構造を持つ炭素繊維を負極活物質として含むリチウムイオン二次電池は優れた充放電特性を有する。また、黒鉛度の高いグラファイトを負極活物質として含むリチウムイオン二次電池は高い充電エネルギーを有する。   Lithium ion secondary batteries have various characteristics depending on the material of the carbonaceous material of the negative electrode. For example, as in Patent Document 2, a lithium ion secondary battery including carbon fibers having a lamellar structure in the cross-sectional direction of the fiber diameter as a negative electrode active material has excellent charge / discharge characteristics. Further, a lithium ion secondary battery containing graphite having a high degree of graphite as a negative electrode active material has high charging energy.

前記リチウムイオン二次電池は、金属リチウムを負極として用いた二次電池に比べて安全性が高く、各種の携帯端末の電源として広く利用されている。特に、小形携帯端末用の二次電池の需要が多くなり、二次電池に対するますますの容量アップが要求されている。一方では、小形で軽量との要求もあり、これらの要求は相反している。   The lithium ion secondary battery is higher in safety than a secondary battery using metallic lithium as a negative electrode, and is widely used as a power source for various portable terminals. In particular, there is an increasing demand for secondary batteries for small portable terminals, and there is a demand for increasing the capacity of secondary batteries. On the other hand, there is a demand for small size and light weight, and these demands are contradictory.

これらの要求を満たすためには、電極の充填密度を上げることが望ましい。   In order to satisfy these requirements, it is desirable to increase the packing density of the electrodes.

しかしながら、電極の充填密度を高くすると、電極への非水電解質の浸透が遅くなり、また、充放電に伴う電極の膨張収縮、特に負極の膨張収縮によるストレスで充放電サイクル維持率が劣化するという問題点を生じる。特に、特許文献3に記載されているようなアモルファスなコークスで被覆された黒鉛系炭素質物を負極活物質として使用した際に、サイクル寿命が著しく低下した。
特開昭63−121260号公報 特開平5−89879号公報 特開2001−229924号公報
However, when the packing density of the electrode is increased, the penetration of the nonaqueous electrolyte into the electrode is delayed, and the charge / discharge cycle maintenance rate is deteriorated due to the expansion / contraction of the electrode accompanying charge / discharge, particularly stress due to the expansion / contraction of the negative electrode. Cause problems. In particular, when a graphite-based carbonaceous material coated with amorphous coke as described in Patent Document 3 was used as a negative electrode active material, the cycle life was significantly reduced.
Japanese Unexamined Patent Publication No. Sho 63-121260 JP-A-5-89879 JP 2001-229924 A

本発明は、充放電サイクル寿命が向上された非水電解質二次電池を提供することを目的とする。   An object of the present invention is to provide a nonaqueous electrolyte secondary battery having an improved charge / discharge cycle life.

本発明に係る非水電解質二次電池は、正極と、負極活物質を含む負極と、非水電解質とを具備する非水電解質二次電池であって、前記負極は、細孔直径10μm以下の細孔容積が0.15cc/g〜0.35cc/gで、増加容積細孔分布において細孔直径0.4〜3.5μmにピークを有し、かつ細孔直径0.001μm〜10μmの範囲での累積細孔分布曲線の累積40%〜60%での傾きが1.5〜4.5の範囲であることを特徴とするものである。   A nonaqueous electrolyte secondary battery according to the present invention is a nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode including a negative electrode active material, and a nonaqueous electrolyte, wherein the negative electrode has a pore diameter of 10 μm or less. A pore volume of 0.15 cc / g to 0.35 cc / g, a peak in a pore diameter of 0.4 to 3.5 μm in an increased volume pore distribution, and a pore diameter of 0.001 μm to 10 μm The slope of the cumulative pore distribution curve at 40 to 60% is in the range of 1.5 to 4.5.

また、本発明に係る非水電解質二次電池は、正極と、負極活物質を含む負極と、非水電解質とを具備する非水電解質二次電池であって、前記負極は、細孔直径10μm以下の細孔容積が0.15cc/g〜0.35cc/gで、増加容積細孔分布曲線において細孔直径0.4〜3.5μmの範囲にピークを有し、かつ細孔直径0.001μm〜10μmの範囲での累積細孔分布曲線の累積80%,70%,60%,20%での細孔直径が下記(1)〜(4)式を満足することを特徴とするものである。   The nonaqueous electrolyte secondary battery according to the present invention is a nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode including a negative electrode active material, and a nonaqueous electrolyte, wherein the negative electrode has a pore diameter of 10 μm. The following pore volume is 0.15 cc / g to 0.35 cc / g, the increased volume pore distribution curve has a peak in the range of the pore diameter of 0.4 to 3.5 μm, and the pore diameter of 0. The cumulative pore distribution curve in the range of 001 μm to 10 μm is characterized in that the pore diameters at the cumulative 80%, 70%, 60%, and 20% satisfy the following formulas (1) to (4). is there.

80≧0.2 (1)
70≧0.3 (2)
60≧0.4 (3)
1.5≧R20≧0.8 (4)
但し、R80は前記累積細孔分布曲線の累積80%での細孔直径(μm)、R70は前記累積細孔分布曲線の累積70%での細孔直径(μm)、R60は前記累積細孔分布曲線の累積60%での細孔直径(μm)、R20は前記累積細孔分布曲線の累積20%での細孔直径(μm)である。
R 80 ≧ 0.2 (1)
R 70 ≧ 0.3 (2)
R 60 ≧ 0.4 (3)
1.5 ≧ R 20 ≧ 0.8 (4)
However, R 80 is the pore diameter (μm) at the cumulative 80% of the cumulative pore distribution curve, R 70 is the pore diameter (μm) at the cumulative 70% of the cumulative pore distribution curve, and R 60 is the above-mentioned The pore diameter (μm) at a cumulative 60% of the cumulative pore distribution curve, and R 20 is the pore diameter (μm) at a cumulative 20% of the cumulative pore distribution curve.

本発明によれば、充放電サイクル寿命が向上された非水電解質二次電池を提供することができる。   According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having an improved charge / discharge cycle life.

本発明に係る非水電解質二次電池は、正極と、負極活物質を含む負極と、非水電解質を備えるものである。   The nonaqueous electrolyte secondary battery according to the present invention includes a positive electrode, a negative electrode including a negative electrode active material, and a nonaqueous electrolyte.

以下、負極、正極及び非水電解質について説明する。   Hereinafter, the negative electrode, the positive electrode, and the nonaqueous electrolyte will be described.

1)負極
この負極は、集電体と、集電体に形成され、負極活物質を含有する負極材料層とを含む。また、前記負極は、細孔直径10μm以下の細孔容積が0.15cc/g〜0.35cc/gで、増加容積細孔分布において細孔直径0.4〜3.5μmにピークを有する。このような負極は、細孔直径0.001μm〜10μmの範囲での累積細孔分布曲線の累積40%〜60%での傾きが1.5〜4.5の範囲であるか、あるいは前記累積細孔分布曲線の累積80%,70%,60%,20%での細孔直径が下記(1)〜(4)式を満足することが望ましい。負極の細孔直径は、例えば、水銀圧入法により測定される。
1) Negative electrode The negative electrode includes a current collector and a negative electrode material layer formed on the current collector and containing a negative electrode active material. The negative electrode has a pore volume of 0.15 cc / g to 0.35 cc / g with a pore diameter of 10 μm or less, and has a peak at a pore diameter of 0.4 to 3.5 μm in an increased volume pore distribution. Such a negative electrode has a cumulative pore distribution curve with a pore diameter of 0.001 μm to 10 μm and a slope at a cumulative 40% to 60% of 1.5 to 4.5, or the cumulative It is desirable that the pore diameters at the cumulative 80%, 70%, 60%, and 20% of the pore distribution curve satisfy the following expressions (1) to (4). The pore diameter of the negative electrode is measured by, for example, a mercury intrusion method.

80≧0.2 (1)
70≧0.3 (2)
60≧0.4 (3)
1.5≧R20≧0.8 (4)
但し、R80は前記累積細孔分布曲線の累積80%での細孔直径(μm)、R70は前記累積細孔分布曲線の累積70%での細孔直径(μm)、R60は前記累積細孔分布曲線の累積60%での細孔直径(μm)、R20は前記累積細孔分布曲線の累積20%での細孔直径(μm)である。
R 80 ≧ 0.2 (1)
R 70 ≧ 0.3 (2)
R 60 ≧ 0.4 (3)
1.5 ≧ R 20 ≧ 0.8 (4)
However, R 80 is the pore diameter (μm) at the cumulative 80% of the cumulative pore distribution curve, R 70 is the pore diameter (μm) at the cumulative 70% of the cumulative pore distribution curve, and R 60 is the above-mentioned The pore diameter (μm) at a cumulative 60% of the cumulative pore distribution curve, and R 20 is the pore diameter (μm) at a cumulative 20% of the cumulative pore distribution curve.

細孔直径10μm以下の細孔容積を前記範囲に規定する理由を説明する。細孔容積を0.15cc/g未満にすると、充放電に伴う負極活物質の膨張収縮を負極内で十分に吸収ことができず、充放電サイクルの進行に従って負極が膨らむため、充放電サイクル寿命が短くなる。一方、細孔容積が0.35cc/gを超えると、高い負極容量を得られなくなる。細孔容積のより好ましい範囲は、0.18〜0.35cc/gである。   The reason for defining the pore volume having a pore diameter of 10 μm or less in the above range will be described. If the pore volume is less than 0.15 cc / g, the expansion and contraction of the negative electrode active material accompanying charge / discharge cannot be sufficiently absorbed in the negative electrode, and the negative electrode swells as the charge / discharge cycle progresses. Becomes shorter. On the other hand, when the pore volume exceeds 0.35 cc / g, a high negative electrode capacity cannot be obtained. A more preferable range of the pore volume is 0.18 to 0.35 cc / g.

増加容積細孔分布において細孔直径0.4〜3.5μmにピークを有するものは、直径が0.4〜3.5μmの細孔の占める割合が高い。このような負極において、細孔直径0.001μm〜10μmの範囲での累積細孔分布曲線の累積40%〜60%での傾きを1.5〜4.5の範囲にすることによって、充放電に伴う活物質の膨張収縮を負極内の空隙で最も効率よく緩和することができ、充放電サイクルに伴う負極中の活物質と結着剤の接触からなる構造の変化を最小限に留めることができる。その結果として、サイクル中に活物質の新しい面が現れて非水電解質と接触することが妨げられ、サイクル効率を向上させることができる。また、活物質と非水電解質との反応が抑制されることから二次電池の安全性も改善される。なお、傾きが前記範囲を外れると充放電サイクル寿命が短くなるのは、傾きが1.5よりも小さいと細孔直径のばらつきが大きく、また、傾きが4.5を超えるものは小さい細孔と大きな細孔の割合が少ないことが関係していると推測されるが、詳細は明らかでない。良好な充放電サイクル寿命を得るために、傾きは2.0〜4.5の範囲にすることがより好ましい。   Those having a peak at a pore diameter of 0.4 to 3.5 μm in the increased volume pore distribution have a high proportion of pores having a diameter of 0.4 to 3.5 μm. In such a negative electrode, charging / discharging is performed by setting the slope at the cumulative 40% to 60% of the cumulative pore distribution curve in the pore diameter range of 0.001 μm to 10 μm to the range of 1.5 to 4.5. The expansion and contraction of the active material accompanying the negative electrode can be most effectively mitigated by the voids in the negative electrode, and the change in the structure consisting of the contact between the active material and the binder in the negative electrode accompanying the charge / discharge cycle can be minimized. it can. As a result, a new surface of the active material appears during the cycle and is prevented from coming into contact with the non-aqueous electrolyte, and the cycle efficiency can be improved. Further, since the reaction between the active material and the nonaqueous electrolyte is suppressed, the safety of the secondary battery is also improved. In addition, when the inclination is out of the above range, the charge / discharge cycle life is shortened. When the inclination is smaller than 1.5, the variation in pore diameter is large. It is speculated that the proportion of large pores is small, but details are not clear. In order to obtain a good charge / discharge cycle life, the slope is more preferably in the range of 2.0 to 4.5.

ここで、細孔直径0.001μm〜10μmの範囲での累積細孔分布曲線では、横軸の細孔直径を0.001〜10μmとし、対応する縦軸の累積細孔分布(%表示)0〜120%で表示する。なお、細孔直径が10μmから小さい方向へ向って空隙率を積算し、空隙率が50%に達するところを累積50%とする。横軸と縦軸の比率を横軸:縦軸=2:1とする。累積細孔分布が40〜60%の範囲内での傾きは、分布曲線が累積40%の軸と交差する点から累積60%の軸と交差する点までの区間において、X軸についての変化量とY軸についての変化量を測定し、累積40%〜60%における曲線の傾き{Y軸変化量/X軸変化量}を算出する。   Here, in the cumulative pore distribution curve in the pore diameter range of 0.001 μm to 10 μm, the pore diameter on the horizontal axis is 0.001 to 10 μm, and the cumulative pore distribution (% display) on the corresponding vertical axis is 0. Display at ~ 120%. It should be noted that the porosity is integrated from the pore diameter of 10 μm toward the smaller direction, and the accumulation reaches 50% when the porosity reaches 50%. The ratio between the horizontal axis and the vertical axis is horizontal axis: vertical axis = 2: 1. The slope of the cumulative pore distribution in the range of 40 to 60% is the amount of change about the X axis in the section from the point where the distribution curve intersects the cumulative 40% axis to the point where the cumulative curve intersects the 60% axis. And the amount of change about the Y-axis is measured, and the slope of the curve {Y-axis change amount / X-axis change amount} in the accumulated 40% to 60% is calculated.

また、傾きを規定する代わり、あるいは傾きと共に、前記累積細孔分布曲線の累積80%,70%,60%,20%での細孔直径R80、R70、R60、R20が前記(1)〜(4)式を満足することが望ましい。このような負極は、充放電に伴う活物質の膨張収縮を負極内の空隙で最も効率よく緩和することができると共に、充放電サイクルに伴う負極中の活物質と結着剤の接触からなる構造の変化を最小限に留めることができる。その結果として、サイクル中に活物質の新しい面が現れて非水電解質と接触することが妨げられ、サイクル効率を向上させることができる。細孔直径R80、R70、R60、R20のさらに好ましい範囲は、下記(1)’〜(4)’に示す通りである。 Further, instead of defining the slope or together with the slope, the pore diameters R 80 , R 70 , R 60 , R 20 at the cumulative 80%, 70%, 60%, 20% of the cumulative pore distribution curve are the above ( It is desirable to satisfy the formulas (1) to (4). Such a negative electrode can most effectively relieve the expansion and contraction of the active material associated with charging / discharging in the voids in the negative electrode, and has a structure comprising contact between the active material in the negative electrode associated with the charging / discharging cycle and the binder. Changes can be kept to a minimum. As a result, a new surface of the active material appears during the cycle and is prevented from coming into contact with the non-aqueous electrolyte, and the cycle efficiency can be improved. More preferable ranges of the pore diameters R 80 , R 70 , R 60 , R 20 are as shown in the following (1) ′ to (4) ′.

0.8≧R80≧0.3 (1)’
1.0≧R70≧0.4 (2)’
1.1≧R60≧0.5 (3)’
1.2≧R20≧0.9 (4)’
負極活物質としては、例えば、黒鉛質材料粒子の表面の少なくとも一部にこの粒子よりも結晶性の低い炭素材料層を形成した複合黒鉛材料、メソフェーズピッチ系炭素繊維、メソフェーズピッチ系小球体等を挙げることができる。複合黒鉛材料を用いるのが容量面から好ましい。
0.8 ≧ R 80 ≧ 0.3 (1) '
1.0 ≧ R 70 ≧ 0.4 (2) '
1.1 ≧ R 60 ≧ 0.5 (3) '
1.2 ≧ R 20 ≧ 0.9 (4) '
Examples of the negative electrode active material include composite graphite materials in which a carbon material layer having lower crystallinity than the particles is formed on at least a part of the surface of the graphite material particles, mesophase pitch carbon fibers, mesophase pitch microspheres, and the like. Can be mentioned. The composite graphite material is preferably used from the viewpoint of capacity.

前記負極活物質は、下記(5)〜(8)式を満たす粒度分布を有することが望ましい。   The negative electrode active material desirably has a particle size distribution satisfying the following formulas (5) to (8).

1.5×D50−3≦D80≦1.5×D50+3 (5)
50/2−2≦D20≦D50/2+2 (6)
50/3−2≦D10≦D50/3+2 (7)
50/5−2≦D5≦D50/5+2 (8)
但し、D80は累積80%での負極活物質粒子径(μm)、D50は累積50%での負極活物質粒子径(μm)、D20は累積20%での負極活物質粒子径(μm)、D10は累積10%での負極活物質粒子径(μm)、D5は累積5%での負極活物質粒子径(μm)である。
1.5 × D 50 -3 ≦ D 80 ≦ 1.5 × D 50 +3 (5)
D 50 / 2-2 ≦ D 20 ≦ D 50/2 + 2 (6)
D 50 / 3-2 ≦ D 10 ≦ D 50/3 + 2 (7)
D 50 / 5-2 ≦ D 5 ≦ D 50/5 + 2 (8)
However, D 80 is the negative electrode active material particle diameter (μm) at a cumulative 80%, D 50 is a negative electrode active material particle diameter (μm) at a cumulative 50%, and D 20 is a negative electrode active material particle diameter at a cumulative 20% (μm). μm), D 10 is the negative electrode active material particle diameter (μm) at a cumulative 10%, and D 5 is the negative electrode active material particle diameter (μm) at a cumulative 5%.

上記(5)〜(8)式を満足するような粒度分布に適度な幅が存在する負極活物質によると、充放電サイクル寿命をより向上することができる。   According to the negative electrode active material having an appropriate width in the particle size distribution that satisfies the above expressions (5) to (8), the charge / discharge cycle life can be further improved.

前記増加容積細孔分布曲線におけるピーク位置(P)と前記D50とが下記(9)式を満たすことが望ましい。 It is desirable that the peak position (P) and the D 50 in the increased volume pore distribution curve satisfy the following formula (9).

0.1×D50−1.5≦P≦0.1×D50+1.5 (9)
前述した複合黒鉛材料は、活物質粒子1個当りの膨張体積が直径の10%程度であるため、(0.1×D50±1.5)で表わされる直径の細孔によると、活物質の膨張収縮を十分に吸収することができる。従って、増加容積細孔分布曲線におけるピーク位置(P)が前述した(9)式を満たすことによって、充放電サイクル時の負極の厚み増加をさらに抑えることができ、充放電サイクル寿命をより向上することができる。
0.1 × D 50 −1.5 ≦ P ≦ 0.1 × D 50 +1.5 (9)
In the composite graphite material described above, the expansion volume per active material particle is about 10% of the diameter. Therefore, according to the pore having the diameter represented by (0.1 × D 50 ± 1.5), the active material Can be sufficiently absorbed. Therefore, when the peak position (P) in the increased volume pore distribution curve satisfies the above-mentioned formula (9), the increase in the thickness of the negative electrode during the charge / discharge cycle can be further suppressed, and the charge / discharge cycle life is further improved. be able to.

累積50%での負極活物質粒子径D50は、10〜25μmの範囲にすることが望ましく、さらに好ましい範囲は15〜25μmである。 The negative electrode active material particle diameter D 50 at a cumulative 50% is desirably in the range of 10 to 25 μm, and more preferably 15 to 25 μm.

負極活物質は、アスペクト比が1〜1.8の範囲である球形状を有していることが望ましい。これにより、充電による活物質の膨張を三次元的に均一な方向に近づけることができ、前記細孔による膨張緩和効果をさらに高めることができる。   The negative electrode active material desirably has a spherical shape with an aspect ratio in the range of 1 to 1.8. Thereby, the expansion of the active material due to charging can be brought closer to a three-dimensionally uniform direction, and the expansion relaxation effect by the pores can be further enhanced.

負極活物質は、ラマンスペクトル測定によるR値が強度比で0.3以上、面積比で1以上であることが望ましい。これにより、充電時に起こる活物質表面での反応および副反応が均等に生じ、充電による活物質の膨張をさらに三次元的に均一な方向に近づけることができる。また、強度比が1.5より大きくなり、かつ面積比が4より大きくなると、活物質中の低結晶性構造領域の比率が高くなるために高容量を得られない恐れがあることから、強度比の上限を1.5にし、かつ面積比の上限を4にすることが望ましい。面積比のさらに好ましい範囲は1〜3である。   The negative electrode active material desirably has an R value measured by Raman spectrum of 0.3 or more in intensity ratio and 1 or more in area ratio. As a result, reactions and side reactions that occur on the surface of the active material that occur during charging occur uniformly, and the expansion of the active material due to charging can be made closer to a three-dimensionally uniform direction. In addition, if the strength ratio is larger than 1.5 and the area ratio is larger than 4, the ratio of the low crystalline structure region in the active material is increased, so that a high capacity may not be obtained. It is desirable to set the upper limit of the ratio to 1.5 and the upper limit of the area ratio to 4. A more preferable range of the area ratio is 1 to 3.

負極活物質は、BET法による比表面積が、1.5m2/g以上、5m2/g以下の範囲内であり、粉末X線回折測定において、面間隔d002が0.336nm以下であり、かつCuKα線を用いた測定において、回折角2θが42.8°〜44.0°と45.5°〜46.6°にピークが現れることが好ましい。これにより、サイクル特性と同時に高容量を達成することができる。なお、面間隔d002の下限値は、完全な黒鉛結晶における(002)面の面間隔d002、すなわち0.3354nmにすることが好ましい。 The negative electrode active material has a specific surface area by the BET method in the range of 1.5 m 2 / g or more and 5 m 2 / g or less, and in the powder X-ray diffraction measurement, the interplanar spacing d 002 is 0.336 nm or less, In the measurement using CuKα rays, it is preferable that peaks appear at diffraction angles 2θ of 42.8 ° to 44.0 ° and 45.5 ° to 46.6 °. Thereby, a high capacity can be achieved simultaneously with the cycle characteristics. The lower limit of the surface spacing d 002 is spacing of (002) plane in complete graphite crystal d 002, i.e. it is preferable to 0.3354 nm.

負極は、広角X線回折により得られる(100)面の回折を表すピークの強度I100に対する、(004)面の回折を表すピークの強度I004の比を(I004/I100)とした際に、(I004/I100)≦0.28にすることが望ましい。これにより、充電による負極の膨張を三次元的に均一な方向に近づけることができ、前記細孔による膨張緩和の効率を高くすることができる。 In the negative electrode, the ratio of the peak intensity I 004 representing diffraction on the (004) plane to the peak intensity I 100 representing diffraction on the (100) plane obtained by wide-angle X-ray diffraction was (I 004 / I 100 ). In this case, it is desirable that (I 004 / I 100 ) ≦ 0.28. As a result, the expansion of the negative electrode due to charging can be brought closer to a three-dimensionally uniform direction, and the expansion relaxation efficiency by the pores can be increased.

前記集電体としては、例えば、銅板、銅箔等を挙げることができる。   Examples of the current collector include a copper plate and a copper foil.

前記負極材料層に含まれる結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等を用いることができる。   Examples of the binder contained in the negative electrode material layer include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), Carboxymethyl cellulose (CMC) or the like can be used.

前記負極材料層には、導電剤を含有させることができる。導電剤としては、例えば、鱗片状黒鉛、アセチレンブラック、カーボンブラック等を挙げることができる。   The negative electrode material layer can contain a conductive agent. Examples of the conductive agent include flaky graphite, acetylene black, and carbon black.

前記負極は、例えば、負極活物質と結着剤と導電剤とを溶媒の存在下で混練し、得られたスラリーを集電体に塗布し、乾燥した後、所望の圧力で1回プレスもしくは2〜5回多段階プレスすることにより作製されるが、負極の細孔分布は負極活物質の粒度分布とスラリーの分散状態(スラリー固形分量)等を調整することによりプレス前の電極密度を高くして細孔分布を均一にすることで目的範囲内に設定することができる。   For example, the negative electrode is prepared by kneading a negative electrode active material, a binder, and a conductive agent in the presence of a solvent, applying the obtained slurry to a current collector, drying, and then pressing once at a desired pressure or The negative electrode pore distribution increases the electrode density before pressing by adjusting the particle size distribution of the negative electrode active material and the dispersion state of the slurry (slurry solid content). And it can set within the target range by making pore distribution uniform.

2)正極
この正極は、集電体と、集電体の片面もしくは両面に担持され、活物質を含む正極材料層とを含む。
2) Positive electrode The positive electrode includes a current collector and a positive electrode material layer that is supported on one or both surfaces of the current collector and includes an active material.

前記正極材料層は、正極活物質、結着剤及び導電剤を含む。   The positive electrode material layer includes a positive electrode active material, a binder, and a conductive agent.

前記正極活物質としては、種々の酸化物、例えば二酸化マンガン、リチウムマンガン複合酸化物、リチウム含有ニッケル酸化物、リチウム含有コバルト酸化物、リチウム含有ニッケルコバルト酸化物、リチウム含有鉄酸化物、リチウムを含むバナジウム酸化物や、二硫化チタン、二硫化モリブデンなどのカルコゲン化合物などを挙げることができる。中でも、リチウム含有コバルト酸化物(例えば、LiCoO2 )、リチウム含有ニッケルコバルト酸化物(例えば、LiNi0.8 Co0.2 2 )、リチウムマンガン複合酸化物(例えば、LiMn2 4 、LiMnO2 )を用いると、高電圧が得られるために好ましい。なお、正極活物質としては、1種類の酸化物を単独で使用しても、あるいは2種類以上の酸化物を混合して使用しても良い。 Examples of the positive electrode active material include various oxides such as manganese dioxide, lithium manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt oxide, lithium-containing nickel cobalt oxide, lithium-containing iron oxide, and lithium. Examples thereof include vanadium oxide and chalcogen compounds such as titanium disulfide and molybdenum disulfide. Among them, when a lithium-containing cobalt oxide (for example, LiCoO 2 ), a lithium-containing nickel cobalt oxide (for example, LiNi 0.8 Co 0.2 O 2 ), or a lithium manganese composite oxide (for example, LiMn 2 O 4 , LiMnO 2 ) is used. This is preferable because a high voltage can be obtained. As the positive electrode active material, one kind of oxide may be used alone, or two or more kinds of oxides may be mixed and used.

前記導電剤としては、例えばアセチレンブラック、カーボンブラック、黒鉛等を挙げることができる。   Examples of the conductive agent include acetylene black, carbon black, and graphite.

前記結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリエーテルサルフォン、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等を用いることができる。   Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyethersulfone, ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber (SBR). be able to.

前記正極活物質、導電剤および結着剤の配合割合は、正極活物質85〜98重量%、導電剤1〜10重量%、結着剤1〜5重量%の範囲にすることが好ましい。   The blending ratio of the positive electrode active material, the conductive agent and the binder is preferably in the range of 85 to 98% by weight of the positive electrode active material, 1 to 10% by weight of the conductive agent, and 1 to 5% by weight of the binder.

前記集電体としては、多孔質構造の導電性基板か、あるいは無孔の導電性基板を用いることができる。これら導電性基板は、例えば、アルミニウム、ステンレス、またはニッケルから形成することができる。   As the current collector, a conductive substrate having a porous structure or a non-porous conductive substrate can be used. These conductive substrates can be formed from, for example, aluminum, stainless steel, or nickel.

前記正極は、例えば、正極活物質に導電剤および結着剤を適当な溶媒に懸濁し、この懸濁物を集電体に塗布、乾燥してプレスを施すことにより作製される。   The positive electrode is produced, for example, by suspending a conductive agent and a binder in an appropriate solvent in a positive electrode active material, applying the suspension to a current collector, drying it, and applying a press.

上記正極と負極の間にはセパレータか、ゲル状もしくは固体状の電解質層を配置することができる。   A separator or a gel or solid electrolyte layer can be disposed between the positive electrode and the negative electrode.

このセパレータとしては、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物等を用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合ポリマー、エチレン−ブテン共重合ポリマー等を挙げることができる。セパレータの形成材料としては、前述した種類の中から選ばれる1種類または2種類以上を用いることができる。   As this separator, a microporous film, a woven fabric, a non-woven fabric, a laminate of the same material or different materials among these can be used. Examples of the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-butene copolymer. As a material for forming the separator, one type or two or more types selected from the types described above can be used.

前記セパレータの厚さは、30μm以下にすることが好ましく、さらに好ましい範囲は25μm以下である。また、厚さの下限値は5μmにすることが好ましく、さらに好ましい下限値は8μmである。   The thickness of the separator is preferably 30 μm or less, and more preferably 25 μm or less. Moreover, it is preferable that the lower limit of thickness is 5 micrometers, and a more preferable lower limit is 8 micrometers.

前記セパレータは、120℃、1時間での熱収縮率を20%以下であることが好ましい。前記熱収縮率は、15%以下にすることがより好ましい。   The separator preferably has a heat shrinkage rate of 20% or less at 120 ° C. for 1 hour. The heat shrinkage rate is more preferably 15% or less.

前記セパレータは、多孔度が30〜60%の範囲であることが好ましい。多孔度のより好ましい範囲は、35〜50%である。   The separator preferably has a porosity in the range of 30 to 60%. A more preferable range of the porosity is 35 to 50%.

前記セパレータは、空気透過率が600秒/100cm3 以下であることが好ましい。空気透過率は、100cm3の空気がセパレータを透過するのに要した時間(秒)を意味する。空気透過率の上限値は500秒/100cm3 にすることがより好ましい。また、空気透過率の下限値は50秒/100cm3 にすることが好ましく、さらに好ましい下限値は80秒/100cm3 である。 The separator preferably has an air permeability of 600 seconds / 100 cm 3 or less. The air permeability means time (seconds) required for 100 cm 3 of air to pass through the separator. The upper limit value of the air permeability is more preferably 500 seconds / 100 cm 3 . The lower limit value of the air permeability is preferably 50 seconds / 100 cm 3, and a more preferable lower limit value is 80 seconds / 100 cm 3 .

3)非水電解質
非水電解質は、非水溶媒と、非水溶媒に溶解されるリチウム塩のような電解質とを含むものである。この非水電解質には、ゲル化を主たる目的として高分子材料を添加することができる。
3) Nonaqueous electrolyte A nonaqueous electrolyte contains a nonaqueous solvent and an electrolyte such as a lithium salt dissolved in the nonaqueous solvent. A polymer material can be added to the nonaqueous electrolyte for the main purpose of gelation.

非水溶媒としては、例えば、環状カーボネート{エチレンカーボネート(EC)、プロピレンカーボネート(PC)など}、鎖状カーボネート{メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)など}、スルトン化合物(環内に少なくとも一つの二重結合を有するスルトン化合物、1,3−プロパンスルトン(PS)など)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、フェニルエチレンカーボネート(phEC)、γ−ブチロラクトン(GBL)、γ−バレロラクトン(VL)、プロピオン酸メチル(MP)、プロピオン酸エチル(EP)、2−メチルフラン(2Me−F)、フラン(F)、チオフェン(TIOP)、カテコールカーボネート(CATC)、エチレンサルファイト(ES)、12−クラウン−4(Crown)、テトラエチレングリコールジメチルエーテル(Ether)、シクロヘキシルベンゼン(CHB)、2,4−ジフルオロアニソール(DFA)等を挙げることができる。非水溶媒の種類は、1種類もしくは2種類以上にすることができる。   Examples of the non-aqueous solvent include cyclic carbonate {ethylene carbonate (EC), propylene carbonate (PC), etc.}, chain carbonate {methyl ethyl carbonate (MEC), diethyl carbonate (DEC), dimethyl carbonate (DMC), etc.}, Sultone compounds (sultone compounds having at least one double bond in the ring, 1,3-propane sultone (PS), etc.), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), phenyl ethylene carbonate (phEC), γ -Butyrolactone (GBL), γ-valerolactone (VL), methyl propionate (MP), ethyl propionate (EP), 2-methylfuran (2Me-F), furan (F), thiophene (TIOP), catechol carbonate (CA TC), ethylene sulfite (ES), 12-crown-4 (Crown), tetraethylene glycol dimethyl ether (Ether), cyclohexylbenzene (CHB), 2,4-difluoroanisole (DFA) and the like. The type of the non-aqueous solvent can be one type or two or more types.

電解質としては、例えば、過塩素酸リチウム(LiClO4 )、六フッ化リン酸リチウム(LiPF6 )、四フッ化ホウ酸リチウム(LiBF4 )、六フッ化砒素リチウム(LiAsF6 )、トリフルオロメタスルホン酸リチウム(LiCF3 SO3 )、ビストリフルオロメチルスルホニルイミドリチウム[(LiN(CF3 SO2 2 ]、LiN(C25SO22などのリチウム塩を挙げることができる。使用する電解質の種類は、1種類または2種類以上にすることができる。 Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and trifluorometa. Examples include lithium salts such as lithium sulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide [(LiN (CF 3 SO 2 ) 2 ], LiN (C 2 F 5 SO 2 ) 2 . The type of electrolyte can be one type or two or more types.

前記電解質の前記非水溶媒に対する溶解量は、0.5〜2.5モル/Lとすることが望ましい。さらに好ましい範囲は、1〜2.5モル/Lである。   The amount of the electrolyte dissolved in the non-aqueous solvent is preferably 0.5 to 2.5 mol / L. A more preferable range is 1 to 2.5 mol / L.

非水電解質には、セパレータとの濡れ性を良くするために、トリオクチルフォスフェート(TOP)のような界面活性剤を含有させることが望ましい。界面活性剤の添加量は、3%以下が好ましく、さらには0.1〜1%の範囲内にすることが好ましい。   In order to improve the wettability with the separator, the nonaqueous electrolyte preferably contains a surfactant such as trioctyl phosphate (TOP). The addition amount of the surfactant is preferably 3% or less, and more preferably in the range of 0.1 to 1%.

非水電解質の量は、電池単位容量100mAh当たり0.2〜0.6gにすることが好ましい。非水電解質量のより好ましい範囲は、0.25〜0.55g/100mAhである。   The amount of non-aqueous electrolyte is preferably 0.2 to 0.6 g per 100 mAh of battery unit capacity. A more preferable range of the nonaqueous electrolytic mass is 0.25 to 0.55 g / 100 mAh.

本発明に係る非水電解質二次電池の形態は、特に限定されず、薄型、角形、円筒形、コイン型等の様々な形態にすることができるが、薄型や角形のように扁平形状の電極群を使用する二次電池に好適である。   The form of the non-aqueous electrolyte secondary battery according to the present invention is not particularly limited, and can be various forms such as thin, square, cylindrical, coin-type, etc., but flat electrodes such as thin and square It is suitable for a secondary battery using a group.

以下、薄型非水電解質二次電池の一例を図1〜図2に示す。   Hereinafter, an example of a thin nonaqueous electrolyte secondary battery is shown in FIGS.

図1に示すように、矩形のカップ状をなす容器本体1内には、電極群2が収納されている。電極群2は、正極3と、負極4と、正極3と負極4の間に配置されるセパレータ5を含む積層物が偏平形状に捲回された構造を有する。非水電解質は、電極群2に保持されている。容器本体1の縁の一部は幅広になっており、蓋板6として機能する。容器本体1と蓋板6は、それぞれ、ラミネートフィルムから構成される。このラミネートフィルムは、外部保護層7と、熱可塑性樹脂を含有する内部保護層8と、外部保護層7と内部保護層8の間に配置される金属層9とを含む。容器本体1には蓋体6が内部保護層8の熱可塑性樹脂を用いてヒートシールによって固定され、それにより容器内に電極群2が密封される。正極3には正極タブ10が電気的に接続され、負極4には負極タブ11が電気的に接続され、それぞれ容器の外部に引き出されて、正極端子及び負極端子の役割を果たす。   As shown in FIG. 1, an electrode group 2 is accommodated in a container body 1 having a rectangular cup shape. The electrode group 2 has a structure in which a laminate including a positive electrode 3, a negative electrode 4, and a separator 5 disposed between the positive electrode 3 and the negative electrode 4 is wound into a flat shape. The nonaqueous electrolyte is held in the electrode group 2. A part of the edge of the container body 1 is wide and functions as the lid plate 6. The container body 1 and the cover plate 6 are each composed of a laminate film. The laminate film includes an external protective layer 7, an internal protective layer 8 containing a thermoplastic resin, and a metal layer 9 disposed between the external protective layer 7 and the internal protective layer 8. A lid 6 is fixed to the container body 1 by heat sealing using a thermoplastic resin of the inner protective layer 8, whereby the electrode group 2 is sealed in the container. A positive electrode tab 10 is electrically connected to the positive electrode 3, and a negative electrode tab 11 is electrically connected to the negative electrode 4, and each is drawn out of the container and serves as a positive electrode terminal and a negative electrode terminal.

なお、図1,図2に例示される薄型非水電解質二次電池では、カップ状の容器を用いる例を説明したが、容器の形状は特に限定されず、例えば袋状等にすることができる。   In the thin non-aqueous electrolyte secondary battery illustrated in FIGS. 1 and 2, an example using a cup-shaped container has been described, but the shape of the container is not particularly limited, and can be, for example, a bag shape. .

[実施例]
以下、本発明の実施例を詳細に説明する。
[Example]
Hereinafter, embodiments of the present invention will be described in detail.

(実施例1)
<負極活物質>
粒度調整し、球状化処理した天然黒鉛に、黒鉛よりも結晶性の低い炭素材料を表面コートした複合黒鉛材料を主たる負極活物質として用いた。この活物質はアスペクト比が1.3であり、平均粒径D50が19μmであった。この負極活物質の粒子径分布は、D80が30μm、D50が19μm、D20が10μm、D10が6μm、D5が4.5μmであった。粒子径の相対度数分布の概略を図3に示す。図3の横軸は粒子径(μm)で、縦軸が粒子径毎の相対粒子量(%)である。平均粒径D50が19μmの際、前述した(5)式で表わされるD80の範囲は25.5〜31.5μmで、前述した(6)式で表わされるD20の範囲は7.5〜11.5μmで、前述した(7)式で表わされるD10の範囲は4.3〜8.3μmで、前述した(8)式で表わされるD5の範囲は1.8〜5.8μmであるため、実施例1で使用する負極活物質の粒子径分布は前述した(5)〜(8)式を満足する。
Example 1
<Negative electrode active material>
A composite graphite material obtained by surface-coating a carbon material having a grain size adjusted and spheroidized on a carbon material having lower crystallinity than graphite was used as a main negative electrode active material. This active material had an aspect ratio of 1.3 and an average particle diameter D 50 of 19 μm. Particle size distribution of the negative electrode active material, D 80 is 30 [mu] m, D 50 is 19 .mu.m, D 20 is 10 [mu] m, D 10 is 6 [mu] m, D 5 was 4.5 [mu] m. An outline of the relative frequency distribution of the particle diameter is shown in FIG. The horizontal axis in FIG. 3 is the particle diameter (μm), and the vertical axis is the relative particle amount (%) for each particle diameter. When the average particle diameter D 50 is 19 μm, the range of D 80 represented by the above-mentioned formula (5) is 25.5 to 31.5 μm, and the range of D 20 represented by the above-described formula (6) is 7.5. The range of D 10 represented by the above-mentioned formula (7) is 4.3 to 8.3 μm and the range of D 5 represented by the above-described formula (8) is 1.8 to 5.8 μm. Therefore, the particle size distribution of the negative electrode active material used in Example 1 satisfies the expressions (5) to (8) described above.

また、負極活物質は、BET法による比表面積が3m2/gであり、粉末X線回折測定において、面間隔d002が0.336nm以下であり、かつ、回折角2θが42.8°〜44.0°と45.5°〜46.6°にピークがあらわれた。なお、(002)面の面間隔d002は、粉末X線回折スペクトルから半値幅中点法により求めた値である。この際、ローレンツ散乱等の散乱補正は、行なわなかった。 Further, the negative electrode active material has a specific surface area of 3 m 2 / g by the BET method, and in powder X-ray diffraction measurement, the interplanar spacing d 002 is 0.336 nm or less, and the diffraction angle 2θ is 42.8 ° to Peaks appeared at 44.0 ° and 45.5 ° to 46.6 °. In addition, the space | interval d002 of (002) plane is the value calculated | required by the half-value-width midpoint method from the powder X-ray diffraction spectrum. At this time, scattering correction such as Lorentz scattering was not performed.

負極活物質のラマンスペクトル測定によるR値は、強度比で0.39、面積比で1.58であった。   R value by the Raman spectrum measurement of the negative electrode active material was 0.39 in intensity ratio, and 1.58 in area ratio.

負極活物質の粒子径、アスペクト比、比表面積、R値は以下に説明する方法で測定した。   The particle diameter, aspect ratio, specific surface area, and R value of the negative electrode active material were measured by the methods described below.

(負極活物質の粒子径)
負極活物質の粒子径はマイクロトラック法で測定した粒度分布から求められる値で、例えば、D50は粒子径が小さい粒子からその体積を積算して50%に達した粒子の粒子径を示すものとする。実際の測定は、レーザー光散乱型粒度分布計を用いて行った。これは、粒子にレーザー光をあてたときに起る光の散乱現象を利用した測定で、散乱光の強度および散乱角度が粒子の大きさに大きく依存することから、この散乱光の強度および散乱角度を光学検出器で測定し、これをコンピューター処理することによって粉体の粒度分布が得られる。
(Particle size of negative electrode active material)
The particle size of the negative electrode active material is a value obtained from the particle size distribution measured by the microtrack method. For example, D 50 indicates the particle size of particles that have reached 50% by integrating their volume from particles having a small particle size. And Actual measurement was performed using a laser light scattering particle size distribution meter. This is a measurement that utilizes the light scattering phenomenon that occurs when a laser beam is applied to a particle. The intensity and scattering angle of the scattered light depend largely on the size of the particle. The particle size distribution of the powder can be obtained by measuring the angle with an optical detector and computerizing it.

(負極活物質のアスペクト比)
負極活物質のアスペクト比は、走査型電子顕微鏡(SEM)で観察された粒子形状(楕円)の長径/短径比を計測し、その平均値をとることによって求められる値を用いた。
(Aspect ratio of negative electrode active material)
As the aspect ratio of the negative electrode active material, a value obtained by measuring the major axis / minor axis ratio of the particle shape (ellipse) observed with a scanning electron microscope (SEM) and taking the average value thereof was used.

(BET法による比表面積の測定)
測定装置には、ユアサアイオニクス製の商品名がカンタソーブを用いた。サンプル量は、0.5g前後に設定し、また、試料に前処理として120℃−15分の脱気を行った。
(Measurement of specific surface area by BET method)
As a measuring device, a product name manufactured by Yuasa Ionics used Kantasorb. The sample amount was set to around 0.5 g, and the sample was deaerated at 120 ° C. for 15 minutes as a pretreatment.

(R値の測定)
負極活物質についてのラマンスペクトルについてピーク分離を行い、D(A1g):1360cm−1付近のグラファイトの構造の乱れに由来するピーク、D’(A1g):1620cm−1付近のグラファイトの構造の乱れに由来するピーク、D:アモルファスカーボンのグラファイト構造の乱れに由来するピーク、G(E2g):1580cm−1付近のグラファイト構造に由来するピーク、G:アモルファスカーボンのグラファイト構造に由来するピークを得た。
(Measurement of R value)
For the Raman spectrum of the negative electrode active material, peak separation was performed, and D (A1g): peak derived from disorder of the structure of graphite near 1360 cm −1 , D ′ (A1g): disorder of the structure of graphite near 1620 cm −1 Derived peak, D: Peak derived from disorder of graphite structure of amorphous carbon, G (E2g): Peak derived from graphite structure in the vicinity of 1580 cm −1 , G: Peak derived from graphite structure of amorphous carbon were obtained.

各ピークの強度を算出し、Dバンドに由来するピークの強度を合計したものIDと、Gバンドに由来するピークの強度を合計したものIGとの比(ID/IG)を強度比とした。また、各ピークの面積を算出し、Dバンドに由来するピークの面積値を合計したものSDと、Gバンドに由来するピークの面積値を合計したものSGとの比(SD/SG)を面積比とした。 Calculating the intensity of each peak, intensity and I D the sum of the intensity of a peak derived from the D-band, the ratio of I G the sum of the intensity of a peak derived from the G band (I D / I G) Ratio. Also, the area of each peak is calculated, and the ratio of the sum of the peak area values derived from the D band to the sum of the peak area values derived from the G band, S G (S D / S G ) was defined as the area ratio.

<負極の作製>
負極活物質90重量部と鱗片状黒鉛10重量部の合計100重量部に対して、エーテル化度の分布が0.6〜0.8で、重量平均分子量の分布が20万〜25万のカルボキシメチルセルロース(CMC)を1.8重量部と、スチレンブタジエンゴム(SBR)を1.5重量部とを添加し、水の存在下で混練することにより固形分量が50重量%のペーストを調製した。得られたペーストを厚さが12μmの銅箔からなる負極集電体の両面に塗布し、乾燥し、プレスすることにより、電極密度が1.45g/cm3で、負極集電体の両面に負極材料層が担持された構造を有する負極を作製した。
<Production of negative electrode>
A carboxy having a etherification degree distribution of 0.6 to 0.8 and a weight average molecular weight distribution of 200,000 to 250,000 with respect to a total of 100 parts by weight of 90 parts by weight of the negative electrode active material and 10 parts by weight of flake graphite. 1.8 parts by weight of methylcellulose (CMC) and 1.5 parts by weight of styrene butadiene rubber (SBR) were added and kneaded in the presence of water to prepare a paste having a solid content of 50% by weight. The obtained paste was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 12 μm, dried and pressed to obtain an electrode density of 1.45 g / cm 3 on both sides of the negative electrode current collector. A negative electrode having a structure in which a negative electrode material layer was supported was produced.

得られた負極の細孔直径分布を以下に説明する方法で測定した。   The pore diameter distribution of the obtained negative electrode was measured by the method described below.

(細孔直径分布測定)
カンタクローム社製で、型番がAUTOSCAN−33の測定装置を使用して水銀圧入法により細孔直径を測定した。細孔直径10μm以下の細孔容積(cc/g)を下記表2に示す。測定結果から増加容積細孔分布を求め、図4に示す。増加容積細孔分布は、細孔直径に対する累積細孔容積の直径毎の変化量を示したもので、横軸が細孔直径(μm)で、縦軸が各細孔直径における累積細孔容積(cc/g)である。図4に示すように、細孔直径100μm以下において、細孔直径が0.5〜3.0μmの間にシャープなピークが現れた。ピークトップの位置(P)は0.7μmであるため、負極活物質のD50との間に前述した(9)式の関係(P=0.1×D50±1.5)が成立していた。
(Measurement of pore diameter distribution)
The pore diameter was measured by mercury porosimetry using a measuring device manufactured by Cantachrome and having a model number of AUTOSCAN-33. The pore volume (cc / g) with a pore diameter of 10 μm or less is shown in Table 2 below. The increased volume pore distribution is obtained from the measurement results and is shown in FIG. Increased volume pore distribution indicates the amount of change in the cumulative pore volume for each diameter with respect to the pore diameter. The horizontal axis is the pore diameter (μm), and the vertical axis is the cumulative pore volume at each pore diameter. (Cc / g). As shown in FIG. 4, when the pore diameter was 100 μm or less, a sharp peak appeared when the pore diameter was 0.5 to 3.0 μm. Since the peak top position (P) is 0.7 μm, the relationship of the above-mentioned formula (9) (P = 0.1 × D 50 ± 1.5) is established with D 50 of the negative electrode active material. It was.

また、測定結果から、細孔直径が0.001〜10μmにおける累積細孔分布を算出し、図5に示した。横軸の細孔直径を0.001〜10μmとし、対応する縦軸の累積細孔分布(%表示)0〜120%で表示した。なお、細孔直径が10μmから小さい方向へ向って空隙率を積算し、空隙率が50%に達するところを累積50%とした。横軸と縦軸の比率を横軸:縦軸=2:1とした。累積細孔分布が40〜60%の範囲内での傾きを算出したところ、2.5であった。なお、傾きは、分布曲線が累積40%の軸と交差する点Aから累積60%の軸と交差する点Bまでの区間において、X軸についての変化量とY軸についての変化量をmm単位で測定し、累積40%〜60%における曲線の傾き{Y軸変化量(mm)/X軸変化量(mm)}を算出した。   Further, from the measurement results, the cumulative pore distribution at pore diameters of 0.001 to 10 μm was calculated and shown in FIG. The pore diameter on the horizontal axis was 0.001 to 10 μm, and the cumulative pore distribution (% display) on the corresponding vertical axis was displayed as 0 to 120%. In addition, the porosity was integrated from a pore diameter of 10 μm toward a smaller direction, and the place where the porosity reached 50% was regarded as 50% cumulative. The ratio of the horizontal axis and the vertical axis was horizontal axis: vertical axis = 2: 1. It was 2.5 when the inclination in the range whose cumulative pore distribution is 40 to 60% was calculated. Note that the slope is the amount of change on the X axis and the change on the Y axis in mm in the section from the point A where the distribution curve intersects the cumulative 40% axis to the point B where the cumulative curve intersects the 60% axis. The slope of the curve in the cumulative 40% to 60% {Y-axis change amount (mm) / X-axis change amount (mm)} was calculated.

また、累積細孔分布曲線の累積80%,70%,60%,20%での細孔直径R80,R70,R60,R20を下記表1に示す。 Table 1 shows the pore diameters R 80 , R 70 , R 60 , and R 20 at the cumulative 80%, 70%, 60%, and 20% of the cumulative pore distribution curve.

<正極の作製>
まず、12重量%濃度のポリフッ化ビニリデン樹脂(PVdF)のN−メチルピロリドン溶液41.7重量部に活物質としてのLiCoO2粉末100重量部、導電フィラーとしてのグラファイト粉末(ロンザ社製商品名;KS4)5重量部を混合し、混練した。つづいて、この混合物にN−メチルピロリドン15重量部をさらに添加し、ビーズミルを用いて前記固形物を分散させて正極塗工スラリーを調製した。
<Preparation of positive electrode>
First, 41.7 parts by weight of a 12% strength by weight polyvinylidene fluoride resin (PVdF) in N-methylpyrrolidone solution, 100 parts by weight of LiCoO 2 powder as an active material, graphite powder as a conductive filler (trade name, manufactured by Lonza); KS4) 5 parts by weight were mixed and kneaded. Subsequently, 15 parts by weight of N-methylpyrrolidone was further added to the mixture, and the solid matter was dispersed using a bead mill to prepare a positive electrode coating slurry.

次いで、前記正極塗工スラリーを厚さ15μmのアルミニウム箔(集電体)の両面にそれそれ194g/m2になるように塗工し、乾燥した後、プレス、スリット加工を施すことにより厚さ130μm、幅49.5mmの帯状正極を作製した。 Next, the positive electrode coating slurry is applied to both sides of an aluminum foil (current collector) having a thickness of 15 μm so as to be 194 g / m 2 , dried, and then subjected to pressing and slitting to obtain a thickness. A belt-like positive electrode having a thickness of 130 μm and a width of 49.5 mm was produced.

次いで、前記正負極の集電体にリードタブをそれぞれ接合し、自動捲回機を用いてポリエチレン製多孔膜を2枚介してスパイラル状に巻き上げ、さらにプレスすることにより扁平状の電極群を作製した。   Next, lead tabs were joined to the positive and negative electrode current collectors, respectively, and a flat electrode group was produced by winding up and spiraling through two polyethylene porous membranes using an automatic winding machine. .

次いで、厚さ25μmの延伸ナイロンフィルムと厚さ40μmのアルミニウムシートと厚さ30μmの直鎖状低密度ポリエチレン(LLDPE)フィルムとをこの順序でウレタン系接着剤を介して積層・接着した厚さ3.6mmの外装材用フィルム素材を二つ折りにし、一方の面にカップ部を絞り加工し、このカップ部に電極群を挿入し、他方の面を前記カップ部を有する面の周辺に注液口を除いて熱シールし、非水電解液を注入した後、前記注液口を熱シールして封口することによって、前述した図1,図2に示す構造を有し、厚さが3.6mm、幅が35mm、高さが62mmの薄型リチウムイオン二次電池を組立てた。なお、非水電解液はエチレンカーボネートとエチルメチルカーボネートを1:2の重量比で混合した混合非水溶媒にLiPF6を1.2モル/Lの濃度で溶解した組成を有する。 Next, a stretched nylon film having a thickness of 25 μm, an aluminum sheet having a thickness of 40 μm, and a linear low density polyethylene (LLDPE) film having a thickness of 30 μm are laminated and bonded in this order via a urethane-based adhesive. .6mm film material for exterior material is folded in half, the cup part is drawn on one side, an electrode group is inserted into this cup part, and the other side is filled with a liquid injection port around the surface having the cup part. After injecting a non-aqueous electrolyte, the liquid injection port is heat sealed and sealed, thereby having the structure shown in FIGS. 1 and 2 and having a thickness of 3.6 mm. A thin lithium ion secondary battery having a width of 35 mm and a height of 62 mm was assembled. The non-aqueous electrolyte has a composition in which LiPF 6 is dissolved at a concentration of 1.2 mol / L in a mixed non-aqueous solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at a weight ratio of 1: 2.

(実施例2〜10及び比較例1〜3)
負極活物質の粒度分布、アスペクト比、比表面積、負極ペースト固形分量、R値の強度比と面積比を下記表1に示すように設定すること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を作製した。なお、表2に示す通りに実施例2〜10で使用した負極活物質の粒度分布は前述した(5)〜(8)式の関係を満足するものであるが、比較例1〜3で使用した負極活物質の粒度分布はこの(5)〜(8)式の関係を満足するものではなかった。また、表2におけるアスペクト比が「不定」とは、粒子によりアスペクト比がまちまちで、数値として特定できなかったことを意味する。
(Examples 2 to 10 and Comparative Examples 1 to 3)
Except that the particle size distribution, aspect ratio, specific surface area, negative electrode paste solid content, strength ratio of R value and area ratio of the negative electrode active material are set as shown in Table 1 below, it was explained in Example 1 described above. Similarly, a thin non-aqueous electrolyte secondary battery was produced. In addition, as shown in Table 2, the particle size distribution of the negative electrode active material used in Examples 2 to 10 satisfies the relationship of the above-described formulas (5) to (8), but is used in Comparative Examples 1 to 3. The particle size distribution of the negative electrode active material did not satisfy the relationships of the expressions (5) to (8). In addition, the aspect ratio “undefined” in Table 2 means that the aspect ratio varies depending on the particle and cannot be specified as a numerical value.

実施例2〜10及び比較例1〜3の二次電池の負極について、細孔容積、ピーク位置、曲線傾き、R80〜R20を前述した実施例1で説明したのと同様にして測定し、その結果を下記表2に示す。 For the negative electrodes of the secondary batteries of Examples 2 to 10 and Comparative Examples 1 to 3, the pore volume, peak position, curve slope, and R 80 to R 20 were measured in the same manner as described in Example 1 above. The results are shown in Table 2 below.

また、実施例2〜10及び比較例1〜3の二次電池について、50サイクル後並びに500サイクル後の電池容器の膨れと容量維持率とを以下に説明する方法で測定し、その結果を下記表2に示した。   Further, for the secondary batteries of Examples 2 to 10 and Comparative Examples 1 to 3, the swelling and capacity retention rate of the battery container after 50 cycles and after 500 cycles were measured by the method described below. It is shown in Table 2.

各二次電池について、初充放電工程として、室温で0.2Cで4.2Vまで定電流・定電圧充電を10時間行い、その後、室温で0.2Cで3.0Vまで放電した。   Each secondary battery was subjected to constant current / constant voltage charging to 0.2 V at 0.2 C at room temperature for 10 hours as an initial charge / discharge process, and then discharged to 3.0 V at 0.2 C at room temperature.

次に、室温で1.0Cで4.2Vまで定電流・定電圧充電を3時間行い、その後、室温で1.0Cで3.0Vまで放電した。その後、電池容器の厚みt0を測定した。 Next, constant current / constant voltage charging was performed for 3 hours at 1.0 C to 4.2 V at room temperature, and then discharged to 3.0 V at 1.0 C at room temperature. Thereafter, the thickness t 0 of the battery container was measured.

次に前述の充放電レート1C、充電終止電圧4.2V、放電終止電圧3.0Vの充放電を室温にて500回繰り返した後、5サイクル目と500サイクル目において放電状態のまま電池容器の厚みt1を測定し、下記(A)式よりサイクル後の電池容器の厚み変化率を求めた。また、50サイクル時と500サイクル時の放電容量を測定し、1サイクル目の放電容量を100%として50サイクル時及び500サイクル時の容量維持率を算出し、その結果を下記表1〜2に示す。 Next, after charging and discharging at the charge / discharge rate of 1C, the end-of-charge voltage of 4.2V, and the end-of-discharge voltage of 3.0V are repeated 500 times at room temperature, the battery container is kept discharged in the fifth and 500th cycles. The thickness t 1 was measured, and the rate of change in thickness of the battery container after cycling was determined from the following formula (A). Further, the discharge capacities at 50 cycles and 500 cycles were measured, the discharge capacity at the first cycle was taken as 100%, and the capacity retention rates at 50 cycles and 500 cycles were calculated, and the results are shown in Tables 1 and 2 below. Show.

((t1−t0)/t0)×100(%) (A)
ただし、前記t0はサイクル試験前の電池容器の厚さで、前記t1は、50サイクル後または500サイクル後の電池容器の厚さを示す。
((T 1 −t 0 ) / t 0 ) × 100 (%) (A)
However, t 0 is the thickness of the battery container before the cycle test, and t 1 is the thickness of the battery container after 50 cycles or 500 cycles.

ここで、1Cとは公称容量(Ah)を1時間で放電するために必要な電流値である。

Figure 2006059690
Here, 1C is a current value necessary for discharging the nominal capacity (Ah) in one hour.
Figure 2006059690

Figure 2006059690
Figure 2006059690

表1〜表2から明らかなように、細孔容積が0.15cc/g〜0.35cc/gで、ピーク位置が0.4〜3.5μmの範囲内に存在し、傾きが1.5〜4.5で、かつ累積細孔分布曲線の累積80%,70%,60%,20%での細孔直径が前述した(1)〜(4)式を満足する実施例1〜10の二次電池は、500サイクル時の電池膨れが比較例1〜3に比べて小さく、50サイクル時及び500サイクル時の容量維持率が比較例1〜3に比べて高いことが理解できる。   As apparent from Tables 1 and 2, the pore volume is 0.15 cc / g to 0.35 cc / g, the peak position is in the range of 0.4 to 3.5 μm, and the slope is 1.5. -4.5, and the pore diameters at cumulative 80%, 70%, 60%, and 20% of the cumulative pore distribution curve satisfy Examples (1) to (4) described above. It can be understood that the secondary battery has a smaller battery swelling at 500 cycles than those of Comparative Examples 1 to 3, and a capacity retention rate at 50 cycles and 500 cycles is higher than those of Comparative Examples 1 to 3.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明に係わる非水電解質二次電池の一例である薄型非水電解質二次電池を示す斜視図。The perspective view which shows the thin nonaqueous electrolyte secondary battery which is an example of the nonaqueous electrolyte secondary battery concerning this invention. 図1の薄型非水電解質二次電池をII−II線に沿って切断した部分断面図。The fragmentary sectional view which cut | disconnected the thin nonaqueous electrolyte secondary battery of FIG. 1 along the II-II line. 実施例1の非水電解質二次電池で用いられる負極活物質の粒度分布の概略を示す特性図。FIG. 3 is a characteristic diagram illustrating an outline of a particle size distribution of a negative electrode active material used in the nonaqueous electrolyte secondary battery of Example 1; 実施例1〜4及び比較例1〜3の非水電解質二次電池の負極の増加容積細孔分布を示す特性図。The characteristic view which shows the increase volume pore distribution of the negative electrode of the nonaqueous electrolyte secondary battery of Examples 1-4 and Comparative Examples 1-3. 実施例1〜4及び比較例1〜3の非水電解質二次電池の負極についての細孔直径が0.001〜10μmにおける累積細孔分布を示す特性図。The characteristic view which shows the cumulative pore distribution in the pore diameter about 0.001-10 micrometers about the negative electrode of the nonaqueous electrolyte secondary battery of Examples 1-4 and Comparative Examples 1-3.

符号の説明Explanation of symbols

1…容器本体、2…電極群、3…正極、4…負極、5…セパレータ、6…蓋板、7…外部保護層、8…内部保護層、9…金属層、10…正極タブ、11…負極タブ。   DESCRIPTION OF SYMBOLS 1 ... Container body, 2 ... Electrode group, 3 ... Positive electrode, 4 ... Negative electrode, 5 ... Separator, 6 ... Cover plate, 7 ... External protective layer, 8 ... Internal protective layer, 9 ... Metal layer, 10 ... Positive electrode tab, 11 ... negative electrode tab.

Claims (4)

正極と、負極活物質を含む負極と、非水電解質とを具備する非水電解質二次電池であって、前記負極は、細孔直径10μm以下の細孔容積が0.15cc/g〜0.35cc/gで、増加容積細孔分布において細孔直径0.4〜3.5μmにピークを有し、かつ細孔直径0.001μm〜10μmの範囲での累積細孔分布曲線の累積40%〜60%での傾きが1.5〜4.5の範囲であることを特徴とする非水電解質二次電池。   A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode containing a negative electrode active material, and a non-aqueous electrolyte, wherein the negative electrode has a pore volume of 0.15 cc / g to. 35 cc / g, with an increased volume pore distribution having a peak at a pore diameter of 0.4 to 3.5 μm, and a cumulative pore distribution curve in the range of pore diameters of 0.001 μm to 10 μm A non-aqueous electrolyte secondary battery having a slope at 60% of 1.5 to 4.5. 正極と、負極活物質を含む負極と、非水電解質とを具備する非水電解質二次電池であって、前記負極は、細孔直径10μm以下の細孔容積が0.15cc/g〜0.35cc/gで、増加容積細孔分布曲線において細孔直径0.4〜3.5μmの範囲にピークを有し、かつ細孔直径0.001μm〜10μmの範囲での累積細孔分布曲線の累積80%,70%,60%,20%での細孔直径が下記(1)〜(4)式を満足することを特徴とする非水電解質二次電池。
80≧0.2 (1)
70≧0.3 (2)
60≧0.4 (3)
1.5≧R20≧0.8 (4)
但し、R80は前記累積細孔分布曲線の累積80%での細孔直径(μm)、R70は前記累積細孔分布曲線の累積70%での細孔直径(μm)、R60は前記累積細孔分布曲線の累積60%での細孔直径(μm)、R20は前記累積細孔分布曲線の累積20%での細孔直径(μm)である。
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode containing a negative electrode active material, and a non-aqueous electrolyte, wherein the negative electrode has a pore volume of 0.15 cc / g to. Cumulative pore distribution curve at 35 cc / g having a peak in the pore diameter range of 0.4 to 3.5 μm in the increased volume pore distribution curve and the pore diameter range of 0.001 μm to 10 μm A non-aqueous electrolyte secondary battery wherein the pore diameters at 80%, 70%, 60%, and 20% satisfy the following formulas (1) to (4):
R 80 ≧ 0.2 (1)
R 70 ≧ 0.3 (2)
R 60 ≧ 0.4 (3)
1.5 ≧ R 20 ≧ 0.8 (4)
However, R 80 is the pore diameter (μm) at the cumulative 80% of the cumulative pore distribution curve, R 70 is the pore diameter (μm) at the cumulative 70% of the cumulative pore distribution curve, and R 60 is the above-mentioned The pore diameter (μm) at a cumulative 60% of the cumulative pore distribution curve, and R 20 is the pore diameter (μm) at a cumulative 20% of the cumulative pore distribution curve.
前記負極活物質は、下記(5)〜(8)式を満たす粒度分布を有することを特徴とする請求項1または2記載の非水電解質二次電池。
1.5×D50−3≦D80≦1.5×D50+3 (5)
50/2−2≦D20≦D50/2+2 (6)
50/3−2≦D10≦D50/3+2 (7)
50/5−2≦D5≦D50/5+2 (8)
但し、D80は累積80%での負極活物質粒子径(μm)、D50は累積50%での負極活物質粒子径(μm)、D20は累積20%での負極活物質粒子径(μm)、D10は累積10%での負極活物質粒子径(μm)、D5は累積5%での負極活物質粒子径(μm)である。
The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material has a particle size distribution satisfying the following formulas (5) to (8).
1.5 × D 50 -3 ≦ D 80 ≦ 1.5 × D 50 +3 (5)
D 50 / 2-2 ≦ D 20 ≦ D 50/2 + 2 (6)
D 50 / 3-2 ≦ D 10 ≦ D 50/3 + 2 (7)
D 50 / 5-2 ≦ D 5 ≦ D 50/5 + 2 (8)
However, D 80 is the negative electrode active material particle diameter (μm) at a cumulative 80%, D 50 is a negative electrode active material particle diameter (μm) at a cumulative 50%, and D 20 is a negative electrode active material particle diameter at a cumulative 20% (μm). μm), D 10 is the negative electrode active material particle diameter (μm) at a cumulative 10%, and D 5 is the negative electrode active material particle diameter (μm) at a cumulative 5%.
前記増加容積細孔分布曲線におけるピーク位置(P)と前記負極活物質の累積50%での負極活物質粒子径(D50)とが下記(9)式を満たすことを特徴とする請求項1〜3いずれか1項記載の非水電解質二次電池。
0.1×D50−1.5≦P≦0.1×D50+1.5 (9)
The peak position (P) in the increased volume pore distribution curve and the negative electrode active material particle diameter (D 50 ) at a cumulative 50% of the negative electrode active material satisfy the following formula (9): The nonaqueous electrolyte secondary battery according to any one of to 3.
0.1 × D 50 −1.5 ≦ P ≦ 0.1 × D 50 +1.5 (9)
JP2004240879A 2004-08-20 2004-08-20 Nonaqueous electrolyte secondary battery Active JP4776190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004240879A JP4776190B2 (en) 2004-08-20 2004-08-20 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004240879A JP4776190B2 (en) 2004-08-20 2004-08-20 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2006059690A true JP2006059690A (en) 2006-03-02
JP4776190B2 JP4776190B2 (en) 2011-09-21

Family

ID=36106983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004240879A Active JP4776190B2 (en) 2004-08-20 2004-08-20 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4776190B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305688A (en) * 2007-06-08 2008-12-18 Panasonic Corp Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative electrode
JP2009146580A (en) * 2007-12-11 2009-07-02 Osaka Gas Chem Kk Negative electrode active material sheet for lithium ion secondary battery, and manufacturing method thereof
JP2009146581A (en) * 2007-12-11 2009-07-02 Osaka Gas Chem Kk Sheet-shaped negative electrode for lithium ion secondary battery, and manufacturing method thereof
JP2009181767A (en) * 2008-01-30 2009-08-13 Tokai Carbon Co Ltd Composite carbon material for negative electrode material of lithium secondary battery and its manufacturing method
JP2011243567A (en) * 2010-04-20 2011-12-01 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012064544A (en) * 2010-09-17 2012-03-29 Toyota Motor Corp Lithium ion secondary battery
US8343667B2 (en) 2007-03-28 2013-01-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
CN103022551A (en) * 2011-09-27 2013-04-03 三洋电机株式会社 Nonaqueous electrolyte secondary battery
JP2013089422A (en) * 2011-10-17 2013-05-13 Toyota Motor Corp Lithium secondary battery manufacturing method
WO2014002561A1 (en) * 2012-06-29 2014-01-03 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP2014089887A (en) * 2012-10-30 2014-05-15 Hitachi Chemical Co Ltd Negative electrode material for lithium ion secondary battery and lithium ion secondary battery
JP2016178026A (en) * 2015-03-20 2016-10-06 株式会社Gsユアサ Power storage device
JP2020004508A (en) * 2018-06-25 2020-01-09 凸版印刷株式会社 Negative electrode composition for alkaline secondary battery and negative electrode for alkaline secondary battery
KR20200064052A (en) * 2020-05-29 2020-06-05 주식회사 포스코 Negative electrode material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
WO2021044482A1 (en) * 2019-09-02 2021-03-11 昭和電工マテリアルズ株式会社 Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
DE102020133917A1 (en) 2020-01-31 2021-08-05 Toyota Jidosha Kabushiki Kaisha NON-Aqueous ELECTROLYTE ENERGY STORAGE DEVICE AND METHOD OF MANUFACTURING AN ENERGY STORAGE DEVICE WITH NON-Aqueous ELECTROLYTE
US11114665B2 (en) 2016-08-29 2021-09-07 Gs Yuasa International Ltd. Energy storage device and method for producing same
US11258065B2 (en) 2016-01-15 2022-02-22 Gs Yuasa International Ltd. Energy storage device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127913A (en) * 2002-07-31 2004-04-22 Matsushita Electric Ind Co Ltd Lithium secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127913A (en) * 2002-07-31 2004-04-22 Matsushita Electric Ind Co Ltd Lithium secondary battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8568927B2 (en) 2007-03-28 2013-10-29 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US9786909B2 (en) 2007-03-28 2017-10-10 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US8785052B2 (en) 2007-03-28 2014-07-22 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US8343667B2 (en) 2007-03-28 2013-01-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
JP2008305688A (en) * 2007-06-08 2008-12-18 Panasonic Corp Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative electrode
JP2009146581A (en) * 2007-12-11 2009-07-02 Osaka Gas Chem Kk Sheet-shaped negative electrode for lithium ion secondary battery, and manufacturing method thereof
JP2009146580A (en) * 2007-12-11 2009-07-02 Osaka Gas Chem Kk Negative electrode active material sheet for lithium ion secondary battery, and manufacturing method thereof
JP2009181767A (en) * 2008-01-30 2009-08-13 Tokai Carbon Co Ltd Composite carbon material for negative electrode material of lithium secondary battery and its manufacturing method
JP2011243567A (en) * 2010-04-20 2011-12-01 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012064544A (en) * 2010-09-17 2012-03-29 Toyota Motor Corp Lithium ion secondary battery
CN103022551A (en) * 2011-09-27 2013-04-03 三洋电机株式会社 Nonaqueous electrolyte secondary battery
JP2013089422A (en) * 2011-10-17 2013-05-13 Toyota Motor Corp Lithium secondary battery manufacturing method
WO2014002561A1 (en) * 2012-06-29 2014-01-03 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP2014011071A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Nonaqueous electrolyte secondary battery
JP2014089887A (en) * 2012-10-30 2014-05-15 Hitachi Chemical Co Ltd Negative electrode material for lithium ion secondary battery and lithium ion secondary battery
JP2016178026A (en) * 2015-03-20 2016-10-06 株式会社Gsユアサ Power storage device
US11258065B2 (en) 2016-01-15 2022-02-22 Gs Yuasa International Ltd. Energy storage device
US11114665B2 (en) 2016-08-29 2021-09-07 Gs Yuasa International Ltd. Energy storage device and method for producing same
JP2020004508A (en) * 2018-06-25 2020-01-09 凸版印刷株式会社 Negative electrode composition for alkaline secondary battery and negative electrode for alkaline secondary battery
WO2021044482A1 (en) * 2019-09-02 2021-03-11 昭和電工マテリアルズ株式会社 Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2021044482A1 (en) * 2019-09-02 2021-03-11
JP7447907B2 (en) 2019-09-02 2024-03-12 株式会社レゾナック Negative electrode material for lithium ion secondary batteries, method for producing negative electrode material for lithium ion secondary batteries, negative electrode material slurry for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary batteries
DE102020133917A1 (en) 2020-01-31 2021-08-05 Toyota Jidosha Kabushiki Kaisha NON-Aqueous ELECTROLYTE ENERGY STORAGE DEVICE AND METHOD OF MANUFACTURING AN ENERGY STORAGE DEVICE WITH NON-Aqueous ELECTROLYTE
KR20200064052A (en) * 2020-05-29 2020-06-05 주식회사 포스코 Negative electrode material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
KR102218329B1 (en) * 2020-05-29 2021-02-22 주식회사 포스코 Negative electrode material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
JP4776190B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4468170B2 (en) Nonaqueous electrolyte secondary battery
US7682746B2 (en) Negative electrode for non-aqueous secondary battery
JP4776190B2 (en) Nonaqueous electrolyte secondary battery
JP5582587B2 (en) Lithium ion secondary battery
US9172083B2 (en) Lithium ion secondary battery
KR100692733B1 (en) Nonaqueous electrolyte secondary cell
KR20140013885A (en) Lithium ion secondary battery
US11626593B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2005005113A (en) Non-aqueous electrolyte secondary battery
JP2003077534A (en) Nonaqueous secondary battery
JP5115781B2 (en) Lithium secondary battery and manufacturing method thereof
JP4690643B2 (en) Nonaqueous electrolyte secondary battery
WO2020170833A1 (en) Electrolyte composition, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
KR20160024910A (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2014049297A (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP4287123B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2004172114A (en) Nonaqueous electrolyte secondary battery
JP2001110424A (en) Conductive material for positive electrode of lithium secondary battery and positive electrode for the lithium secondary battery using the conductive material
JP4707323B2 (en) Nonaqueous electrolyte secondary battery
JP4798950B2 (en) Nonaqueous electrolyte secondary battery
JP2006156021A (en) Nonaqueous electrolyte secondary battery
JP4686131B2 (en) Nonaqueous electrolyte secondary battery
JP6397642B2 (en) Nonaqueous electrolyte secondary battery
JP2005310662A (en) Nonaqueous electrolyte secondary battery
JP4599050B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R151 Written notification of patent or utility model registration

Ref document number: 4776190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3