JP2012064544A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2012064544A
JP2012064544A JP2010210073A JP2010210073A JP2012064544A JP 2012064544 A JP2012064544 A JP 2012064544A JP 2010210073 A JP2010210073 A JP 2010210073A JP 2010210073 A JP2010210073 A JP 2010210073A JP 2012064544 A JP2012064544 A JP 2012064544A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
ion secondary
lithium ion
mixture layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010210073A
Other languages
Japanese (ja)
Other versions
JP5729588B2 (en
Inventor
Koji Takahata
浩二 高畑
Hideki Sano
秀樹 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010210073A priority Critical patent/JP5729588B2/en
Publication of JP2012064544A publication Critical patent/JP2012064544A/en
Application granted granted Critical
Publication of JP5729588B2 publication Critical patent/JP5729588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery capable of maintaining a high capacity retention ratio and hardly causing lithium deposition.SOLUTION: A lithium ion secondary battery provided by the present invention includes a negative electrode comprising a negative electrode collector and a negative electrode mixture layer formed on the negative electrode collector. The negative electrode mixture layer has a negative electrode active material comprising a carbon material. When a volume per unit mass of pores with a diameter of 0.1 to 0.4 μm in the negative electrode mixture layer is defined as A [cc/g], and a specific surface area of the surface area of the negative electrode measured by the BET method in terms of a surface area per unit mass of the negative electrode mixture layer is defined as B [m/g], A/B falls in 0.0079 to 0.0091 [cc/m].

Description

本発明はリチウムイオン二次電池に係り、特に、カーボン材料からなる負極活物質を備えるリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery, and particularly to a lithium ion secondary battery including a negative electrode active material made of a carbon material.

近年、リチウム二次電池は、車両搭載用電源あるいはパソコンや携帯端末等の電源として、その重要性がますます高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源として好ましく用いられるものとして期待されている。リチウムイオン二次電池の一つの典型的な構成では、正極活物質を含む正極合剤層と、負極活物質を含む負極合剤層との間をリチウムイオンが行き来することによって充電および放電が行われる。負極活物質としてはカーボン材料が好ましく用いられる。   In recent years, lithium secondary batteries have become increasingly important as on-vehicle power supplies or personal computers and portable terminals. In particular, a lithium ion secondary battery that is lightweight and obtains a high energy density is expected to be preferably used as a high-output power source mounted on a vehicle. In one typical configuration of a lithium ion secondary battery, charging and discharging are performed by lithium ions traveling between a positive electrode mixture layer containing a positive electrode active material and a negative electrode mixture layer containing a negative electrode active material. Is called. A carbon material is preferably used as the negative electrode active material.

特許文献1には、黒鉛粉末を含んだ負極合剤層を備えたリチウムイオン二次電池において、高率充放電時に容量低下が起こりにくくすることを目的として、負極合剤層中の細孔体積および平均細孔径を所定の範囲に規定することが記載されている。具体的には、水銀圧入法による細孔分布測定で直径0.1〜10μmの範囲にある細孔の占める体積を全細孔体積に対して80%以上とし、且つ平均細孔直径を0.5μm以上1.5μm以下とすることが記載されている。   Patent Document 1 discloses that in a lithium ion secondary battery including a negative electrode mixture layer containing graphite powder, the pore volume in the negative electrode mixture layer is less likely to cause a decrease in capacity during high rate charge / discharge. And that the average pore diameter is defined within a predetermined range. Specifically, the volume occupied by pores in the range of 0.1 to 10 μm in diameter measured by the mercury intrusion method is 80% or more of the total pore volume, and the average pore diameter is 0.00. It is described that the thickness is 5 μm or more and 1.5 μm or less.

特開平9−129232号公報JP 9-129232 A

本発明者は、特許文献1に記載された条件に従ったとしても、負極にリチウムが析出する場合があり得ることを見出した。すなわち、上記条件を満たすことによって容量維持率を高く保つことができたとしても、負極においてリチウムが析出してしまうことがあり、必ずしも好適なリチウムイオン二次電池を得ることができる訳ではないことを見出した。   The present inventor has found that even if the conditions described in Patent Document 1 are followed, lithium may be deposited on the negative electrode. That is, even if the capacity retention rate can be kept high by satisfying the above conditions, lithium may be deposited on the negative electrode, and a suitable lithium ion secondary battery cannot always be obtained. I found.

そこで本発明は、容量維持率を高く保つことができ且つリチウムが析出しにくいリチウムイオン二次電池を提供することを目的とする。   In view of the above, an object of the present invention is to provide a lithium ion secondary battery that can maintain a high capacity retention rate and hardly deposit lithium.

本発明によると、正極と、負極集電体と該負極集電体上に形成された負極合剤層とを有する負極と、前記正極と前記負極との間に介在するセパレータと、前記正極と前記負極と前記セパレータとに含浸されリチウムイオンを含む非水電解液と、を備えたリチウムイオン二次電池が提供される。前記負極合剤層は、カーボン材料からなる負極活物質を有する。前記負極合剤層における直径0.1μm〜0.4μmの細孔の単位質量当たりの容積をA[cc/g](cc/gはcm/gと同義)とし、BET法により測定した前記負極の表面積を前記負極合剤層の単位質量当たりの表面積に換算した比表面積をB[m/g]としたときに、A/B=0.0079〜0.0091[cc/m]である。 According to the present invention, a negative electrode having a positive electrode, a negative electrode current collector, and a negative electrode mixture layer formed on the negative electrode current collector, a separator interposed between the positive electrode and the negative electrode, and the positive electrode Provided is a lithium ion secondary battery comprising a nonaqueous electrolyte solution impregnated in the negative electrode and the separator and containing lithium ions. The negative electrode mixture layer has a negative electrode active material made of a carbon material. The volume per unit mass of pores having a diameter of 0.1 μm to 0.4 μm in the negative electrode mixture layer was defined as A [cc / g] (cc / g is synonymous with cm 3 / g), and measured by the BET method. When the specific surface area obtained by converting the surface area of the negative electrode into the surface area per unit mass of the negative electrode mixture layer is B [m 2 / g], A / B = 0.0079 to 0.0091 [cc / m 2 ]. It is.

負極合剤層中の直径0.1μm〜0.4μmの細孔容量が少ないと、SEI(Solid Electrolyte Interphase)が生成されにくくなり、容量維持率が向上する。しかし、上記細孔容量が少なすぎると、リチウム析出が生じやすくなる傾向にある。一方、直径0.1μm〜0.4μmの細孔量に比べれば影響は小さいものの、負極合剤層の比表面積が大きいとSEI膜が生じやすく、比表面積が小さいとリチウム析出が起こりやすくなる傾向にある。上記A/Bは、負極合剤層中の直径0.1μm〜0.4μmの細孔容量が少なくなるほど小さくなり、比表面積が小さくなるほど大きくなるパラメータである。上記リチウムイオン二次電池によれば、上記A/Bの値が上記範囲に設定されていることにより、容量維持率の向上とリチウム析出の抑制との両立を効果的に実現することができる。   When the pore volume having a diameter of 0.1 μm to 0.4 μm in the negative electrode mixture layer is small, SEI (Solid Electrolyte Interface) is hardly generated, and the capacity retention rate is improved. However, if the pore volume is too small, lithium precipitation tends to occur. On the other hand, although the influence is small compared with the amount of pores having a diameter of 0.1 μm to 0.4 μm, an SEI film tends to be formed when the specific surface area of the negative electrode mixture layer is large, and lithium precipitation tends to occur when the specific surface area is small. It is in. The A / B is a parameter that decreases as the pore volume with a diameter of 0.1 μm to 0.4 μm in the negative electrode mixture layer decreases and increases as the specific surface area decreases. According to the lithium ion secondary battery, since the value of A / B is set in the above range, it is possible to effectively realize both the improvement of the capacity retention rate and the suppression of lithium deposition.

ここに開示されるリチウムイオン二次電池の好ましい一態様では、前記負極合剤層は、0.1μm〜0.4μmの範囲内の所定の直径にて第1のピークを有し、0.4μmよりも大きな直径で第2のピークを有する細孔分布を備えている。本発明者の知見により、第2のピークの細孔は負極活物質間の細孔(換言すれば隙間)に該当し、第1のピークの細孔は負極活物質の表面自体に存在する細孔に該当すると推察される。負極活物質の表面に存在する細孔の単位質量当たりの容積Aに関して、前述の関係が満たされることにより、容量維持率の向上とリチウム析出の抑制との両立が図られる。   In a preferred aspect of the lithium ion secondary battery disclosed herein, the negative electrode mixture layer has a first peak at a predetermined diameter in the range of 0.1 μm to 0.4 μm, and is 0.4 μm. It has a pore distribution with a second peak with a larger diameter. According to the knowledge of the present inventor, the pores of the second peak correspond to pores (in other words, gaps) between the negative electrode active materials, and the pores of the first peak exist on the surface of the negative electrode active material itself. Presumed to be a hole. With respect to the volume A per unit mass of the pores existing on the surface of the negative electrode active material, the above-described relationship is satisfied, so that both improvement of the capacity retention rate and suppression of lithium deposition can be achieved.

リチウムイオン二次電池の他の好ましい一態様では、前記負極活物質は、少なくとも一部にグラファイト構造を有するカーボン材料を含んでいる。他の好ましい一態様では、前記負極活物質は、平均粒径が5μm〜50μmのカーボン粒子からなっている。他の好ましい一態様では、前記非水電解液は、非プロトン性の非水溶媒と、該溶媒に溶解してリチウムイオンを供給し得るリチウム化合物とを含んでいる。他の好ましい一態様では、前記負極集電体は、銅または銅を主成分とする合金からなっている。かかる諸態様によると、容量維持率の向上とリチウム析出の抑制とが高度に両立されたリチウムイオン二次電池を得ることができる。   In another preferable aspect of the lithium ion secondary battery, the negative electrode active material includes a carbon material having a graphite structure at least partially. In another preferred embodiment, the negative electrode active material is made of carbon particles having an average particle diameter of 5 μm to 50 μm. In another preferred embodiment, the non-aqueous electrolyte solution includes an aprotic non-aqueous solvent and a lithium compound that can be dissolved in the solvent to supply lithium ions. In another preferred embodiment, the negative electrode current collector is made of copper or an alloy containing copper as a main component. According to these aspects, it is possible to obtain a lithium ion secondary battery in which improvement in capacity retention rate and suppression of lithium deposition are highly compatible.

ここに開示される技術は、例えば、車両駆動電源用のリチウムイオン二次電池に好ましく適用され得る。また、本発明の他の側面として、かかるリチウムイオン二次電池を備えた(典型的には、車両駆動電源として備えた)車両が提供される。   The technology disclosed herein can be preferably applied to, for example, a lithium ion secondary battery for vehicle drive power supply. As another aspect of the present invention, a vehicle provided with such a lithium ion secondary battery (typically provided as a vehicle driving power source) is provided.

一実施形態に係る負極シートの細孔分布を示す特性図である。It is a characteristic view which shows the pore distribution of the negative electrode sheet which concerns on one Embodiment. 一実施形態に係るリチウムイオン二次電池の構造を例示する部分断面図である。It is a fragmentary sectional view which illustrates the structure of the lithium ion secondary battery concerning one embodiment. 一実施形態に係るリチウムイオン二次電池を備えた自動車の側面図である。It is a side view of the motor vehicle provided with the lithium ion secondary battery which concerns on one Embodiment. A/Bと容量維持率および単位面積当たりの限界電流との関係を示すグラフである。It is a graph which shows the relationship between A / B, a capacity | capacitance maintenance factor, and the limiting current per unit area. 充放電サイクルの1サイクルの波形を模式的に示すグラフである。It is a graph which shows typically the waveform of 1 cycle of a charge and discharge cycle.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

ここに開示される技術は、カーボン材料を負極活物質に用いた各種のリチウムイオン二次電池に適用され得る。該電池の形状(外形)は特に限定されず、例えば、円筒型、角型、コイン型等の形状であり得る。   The technology disclosed herein can be applied to various lithium ion secondary batteries using a carbon material as a negative electrode active material. The shape (outer shape) of the battery is not particularly limited, and may be, for example, a cylindrical shape, a square shape, a coin shape, or the like.

負極活物質としては、例えば、少なくとも一部にグラファイト構造を有する粒子状のカーボン材料(カーボン粒子)が好ましく用いられる。いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもののいずれの炭素材料も使用可能である。グラファイトの表面に非晶質(アモルファス)カーボンが付与されたカーボン粒子等であってもよい。上記負極活物質の性状としては、例えば、平均粒径が凡そ5μm〜50μmの粒子状が好ましい。なかでも、平均粒径が凡そ5μm〜25μm(典型的には5μm〜15μm、例えば凡そ8μm〜12μm)のカーボン粒子の使用が好ましい。このように比較的小粒径のカーボン粒子は、比表面積(単位質量当たりの反応面積として把握され得る。)が大きいことから、より急速充放電(例えば高入力充電)に適した負極活物質となり得る。したがって、かかる負極活物質を有するリチウムイオン二次電池は、例えば車両搭載用のリチウムイオン二次電池(典型的には、車両駆動電源用リチウムイオン二次電池)として好適に利用され得る。   As the negative electrode active material, for example, a particulate carbon material (carbon particles) having a graphite structure at least partially is preferably used. Any carbon material of a so-called graphitic material (graphite), non-graphitizable carbon material (hard carbon), graphitizable carbon material (soft carbon), or a combination of these can be used. . Carbon particles in which amorphous (amorphous) carbon is added to the surface of graphite may be used. As the properties of the negative electrode active material, for example, particles having an average particle size of about 5 μm to 50 μm are preferable. Among them, it is preferable to use carbon particles having an average particle diameter of about 5 μm to 25 μm (typically 5 μm to 15 μm, for example, about 8 μm to 12 μm). Since carbon particles having a relatively small particle size have a large specific surface area (which can be grasped as a reaction area per unit mass), they become a negative electrode active material suitable for more rapid charge / discharge (for example, high input charge). obtain. Therefore, a lithium ion secondary battery having such a negative electrode active material can be suitably used as, for example, a lithium ion secondary battery for vehicle mounting (typically, a lithium ion secondary battery for vehicle driving power source).

ここに開示される技術における負極は、典型的には、上記負極活物質を主成分とする負極合剤層が負極集電体に保持された構成を有する。負極集電体としては、導電性の良い金属を主体に構成されたシート状部材を好ましく用いることができる。特に、銅(Cu)または銅を主成分とする合金(銅合金)製の負極集電体の使用が好ましい。負極集電体のサイズは特に限定されず、目的とするリチウムイオン二次電池の形状等に応じて適宜選択し得る。例えば、厚さ5μm〜30μm程度の金属箔を負極集電体として好ましく使用することができる。   The negative electrode in the technology disclosed herein typically has a configuration in which a negative electrode mixture layer containing the negative electrode active material as a main component is held by a negative electrode current collector. As the negative electrode current collector, a sheet-like member mainly composed of a highly conductive metal can be preferably used. In particular, it is preferable to use a negative electrode current collector made of copper (Cu) or an alloy containing copper as a main component (copper alloy). The size of the negative electrode current collector is not particularly limited, and can be appropriately selected according to the shape of the target lithium ion secondary battery. For example, a metal foil having a thickness of about 5 μm to 30 μm can be preferably used as the negative electrode current collector.

上記負極合剤層は、例えば、負極活物質を適当な溶媒に分散させた液状組成物(典型的にはペーストまたはスラリー状の組成物)を負極集電体に付与し、該組成物(負極合剤層形成用組成物)を乾燥させることにより好ましく作製され得る。上記溶媒(負極活物質の分散媒)としては、水、有機溶媒およびこれらの混合溶媒のいずれも使用可能である。例えば、水系溶媒(水、または水を主成分とする混合溶媒をいう。)を好ましく採用することができる。   The negative electrode mixture layer, for example, applies a liquid composition (typically a paste or slurry composition) in which a negative electrode active material is dispersed in a suitable solvent to a negative electrode current collector, and the composition (negative electrode) The mixture layer-forming composition) can be preferably prepared by drying. As the solvent (dispersion medium of the negative electrode active material), any of water, an organic solvent, and a mixed solvent thereof can be used. For example, an aqueous solvent (referred to as water or a mixed solvent containing water as a main component) can be preferably employed.

負極合剤層形成用組成物は、負極活物質および上記溶媒のほかに、一般的なリチウムイオン二次電池用負極の製造において負極合剤層の形成に用いられる液状組成物に配合され得る一種または二種以上の材料を必要に応じて含有することができる。そのような材料の例として、バインダ(結着剤)および/または流動性調整剤として機能し得るポリマーが挙げられる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVDF−HFP)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等のポリマーから適宜選択される一種または二種以上を、上記バインダおよび/または流動性調整剤(典型的には粘度調整剤、例えば増粘剤)として好適に使用することができる。   The composition for forming a negative electrode mixture layer is a kind that can be blended in a liquid composition used for forming a negative electrode mixture layer in the production of a general negative electrode for a lithium ion secondary battery, in addition to the negative electrode active material and the above solvent. Or 2 or more types of materials can be contained as needed. Examples of such materials include polymers that can function as binders and / or fluidity modifiers. For example, as appropriate from polymers such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), etc. One or two or more selected ones can be suitably used as the binder and / or fluidity modifier (typically a viscosity modifier such as a thickener).

特に限定するものではないが、負極合剤層形成用組成物の固形分(不揮発分、すなわち該組成物全体に占める負極合剤層形成成分の割合;以下、NVと表記することもある。)は、例えば凡そ40質量%〜60質量%程度とすることができる。また、上記固形分(負極合剤層形成成分)に占める負極活物質の割合は、典型的には50質量%以上であり、通常は85質量%以上(典型的には85〜99.9質量%)とすることが好ましく、90〜99.5質量%(例えば95〜99質量%)とすることがより好ましい。   Although not particularly limited, the solid content of the composition for forming a negative electrode mixture layer (nonvolatile content, that is, the ratio of the negative electrode mixture layer forming component in the entire composition; hereinafter, sometimes referred to as NV). Can be about 40 mass% to about 60 mass%, for example. The proportion of the negative electrode active material in the solid content (negative electrode mixture layer forming component) is typically 50% by mass or more, and usually 85% by mass or more (typically 85 to 99.9% by mass). %), Preferably 90 to 99.5% by mass (for example, 95 to 99% by mass).

かかる組成物を負極集電体に付与するにあたっては、従来公知の方法と同様の技法を適宜採用することができる。例えば、適当な塗布装置(グラビアコーター、スリットコーター、ダイコーター、コンマコーター等)を使用して所定量の負極合剤層形成用組成物を集電体表面に塗布するとよい。集電体の単位面積当たりの塗布量は特に限定されず、負極シートおよび電池の形状や目標性能等に応じて適宜異なり得る。例えば、箔状集電体(例えば、厚さ5μm〜30μm程度の金属箔(銅箔等)を好ましく用いることができる。)の両面に上記組成物を、NV換算の塗布量(すなわち、乾燥後の質量)が両面合わせて凡そ5〜20mg/cm程度となるように塗布するとよい。 In applying such a composition to the negative electrode current collector, a technique similar to a conventionally known method can be appropriately employed. For example, a predetermined amount of the composition for forming a negative electrode mixture layer may be applied to the surface of the current collector by using an appropriate coating apparatus (such as a gravure coater, slit coater, die coater, or comma coater). The coating amount per unit area of the current collector is not particularly limited, and can be appropriately varied depending on the negative electrode sheet and battery shape, target performance, and the like. For example, the above composition is applied to both sides of a foil-like current collector (for example, a metal foil (copper foil, etc.) having a thickness of about 5 μm to 30 μm can be preferably used). Is preferably applied so that the total amount of both surfaces is about 5 to 20 mg / cm 2 .

塗布後、適当な乾燥手段で塗布物を乾燥し、必要に応じてプレスすることにより、負極集電体の表面に負極合剤層を形成することができる。プレス方法としては、ロールプレス法、平板プレス法等の、従来公知の各種プレス方法を適宜採用することができる。   After the coating, the coated material is dried by an appropriate drying means, and pressed as necessary to form a negative electrode mixture layer on the surface of the negative electrode current collector. As the pressing method, various conventionally known pressing methods such as a roll pressing method and a flat plate pressing method can be appropriately employed.

ここに開示される技術における正極としては、正極活物質を主成分とする正極合剤層がシート状の正極集電体に保持された構成のものを好ましく用いることができる。正極活物質としては、リチウムイオン二次電池の電極活物質として使用し得ることが知られている各種材料(例えば、層状構造の酸化物やスピネル構造の酸化物)の一種または二種以上を、特に限定なく使用することができる。例えば、リチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物等のリチウム含有複合酸化物が挙げられる。正極活物質の他の例として、オリビン型リン酸リチウム等のポリアニオン系材料が挙げられる。   As the positive electrode in the technique disclosed herein, a positive electrode mixture layer having a positive electrode active material as a main component and held in a sheet-like positive electrode current collector can be preferably used. As the positive electrode active material, one or more of various materials known to be usable as an electrode active material of a lithium ion secondary battery (for example, an oxide having a layered structure or an oxide having a spinel structure) It can be used without particular limitation. Examples thereof include lithium-containing composite oxides such as lithium nickel composite oxides, lithium cobalt composite oxides, and lithium manganese composite oxides. Another example of the positive electrode active material is a polyanionic material such as olivine type lithium phosphate.

ここで、リチウムニッケル系複合酸化物とは、リチウム(Li)とニッケル(Ni)とを構成金属元素とする酸化物のほか、リチウムおよびニッケル以外に他の少なくとも一種の金属元素(すなわち、LiとNi以外の遷移金属元素および/または典型金属元素)を、原子数換算でニッケルと同程度またはニッケルよりも少ない割合(典型的にはニッケルよりも少ない割合)で構成金属元素として含む酸化物をも包含する意味である。上記LiおよびNi以外の金属元素は、例えば、Co,Al,Mn,Cr,Fe,V,Mg,Ti,Zr,Nb,Mo,W,Cu,Zn,Ga,In,Sn,LaおよびCeからなる群から選択される一種または二種以上の金属元素であり得る。リチウムコバルト系複合酸化物およびリチウムマンガン系複合酸化物についても同様の意味である。ここに開示される技術の好ましい一態様では、上記正極活物質として、少なくともNi,CoおよびMnを構成金属元素として含むリチウム遷移金属複合酸化物を使用する。例えば、Ni,CoおよびMnの三元素を原子数換算で概ね同量づつ含むリチウム遷移金属複合酸化物を好ましく採用し得る。   Here, the lithium nickel-based composite oxide is an oxide having lithium (Li) and nickel (Ni) as constituent metal elements, and at least one other metal element (that is, Li and nickel) in addition to lithium and nickel. An oxide containing a transition metal element other than Ni and / or a typical metal element) as a constituent metal element at a rate equivalent to or less than nickel in terms of the number of atoms (typically less than nickel) It means to include. Examples of the metal element other than Li and Ni include, for example, Co, Al, Mn, Cr, Fe, V, Mg, Ti, Zr, Nb, Mo, W, Cu, Zn, Ga, In, Sn, La, and Ce. It may be one or more metal elements selected from the group consisting of: The same meaning is applied to the lithium cobalt complex oxide and the lithium manganese complex oxide. In a preferred embodiment of the technology disclosed herein, a lithium transition metal composite oxide containing at least Ni, Co, and Mn as constituent metal elements is used as the positive electrode active material. For example, a lithium transition metal composite oxide containing approximately the same amount of three elements of Ni, Co, and Mn in terms of the number of atoms can be preferably used.

上記正極は、このような正極活物質を、必要に応じて使用される導電材、結着剤(バインダ)等とともに、層状の正極合剤(正極合剤層)として正極集電体に付着させた形態であり得る。導電材としては、カーボンブラック(アセチレンブラック等)のような炭素材料、ニッケル粉末等の導電性金属粉末等を用いることができる。結着剤としては、負極合剤層と同様のものを用いることができる。正極集電体としては、アルミニウム、ニッケル、チタン、ステンレススチール等の導電性金属を主体とするシート状部材(典型的には、厚さ5μm〜30μm程度の金属箔、例えばアルミニウム箔)を好ましく使用することができる。   In the positive electrode, such a positive electrode active material is attached to a positive electrode current collector as a layered positive electrode mixture (positive electrode mixture layer) together with a conductive material, a binder, etc. used as necessary. It may be a form. As the conductive material, a carbon material such as carbon black (acetylene black or the like), a conductive metal powder such as nickel powder, or the like can be used. As the binder, the same as the negative electrode mixture layer can be used. As the positive electrode current collector, a sheet-like member (typically a metal foil having a thickness of about 5 μm to 30 μm, for example, an aluminum foil) mainly composed of a conductive metal such as aluminum, nickel, titanium, and stainless steel is preferably used. can do.

正極合剤全体に占める正極活物質の割合は、典型的には50質量%以上(例えば50〜95質量%)であり、通常は70〜95質量%(例えば75〜90質量%)程度とすることが好ましい。また、正極合剤全体に占める導電材の割合は、例えば2〜20質量%(好ましくは2〜15質量%)とすることができる。バインダを使用する組成では、正極合剤全体に占めるバインダの割合を例えば1〜10質量%(好ましくは2〜5質量%)とすることができる。   The ratio of the positive electrode active material to the entire positive electrode mixture is typically 50% by mass or more (for example, 50 to 95% by mass), and usually about 70 to 95% by mass (for example, 75 to 90% by mass). It is preferable. Moreover, the ratio of the electrically conductive material to the whole positive electrode mixture can be made into 2-20 mass% (preferably 2-15 mass%), for example. In the composition using a binder, the ratio of the binder to the whole positive electrode mixture can be, for example, 1 to 10% by mass (preferably 2 to 5% by mass).

ここに開示されるリチウムイオン二次電池の一例では、上記正極シートと上記負極シートとがセパレータを介して重ね合わされた構成の電極体を備える。かかる電極体の典型例として、長尺状の両電極シートを二枚のセパレータシートとともに、あるいは電極表面等に設けられたセパレータ層を介して重ね合わせて、長尺方向に捲回してなる捲回電極体が挙げられる。上記セパレータとしては、一般的なリチウム二次電池に用いられるセパレータと同様のものを用いることができ、特に限定されない。例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂からなる多孔質シート、不織布等を用いることができる。   An example of the lithium ion secondary battery disclosed herein includes an electrode body having a configuration in which the positive electrode sheet and the negative electrode sheet are overlapped via a separator. As a typical example of such an electrode body, two long electrode sheets are wound together with two separator sheets or via a separator layer provided on the electrode surface or the like and wound in the long direction. An electrode body is mentioned. As said separator, the thing similar to the separator used for a general lithium secondary battery can be used, and it does not specifically limit. For example, a porous sheet made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, or polyamide, a nonwoven fabric, or the like can be used.

このような電極体(典型的には捲回電極体)を、リチウムイオンを含む非水電解液とともに適当な容器(金属または樹脂製の筐体、ラミネートフィルムからなる袋体等)に収容することにより、リチウムイオン二次電池が構築される。   Such an electrode body (typically a wound electrode body) is accommodated in a suitable container (a metal or resin casing, a bag body made of a laminate film, etc.) together with a non-aqueous electrolyte containing lithium ions. Thus, a lithium ion secondary battery is constructed.

上記非水電解液は、非水溶媒と、該溶媒に溶解してリチウムイオンを供給し得るリチウム化合物(支持電解質)とを含む。上記非水溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性溶媒を用いることができる。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン、1,3−ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル、プロピオニトリル、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ−ブチロラクトン等の、一般にリチウムイオン二次電池の電解質に使用し得るものとして知られている非水溶媒から選択される一種または二種以上を用いることができる。   The non-aqueous electrolyte includes a non-aqueous solvent and a lithium compound (supporting electrolyte) that can be dissolved in the solvent and supply lithium ions. As the non-aqueous solvent, aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones, and lactones can be used. For example, ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, diethylene glycol dimethyl ether, ethylene glycol dimethyl ether, acetonitrile, propionitrile, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide, sulfolane, γ-butyrolactone, etc. One type or two or more types selected from non-aqueous solvents that are known to be usable for electrolytes of secondary batteries can be used.

上記支持電解質としては、LiPF、LiBF、LiClO等の無機リチウム塩;LiN(SOCF、LiN(SO、LiCFSO、LiCSO、LiC(SOCF等の有機リチウム塩;等のリチウム化合物を用いることができる。これらのリチウム化合物の一種を単独で含む電解液であってもよく、二種以上を適宜組み合わせて含む電解液であってもよい。ここに開示される技術の好ましい一態様では、支持電解質としてLiPFを単独で含む非水電解液が用いられる。 Examples of the supporting electrolyte include inorganic lithium salts such as LiPF 6 , LiBF 4 , and LiClO 4 ; LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , organic lithium salts such as LiC (SO 2 CF 3 ) 3 ; lithium compounds such as; An electrolytic solution containing one of these lithium compounds alone may be used, or an electrolytic solution containing two or more types in appropriate combination may be used. In a preferred embodiment of the technology disclosed herein, a nonaqueous electrolytic solution containing LiPF 6 alone is used as a supporting electrolyte.

上記非水電解液における支持電解質(支持塩)の濃度は、例えば0.3モル/L〜5モル/L(好ましくは0.3モル/L〜1.5モル/L)とすることができ、通常は0.7モル/L〜2モル/L(好ましくは0.7モル/L〜1.5モル、例えば0.7モル/L〜1.2モル/L)程度とすることが適当である。   The concentration of the supporting electrolyte (supporting salt) in the non-aqueous electrolytic solution can be, for example, 0.3 mol / L to 5 mol / L (preferably 0.3 mol / L to 1.5 mol / L). In general, it is appropriate to adjust to about 0.7 mol / L to 2 mol / L (preferably about 0.7 mol / L to 1.5 mol, for example, 0.7 mol / L to 1.2 mol / L). It is.

ここに開示される技術におけるリチウムイオン二次電池は、負極合剤層における直径0.1μm〜0.4μmの細孔の単位質量当たりの容積をA[cc/g]とし、BET法により測定した負極の表面積を負極合剤層の単位質量当たりの表面積に換算した比表面積をB[m/g]としたときに、A/Bが所定の数値範囲内にあることによって特徴づけられる。なお、BET法として、一般的な窒素吸着法が好適に用いられる。 The lithium ion secondary battery in the technology disclosed herein was measured by the BET method with the volume per unit mass of pores having a diameter of 0.1 μm to 0.4 μm in the negative electrode mixture layer being A [cc / g]. When the specific surface area obtained by converting the surface area of the negative electrode into the surface area per unit mass of the negative electrode mixture layer is B [m 2 / g], it is characterized by A / B being within a predetermined numerical range. Note that a general nitrogen adsorption method is preferably used as the BET method.

リチウムイオン二次電池では、充電の際に非水電解液の一部が分解され、負極表面にその分解物からなる被膜、すなわちSEI(Solid Electrolyte Interphase)膜が形成され得る。SEI膜は負極を保護する役割を果たすが、その量が多いと容量維持率を低下させる要因となる。リチウムイオン電池では、特に高温条件下において容量劣化が大きい。これは、負極上にSEI膜が発生し、リチウムイオンが負極上にトラップされることが主な原因であると考えられる。このことから、高温条件下の容量劣化を少なくするためには、負極上に無駄に多くのSEI膜を発生させないことが重要と考えられる。   In the lithium ion secondary battery, a part of the nonaqueous electrolytic solution is decomposed during charging, and a coating made of the decomposition product, that is, a SEI (Solid Electrolyte Interface) film can be formed on the negative electrode surface. The SEI film plays a role of protecting the negative electrode, but if the amount is large, it causes a decrease in capacity retention rate. Lithium ion batteries have a large capacity deterioration particularly under high temperature conditions. It is considered that this is mainly due to the generation of the SEI film on the negative electrode and the trapping of lithium ions on the negative electrode. Therefore, in order to reduce the capacity degradation under high temperature conditions, it is considered important not to generate a lot of SEI film on the negative electrode.

本発明者は、負極合剤層が少なくとも二つのピークを有する細孔分布を備え、相対的に小さい方の細孔(直径0.1μm〜0.4μmの細孔)の量が少ないと、無駄なSEI膜が生じにくく、それゆえ容量維持率を向上できることを見出した。しかし、負極合剤層の上記細孔容量が少ないと、急速充電時(特に低温での急速充電時)にリチウムの析出が生じ、電池の性能が低下するおそれがある。一方、直径0.1μm〜0.4μmの細孔量に比べれば影響は小さいものの、負極合剤層の比表面積が小さいとSEI膜が生じやすく、比表面積が小さいとリチウム析出は起こりやすくなる傾向にある。そこで本発明者は、容量維持率およびリチウム析出耐性(リチウムが発生しにくい性質)の向上を図るうえで、上記A/Bというパラメータを用い、このパラメータA/Bが所定範囲内にあるように負極を構築することとした。なお、上記A/Bは、負極合剤層の上記細孔容量が少なくなるほど小さくなり、比表面積が小さくなるほど大きくなる。上記A/Bが小さいと、容量維持率は向上するがリチウム析出耐性は低下すると考えられる。逆に、上記A/Bが大きいと、リチウム析出耐性は向上するが容量維持率は低下すると考えられる。また、上記A/Bは、活物質粒子表面への電解液の浸み込みの程度を表す指標しても把握され得る。上記A/Bを規定することにより容量維持率の向上とリチウム析出の抑制との両立が効果的に実現されるのは、かかる電解液の浸み込みの程度がSEIの生成やリチウムの析出に大きく影響するためとも考えられる。ここに開示される技術におけるリチウムイオン二次電池では、A/B=0.0079〜0.0091[cc/m]である。 The inventor has a pore distribution having at least two peaks in the negative electrode mixture layer, and if the amount of relatively smaller pores (pores having a diameter of 0.1 μm to 0.4 μm) is small, it is useless. It has been found that a stable SEI film is hard to be formed, and therefore the capacity retention rate can be improved. However, when the pore volume of the negative electrode mixture layer is small, lithium deposition occurs during rapid charging (particularly during rapid charging at a low temperature), which may reduce battery performance. On the other hand, although the influence is small compared with the amount of pores having a diameter of 0.1 μm to 0.4 μm, when the specific surface area of the negative electrode mixture layer is small, an SEI film is likely to be formed, and when the specific surface area is small, lithium precipitation tends to occur. It is in. Therefore, the present inventor uses the parameter A / B in order to improve the capacity retention rate and the resistance to lithium deposition (property of generating lithium) so that the parameter A / B is within a predetermined range. A negative electrode was constructed. The A / B decreases as the pore volume of the negative electrode mixture layer decreases, and increases as the specific surface area decreases. When the A / B is small, the capacity retention rate is improved, but the lithium precipitation resistance is considered to be lowered. Conversely, if the A / B is large, the lithium deposition resistance is improved, but the capacity retention rate is considered to be reduced. The A / B can also be grasped by an index representing the degree of penetration of the electrolyte into the active material particle surface. By specifying the above A / B, the improvement of the capacity retention rate and the suppression of the lithium precipitation can be effectively realized because the degree of the penetration of the electrolytic solution depends on the generation of SEI and the lithium precipitation. It is also considered to have a big influence. In the lithium ion secondary battery in the technology disclosed herein, A / B = 0.0001 to 0.0091 [cc / m 2 ].

負極合剤層における直径0.1μm〜0.4μmの細孔の単位質量当たりの容積A[cc/g]は、例えば以下のようにして得ることができる。すなわち、測定対象たる負極(負極集電体と該負極集電体上に形成された負極合剤層とを有する。)につき、市販の水銀ポロシメータ等を用いて直径0.1μm〜0.4μmの細孔の容積V[cc]を測定し、その測定値を負極合剤層の重量W2[g]で割ることによって算出することができる。A=V/W2である。負極合剤層の重量W2[g]は、負極全体の重量W0[g]から負極集電体の重量W1[g]を減ずることによって算出することができる。すなわち、まず、負極全体の重量W0を測定する。その後、その負極から負極合剤層を除去し、残った負極集電体の重量W1を測定する。そして、重量W0から重量W1を減ずることによって、負極合剤層の重量W2=W0−W1が得られる。   The volume A [cc / g] per unit mass of pores having a diameter of 0.1 μm to 0.4 μm in the negative electrode mixture layer can be obtained, for example, as follows. That is, for a negative electrode (having a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector) to be measured, a diameter of 0.1 μm to 0.4 μm using a commercially available mercury porosimeter or the like. It can be calculated by measuring the pore volume V [cc] and dividing the measured value by the weight W2 [g] of the negative electrode mixture layer. A = V / W2. The weight W2 [g] of the negative electrode mixture layer can be calculated by subtracting the weight W1 [g] of the negative electrode current collector from the weight W0 [g] of the whole negative electrode. That is, first, the weight W0 of the whole negative electrode is measured. Thereafter, the negative electrode mixture layer is removed from the negative electrode, and the weight W1 of the remaining negative electrode current collector is measured. And weight W2 = W0-W1 of a negative mix layer is obtained by reducing weight W1 from weight W0.

なお、負極の細孔分布は、例えば図1に示すような分布を示す。負極の細孔分布は2つのピークを有しており、比較的小径の第1細孔分布域P1と、比較的大径の第2細孔分布域P2とを有している。図1の横軸は細孔径を表しているが、左側に行くほど細孔径は大きくなる。第1細孔分布域P1は、0.1μm〜0.4μmの範囲内の所定の細孔径においてピークを有する。第2細孔分布域P2は、0.4μmよりも大きな所定の細孔径においてピークを有する。第1細孔分布域P1に属する細孔は活物質粒子の表面に存在する細孔であり、第2細孔分布域P2に属する細孔は活物質粒子の間に形成される細孔であると推察される。直径0.1μm〜0.4μmの細孔は、第1細孔分布域P1に属する細孔である。   The pore distribution of the negative electrode shows a distribution as shown in FIG. 1, for example. The pore distribution of the negative electrode has two peaks, and has a first pore distribution region P1 having a relatively small diameter and a second pore distribution region P2 having a relatively large diameter. The horizontal axis in FIG. 1 represents the pore diameter, but the pore diameter increases toward the left. The first pore distribution region P1 has a peak at a predetermined pore diameter within a range of 0.1 μm to 0.4 μm. The second pore distribution region P2 has a peak at a predetermined pore diameter larger than 0.4 μm. The pores belonging to the first pore distribution region P1 are pores existing on the surface of the active material particles, and the pores belonging to the second pore distribution region P2 are pores formed between the active material particles. It is guessed. The pores having a diameter of 0.1 μm to 0.4 μm are pores belonging to the first pore distribution region P1.

負極合剤層の比表面積B[m/g]は、BET法により測定された負極全体の表面積B’[m]を、負極合剤層の単位質量当たりの表面積に換算したものである。すなわち、B=B’/W2である。なお、通常、負極合剤層の表面積に比べて負極集電体の表面積は極めて小さいため、上記Bの算出にあたっては負極集電体の表面積を無視することができる。 The specific surface area B [m 2 / g] of the negative electrode mixture layer is obtained by converting the surface area B ′ [m 2 ] of the whole negative electrode measured by the BET method into the surface area per unit mass of the negative electrode mixture layer. . That is, B = B ′ / W2. In general, since the surface area of the negative electrode current collector is extremely smaller than the surface area of the negative electrode mixture layer, the surface area of the negative electrode current collector can be ignored in the calculation of B.

以下、ここに開示される技術を適用してなるリチウムイオン二次電池の一実施形態につき、図面を参照しつつその概略構成を説明する。図2に示すリチウムイオン二次電池10は、偏平な角型形状の容器11(典型的には金属製であり、樹脂製であってもよい。)を備える。この容器11の中に、正極シート32、負極シート34および二枚のセパレータシート35を重ね合わせて捲回してなる捲回電極体30が収容されている。正極シート32は、長尺状の正極集電体(例えばアルミニウム箔)の両面に、該集電体の長手方向に沿う一方の端部を帯状に残して正極合剤層が設けられた構成を有する。負極シート34は、長尺状の負極集電体(例えば銅箔)の両面に、該集電体の長手方向に沿う一方の端部を帯状に残して負極合剤層が設けられた構成を有する。捲回電極体30は、両電極シート32,34のうち合剤層が設けられていない部分(合剤層非形成部32A,34A)がセパレータシート35の長手方向に沿う一方の端部と他方の端部からそれぞれはみ出すように重ね合わせて捲回し、その捲回体を側面方向から押圧して拉げさせることにより、容器11の形状に合わせた扁平形状に形成されている。   Hereinafter, a schematic configuration of an embodiment of a lithium ion secondary battery to which the technology disclosed herein is applied will be described with reference to the drawings. A lithium ion secondary battery 10 shown in FIG. 2 includes a flat rectangular container 11 (typically made of metal and may be made of resin). In this container 11, a wound electrode body 30 formed by stacking and winding a positive electrode sheet 32, a negative electrode sheet 34, and two separator sheets 35 is accommodated. The positive electrode sheet 32 has a configuration in which a positive electrode mixture layer is provided on both surfaces of a long positive electrode current collector (for example, an aluminum foil) while leaving one end portion along the longitudinal direction of the current collector in a band shape. Have. The negative electrode sheet 34 has a configuration in which a negative electrode mixture layer is provided on both sides of a long negative electrode current collector (for example, a copper foil) while leaving one end along the longitudinal direction of the current collector in a strip shape. Have. The wound electrode body 30 is configured such that portions of the electrode sheets 32 and 34 where the mixture layer is not provided (mixture layer non-forming portions 32A and 34A) are on one end and the other along the longitudinal direction of the separator sheet 35. Each of the wound bodies is rolled up so as to protrude from the end of the container, and the wound body is pressed from the side surface direction to be ablated, thereby forming a flat shape that matches the shape of the container 11.

電極シート32,34には、外部接続用の正極端子14および負極端子16が電気的に接続されている。この接続は、両電極シート32,34の合剤層非形成部32A,34Aのうちセパレータシート35からはみ出した部分をそれぞれ捲回電極体30の径方向に寄せ集め、その寄せ集めた部分に正極端子14および負極端子16をそれぞれ接続(例えば溶接)することにより好適に行うことができる。端子14,16が接続された電極体30を容器11に収容し、その内部に適当な非水電解液を供給した後、容器11を封止することにより、本実施形態に係るリチウムイオン二次電池10が構築される。   A positive electrode terminal 14 and a negative electrode terminal 16 for external connection are electrically connected to the electrode sheets 32 and 34. In this connection, portions of the mixture sheet non-forming portions 32A, 34A of both electrode sheets 32, 34 that are protruded from the separator sheet 35 are gathered together in the radial direction of the wound electrode body 30, and a positive electrode is formed on the gathered portions. It can be suitably performed by connecting (for example, welding) the terminal 14 and the negative electrode terminal 16 respectively. The electrode body 30 to which the terminals 14 and 16 are connected is accommodated in the container 11, and after supplying an appropriate nonaqueous electrolytic solution therein, the container 11 is sealed, whereby the lithium ion secondary according to the present embodiment. Battery 10 is constructed.

本実施形態に係るリチウムイオン二次電池10は、各種用途向けの二次電池として利用可能である。例えば、図3に示すように、自動車等の車両1に搭載される車両駆動用モータ(電動機)の電源として好適に利用することができる。車両1の種類は特に限定されないが、典型的には、ハイブリッド自動車、電気自動車、燃料電池自動車等である。かかるリチウムイオン二次電池10は、単独で使用されてもよく、直列および/または並列に複数接続されてなる組電池の形態で使用されてもよい。   The lithium ion secondary battery 10 according to the present embodiment can be used as a secondary battery for various applications. For example, as shown in FIG. 3, it can be suitably used as a power source for a vehicle drive motor (electric motor) mounted on a vehicle 1 such as an automobile. Although the kind of vehicle 1 is not specifically limited, Typically, they are a hybrid vehicle, an electric vehicle, a fuel cell vehicle, etc. Such lithium ion secondary battery 10 may be used alone, or may be used in the form of an assembled battery that is connected in series and / or in parallel.

以下、本発明に関するいくつかの実施例を説明する。ただし、本発明が下記の実施例に限定されないことは勿論である。   Several embodiments relating to the present invention will be described below. However, it goes without saying that the present invention is not limited to the following examples.

<リチウムイオン二次電池の作製>
比表面積の異なる8種類の黒鉛粉末C1〜C8を用意し、これらの黒鉛粉末を負極活物質に用いた負極を作製した。すなわち、各黒鉛粉末とSBRとCMCとを、これら材料の質量比が98:1:1であり且つNVが45質量%となるようにイオン交換水と混合して、負極合剤層形成用の組成物を調製した。この組成物を、厚さ10μmの長尺状銅箔(負極集電体)の両面に塗布して乾燥させることにより、負極合剤層を形成した。上記組成物の目付け、すなわち塗布量(固形分基準)は、両面合わせて9.4mg/cmとなるように調整した。乾燥温度120℃の条件下で乾燥後、負極集電体とその両面の負極合剤層とを合わせた全体の厚みが60μmとなるようにプレスした。このようにして、各黒鉛粉末C1〜C8に対応する合計8種類のシート状負極(すなわち、負極シートN1〜N8)を作製した。なお、上記黒鉛粉末C1〜C8の平均粒径は、いずれも6.5μm〜22μmの範囲にある。
<Production of lithium ion secondary battery>
Eight types of graphite powders C1 to C8 having different specific surface areas were prepared, and negative electrodes using these graphite powders as negative electrode active materials were prepared. That is, each graphite powder, SBR, and CMC were mixed with ion-exchanged water so that the mass ratio of these materials was 98: 1: 1 and NV was 45% by mass to form a negative electrode mixture layer. A composition was prepared. This composition was applied to both sides of a long copper foil (negative electrode current collector) having a thickness of 10 μm and dried to form a negative electrode mixture layer. The basis weight of the composition, that is, the coating amount (based on solid content) was adjusted to 9.4 mg / cm 2 on both sides. After drying under the condition of a drying temperature of 120 ° C., pressing was performed so that the total thickness of the negative electrode current collector and the negative electrode mixture layers on both sides thereof became 60 μm. In this way, a total of eight types of sheet-like negative electrodes (that is, negative electrode sheets N1 to N8) corresponding to the graphite powders C1 to C8 were produced. In addition, the average particle diameters of the graphite powders C1 to C8 are all in the range of 6.5 μm to 22 μm.

正極活物質としては、LiNi1/3Co1/3Mn1/3で表わされる組成のリチウムニッケルコバルトマンガン複合酸化物の粉末を使用した。この正極活物質粉末と、導電材としてのアセチレンブラックと、バインダとしてのPVDFとを、これら材料の質量比が87:10:3となり且つ固形分濃度(NV)が約40質量%となるようにNMPと混合して、正極合剤層形成用の組成物を調製した。この組成物を、厚さ15μmの長尺状アルミニウム箔(正極集電体)の両面に塗布して乾燥させることにより、正極合剤層を形成した。上記組成物の塗布量(固形分基準)は、両面合わせて約12.8mg/cmとなるように調整した。乾燥後、正極集電体とその両面の正極合剤層とを合わせた全体の厚みが25μmとなるようにプレスして、シート状正極(以下、正極シートと言う。)を作製した。 As the positive electrode active material, a lithium nickel cobalt manganese composite oxide powder having a composition represented by LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used. The positive electrode active material powder, acetylene black as a conductive material, and PVDF as a binder are such that the mass ratio of these materials is 87: 10: 3 and the solid content concentration (NV) is about 40% by mass. A composition for forming a positive electrode mixture layer was prepared by mixing with NMP. The composition was applied on both sides of a 15 μm thick long aluminum foil (positive electrode current collector) and dried to form a positive electrode mixture layer. The coating amount (based on solid content) of the composition was adjusted to be about 12.8 mg / cm 2 on both sides. After drying, the positive electrode current collector and the positive electrode mixture layers on both sides thereof were pressed so as to have a total thickness of 25 μm to produce a sheet-like positive electrode (hereinafter referred to as a positive electrode sheet).

負極シートN1〜N8の各々を上記正極シートおよび二枚の長尺状のセパレータシートと積層し、その積層シートを長尺方向に捲回して捲回電極体を作製した。セパレータシートとしては、厚さ20μmの多孔質ポリエチレンシートを使用した。このようにして、各負極シートN1〜N8に対応する合計8種類の捲回電極体を作製した。   Each of the negative electrode sheets N1 to N8 was laminated with the positive electrode sheet and two long separator sheets, and the laminated sheet was wound in the long direction to produce a wound electrode body. As the separator sheet, a porous polyethylene sheet having a thickness of 20 μm was used. In this way, a total of eight types of wound electrode bodies corresponding to the respective negative electrode sheets N1 to N8 were produced.

ECとEMCとDMCとを3:4:3の体積比で含む混合溶媒に1.0モル/LのLiPF(支持電解質)を溶解して、非水電解液を調製した。 A non-aqueous electrolyte was prepared by dissolving 1.0 mol / L LiPF 6 (supporting electrolyte) in a mixed solvent containing EC, EMC, and DMC in a volume ratio of 3: 4: 3.

そして、上記電極体と上記電解液とを組み合わせて外装ケースに収容することにより、18650型リチウムイオン二次電池を構築した。なお、以下では、負極シートN1〜N8を備えたリチウムイオン二次電池をそれぞれ例A1〜A8の電池と称する。   And the 18650 type lithium ion secondary battery was constructed | assembled by combining the said electrode body and the said electrolyte solution, and accommodating in an exterior case. Hereinafter, the lithium ion secondary batteries including the negative electrode sheets N1 to N8 are referred to as batteries of Examples A1 to A8, respectively.

[細孔容量Aの測定]
負極シートN1〜N8について、直径が0.1μm〜0.4μmの細孔の単位質量当たりの容積A[cc/g]を測定した。測定には、Quantachtome社製の「Pore master GT60」(圧力範囲0.7psi〜33000psi)を使用した。得られた値を表3に示す。なお、表3では細孔容量A[cc/g]と表記している。
[Measurement of pore volume A]
With respect to the negative electrode sheets N1 to N8, the volume A [cc / g] per unit mass of pores having a diameter of 0.1 μm to 0.4 μm was measured. For the measurement, “Pore master GT60” (pressure range 0.7 psi to 33000 psi) manufactured by Quantachtome was used. The obtained values are shown in Table 3. In Table 3, it is expressed as pore volume A [cc / g].

[比表面積Bの測定]
負極シートN1〜N8について、比表面積B[m/g]を測定した。測定には、MOUNTECH社製の「Macsorb」を使用した。120℃の温度条件下で1時間乾燥させ(プレ乾燥)、120℃の温度条件下で5分間の予備脱気を行った後、測定を行った。得られた値を表3に示す。
[Measurement of specific surface area B]
The specific surface area B [m 2 / g] was measured for the negative electrode sheets N1 to N8. For measurement, “Macsorb” manufactured by MOUNTECH was used. The measurement was performed after drying for 1 hour under a temperature condition of 120 ° C. (pre-drying) and pre-deaeration for 5 minutes under a temperature condition of 120 ° C. The obtained values are shown in Table 3.

[初期充放電(コンディショニング)]
例A1〜A8の電池に対し、下記表1に示す条件にて初期充放電(コンディショニング)を行った。すなわち、25℃の温度条件下において、以下の充電、休止、および放電を行った。具体的には、まず、端子間電圧が4.1Vになるまで1/4Cの定電流にて充電し、続いて合計充電時間が6時間になるまで定電圧で充電した(CCCV充電)。その後、10分間休止した後、1/3Cの定電流にて端子間電圧が3.0Vになるまで放電した(CC放電)。次に、10分間休止した後、端子間電圧が4.1Vになるまで1Cの定電流にて充電し、続いて合計充電時間が2時間になるまで定電圧で充電した(CCCV充電)。その後、10分間休止した後、1Cの定電流にて端子間電圧が3.0Vになるまで放電した(CC放電)。次に、10分間休止した後、端子間電圧が4.1Vになるまで1Cの定電流にて充電し、続いて合計充電時間が2.5時間になるまで定電圧で充電した(CCCV充電)。その後、10分間休止した後、1/3Cの定電流にて端子間電圧が3.0Vになるまで放電し(CC放電)、10分間休止した後、さらに合計放電時間が4時間になるまで定電圧で放電した(CV放電)後、10分間休止した。
[Initial charge / discharge (conditioning)]
The batteries of Examples A1 to A8 were subjected to initial charge / discharge (conditioning) under the conditions shown in Table 1 below. That is, under the temperature condition of 25 ° C., the following charging, resting, and discharging were performed. Specifically, first, the battery was charged at a constant current of 1/4 C until the voltage between the terminals reached 4.1 V, and then charged at a constant voltage until the total charging time reached 6 hours (CCCV charging). Then, after resting for 10 minutes, the battery was discharged at a constant current of 1/3 C until the voltage between the terminals reached 3.0 V (CC discharge). Next, after resting for 10 minutes, the battery was charged at a constant current of 1 C until the voltage between the terminals reached 4.1 V, and then charged at a constant voltage until the total charging time reached 2 hours (CCCV charging). Then, after resting for 10 minutes, the battery was discharged at a constant current of 1 C until the voltage between the terminals reached 3.0 V (CC discharge). Next, after resting for 10 minutes, the battery was charged at a constant current of 1 C until the voltage between the terminals reached 4.1 V, and then charged at a constant voltage until the total charging time reached 2.5 hours (CCCV charging). . Then, after resting for 10 minutes, the battery was discharged at a constant current of 1/3 C until the voltage across the terminals reached 3.0 V (CC discharge). After resting for 10 minutes, it was further fixed until the total discharge time reached 4 hours. After discharging with voltage (CV discharge), the operation was stopped for 10 minutes.

Figure 2012064544
Figure 2012064544

[容量維持率の測定]
例A1〜A8の電池について、所定の高温条件下で保存した後に容量がどの程度維持されているかを調べる試験を行った。
[Measurement of capacity maintenance ratio]
About the battery of Examples A1-A8, the test which investigates how much capacity | capacitance is maintained after preserve | saving under predetermined | prescribed high temperature conditions was done.

まず、例A1〜A8の電池について、表2に示す条件で初期容量を測定した。すなわち、25℃の温度条件下において、端子間電圧が4.1Vになるまで1Cの定電流にて充電し、続いて合計充電時間が2.5時間になるまで定電圧で充電した(CCCV充電)。充電終了から10分間休止した後、25℃において、0.33Cの定電流で端子間電圧が3.0Vになるまで放電させ(CC放電)、10分間の休止の後、さらに合計放電時間が4時間となるまで定電圧で放電させた(CCCV放電)。このときの放電容量を各例の初期容量Q1とした。   First, for the batteries of Examples A1 to A8, the initial capacity was measured under the conditions shown in Table 2. That is, under a temperature condition of 25 ° C., the battery was charged at a constant current of 1 C until the voltage between the terminals reached 4.1 V, and then charged at a constant voltage until the total charging time reached 2.5 hours (CCCV charging ). After 10 minutes from the end of charging, the battery is discharged at 25 ° C. with a constant current of 0.33 C until the voltage between the terminals reaches 3.0 V (CC discharge). After 10 minutes of rest, the total discharge time is 4 The battery was discharged at a constant voltage until time reached (CCCV discharge). The discharge capacity at this time was defined as the initial capacity Q1 of each example.

Figure 2012064544
Figure 2012064544

例A1〜A8の電池を60℃の温度環境下で60日間保存した後、25℃の温度条件下にて上記初期容量測定時と同じ条件で放電させ、このときの電池容量Q2を求めた。そして、Q2/Q1×100[%]で定義される容量維持率を算出した。得られた結果を表3および図4に示す。   The batteries of Examples A1 to A8 were stored for 60 days in a temperature environment of 60 ° C., and then discharged under the same conditions as in the initial capacity measurement at 25 ° C., and the battery capacity Q2 at this time was determined. And the capacity maintenance rate defined by Q2 / Q1 * 100 [%] was computed. The results obtained are shown in Table 3 and FIG.

[リチウム析出に関する評価試験]
負極シートN1〜N8を用いたラミネート型電池セルを作製し、リチウムの析出しにくさを評価する試験を行った。すなわち、それぞれ負極シートN1〜N8を含む電極体を両端子部の一部が露出するようにラミネートフィルム(7cm×7cm(片面))で覆って、電解液を注入し、ラミネートフィルムを封止して8種類のラミネート型電池セルB1〜B8を作製した。正極、セパレータ、および電解液は、例A1〜A8の電池と同様である。
[Evaluation test for lithium deposition]
A laminate type battery cell using the negative electrode sheets N1 to N8 was produced, and a test for evaluating the difficulty of depositing lithium was performed. That is, each of the electrode bodies including the negative electrode sheets N1 to N8 is covered with a laminate film (7 cm × 7 cm (one side)) so that a part of both terminal portions is exposed, an electrolyte is injected, and the laminate film is sealed. 8 types of laminated battery cells B1 to B8 were produced. The positive electrode, the separator, and the electrolytic solution are the same as in the batteries of Examples A1 to A8.

例A1〜A8の電池と同様のコンディショニングを行った後、SOC60%の状態に調整した各電池セルB1〜B8に対し、リチウムが析出しやすい低温域(ここでは0℃)において、図5に示される充放電サイクルを250サイクル繰り返した。すなわち、1サイクルとして、0℃の温度下、中心電圧を3.75Vとし、所定の電流で10秒間充電を行った後、同じレートで10秒間放電を行った。充電と放電との間の休止時間は10分とした。   After the same conditioning as the batteries of Examples A1 to A8, each battery cell B1 to B8 adjusted to a state of SOC 60% is shown in FIG. The charge / discharge cycle was repeated 250 cycles. That is, as one cycle, the center voltage was set to 3.75 V at a temperature of 0 ° C., charging was performed for 10 seconds at a predetermined current, and then discharging was performed for 10 seconds at the same rate. The pause time between charging and discharging was 10 minutes.

本発明者は、同様の試験を数多く行った経験から、電池の容量維持率が97%未満であれば実質的にリチウムが析出していると見なすことができるという知見を得た。これは、実際に上記試験を行った後に電池を分解し、リチウムの析出の有無を目視確認して得られたデータの蓄積に基づくものである。そこで、上記250サイクルの充放電の後、各例B1〜B8の電池セルの容量を測定し、容量維持率が97%以上であればリチウム析出は生じておらず、97%未満であればリチウム析出が生じたと見なすこととした。そして、リチウム析出が生じない限界の電流を測定し、その電流を限界電流とし、単位面積当たりの限界電流を算出した。得られた結果を表3および図4に示す。   The present inventor obtained from the experience of performing many similar tests that the lithium can be regarded as substantially deposited if the capacity retention rate of the battery is less than 97%. This is based on the accumulation of data obtained by actually disassembling the battery after the above test and visually confirming the presence or absence of lithium deposition. Therefore, after the above 250 cycles of charge / discharge, the capacity of the battery cells of Examples B1 to B8 was measured. If the capacity retention rate was 97% or more, lithium deposition did not occur. It was assumed that precipitation occurred. Then, the limit current at which lithium deposition does not occur was measured, and the limit current per unit area was calculated using the current as the limit current. The results obtained are shown in Table 3 and FIG.

Figure 2012064544
Figure 2012064544

図4から、負極シートN1〜N5を用いた例A1〜A5では、負極シートN6〜N8を用いた例A6〜A8に比べて容量維持率が高いことが分かる。また、負極シートN2〜N8を用いた例B2〜B8では、負極シートN1を用いた例B1に比べて限界電流が高いことが分かる。以上より、A/B=0.0079〜0.0091[cc/m]の範囲にある負極シートN2〜N5によれば、容量維持率の向上とリチウム析出の抑制とを高度に両立できることが確認された。 From FIG. 4, it can be seen that Examples A1 to A5 using the negative electrode sheets N1 to N5 have a higher capacity retention rate than Examples A6 to A8 using the negative electrode sheets N6 to N8. Moreover, it turns out that the limiting current is higher in Examples B2 to B8 using the negative electrode sheets N2 to N8 than in Example B1 using the negative electrode sheet N1. As mentioned above, according to the negative electrode sheet | seat N2-N5 which exists in the range of A / B = 0.0079-0.0091 [cc / m < 2 >], improvement of a capacity | capacitance maintenance factor and suppression of lithium precipitation can be highly compatible. confirmed.

以上、本発明を詳細に説明したが、上記実施形態は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。   As mentioned above, although this invention was demonstrated in detail, the said embodiment is only an illustration and what changed and modified the above-mentioned specific example is included in the invention disclosed here.

1 車両
10 リチウムイオン二次電池
11 容器
14 正極端子
16 負極端子
30 捲回電極体
32 正極シート
34 負極シート
35 セパレータシート
DESCRIPTION OF SYMBOLS 1 Vehicle 10 Lithium ion secondary battery 11 Container 14 Positive electrode terminal 16 Negative electrode terminal 30 Winding electrode body 32 Positive electrode sheet 34 Negative electrode sheet 35 Separator sheet

Claims (7)

正極と、負極集電体と該負極集電体上に形成された負極合剤層とを有する負極と、前記正極と前記負極との間に介在するセパレータと、前記正極と前記負極と前記セパレータとに含浸されリチウムイオンを含む非水電解液と、を備えたリチウムイオン二次電池であって、
前記負極合剤層は、カーボン材料からなる負極活物質を有し、
前記負極合剤層における直径0.1μm〜0.4μmの細孔の単位質量当たりの容積をA[cc/g]とし、BET法により測定した前記負極の表面積を前記負極合剤層の単位質量当たりの表面積に換算した比表面積をB[m/g]としたときに、A/B=0.0079〜0.0091[cc/m]である、リチウムイオン二次電池。
A negative electrode having a positive electrode, a negative electrode current collector, and a negative electrode mixture layer formed on the negative electrode current collector, a separator interposed between the positive electrode and the negative electrode, the positive electrode, the negative electrode, and the separator And a non-aqueous electrolyte containing lithium ions impregnated with, a lithium ion secondary battery comprising:
The negative electrode mixture layer has a negative electrode active material made of a carbon material,
The volume per unit mass of pores having a diameter of 0.1 μm to 0.4 μm in the negative electrode mixture layer is A [cc / g], and the surface area of the negative electrode measured by the BET method is the unit mass of the negative electrode mixture layer. A lithium ion secondary battery in which A / B is 0.0079 to 0.0091 [cc / m 2 ], where B [m 2 / g] is a specific surface area converted to a per surface area.
前記負極合剤層は、0.1μm〜0.4μmの範囲内の所定の直径にて第1のピークを有し、0.4μmよりも大きな直径で第2のピークを有する細孔分布を備えている、請求項1に記載のリチウムイオン二次電池。   The negative electrode mixture layer has a pore distribution having a first peak at a predetermined diameter in a range of 0.1 μm to 0.4 μm and a second peak at a diameter larger than 0.4 μm. The lithium ion secondary battery according to claim 1. 前記負極活物質は、少なくとも一部にグラファイト構造を有するカーボン材料を含んでいる、請求項1または2に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the negative electrode active material includes a carbon material having a graphite structure at least partially. 前記負極活物質は、平均粒径が5μm〜50μmのカーボン粒子からなっている、請求項1〜3のいずれか一項に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the negative electrode active material is made of carbon particles having an average particle diameter of 5 μm to 50 μm. 前記非水電解液は、非プロトン性の非水溶媒と、該溶媒に溶解してリチウムイオンを供給し得るリチウム化合物とを含んでいる、請求項1〜4のいずれか一項に記載のリチウムイオン二次電池。   The lithium according to any one of claims 1 to 4, wherein the non-aqueous electrolyte includes an aprotic non-aqueous solvent and a lithium compound that can be dissolved in the solvent to supply lithium ions. Ion secondary battery. 前記負極集電体は、銅または銅を主成分とする合金からなっている、請求項1〜5のいずれか一項に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to any one of claims 1 to 5, wherein the negative electrode current collector is made of copper or an alloy containing copper as a main component. 車両駆動電源として用いられる、請求項1〜6のいずれか一項に記載のリチウムイオン二次電池。   The lithium ion secondary battery as described in any one of Claims 1-6 used as a vehicle drive power supply.
JP2010210073A 2010-09-17 2010-09-17 Lithium ion secondary battery Active JP5729588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010210073A JP5729588B2 (en) 2010-09-17 2010-09-17 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010210073A JP5729588B2 (en) 2010-09-17 2010-09-17 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2012064544A true JP2012064544A (en) 2012-03-29
JP5729588B2 JP5729588B2 (en) 2015-06-03

Family

ID=46060025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010210073A Active JP5729588B2 (en) 2010-09-17 2010-09-17 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5729588B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060010A (en) * 2012-09-14 2014-04-03 Nissan Motor Co Ltd Negative electrode for secondary battery, and secondary battery
CN104282915A (en) * 2013-07-07 2015-01-14 山东润峰集团新能源科技有限公司 Manufacturing process of porous carrier of lithium ion battery
EP3070768A1 (en) 2015-03-20 2016-09-21 GS Yuasa International Ltd. Energy storage device
JP2017033803A (en) * 2015-08-03 2017-02-09 トヨタ自動車株式会社 Manufacturing method of nonaqueous electrolyte secondary battery, and battery assembly
JP2017076525A (en) * 2015-10-15 2017-04-20 株式会社クレハ Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
US9865855B2 (en) 2015-02-25 2018-01-09 Gs Yuasa International Ltd. Energy storage device
US11258065B2 (en) 2016-01-15 2022-02-22 Gs Yuasa International Ltd. Energy storage device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101976174B1 (en) 2016-02-24 2019-05-09 주식회사 엘지화학 Electrode assembly for lithium secondary battery and electrode module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059690A (en) * 2004-08-20 2006-03-02 Toshiba Corp Non-aqueous electrolyte secondary battery
WO2006129756A1 (en) * 2005-06-02 2006-12-07 Matsushita Electric Industrial Co., Ltd. Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and automobile, power tool or stationary device equipped with same
JP2010009951A (en) * 2008-06-27 2010-01-14 Mitsubishi Chemicals Corp Composite graphite particle for nonaqueous secondary battery, negative electrode material containing it, anode, and nonaqueous secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059690A (en) * 2004-08-20 2006-03-02 Toshiba Corp Non-aqueous electrolyte secondary battery
WO2006129756A1 (en) * 2005-06-02 2006-12-07 Matsushita Electric Industrial Co., Ltd. Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and automobile, power tool or stationary device equipped with same
JP2010009951A (en) * 2008-06-27 2010-01-14 Mitsubishi Chemicals Corp Composite graphite particle for nonaqueous secondary battery, negative electrode material containing it, anode, and nonaqueous secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060010A (en) * 2012-09-14 2014-04-03 Nissan Motor Co Ltd Negative electrode for secondary battery, and secondary battery
CN104282915A (en) * 2013-07-07 2015-01-14 山东润峰集团新能源科技有限公司 Manufacturing process of porous carrier of lithium ion battery
US9865855B2 (en) 2015-02-25 2018-01-09 Gs Yuasa International Ltd. Energy storage device
EP3070768A1 (en) 2015-03-20 2016-09-21 GS Yuasa International Ltd. Energy storage device
US9865878B2 (en) 2015-03-20 2018-01-09 Gs Yuasa International Ltd. Energy storage device
JP2017033803A (en) * 2015-08-03 2017-02-09 トヨタ自動車株式会社 Manufacturing method of nonaqueous electrolyte secondary battery, and battery assembly
CN106410274A (en) * 2015-08-03 2017-02-15 丰田自动车株式会社 Method for manufacturing nonaqueous electrolyte secondary cell, and cell assembly
JP2017076525A (en) * 2015-10-15 2017-04-20 株式会社クレハ Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
US11258065B2 (en) 2016-01-15 2022-02-22 Gs Yuasa International Ltd. Energy storage device

Also Published As

Publication number Publication date
JP5729588B2 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5729588B2 (en) Lithium ion secondary battery
KR101477873B1 (en) Nonaqueous electrolyte solution type lithium ion secondary battery
JP6883262B2 (en) Non-aqueous electrolyte secondary battery
JP5854279B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5218873B2 (en) Lithium secondary battery and manufacturing method thereof
JP5960503B2 (en) Manufacturing method of non-aqueous secondary battery
JP5800208B2 (en) Nonaqueous electrolyte secondary battery
WO2013058033A1 (en) Non-aqueous electrolyte secondary battery, and manufacturing method thereof
JP6086248B2 (en) Non-aqueous electrolyte secondary battery
US20180277831A1 (en) Nonaqueous electrolyte secondary battery and production method thereof
JP2011090876A (en) Lithium secondary battery and method of manufacturing the same
JP2013171646A (en) Nonaqueous electrolyte secondary battery
KR102133417B1 (en) Nonaqueous electrolyte secondary battery
JP2021176123A (en) Positive electrode material for lithium secondary battery
JP5472755B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP5843107B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6902206B2 (en) Lithium ion secondary battery
JP2020202023A (en) Positive electrode of secondary battery, and secondary battery using the same
CN108110323B (en) Method for manufacturing secondary battery
JP5234373B2 (en) Lithium ion secondary battery
JP2019040721A (en) Lithium ion secondary battery
JP2014130729A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2021018893A (en) Non-aqueous electrolyte secondary battery
JP5418828B2 (en) Lithium secondary battery and manufacturing method thereof
EP3683866B1 (en) Negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150325

R151 Written notification of patent or utility model registration

Ref document number: 5729588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250