WO2020170833A1 - Electrolyte composition, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery - Google Patents

Electrolyte composition, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2020170833A1
WO2020170833A1 PCT/JP2020/004511 JP2020004511W WO2020170833A1 WO 2020170833 A1 WO2020170833 A1 WO 2020170833A1 JP 2020004511 W JP2020004511 W JP 2020004511W WO 2020170833 A1 WO2020170833 A1 WO 2020170833A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
compound
hydrocarbon group
Prior art date
Application number
PCT/JP2020/004511
Other languages
French (fr)
Japanese (ja)
Inventor
広幸 長田
宏美 竹之内
英晃 長野
貴久 寒河江
健二 撹上
洋平 青山
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to JP2021501845A priority Critical patent/JPWO2020170833A1/en
Priority to KR1020217024108A priority patent/KR20210126569A/en
Priority to CN202080007551.4A priority patent/CN113228373A/en
Publication of WO2020170833A1 publication Critical patent/WO2020170833A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composition for electrolyte, a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries are small, lightweight, have high energy density, and can be repeatedly charged and discharged, and are used in portable electronic devices such as portable personal computers, handy video cameras, and information terminals. Widely used as a power source. From the viewpoint of environmental problems, electric vehicles that use non-aqueous electrolyte secondary batteries and hybrid vehicles that use electric power as a part of power have been put into practical use. Therefore, in recent years, further improvement in performance of secondary batteries has been demanded.
  • a non-aqueous electrolyte secondary battery is composed of members such as a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte.
  • the positive electrode and the negative electrode usually include a current collector and an electrode mixture layer formed on the current collector.
  • the electrode mixture layer is formed, for example, by applying an electrode active material capable of occluding/releasing lithium ions and a slurry composition obtained by dispersing a binder and the like in a dispersion medium onto a current collector and drying.
  • Patent Document 7 pentafluorophenylmethyl oxalate (for example, refer to Patent Document 8), phenylsilane (for example, refer to Patent Document 9), etc. are added to the non-aqueous electrolyte to improve cycle characteristics. It is said that battery performance such as charge and discharge capacity and storage characteristics at high temperature can be improved.
  • an object of the present invention is to provide a composition for an electrolyte that can improve the cycle characteristics and rate characteristics of a non-aqueous electrolyte secondary battery.
  • the present invention is for an electrolyte containing at least one compound selected from the group consisting of compounds represented by the following general formulas (1) to (4) and at least one compound selected from a solvent and a dispersion medium. It is a composition.
  • R 1 is a hydrocarbon group having 1 to 8 carbon atoms
  • R 2 to R 5 are each independently a hydrogen atom, a hydrocarbon group having 1 to 8 carbon atoms, or a carbon atom having 1 carbon atom.
  • An alkoxy group having 1 to 6 or the following formula (1-a) wherein R 6 is a nitro group, a sulfonic acid group, a hydrocarbon group having 1 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or the following formula
  • n is an integer of 1 to 4 and R 6 is nitro.
  • R 7 is the following formula (1-d) or the following formula (1-e).
  • R 8 to R 16 are each independently a hydrogen atom, an unsubstituted hydrocarbon group having 1 to 8 carbon atoms, or 1 to 8 carbon atoms in which a part of hydrogen atoms are substituted with fluorine atoms.
  • Hydrocarbon group an unsubstituted alkoxy group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms in which a part of hydrogen atoms have been replaced by a fluorine atom, an unsubstituted alkoxy group having 1 to 6 carbon atoms Thioalkoxy group, thioalkoxy group having 1 to 6 carbon atoms in which some hydrogen atoms are substituted with fluorine atoms, sulfonyl group having a hydrocarbon group having 1 to 8 carbon atoms, or carbonization having 1 to 8 carbon atoms It is an acyl group having a hydrogen group, and * represents the bonding position.
  • R 17 to R 19 are each independently a hydrocarbon group having 1 to 8 carbon atoms, and R 18 and R 19 are linked to each other.
  • R 17 and R 19 are each independently a hydrocarbon group having 1 to 8 carbon atoms, and R 18 is a single bond.
  • R 20 and R 21 are each independently a hydrocarbon group having 1 to 8 carbon atoms or an alkoxy group having 1 to 6 carbon atoms
  • R 22 to R 31 are independently hydrogen.
  • composition for an electrolyte capable of improving the cycle characteristics and rate characteristics of a non-aqueous electrolyte secondary battery.
  • 1 is a vertical cross-sectional view schematically showing an example of the structure of a coin-type battery of a non-aqueous electrolyte secondary battery of the present invention. It is a schematic diagram showing the basic composition of the cylindrical battery of the nonaqueous electrolyte secondary battery of the present invention. 1 is a perspective view showing the internal structure of a cylindrical battery of a non-aqueous electrolyte secondary battery of the present invention as a cross section.
  • composition for electrolyte of the present invention contains at least one compound selected from the group consisting of compounds represented by the following general formulas (1) to (4) and at least one compound selected from a solvent and a dispersion medium. To do.
  • R 1 is a hydrocarbon group having 1 to 8 carbon atoms
  • R 2 to R 5 are each independently a hydrogen atom, a hydrocarbon group having 1 to 8 carbon atoms, or a carbon atom having 1 carbon atom.
  • An alkoxy group having 1 to 6 or the following formula (1-a) wherein R 6 is a nitro group, a sulfonic acid group, a hydrocarbon group having 1 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or the following formula
  • n is an integer of 1 to 4 and R 6 is nitro.
  • R 7 is the following formula (1-d) or the following formula (1-e).
  • R 8 to R 16 are each independently a hydrogen atom, an unsubstituted hydrocarbon group having 1 to 8 carbon atoms, or 1 to 8 carbon atoms in which a part of hydrogen atoms are substituted with fluorine atoms.
  • Hydrocarbon group an unsubstituted alkoxy group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms in which a part of hydrogen atoms have been replaced by a fluorine atom, an unsubstituted alkoxy group having 1 to 6 carbon atoms Thioalkoxy group, thioalkoxy group having 1 to 6 carbon atoms in which some hydrogen atoms are substituted with fluorine atoms, sulfonyl group having a hydrocarbon group having 1 to 8 carbon atoms, or carbonization having 1 to 8 carbon atoms It is an acyl group having a hydrogen group, and * represents the bonding position.
  • R 17 to R 19 are each independently a hydrocarbon group having 1 to 8 carbon atoms, and R 18 and R 19 are linked to each other.
  • R 17 and R 19 are each independently a hydrocarbon group having 1 to 8 carbon atoms, and R 18 is a single bond.
  • R 20 and R 21 are each independently a hydrocarbon group having 1 to 8 carbon atoms or an alkoxy group having 1 to 6 carbon atoms
  • R 22 to R 31 are independently hydrogen.
  • Examples of the hydrocarbon group having 1 to 8 carbon atoms which represents R 1 to R 5 in the compound represented by the general formula (1) include an aliphatic hydrocarbon group and an aromatic hydrocarbon group. Specifically, methyl group, ethyl group, propyl group, i-propyl group, butyl group, 2-butyl group, i-butyl group, t-butyl group, pentyl group, 2-pentyl group, 3-pentyl group, Saturated aliphatic compounds such as i-pentyl group, hexyl group, 2-hexyl group, 3-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, cyclopentyl group, cyclohexyl group, methylcyclohexyl group and norbornane group Unsaturated aliphatic hydrocarbon groups such as hydrocarbon group, vinyl group, allyl group, butenyl group, pen
  • Examples of the alkoxy group having 1 to 6 carbon atoms which represents R 2 to R 5 include a methoxy group, an ethoxy group, a propoxy group, an i-propoxy group, a butoxy group, a pentoxy group, a hexyloxy group and a cyclohexyloxy group.
  • Examples of the hydrocarbon group having 1 to 8 carbon atoms representing R 6 include the same ones as the hydrocarbon group having 1 to 8 carbon atoms in R 1 to R 5 .
  • Examples of the alkoxy group having 1 to 6 carbon atoms which represents R 6 include the same ones as the alkoxy group having 1 to 6 carbon atoms in R 2 to R 5 .
  • R 1 is a hydrocarbon group having 1 to 8 carbon atoms
  • R 2 to R 5 are each independently a hydrogen atom or 1 carbon atom.
  • R 6 is a nitro group, a sulfonic acid group, a hydrocarbon group having 1 to 8 carbon atoms or carbon
  • examples thereof include compounds represented by the following 1-1 to 1-61, but the invention is not limited thereto.
  • R 1 is a hydrocarbon group having 1 to 8 carbon atoms
  • R 2 to R 5 are hydrogen atoms or carbon atoms having 1 to 8 carbon atoms.
  • R 6 is the above formula (1-b) or the above formula (1-c)
  • the present invention is not limited to these.
  • R 1 is a hydrocarbon group having 1 to 8 carbon atoms
  • R 2 to R 5 are hydrogen atoms or carbon atoms having 1 to 8 carbon atoms.
  • R 6 is a hydrocarbon group having 1 to 8 carbon atoms
  • n is an integer of 2 to 4
  • examples thereof include compounds represented by the following 1-71 to 1-78. , But is not limited to these.
  • R 1 of the compound represented by the general formula (1) is preferably an aliphatic hydrocarbon group having 1 to 6 carbon atoms, a phenyl group or a benzyl group because of excellent cycle characteristics and rate characteristics, It is more preferably a methyl group, an allyl group, a t-butyl group or a benzyl group, and R 2 to R 5 are each a hydrogen atom, a saturated aliphatic hydrocarbon group having 1 to 6 carbon atoms, or the above formula (1- a) is preferable, and R 6 is a nitro group, a sulfonic acid group, a saturated aliphatic hydrocarbon group having 1 to 6 carbon atoms, the above formula (1-b) or the above formula (1-c).
  • 1-1, 1-2, 1-16, 1-17, 1-37, 1-39, 1-40, 1-41, 1-50, 1-51, 1-52, 1-54 , 1-56, 1-62, 1-64, 1-67, 1-70, 1-72, 1-75, 1-77 and 1-78 are more preferable, and the above-mentioned 1-1,
  • the compounds represented by 1-37, 1-39, 1-40, 1-52, 1-62, 1-70, 1-72, 1-75, 1-77 and 1-78 are more preferable.
  • a carbonate compound such as methyl 4-methylphenyl carbonate is used in the presence of an organic base as compared with a phenol compound such as 4-methylphenol. It can be efficiently obtained by reacting a chloroformate such as a mate.
  • the above formula represents an R 7 (1-d) and represents the R 8 ⁇ R 16 in the formula (1-e), the unsubstituted carbon atoms of 1 to 8
  • the hydrocarbon group include a methyl group, an ethyl group, a propyl group, an i-propyl group, a butyl group, a 2-butyl group, an i-butyl group, a t-butyl group, a pentyl group and a 2-pentyl group.
  • R 8 to R 16 may be those in which a part of hydrogen atoms in these hydrocarbon groups are substituted with fluorine atoms.
  • the saturated aliphatic hydrocarbon group and the unsaturated aliphatic hydrocarbon group may have a linear structure, a branched structure or a cyclic structure.
  • the above formula represents an R 7 (1-d) and represents the R 8 ⁇ R 16 in the formula (1-e), of the unsubstituted carbon atoms of 1 to 6
  • the alkoxy group include the same ones as the alkoxy group having 1 to 6 carbon atoms which represents R 2 to R 5 in the compound represented by the general formula (1).
  • R 8 to R 16 may be an alkoxy group in which a part of hydrogen atoms are replaced with fluorine atoms.
  • the above formula represents an R 7 (1-d) and represents the R 8 ⁇ R 16 in the formula (1-e), of the unsubstituted carbon atoms of 1 to 6
  • the thioalkoxy group include groups in which the alkoxy group having 1 to 6 carbon atoms, which represents R 1 to R 5 , of the compound represented by the general formula (1) is bonded by a sulfur atom instead of an oxygen atom.
  • R 8 to R 16 may be a thioalkoxy group in which some hydrogen atoms are replaced with fluorine atoms.
  • hydrocarbon group having 1 to 8 carbon atoms contained in the sulfonyl group or the acyl group examples include hydrocarbon groups having 1 to 8 carbon atoms represented by R 1 to R 5 of the compound represented by the general formula (1). The same can be mentioned.
  • Specific examples of the compound represented by the general formula (2) include, but are not limited to, the compounds represented by the following 2-1 to 2-24.
  • R 8 , R 9 , R 11 and R 12 in the above formula (1-d) representing R 7 of the compound represented by the general formula (2) are hydrogen atoms, since they are excellent in cycle characteristics and rate characteristics, It is preferable that R 10 is a hydrogen atom, an aliphatic hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a thioalkoxy group having 1 to 4 carbon atoms, or a fluoromethoxy group.
  • a fluorothiomethoxy group, a sulfonyl group having an aliphatic hydrocarbon group having 1 to 4 carbon atoms or an acyl group having an aliphatic hydrocarbon group having 1 to 4 carbon atoms is preferable, and a methoxy group or a thiomethoxy group is preferable.
  • a trifluoromethoxy group or a methylsulfonyl group is more preferable.
  • R 14 to R 16 in the above formula (1-e) representing R 7 of the compound represented by the general formula (2) are preferably hydrogen atoms because they have excellent cycle characteristics and rate characteristics.
  • the compounds represented by the above 2-1, 2-2, 2-6, 2-7, 2-10, 2-11, 2-12, 2-14, 2-18 and 2-22 are more preferable.
  • the compounds represented by the above 2-1, 2-10, 2-11, 2-12, 2-14 and 2-22 are more preferable.
  • an oxalate ester compound such as diphenyl oxalate is prepared by reacting an oxalyl chloride with an alcohol compound such as phenol in the presence of an organic base. It can be obtained efficiently.
  • Examples of the hydrocarbon group having 1 to 8 carbon atoms which represents R 17 to R 19 in the compound represented by the general formula (3) include R 1 to R 5 in the compound represented by the general formula (1). The same as the represented hydrocarbon group having 1 to 8 carbon atoms can be mentioned.
  • Specific examples of the compound represented by the general formula (3) include, but are not limited to, the compounds represented by the following 3-1 to 3-14.
  • a sulfonic acid oxime compound such as propanone methanesulfonic acid oxime is used in the presence of an organic base, a sulfonyl chloride such as methanesulfonyl chloride, and an acetoxime It can be efficiently obtained by reacting the oxime compound of
  • Examples of the hydrocarbon group having 1 to 8 carbon atoms which represents R 20 to R 31 of the compound represented by the general formula (4) include R 1 to R 5 of the compound represented by the general formula (1).
  • the same as the represented hydrocarbon group having 1 to 8 carbon atoms can be mentioned.
  • the alkoxy group having 1 to 6 carbon atoms which represents R 20 to R 31 is the same as the alkoxy group having 1 to 6 carbon atoms which represents R 2 to R 5 in the compound represented by the general formula (1). Is mentioned.
  • Specific examples of the compound represented by the general formula (4) include, but are not limited to, the compounds represented by the following 4-1 to 4-24.
  • R 20 and R 21 of the compound represented by the general formula (4) are preferably an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and a methyl group because they have excellent cycle characteristics and rate characteristics. More preferably, R 22 , R 23 , R 25 to R 28 , R 30 and R 31 are each preferably a hydrogen atom or a fluorine atom, more preferably a hydrogen atom, and R 24 and R As 29 , a hydrogen atom, a fluorine atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms or a nitro group is preferable, and a fluorine atom or a nitro group is preferable. More preferable. Of these, the compounds represented by 4-1, 4-3, 4-9, 4-13, 4-16 and 4-19 are more preferable, and the compounds represented by 4-3, 4-13 and 4-16 are more preferable. Are more preferred.
  • a silane compound such as bis(4-fluorophenoxy)dimethylsilane is used in the presence of an organic base with respect to a chlorosilane compound such as dimethyldichlorosilane.
  • -It can be efficiently obtained by reacting a phenol compound such as fluorophenol.
  • the form of the composition for an electrolyte of the present invention is not particularly limited, a liquid form obtained by using an organic solvent as a solvent, a solvent or a dispersion medium, a high molecular compound dissolved in an organic solvent to form a gel.
  • examples thereof include a polymer gel form obtained by using a molecular gel and a polymer form obtained by using a polymer as a dispersion medium without using a solvent.
  • an organic solvent usually used for a non-aqueous electrolyte of a non-aqueous electrolyte secondary battery can be used.
  • the organic solvent include, for example, saturated cyclic carbonate compounds, saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds, amide compounds, saturated chain carbonate compounds, chain ether compounds, cyclic ether compounds, saturated chain ester compounds, etc. Is mentioned. These organic solvents may be used alone or in combination of two or more.
  • a saturated cyclic carbonate compound a saturated cyclic ester compound, a sulfoxide compound, a sulfone compound and an amide compound are preferable because they have a high relative dielectric constant and play a role of increasing the dielectric constant of the electrolyte composition.
  • a saturated cyclic carbonate compound is more preferable.
  • saturated cyclic carbonate compound examples include ethylene carbonate, 1,2-propylene carbonate, 1,3-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate and 1,1-dimethylethylene carbonate.
  • saturated cyclic ester compound examples include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -hexanolactone, ⁇ -octanolactone and the like.
  • sulfoxide compound examples include dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, diphenyl sulfoxide, thiophene and the like.
  • sulfone compound examples include dimethyl sulfone, diethyl sulfone, dipropyl sulfone, diphenyl sulfone, sulfolane (also referred to as tetramethylene sulfone), 3-methylsulfolane, 3,4-dimethylsulfolane, 3,4-diphenymethylsulfolane, Examples thereof include sulfolene, 3-methylsulfolene, 3-ethylsulfolene, 3-bromomethylsulfolene and the like. Among these, sulfolane and tetramethylsulfolane are preferable.
  • the amide compound examples include N-methylpyrrolidone, dimethylformamide, dimethylacetamide and the like.
  • saturated chain carbonates can be used in that the viscosity of the composition for electrolyte can be lowered, and the mobility of electrolyte ions can be increased to improve the battery characteristics such as output density.
  • Compounds, chain ether compounds, cyclic ether compounds and saturated chain ester compounds are preferred.
  • a saturated chain carbonate compound is particularly preferable because it has a low viscosity and can enhance the performance of the composition for electrolytes at low temperatures.
  • saturated chain carbonate compound examples include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl butyl carbonate, methyl-t-butyl carbonate, diisopropyl carbonate, t-butyl propyl carbonate and the like.
  • chain ether compound and the cyclic ether compound include dimethoxyethane, ethoxymethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, dioxane, 1,2-bis(methoxycarbonyloxy)ethane, 1,2-bis(ethoxycarbonyl).
  • the saturated chain ester compound is preferably a monoester compound or a diester compound having a total number of carbon atoms in the molecule of 2 to 8, and specific compounds include, for example, methyl formate, ethyl formate, methyl acetate, acetic acid.
  • organic solvents for example, acetonitrile, propionitrile, nitromethane, their derivatives, and various ionic liquids can be used.
  • Examples of the polymer used for preparing the polymer gel type composition include polyethylene oxide, polypropylene oxide, polyvinyl chloride, polyacrylonitrile, polymethylmethacrylate, polyethylene, polyvinylidene fluoride, and polyhexafluoropropylene.
  • Examples of the polymer used for preparing the polymer form composition include polyethylene oxide, polypropylene oxide, polystyrene sulfonic acid and the like.
  • the content of at least one compound selected from the group consisting of the compounds represented by the general formulas (1) to (4) is 0.01% by mass to 10% by mass based on the composition for an electrolyte of the present invention. Is preferred, 0.05% by mass to 10% by mass is more preferred, and 0.1% by mass to 5% by mass is even more preferred.
  • the content of the compounds represented by the general formulas (1) to (4) is less than 0.01% by mass, the cycle characteristics and rate characteristics of the non-aqueous electrolyte secondary battery using the composition for electrolyte of the present invention In some cases, the effect of improving is not sufficient.
  • the content of the compounds represented by the general formulas (1) to (4) is more than 10% by mass, the effect corresponding to the blending amount cannot be obtained, which may adversely affect the battery characteristics.
  • composition for an electrolyte of the present invention is not particularly limited, but it is preferable that the composition contains a solvent, and it is more preferable that it be in a liquid form because the manufacturing process is simple.
  • the non-aqueous electrolyte of the present invention contains the above-mentioned composition for electrolytes and a supporting electrolyte.
  • the supporting electrolyte include alkali metal salts such as lithium salt, sodium salt and potassium salt, magnesium salt, calcium salt and the like.
  • the lithium salt used in the non-aqueous electrolyte of the present invention is not particularly limited, and known lithium salts can be used. Specific examples of the lithium salt include, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN.
  • liquid and polymer gel electrolyte compositions include LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN.
  • One or more lithium salts selected from the group consisting of (SO 2 F) 2 , LiPO 2 F 2 , LiC(CF 3 SO 2 ) 3 , LiCF 3 SO 3 derivatives and LiC(CF 3 SO 2 ) 3 derivatives. Is preferably used.
  • Polymeric electrolyte compositions include LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(SO 2 F) 2 , LiC(CF 3 SO 2 ) 3 , LiB( It is preferable to use one or more selected from the group consisting of CF 3 SO 3 ) 4 and LiB(C 2 O 4 ) 2 .
  • the sodium salt and potassium salt used in the non-aqueous electrolyte of the present invention are not particularly limited, and known sodium salt and potassium salt can be used.
  • the magnesium salt and calcium salt used in the non-aqueous electrolyte of the present invention are not particularly limited, and known magnesium salt and calcium salt can be used.
  • the concentration of the supporting electrolyte in the non-aqueous electrolyte is too low, a sufficient current density may not be obtained, while if it is too high, the stability of the non-aqueous electrolyte may be impaired. It is preferably ⁇ 7 mol/L, more preferably 0.8 mol/L to 1.8 mol/L.
  • non-aqueous electrolyte of the present invention is not particularly limited, but it can be suitably used as a non-aqueous electrolyte used in a non-aqueous electrolyte secondary battery.
  • the non-aqueous electrolyte of the present invention may further contain known electrolyte additives such as an electrode film forming agent, an antioxidant, a flame retardant, and an overcharge preventing agent for improving battery life and safety.
  • electrolyte additives such as an electrode film forming agent, an antioxidant, a flame retardant, and an overcharge preventing agent for improving battery life and safety.
  • concentration of the electrolyte additive is too low, the effect of addition cannot be exhibited, and when the concentration is too high, the characteristics of the non-aqueous electrolyte secondary battery may be adversely affected.
  • the content is preferably 0.01% by mass to 10% by mass, and more preferably 0.1% by mass to 5% by mass.
  • the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and the above-mentioned non-aqueous electrolyte. In the present invention, it is preferable to interpose a separator between the positive electrode and the negative electrode.
  • a separator between the positive electrode and the negative electrode.
  • the positive electrode used in the present invention can be manufactured according to a known method. For example, a mixture containing a positive electrode active material, a binder, and a conductive auxiliary agent is applied to a current collector by applying an electrode mixture paste prepared by slurrying it with an organic solvent or water, and then dried to form an electrode mixture on the current collector. A layered positive electrode can be manufactured.
  • a known positive electrode active material can be used.
  • known positive electrode active materials include lithium transition metal composite oxides, lithium-containing transition metal phosphate compounds, lithium-containing silicate compounds, lithium-containing transition metal sulfate compounds, and the like.
  • transition metal of the lithium-transition metal composite oxide vanadium, titanium, chromium, manganese, iron, cobalt, nickel, copper and the like are preferable.
  • These positive electrode active materials may be used alone or in combination of two or more.
  • lithium transition metal composite oxide examples include lithium cobalt composite oxides such as LiCoO 2 , lithium nickel composite oxides such as LiNiO 2 , and lithium manganese composite oxides such as LiMnO 2 , LiMn 2 O 4 , and Li 2 MnO 3.
  • LiCoO 2 lithium cobalt composite oxides
  • LiNiO 2 lithium nickel composite oxides
  • lithium manganese composite oxides such as LiMnO 2 , LiMn 2 O 4
  • Li 2 MnO 3 Li 2 MnO 3.
  • a part of the transition metal atom that is the main constituent of these lithium-transition metal composite oxides such as aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, lithium, nickel, copper, zinc, magnesium, gallium, and zirconium. Those substituted with other metals may be mentioned.
  • the lithium transition metal composite oxide in which a part of the main transition metal atom is replaced with another metal is, for example, Li 1.1 Mn 1.8 Mg 0.1 O 4 , Li 1.1 Mn 1.85 Al 0.05 O 4 , LiNi 0.5 Co 0.2 Mn 0.3.
  • iron phosphate compounds such as LiCoPO 4
  • lithium-containing silicate compound examples include Li 2 FeSiO 4 .
  • lithium-containing transition metal sulfuric acid compound examples include LiFeSO 4 , LiFeSO 4 F and the like.
  • any of various forms such as powdered sulfur, insoluble sulfur, precipitated sulfur and colloidal sulfur can be used. Powdered sulfur is preferable because it is uniformly dispersed in the electrode mixture paste.
  • the sulfur-modified organic compound is a mixture of sulfur and a polyacrylonitrile compound, an elastomer compound, a pitch compound, a polynuclear aromatic ring compound, an aliphatic hydrocarbon oxide, a polyether compound, a polythienoacene compound, a polyamide compound, a hexachlorobutadiene compound, It can be produced by heat denaturation at 250° C. to 600° C. in a non-oxidizing gas atmosphere.
  • the non-oxidizing gas atmosphere has an oxygen concentration of less than 5% by volume, preferably less than 2% by volume, and more preferably an atmosphere containing substantially no oxygen, that is, an atmosphere of nitrogen, helium, argon or the like.
  • the sulfur content in the sulfur-modified organic compound is preferably 25% by mass to 80% by mass.
  • the sulfur-modified polyacrylonitrile compound is preferable because it can provide a large charge/discharge capacity and stable cycle characteristics.
  • the sulfur-carbon composite is a composite of sulfur and carbon mechanically, a composite of sulfur and carbon chemically, or a simple substance of sulfur contained in the pores of porous carbon. And can be used as an electrode active material of a secondary battery capable of inserting and extracting lithium ions. If the sulfur content in the sulfur-carbon composite is too low, the charge/discharge capacity does not increase, and if it is too high, the electron conductivity decreases, so 25% by mass to 90% by mass is preferable, and 30% by mass to 70% by mass. Mass% is more preferable. As a method of supporting elemental sulfur in the pores of the porous carbon, a known method can be adopted.
  • the sulfur content in the sulfur-modified organic compound and the sulfur-carbon complex can be calculated by elemental analysis using a CHN analyzer capable of analyzing sulfur and oxygen, for example, a Vario MICRO cube manufactured by Elementer.
  • the diameter (D50) is preferably 0.5 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, and further preferably 1 ⁇ m to 30 ⁇ m.
  • the average particle diameter (D50) means a 50% particle diameter measured by a laser diffraction light scattering method.
  • the particle diameter is a volume-based diameter, and the diameter of secondary particles is measured by the laser diffraction light scattering method.
  • the positive electrode active material can be made into a desired particle size by a method such as pulverization or granulation.
  • the pulverization may be dry pulverization performed in a gas or wet pulverization performed in a liquid such as water.
  • industrial pulverization methods include a ball mill, roller mill, turbo mill, jet mill, cyclone mill, hammer mill, pin mill, rotary mill, vibration mill, planetary mill, attritor, and bead mill.
  • binders can be used.
  • the binder include, for example, styrene-butadiene rubber, butadiene rubber, acrylonitrile-butadiene rubber, ethylene-propylene-diene rubber, styrene-isoprene rubber, fluororubber, polyethylene, polypropylene, polyacrylamide, polyamide, polyamideimide, polyimide, Polyacrylonitrile, polyurethane, polyvinylidene fluoride, polytetrafluoroethylene, styrene-acrylic acid ester copolymer, ethylene-vinyl alcohol copolymer, polymethyl methacrylate, polyacrylate, polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, polyvinyl ether, Examples thereof include polyvinyl chloride, acrylic acid, polyacrylic acid, methyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose, cellulose nanofibers and starch.
  • the binder may be used alone
  • the content of the binder is preferably 0.5 parts by mass to 30 parts by mass, and more preferably 1 part by mass to 20 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • the conduction aid those known as a conduction aid for electrodes can be used.
  • the conductive additive include, for example, natural graphite, artificial graphite, coal tar pitch, carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, roller black, disk black, carbon.
  • Carbon materials such as nanotubes, vapor grown carbon fibers (VGCF), exfoliated graphite, graphene, fullerene, needle coke; metal powders such as aluminum powder, nickel powder, titanium powder; zinc oxide, titanium oxide, etc.
  • Conductive metal oxides; sulfides such as La 2 S 3 , Sm 2 S 3 , Ce 2 S 3 and TiS 2 .
  • the average particle diameter (D50) of the conductive additive is preferably 0.0001 ⁇ m to 100 ⁇ m, more preferably 0.01 ⁇ m to 50 ⁇ m.
  • the content of the conductive additive is usually 0.1 parts by mass to 50 parts by mass, preferably 0.5 parts by mass to 30 parts by mass, and preferably 1 part by mass to 100 parts by mass of the electrode active material. It is more preferably 20 parts by mass.
  • a solvent for preparing the electrode mixture paste for the positive electrode for example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, acetonitrile, propylene carbonate, etc.
  • the amount of the solvent used can be adjusted according to the coating method selected when coating the electrode mixture paste.
  • the total of the positive electrode active material, the binder and the conductive additive is preferably 15 parts by mass to 300 parts by mass, and more preferably 30 parts by mass to 200 parts by mass, relative to 100 parts by mass.
  • the electrode mixture paste for the positive electrode contains, in addition to the above components, other components such as a viscosity modifier, a reinforcing material, an antioxidant, a pH modifier, and a dispersant, in a range that does not impair the effects of the present invention. You may let me.
  • known components can be used in a known mixing ratio.
  • the positive electrode active material, the binder and the conductive auxiliary agent are dispersed or dissolved in the solvent, all of them may be collectively added to the solvent for dispersion treatment, or they may be added separately for dispersion treatment. May be. It is preferable to sequentially add the binder, the conductive auxiliary agent, and the positive electrode active material in this order to the solvent for dispersion treatment, because these can be uniformly dispersed in the solvent.
  • the electrode mixture paste contains other components, the other components can be collectively added for dispersion treatment, but it is preferable to perform the dispersion treatment every time one other component is added.
  • the method of dispersion treatment is not particularly limited, but as an industrial method, for example, a usual ball mill, sand mill, bead mill, cyclone mill, pigment disperser, grinder, ultrasonic disperser, homogenizer, rotation/revolution mixer, A planetary mixer, a fill mix, a jet pasta, etc. can be used.
  • a conductive material such as titanium, titanium alloy, aluminum, aluminum alloy, nickel, stainless steel, nickel plated steel, or carbon is used.
  • the shape of the current collector include a foil shape, a plate shape, a net shape, a foam shape, and a non-woven cloth shape.
  • the current collector may be porous or non-porous.
  • these conductive materials may be surface-treated in order to improve adhesion and electrical characteristics.
  • aluminum is preferable and aluminum foil is particularly preferable from the viewpoint of conductivity and price.
  • the thickness of the current collector is not particularly limited, but is usually 5 ⁇ m to 30 ⁇ m.
  • the method of applying the electrode mixture paste of the positive electrode onto the current collector is not particularly limited, and examples thereof include die coater method, comma coater method, curtain coater method, spray coater method, gravure coater method, flexo coater method, knife coater. Method, doctor blade method, reverse roll method, brush coating method, dip method and the like can be used.
  • the die coater method, the knife coater method, the doctor blade method and the comma coater method are preferable in that a good coating layer surface state can be obtained in accordance with the viscosity and the drying property of the electrode mixture paste.
  • the application of the electrode mixture paste for the positive electrode onto the current collector may be performed on one side or both sides of the current collector. When it is applied to both sides of the current collector, it may be applied one side at a time or may be applied to both sides simultaneously. Further, it may be applied continuously, intermittently or in stripes on the surface of the current collector.
  • the thickness, length and width of the coating layer can be appropriately determined according to the size of the battery and the like.
  • the method for drying the electrode mixture paste for the positive electrode applied on the current collector is not particularly limited, and a known method can be used.
  • the drying method include drying with warm air, hot air, and low humidity air, vacuum drying, and drying by irradiating with far infrared rays, infrared rays, electron beams, or the like, which is left standing in a heating furnace or the like. These drying methods may be carried out in combination.
  • the temperature for heating is generally about 50° C. to 180° C., but conditions such as temperature can be appropriately set depending on the application amount of the electrode mixture paste, the boiling point of the solvent used, and the like.
  • lithium can be pre-doped.
  • the method of doping the material may be a known method.
  • a half battery is assembled using metallic lithium as the counter electrode, and lithium is inserted by an electrolytic doping method in which lithium is electrochemically doped.
  • a metallic lithium foil is attached to an electrode and then left in an electrolytic solution. Then, a method of inserting lithium by a pasting dope method of doping by utilizing diffusion of lithium to an electrode, a mechanical doping method of mechanically colliding a positive electrode active material and a lithium metal, and inserting lithium.
  • it is not limited to these.
  • the negative electrode used in the present invention can be manufactured according to a known method. For example, a mixture containing a negative electrode active material, a binder, and a conductive auxiliary agent is applied to a current collector by applying an electrode mixture paste prepared by slurrying it with an organic solvent or water, and then dried to form an electrode mixture on the current collector. A layered negative electrode can be manufactured.
  • a known negative electrode active material can be used.
  • Known negative electrode active materials include, for example, natural graphite, artificial graphite, non-graphitizable carbon, graphitizable carbon, lithium, lithium alloy, silicon, silicon alloy, silicon oxide, tin, tin alloy, tin oxide, phosphorus, germanium. , Indium, copper oxide, antimony sulfide, titanium oxide, iron oxide, manganese oxide, cobalt oxide, nickel oxide, lead oxide, ruthenium oxide, tungsten oxide, zinc oxide, LiVO 2 , Li 2 VO 4 , Li 4 Ti 5 O 12 , complex oxides such as titanium-niobium-based oxides and the like can be mentioned. These negative electrode active materials may be used alone or in combination of two or more.
  • sulfur, sulfur-modified organic compound, and sulfur-carbon composite that can be used as the negative electrode active material use the same sulfur, sulfur-modified organic compound, and sulfur-carbon composite that can be used as the positive electrode active material. You can
  • the diameter (D50) is preferably 0.01 ⁇ m to 100 ⁇ m, more preferably 0.5 ⁇ m to 50 ⁇ m, and further preferably 1 ⁇ m to 30 ⁇ m.
  • the negative electrode active material can be made into a desired particle size by a method such as pulverization or granulation.
  • the pulverization may be dry pulverization performed in a gas or wet pulverization performed in a liquid such as water.
  • Examples of the industrial pulverization method include a ball mill, a roller mill, a turbo mill, a jet mill, a cyclone mill, a hammer mill, a pin mill, a rotary mill, a vibration mill, a planetary mill, an attritor, and a bead mill.
  • binders can be used. Specific examples of the binder include those similar to the binder used for the positive electrode. The binder may be used alone or in combination of two or more.
  • the content of the binder is preferably 1 part by mass to 30 parts by mass, and more preferably 1 part by mass to 20 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the conductive additive a known conductive additive for electrodes can be used. Specific examples of the conductive additive include those similar to the conductive additive used for the positive electrode.
  • the average particle diameter (D50) of the conductive additive is preferably 0.0001 ⁇ m to 100 ⁇ m, more preferably 0.01 ⁇ m to 50 ⁇ m.
  • the content of the conductive additive is usually 0 parts by mass to 50 parts by mass, preferably 0 parts by mass to 30 parts by mass, and 0.5 parts by mass to 20 parts by mass with respect to 100 parts by mass of the electrode active material. More preferably, it is a part.
  • the solvent for preparing the electrode mixture paste for the negative electrode the same solvents as those used for preparing the electrode mixture paste for the positive electrode can be mentioned.
  • the amount of the solvent used can be adjusted according to the coating method selected when coating the electrode mixture paste, for example, in the case of coating by the doctor blade method, the total amount of the negative electrode active material, the binder and the conductive additive.
  • the amount is preferably 15 parts by mass to 300 parts by mass, more preferably 30 parts by mass to 200 parts by mass, relative to 100 parts by mass.
  • the electrode mixture paste of the negative electrode contains, in addition to the above components, other components such as a viscosity adjusting agent, a reinforcing material, an antioxidant, a pH adjusting agent, and a dispersant as long as the effects of the present invention are not impaired. You may let me.
  • known components can be used in a known mixing ratio.
  • the negative electrode mixture paste can be manufactured by mixing, dispersing and manufacturing in the same process as the positive electrode mixture paste manufacturing process except that the negative electrode active material is used instead of the positive electrode active material.
  • a conductive material such as titanium, titanium alloy, aluminum, aluminum alloy, copper, nickel, stainless steel, nickel plated steel, or carbon is used.
  • the shape of the current collector include a foil shape, a plate shape, a net shape, a foam shape, and a non-woven cloth shape.
  • the current collector may be porous or non-porous.
  • these conductive materials may be surface-treated in order to improve adhesion and electrical characteristics.
  • copper is preferable, and copper foil is particularly preferable, from the viewpoint of stability at negative electrode potential, conductivity, and price.
  • the thickness of the current collector is not particularly limited, but is usually 3 ⁇ m to 30 ⁇ m.
  • the negative electrode active material is a metal or a metal alloy such as lithium, a lithium alloy, tin, or a tin alloy
  • the electrode mixture paste is not prepared using a binder, a conductive auxiliary agent, or a solvent
  • the metal or alloy is, for example, a plate-like material. It can also be used in the form of a sheet, a film, or the like.
  • the alloy is used as the negative electrode active material, the negative electrode active material itself has a high electron conductivity, so that it is not necessary to use a current collector. However, depending on the structure of the battery, an alloy is formed with the negative electrode active material. A metal material that does not exist can also be used as the negative electrode current collector.
  • the method of applying the electrode mixture paste of the negative electrode onto the current collector is not particularly limited, and examples thereof include a coating method used when manufacturing the positive electrode.
  • the application of the electrode mixture paste for the negative electrode onto the current collector may be performed on one side or both sides of the current collector. When it is applied to both sides of the current collector, it may be applied one side at a time or may be applied to both sides simultaneously. Further, it may be applied continuously, intermittently or in stripes on the surface of the current collector.
  • the thickness, length and width of the coating layer can be appropriately determined according to the size of the battery and the like.
  • the method of drying the electrode mixture paste of the negative electrode applied on the current collector is not particularly limited, and a known method can be used.
  • the drying method include drying with warm air, hot air, and low humidity air, vacuum drying, and drying by irradiating with far infrared rays, infrared rays, electron beams, or the like, which is left standing in a heating furnace or the like. These drying methods may be carried out in combination.
  • the temperature for heating is generally about 50° C. to 180° C., but conditions such as temperature can be appropriately set depending on the application amount of the electrode mixture paste, the boiling point of the solvent used, and the like.
  • lithium can be pre-doped.
  • the method of doping the material may be a known method. For example, assembling a half-cell using metallic lithium as the counter electrode and inserting lithium by an electrolytic doping method in which lithium is electrochemically doped, or by attaching a metallic lithium foil to an electrode and then leaving it in an electrolytic solution Then, a method of inserting lithium by a pasting dope method of doping by utilizing diffusion of lithium to the electrode, a mechanical dope method of mechanically colliding a negative electrode active material and lithium metal, and inserting lithium.
  • it is not limited to these.
  • a commonly used polymer film, glass film or the like can be used without particular limitation.
  • the polymer film include, for example, polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyether sulfone, polycarbonate, polyamide, polyimide, polyethylene oxide and polypropylene.
  • Polyethers such as oxides, various celluloses such as carboxymethyl cellulose and hydroxypropyl cellulose, polymer compounds mainly containing poly(meth)acrylic acid and various esters thereof, derivatives thereof, copolymers thereof, and the like.
  • Examples include films made of a mixture, and these films may be coated with a ceramic material such as alumina or silica, magnesium oxide, an aramid resin, or polyvinylidene fluoride. These films can be used alone or can be used as a multilayer film by superposing these polymer films. Further, various additives can be used in these polymer films, and the kind and content thereof are not particularly limited. Among these polymer films, a film made of polyethylene, polypropylene, polyvinylidene fluoride or polysulfone is preferably used.
  • micropores These polymer films are microporous so that the non-aqueous electrolyte can penetrate and the ions can easily permeate.
  • a “phase separation method” in which a solution of a polymer compound and a solvent is subjected to microphase separation to form a film, and the solvent is extracted and removed to make the polymer porous, and a molten polymer compound is highly drafted.
  • the film is extruded into a film and then heat-treated to arrange the crystals in one direction, and further, a "stretching method” in which a gap is formed between the crystals to form a porosity, which is appropriately selected depending on the polymer film used.
  • FIG. 1 is a vertical cross-sectional view schematically showing an example of the structure of a coin-type battery of the non-aqueous electrolyte secondary battery of the present invention.
  • FIG. 2 is a schematic diagram showing the basic configuration of a cylindrical battery of the non-aqueous electrolyte secondary battery of the present invention.
  • FIG. 3 is a perspective view showing the internal structure of a cylindrical battery of the non-aqueous electrolyte secondary battery of the present invention as a cross section.
  • a coin-type non-aqueous electrolyte secondary battery 10 shown in FIG. 1 includes a positive electrode current collector 1a, a positive electrode mixture layer 1 formed on the positive electrode current collector 1a and capable of releasing lithium ions, a positive electrode current collector 1a and a positive electrode current collector 1a.
  • the interiors of the positive electrode case 4 and the negative electrode case 5 are filled with the non-aqueous electrolyte 3. Further, the peripheral portions of the positive electrode case 4 and the negative electrode case 5 are sealed by being caulked with a polypropylene gasket 6.
  • the cylindrical non-aqueous electrolyte secondary battery 10 ′ shown in FIGS. 2 and 3 includes an electrode body in which a negative electrode plate 19 and a positive electrode plate 21 are wound with a separator 7 in between, and a case 23 for housing the electrode body. , A pair of insulating plates 24 arranged so as to sandwich the electrode body.
  • the positive electrode plate 21 is composed of a positive electrode current collector 1a and a positive electrode mixture layer 1 formed on the positive electrode current collector 1a and capable of releasing lithium ions.
  • the negative electrode plate 19 includes a negative electrode current collector 2a and a negative electrode mixture layer 2 formed on the negative electrode current collector 2a and capable of absorbing and releasing lithium ions released from the positive electrode mixture layer 1.
  • the inside of the case 23 is filled with the non-aqueous electrolyte 3.
  • the positive electrode terminal 17 and a safety valve 26 and a PTC (Positive Temperature Coefficient) element 27 provided inside the positive electrode terminal 17 are sealed by being caulked via a gasket 6.
  • the negative electrode plate 19 is connected to the negative electrode terminal 18 via a negative electrode lead 20.
  • the positive electrode plate 21 is connected to the positive electrode terminal 17 via a positive electrode lead 22.
  • the exterior member used for the positive electrode case 4, the negative electrode case 5, and the case 23, a metal container, a laminated film, etc. may be mentioned.
  • the thickness of the exterior member is usually 0.5 mm or less, preferably 0.3 mm or less.
  • Examples of the shape of the exterior member include a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
  • the metal container can be formed of, for example, stainless steel, aluminum, an aluminum alloy, or the like.
  • the aluminum alloy an alloy containing an element such as magnesium, zinc or silicon is preferable.
  • the laminate film a multilayer film having a metal layer between resin films can be used.
  • the metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction.
  • a polymer material such as polypropylene, polyethylene, nylon, polyethylene terephthalate can be used.
  • the laminate film can be sealed by heat fusion to form an exterior member.
  • NCM622 LiNi 0.6 Co 0.2 Mn 0.2 O 2 , manufactured by Beijing Tosho Co., Ltd.
  • acetylene black Diska Black, manufactured by Denka Co., Ltd.
  • a binder 3.0 parts by mass of polyvinylidene fluoride (manufactured by Kureha Co., Ltd.) and 90 parts by mass of N-methylpyrrolidone as a solvent were dispersed using a planetary mixer to obtain a slurry electrode mixture paste.
  • This electrode mixture paste was applied to one side of a current collector made of aluminum foil (thickness: 15 ⁇ m) by the doctor blade method, dried at 90° C., and then press-molded. After that, the electrode was cut into a predetermined size and further vacuum dried at 130° C. for 3 hours immediately before use to prepare a positive electrode A.
  • Negative Electrode A 96.6 parts by mass of artificial graphite (MAGD: manufactured by Hitachi Chemical Co., Ltd.) as a negative electrode active material, 0.4 parts by mass of acetylene black (Denka Black, manufactured by Denka Co., Ltd.) as a conductive additive, and styrene-butadiene rubber (40 2.0% by mass of a mass% aqueous dispersion, manufactured by Nippon Zeon Co., Ltd., 1.0 part by mass of sodium carboxymethylcellulose (CMCNa: manufactured by Daicel FineChem), and 120 parts by mass of water as a solvent, using a planetary mixer. And dispersed to obtain a slurry-like electrode mixture paste.
  • CMCNa sodium carboxymethylcellulose
  • This electrode mixture paste was applied to one side of a current collector made of copper foil (thickness 10 ⁇ m) by the doctor blade method, dried at 90° C., and then press-molded. After that, the electrode was cut into a predetermined size and further vacuum dried at 130° C. for 3 hours immediately before use to prepare a negative electrode A.
  • Example 1 A solution was prepared by dissolving LiPF 6 as a supporting electrolyte at a concentration of 1.0 mol/L in a mixed solvent consisting of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate. To this, 1.0% by mass of compound 1-1 was added to obtain a non-aqueous electrolyte. A positive electrode A cut into a disk shape and a negative electrode A cut into a disk shape were used, and a polypropylene film (manufactured by Celgard) was sandwiched between the separators and held in a case.
  • Example 1 a non-aqueous electrolyte secondary battery of Example 1 (coin type having a diameter of 20 mm and a thickness of 3.2 mm).
  • the cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of Charge/Discharge Evaluation-1, and the results are shown in Table 1.
  • Example 2 A non-aqueous electrolyte secondary battery of Example 2 was produced in the same manner as in Example 1 except that 0.1% by mass of Compound 1-1 was added to the non-aqueous electrolyte.
  • the cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of Charge/Discharge Evaluation-1, and the results are shown in Table 1.
  • Example 3 A non-aqueous electrolyte secondary battery of Example 3 was produced in the same manner as in Example 1 except that Compound 1-1 was added to the non-aqueous electrolyte in an amount of 5.0% by mass.
  • the cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of Charge/Discharge Evaluation-1, and the results are shown in Table 1.
  • Nonaqueous electrolyte secondary batteries of Examples 4 to 25 were produced in the same manner as in Example 1 except that the compounds shown in Table 1 were added to the nonaqueous electrolyte instead of the compound 1-1.
  • the numbers in parentheses added to the compound numbers in Table 1 show the weight fraction (mass %) of each additive compound in the non-aqueous electrolyte.
  • the cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of Charge/Discharge Evaluation-1, and the results are shown in Table 1.
  • Non-aqueous electrolyte secondary batteries of Comparative Examples 1 to 7 were prepared in the same manner as in Example 1 except that the following compounds 5-1 to 5-7 were added to the non-aqueous electrolyte instead of the compound 1-1. ..
  • the cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of Charge/Discharge Evaluation-1, and the results are shown in Table 1.
  • Comparative Example 8 A non-aqueous electrolyte secondary battery of Comparative Example 8 was produced by the same operation as in Example 1 except that Compound 1-1 was not added. The cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of Charge/Discharge Evaluation-1, and the results are shown in Table 1.
  • ⁇ Production of Positive Electrode B 90.0 parts by mass of SPAN as a positive electrode active material, 5.0 parts by mass of acetylene black (Denka Black, manufactured by Denka) as a conductive additive, and styrene-butadiene rubber (40% by mass aqueous dispersion, manufactured by Nippon Zeon) as a binder. ), 2.0 parts by mass of sodium carboxymethyl cellulose (CMCNa, manufactured by Daicel FineChem) and 120 parts by mass of water as a solvent, and the slurry-like electrode mixture is dispersed by using a rotation/revolution mixer. An agent paste was obtained.
  • CMCNa sodium carboxymethyl cellulose
  • This electrode mixture paste was applied by a doctor blade method to one side of a current collector made of carbon-coated aluminum foil (thickness: 22 ⁇ m), dried at 90° C., and then press-molded. After that, the electrode was cut into a predetermined size and further vacuum dried at 130° C. for 3 hours immediately before use. After that, a half battery using the nonaqueous electrolyte of Comparative Example 8 was assembled using metallic lithium as a counter electrode, and lithium was electrochemically doped to produce a positive electrode B.
  • Example 26 A solution was prepared by dissolving LiPF 6 at a concentration of 1.0 mol/L in a mixed solvent consisting of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate. Compound 1-37 was added to this in an amount of 1.0% by mass to give a non-aqueous electrolyte.
  • a positive electrode B cut into a disk shape and a negative electrode A cut into a disk shape were used, and a polypropylene film (manufactured by Celgard) was sandwiched between the separators and held in a case.
  • non-aqueous electrolyte prepared above was injected into the case and sealed with a caulking machine to prepare a non-aqueous electrolyte secondary battery of Example 26 (coin type having a diameter of 20 mm and a thickness of 3.2 mm).
  • the cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of charge/discharge evaluation-2, and the results are shown in Table 2.
  • Non-aqueous electrolyte secondary batteries of Examples 27 to 29 were produced in the same manner as in Example 26, except that the compounds shown in Table 2 were added instead of the compound 1-37.
  • the cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of charge/discharge evaluation-2, and the results are shown in Table 2.
  • Comparative Example 9 A non-aqueous electrolyte secondary battery of Comparative Example 9 was produced by the same operation as in Example 26 except that Compound 1-37 was not added. The cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of charge/discharge evaluation-2, and the results are shown in Table 2.
  • Positive electrode mixture layer 1 Positive electrode mixture layer 1a Positive electrode current collector 2 Negative electrode mixture layer 2a Negative electrode current collector 3 Non-aqueous electrolyte 4 Positive electrode case 5 Negative electrode case 6 Gasket 7 Separator 10 Coin type non-aqueous electrolyte secondary battery 10' Cylindrical non- Water electrolyte secondary battery 17 Positive electrode terminal 18 Negative electrode terminal 19 Negative electrode plate 20 Negative electrode lead 21 Positive electrode plate 22 Positive electrode lead 23 Case 24 Insulating plate 26 Safety valve 27 PTC element

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

This electrolyte composition contains at least one compound selected from the group consisting of compounds represented by general formula (1), and at least one item selected from a solvent and a dispersion medium. (In the formula, R1 is a hydrocarbon group with 1-8 carbon atoms, R2-R5 are independently a hydrogen atom, a hydrocarbon group with 1-8 carbon atoms, etc., R6 is a hydrocarbon group with 1-8 carbon atoms, etc., and n is an integer between 1 and 4.)

Description

電解質用組成物、非水電解質及び非水電解質二次電池Electrolyte composition, non-aqueous electrolyte and non-aqueous electrolyte secondary battery
 本発明は、電解質用組成物、非水電解質及び非水電解質二次電池に関する。 The present invention relates to a composition for electrolyte, a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery.
 リチウムイオン二次電池などの非水電解質二次電池は、小型で軽量、かつエネルギー密度が高く、更に繰り返し充放電が可能であり、携帯用パソコン、ハンディビデオカメラ、情報端末等の携帯電子機器の電源として広く用いられている。また、環境問題の観点から、非水電解質二次電池を使用した電気自動車や、動力の一部に電力を利用したハイブリッド車の実用化が行われている。そのため、近年では、二次電池のさらなる性能向上が求められている。 Non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries are small, lightweight, have high energy density, and can be repeatedly charged and discharged, and are used in portable electronic devices such as portable personal computers, handy video cameras, and information terminals. Widely used as a power source. From the viewpoint of environmental problems, electric vehicles that use non-aqueous electrolyte secondary batteries and hybrid vehicles that use electric power as a part of power have been put into practical use. Therefore, in recent years, further improvement in performance of secondary batteries has been demanded.
 非水電解質二次電池は、正極、負極、セパレータ、非水電解質等の部材から構成される。正極及び負極は、通常、集電体と、集電体上に形成された電極合剤層とを備えている。電極合剤層は、例えばリチウムイオンを吸蔵・放出し得る電極活物質と、バインダーなどを分散媒に分散させてなるスラリー組成物を集電体上に塗布し、乾燥させることによって形成される。 A non-aqueous electrolyte secondary battery is composed of members such as a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte. The positive electrode and the negative electrode usually include a current collector and an electrode mixture layer formed on the current collector. The electrode mixture layer is formed, for example, by applying an electrode active material capable of occluding/releasing lithium ions and a slurry composition obtained by dispersing a binder and the like in a dispersion medium onto a current collector and drying.
 二次電池の性能を向上させる方法として、非水電解質に添加剤を使用する方法が提案されている。例えば、ビニレンカーボネート(例えば、特許文献1を参照)、メチルフェニルカーボネート(例えば、特許文献2を参照)、(テトラフルオロベンゾ-1,2-ジオキシル)-ペンタフルオロフェニル-ボラン(例えば、特許文献3を参照)、ピルビン酸メチル(例えば、特許文献4を参照)、マロン酸ジメチル(例えば、特許文献5を参照)、N,N-ジメチルスルホンアミド(例えば、特許文献6を参照)、ビニルスルホンアミド(例えば、特許文献7を参照)、シュウ酸ペンタフルオロフェニルメチル(例えば、特許文献8を参照)、フェニルシラン(例えば、特許文献9を参照)等を非水電解質に添加することで、サイクル特性や充放電容量、高温下での保存特性等の電池性能を向上させることができるとされている。 As a method of improving the performance of the secondary battery, a method of using an additive in the non-aqueous electrolyte has been proposed. For example, vinylene carbonate (for example, see Patent Document 1), methylphenyl carbonate (for example, see Patent Document 2), (tetrafluorobenzo-1,2-dioxyl)-pentafluorophenyl-borane (for example, Patent Document 3). ), methyl pyruvate (see, for example, Patent Document 4), dimethyl malonate (see, for example, Patent Document 5), N,N-dimethylsulfonamide (see, for example, Patent Document 6), vinylsulfonamide. (For example, refer to Patent Document 7), pentafluorophenylmethyl oxalate (for example, refer to Patent Document 8), phenylsilane (for example, refer to Patent Document 9), etc. are added to the non-aqueous electrolyte to improve cycle characteristics. It is said that battery performance such as charge and discharge capacity and storage characteristics at high temperature can be improved.
特開2000-123867号公報Japanese Patent Laid-Open No. 2000-123867 特開平08-293323号公報Japanese Patent Laid-Open No. 08-293323 特表2008-532248号公報Japanese Patent Publication No. 2008-532248 国際公開第2006/070546号International Publication No. 2006/070546 特開2002-367673号公報JP-A-2002-376673 特開2004-259697号公報JP, 2004-259697, A 特開2013-93242号公報JP, 2013-93242, A 特開2007-112737号公報JP 2007-121373A 特開2008-210769号公報JP, 2008-210769, A
 しかしながら、電池性能の向上のため多くの電解質添加剤が開発されているものの、サイクル特性(充放電を繰り返した後の電池容量の維持性能)は充分なものではなく、更にサイクル特性の向上だけでなく、短時間で充放電しても容量低下が少ない、優れたレート特性も併せて求められており、サイクル特性及びレート特性を同時に向上させる必要があった。 However, although many electrolyte additives have been developed to improve battery performance, the cycle characteristics (maintaining capacity of battery capacity after repeated charging/discharging) are not sufficient, and further improvement of cycle characteristics is not enough. There is also a need for excellent rate characteristics, in which the capacity is less likely to decrease even if the battery is charged and discharged in a short time, and it is necessary to improve the cycle characteristics and the rate characteristics at the same time.
 従って、本発明は、非水電解質二次電池のサイクル特性及びレート特性を向上させることができる電解質用組成物を提供することを目的とする。 Therefore, an object of the present invention is to provide a composition for an electrolyte that can improve the cycle characteristics and rate characteristics of a non-aqueous electrolyte secondary battery.
 即ち、本発明は、下記一般式(1)~(4)で表される化合物からなる群から選ばれる少なくとも1種の化合物と、溶媒及び分散媒から選ばれる少なくとも1種とを含有する電解質用組成物である。 That is, the present invention is for an electrolyte containing at least one compound selected from the group consisting of compounds represented by the following general formulas (1) to (4) and at least one compound selected from a solvent and a dispersion medium. It is a composition.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、R1は、炭素原子数1~8の炭化水素基であり、R2~R5は、各々独立に、水素原子、炭素原子数1~8の炭化水素基、炭素原子数1~6のアルコキシ基又は下記式(1-a)であり、R6は、ニトロ基、スルホン酸基、炭素原子数1~8の炭化水素基、炭素原子数1~6のアルコキシ基、下記式(1-b)又は下記式(1-c)であり、R6が炭素原子数1~8の炭化水素基である場合には、n=1~4の整数であり、R6が、ニトロ基、スルホン酸基、炭素原子数1~6のアルコキシ基又は下記式(1-b)である場合には、n=1であり、R6が下記式(1-c)である場合には、n=2である。) (In the formula, R 1 is a hydrocarbon group having 1 to 8 carbon atoms, and R 2 to R 5 are each independently a hydrogen atom, a hydrocarbon group having 1 to 8 carbon atoms, or a carbon atom having 1 carbon atom. An alkoxy group having 1 to 6 or the following formula (1-a), wherein R 6 is a nitro group, a sulfonic acid group, a hydrocarbon group having 1 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or the following formula In the formula (1-b) or the following formula (1-c), when R 6 is a hydrocarbon group having 1 to 8 carbon atoms, n is an integer of 1 to 4 and R 6 is nitro. Group, sulfonic acid group, alkoxy group having 1 to 6 carbon atoms or the following formula (1-b), n=1, and R 6 is the following formula (1-c): , N=2.)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中の※は結合位置を表す。) (* in the formula represents the bonding position.)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、R7は、下記式(1-d)又は下記式(1-e)である。) (In the formula, R 7 is the following formula (1-d) or the following formula (1-e).)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、R8~R16は、各々独立に、水素原子、無置換の炭素原子数1~8の炭化水素基、水素原子の一部がフッ素原子で置換された炭素原子数1~8の炭化水素基、無置換の炭素原子数1~6のアルコキシ基、水素原子の一部がフッ素原子で置換された炭素原子数1~6のアルコキシ基、無置換の炭素原子数1~6のチオアルコキシ基、水素原子の一部がフッ素原子で置換された炭素原子数1~6のチオアルコキシ基、炭素原子数1~8の炭化水素基を有するスルホニル基又は炭素原子数1~8の炭化水素基を有するアシル基であり、※は結合位置を表す。) (In the formula, R 8 to R 16 are each independently a hydrogen atom, an unsubstituted hydrocarbon group having 1 to 8 carbon atoms, or 1 to 8 carbon atoms in which a part of hydrogen atoms are substituted with fluorine atoms. Hydrocarbon group, an unsubstituted alkoxy group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms in which a part of hydrogen atoms have been replaced by a fluorine atom, an unsubstituted alkoxy group having 1 to 6 carbon atoms Thioalkoxy group, thioalkoxy group having 1 to 6 carbon atoms in which some hydrogen atoms are substituted with fluorine atoms, sulfonyl group having a hydrocarbon group having 1 to 8 carbon atoms, or carbonization having 1 to 8 carbon atoms It is an acyl group having a hydrogen group, and * represents the bonding position.)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、m=1又は2であり、m=1の場合、R17~R19は、各々独立に、炭素原子数1~8の炭化水素基であり、R18及びR19は、連結して環を形成してもよく、m=2の場合、R17及びR19は、各々独立に、炭素原子数1~8の炭化水素基であり、R18は単結合である。) (In the formula, when m=1 or 2, and m=1, R 17 to R 19 are each independently a hydrocarbon group having 1 to 8 carbon atoms, and R 18 and R 19 are linked to each other. To form a ring, and when m=2, R 17 and R 19 are each independently a hydrocarbon group having 1 to 8 carbon atoms, and R 18 is a single bond.)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式中、R20及びR21は、各々独立に、炭素原子数1~8の炭化水素基又は炭素原子数1~6のアルコキシ基であり、R22~R31は、各々独立に、水素原子、炭素原子数1~8の炭化水素基、炭素原子数1~6のアルコキシ基、ハロゲン原子又はニトロ基である。) (In the formula, R 20 and R 21 are each independently a hydrocarbon group having 1 to 8 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, and R 22 to R 31 are independently hydrogen. An atom, a hydrocarbon group having 1 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a halogen atom or a nitro group.)
 本発明によれば、非水電解質二次電池のサイクル特性及びレート特性を向上させることができる電解質用組成物を提供することができる。 According to the present invention, it is possible to provide a composition for an electrolyte capable of improving the cycle characteristics and rate characteristics of a non-aqueous electrolyte secondary battery.
本発明の非水電解質二次電池のコイン型電池の構造の一例を概略的に示す縦断面図である。1 is a vertical cross-sectional view schematically showing an example of the structure of a coin-type battery of a non-aqueous electrolyte secondary battery of the present invention. 本発明の非水電解質二次電池の円筒型電池の基本構成を示す概略図である。It is a schematic diagram showing the basic composition of the cylindrical battery of the nonaqueous electrolyte secondary battery of the present invention. 本発明の非水電解質二次電池の円筒型電池の内部構造を断面として示す斜視図である。1 is a perspective view showing the internal structure of a cylindrical battery of a non-aqueous electrolyte secondary battery of the present invention as a cross section.
<電解質用組成物>
 本発明の電解質用組成物は、下記一般式(1)~(4)で表される化合物からなる群から選ばれる少なくとも1種の化合物と、溶媒及び分散媒から選ばれる少なくとも1種とを含有する。
<Composition for electrolyte>
The composition for electrolyte of the present invention contains at least one compound selected from the group consisting of compounds represented by the following general formulas (1) to (4) and at least one compound selected from a solvent and a dispersion medium. To do.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、R1は、炭素原子数1~8の炭化水素基であり、R2~R5は、各々独立に、水素原子、炭素原子数1~8の炭化水素基、炭素原子数1~6のアルコキシ基又は下記式(1-a)であり、R6は、ニトロ基、スルホン酸基、炭素原子数1~8の炭化水素基、炭素原子数1~6のアルコキシ基、下記式(1-b)又は下記式(1-c)であり、R6が炭素原子数1~8の炭化水素基である場合には、n=1~4の整数であり、R6が、ニトロ基、スルホン酸基、炭素原子数1~6のアルコキシ基又は下記式(1-b)である場合には、n=1であり、R6が下記式(1-c)である場合には、n=2である。) (In the formula, R 1 is a hydrocarbon group having 1 to 8 carbon atoms, and R 2 to R 5 are each independently a hydrogen atom, a hydrocarbon group having 1 to 8 carbon atoms, or a carbon atom having 1 carbon atom. An alkoxy group having 1 to 6 or the following formula (1-a), wherein R 6 is a nitro group, a sulfonic acid group, a hydrocarbon group having 1 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or the following formula In the formula (1-b) or the following formula (1-c), when R 6 is a hydrocarbon group having 1 to 8 carbon atoms, n is an integer of 1 to 4 and R 6 is nitro. Group, sulfonic acid group, alkoxy group having 1 to 6 carbon atoms or the following formula (1-b), n=1, and R 6 is the following formula (1-c): , N=2.)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式中の※は結合位置を表す。) (* in the formula represents the bonding position.)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式中、R7は下記式(1-d)又は下記式(1-e)である。) (In the formula, R 7 is the following formula (1-d) or the following formula (1-e).)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式中、R8~R16は、各々独立に、水素原子、無置換の炭素原子数1~8の炭化水素基、水素原子の一部がフッ素原子で置換された炭素原子数1~8の炭化水素基、無置換の炭素原子数1~6のアルコキシ基、水素原子の一部がフッ素原子で置換された炭素原子数1~6のアルコキシ基、無置換の炭素原子数1~6のチオアルコキシ基、水素原子の一部がフッ素原子で置換された炭素原子数1~6のチオアルコキシ基、炭素原子数1~8の炭化水素基を有するスルホニル基又は炭素原子数1~8の炭化水素基を有するアシル基であり、※は結合位置を表す。) (In the formula, R 8 to R 16 are each independently a hydrogen atom, an unsubstituted hydrocarbon group having 1 to 8 carbon atoms, or 1 to 8 carbon atoms in which a part of hydrogen atoms are substituted with fluorine atoms. Hydrocarbon group, an unsubstituted alkoxy group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms in which a part of hydrogen atoms have been replaced by a fluorine atom, an unsubstituted alkoxy group having 1 to 6 carbon atoms Thioalkoxy group, thioalkoxy group having 1 to 6 carbon atoms in which some hydrogen atoms are substituted with fluorine atoms, sulfonyl group having a hydrocarbon group having 1 to 8 carbon atoms, or carbonization having 1 to 8 carbon atoms It is an acyl group having a hydrogen group, and * represents the bonding position.)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(式中、m=1又は2であり、m=1の場合、R17~R19は、各々独立に、炭素原子数1~8の炭化水素基であり、R18及びR19は、連結して環を形成してもよく、m=2の場合、R17及びR19は、各々独立に、炭素原子数1~8の炭化水素基であり、R18は単結合である。) (In the formula, when m=1 or 2, and m=1, R 17 to R 19 are each independently a hydrocarbon group having 1 to 8 carbon atoms, and R 18 and R 19 are linked to each other. To form a ring, and when m=2, R 17 and R 19 are each independently a hydrocarbon group having 1 to 8 carbon atoms, and R 18 is a single bond.)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(式中、R20及びR21は、各々独立に、炭素原子数1~8の炭化水素基又は炭素原子数1~6のアルコキシ基であり、R22~R31は、各々独立に、水素原子、炭素原子数1~8の炭化水素基、炭素原子数1~6のアルコキシ基、ハロゲン原子又はニトロ基である。) (In the formula, R 20 and R 21 are each independently a hydrocarbon group having 1 to 8 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, and R 22 to R 31 are independently hydrogen. An atom, a hydrocarbon group having 1 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a halogen atom or a nitro group.)
 一般式(1)で表される化合物の、R1~R5を表す炭素原子数1~8の炭化水素基としては、例えば脂肪族炭化水素基、芳香族炭化水素基等が挙げられる。
 具体的には、メチル基、エチル基、プロピル基、i-プロピル基、ブチル基、2-ブチル基、i-ブチル基、t-ブチル基、ペンチル基、2-ペンチル基、3-ペンチル基、i-ペンチル基、ヘキシル基、2-ヘキシル基、3-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、ノルボルナン基等の飽和脂肪族炭化水素基、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロペンテニル基、シクロヘキセニル基、シクロオクテニル基、ノルボルネン基等の不飽和脂肪族炭化水素基、フェニル基、メチルフェニル基、エチルフェニル基、フェニルメチル基、フェニルエチル基、ベンジル基等の芳香族炭化水素基が挙げられる。飽和脂肪族炭化水素基及び不飽和脂肪族炭化水素基は、直鎖状構造であっても、分岐状構造であっても、環状構造であっても構わない。
Examples of the hydrocarbon group having 1 to 8 carbon atoms which represents R 1 to R 5 in the compound represented by the general formula (1) include an aliphatic hydrocarbon group and an aromatic hydrocarbon group.
Specifically, methyl group, ethyl group, propyl group, i-propyl group, butyl group, 2-butyl group, i-butyl group, t-butyl group, pentyl group, 2-pentyl group, 3-pentyl group, Saturated aliphatic compounds such as i-pentyl group, hexyl group, 2-hexyl group, 3-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, cyclopentyl group, cyclohexyl group, methylcyclohexyl group and norbornane group Unsaturated aliphatic hydrocarbon groups such as hydrocarbon group, vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, cyclopentenyl group, cyclohexenyl group, cyclooctenyl group, norbornene group, phenyl group, methylphenyl group, ethyl Examples thereof include aromatic hydrocarbon groups such as phenyl group, phenylmethyl group, phenylethyl group, benzyl group. The saturated aliphatic hydrocarbon group and the unsaturated aliphatic hydrocarbon group may have a linear structure, a branched structure or a cyclic structure.
 R2~R5を表す炭素原子数1~6のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、i-プロポキシ基、ブトキシ基、ペンチロキシ基、ヘキシロキシ基、シクロヘキシロキシ基等が挙げられる。 Examples of the alkoxy group having 1 to 6 carbon atoms which represents R 2 to R 5 include a methoxy group, an ethoxy group, a propoxy group, an i-propoxy group, a butoxy group, a pentoxy group, a hexyloxy group and a cyclohexyloxy group. To be
 R6を表す炭素原子数1~8の炭化水素基としては、例えば、R1~R5における炭素原子数1~8の炭化水素基と同じものが挙げられる。 Examples of the hydrocarbon group having 1 to 8 carbon atoms representing R 6 include the same ones as the hydrocarbon group having 1 to 8 carbon atoms in R 1 to R 5 .
 R6を表す炭素原子数1~6のアルコキシ基としては、例えば、R2~R5における炭素原子数1~6のアルコキシ基と同じものが挙げられる。 Examples of the alkoxy group having 1 to 6 carbon atoms which represents R 6 include the same ones as the alkoxy group having 1 to 6 carbon atoms in R 2 to R 5 .
 一般式(1)で表される化合物の具体的な例として、R1が炭素原子数1~8の炭化水素基であり、R2~R5が、各々独立に、水素原子、炭素数1~8の炭化水素基、炭素原子数1~6のアルコキシ基又は上記式(1-a)であり、R6が、ニトロ基、スルホン酸基、炭素原子数1~8の炭化水素基又は炭素原子数1~6のアルコキシ基であり、n=1である場合、例えば下記1-1~1-61で表される化合物が挙げられるが、これらに限定されるものではない。 As a specific example of the compound represented by the general formula (1), R 1 is a hydrocarbon group having 1 to 8 carbon atoms, and R 2 to R 5 are each independently a hydrogen atom or 1 carbon atom. To a hydrocarbon group having 1 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or the above formula (1-a), wherein R 6 is a nitro group, a sulfonic acid group, a hydrocarbon group having 1 to 8 carbon atoms or carbon When it is an alkoxy group having 1 to 6 atoms and n=1, examples thereof include compounds represented by the following 1-1 to 1-61, but the invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 一般式(1)で表される化合物の具体的な例として、R1が炭素原子数1~8の炭化水素基であり、R2~R5が水素原子又は炭素原子数1~8の炭化水素基であり、R6が上記式(1-b)又は上記式(1-c)であり、n=1又は2である場合、例えば下記1-62~1-70で表される化合物が挙げられるが、これらに限定されるものではない。 As a specific example of the compound represented by the general formula (1), R 1 is a hydrocarbon group having 1 to 8 carbon atoms, and R 2 to R 5 are hydrogen atoms or carbon atoms having 1 to 8 carbon atoms. When it is a hydrogen group, R 6 is the above formula (1-b) or the above formula (1-c), and n=1 or 2, for example, compounds represented by the following 1-62 to 1-70 are However, the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 一般式(1)で表される化合物の具体的な例として、R1が炭素原子数1~8の炭化水素基であり、R2~R5が水素原子又は炭素原子数1~8の炭化水素基であり、R6が炭素原子数1~8の炭化水素基であり、n=2~4の整数である場合、例えば下記1-71~1-78で表される化合物が挙げられるが、これらに限定されるものではない。 As a specific example of the compound represented by the general formula (1), R 1 is a hydrocarbon group having 1 to 8 carbon atoms, and R 2 to R 5 are hydrogen atoms or carbon atoms having 1 to 8 carbon atoms. When it is a hydrogen group, R 6 is a hydrocarbon group having 1 to 8 carbon atoms, and n is an integer of 2 to 4, examples thereof include compounds represented by the following 1-71 to 1-78. , But is not limited to these.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 サイクル特性及びレート特性に優れることから、一般式(1)で表される化合物のR1としては、炭素原子数1~6の脂肪族炭化水素基、フェニル基又はベンジル基であることが好ましく、メチル基、アリル基、t-ブチル基又はベンジル基であることがより好ましく、R2~R5としては、水素原子、炭素原子数1~6の飽和脂肪族炭化水素基又は上記式(1-a)であることが好ましく、R6としては、ニトロ基、スルホン酸基、炭素原子数1~6の飽和脂肪族炭化水素基、上記式(1-b)又は上記式(1-c)であることが好ましい。中でも、上記1-1、1-2、1-16、1-17、1-37、1-39、1-40、1-41、1-50、1-51、1-52、1-54、1-56、1-62、1-64、1-67、1-70、1-72、1-75、1-77及び1-78で表される化合物がより好ましく、上記1-1、1-37、1-39、1-40、1-52、1-62、1-70、1-72、1-75、1-77及び1-78で表される化合物が更に好ましい。 R 1 of the compound represented by the general formula (1) is preferably an aliphatic hydrocarbon group having 1 to 6 carbon atoms, a phenyl group or a benzyl group because of excellent cycle characteristics and rate characteristics, It is more preferably a methyl group, an allyl group, a t-butyl group or a benzyl group, and R 2 to R 5 are each a hydrogen atom, a saturated aliphatic hydrocarbon group having 1 to 6 carbon atoms, or the above formula (1- a) is preferable, and R 6 is a nitro group, a sulfonic acid group, a saturated aliphatic hydrocarbon group having 1 to 6 carbon atoms, the above formula (1-b) or the above formula (1-c). Preferably. Above all, 1-1, 1-2, 1-16, 1-17, 1-37, 1-39, 1-40, 1-41, 1-50, 1-51, 1-52, 1-54 , 1-56, 1-62, 1-64, 1-67, 1-70, 1-72, 1-75, 1-77 and 1-78 are more preferable, and the above-mentioned 1-1, The compounds represented by 1-37, 1-39, 1-40, 1-52, 1-62, 1-70, 1-72, 1-75, 1-77 and 1-78 are more preferable.
 一般式(1)で表される化合物の製造方法としては、例えば、炭酸メチル4-メチルフェニル等のカーボネート化合物は、有機塩基の存在下、4-メチルフェノール等のフェノール化合物に対し、メチルクロロホルメート等のクロロホルメートを反応させることにより効率良く得ることができる。 As a method for producing the compound represented by the general formula (1), for example, a carbonate compound such as methyl 4-methylphenyl carbonate is used in the presence of an organic base as compared with a phenol compound such as 4-methylphenol. It can be efficiently obtained by reacting a chloroformate such as a mate.
 一般式(2)で表される化合物の、R7を表す上記式(1-d)及び上記式(1-e)におけるR8~R16を表す、無置換の炭素原子数1~8の炭化水素基としては、具体的には、メチル基、エチル基、プロピル基、i-プロピル基、ブチル基、2-ブチル基、i-ブチル基、t-ブチル基、ペンチル基、2-ペンチル基、3-ペンチル基、i-ペンチル基、ヘキシル基、2-ヘキシル基、3-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、ノルボルナン基等の飽和脂肪族炭化水素基、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロペンテニル基、シクロヘキセニル基等の不飽和脂肪族炭化水素基、フェニル基等の芳香族炭化水素基が挙げられる。R8~R16は、これらの炭化水素基における水素原子の一部がフッ素原子で置換されたものであってもよい。飽和脂肪族炭化水素基及び不飽和脂肪族炭化水素基は、直鎖状構造であっても、分岐状構造であっても、環状構造であっても構わない。 Of the compound represented by the general formula (2), the above formula represents an R 7 (1-d) and represents the R 8 ~ R 16 in the formula (1-e), the unsubstituted carbon atoms of 1 to 8 Specific examples of the hydrocarbon group include a methyl group, an ethyl group, a propyl group, an i-propyl group, a butyl group, a 2-butyl group, an i-butyl group, a t-butyl group, a pentyl group and a 2-pentyl group. , 3-pentyl group, i-pentyl group, hexyl group, 2-hexyl group, 3-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, cyclopentyl group, cyclohexyl group, methylcyclohexyl group, norbornane Unsaturated hydrocarbon groups such as saturated aliphatic hydrocarbon groups such as groups, vinyl groups, allyl groups, butenyl groups, pentenyl groups, hexenyl groups, cyclopentenyl groups, cyclohexenyl groups, aromatic hydrocarbons such as phenyl groups Groups. R 8 to R 16 may be those in which a part of hydrogen atoms in these hydrocarbon groups are substituted with fluorine atoms. The saturated aliphatic hydrocarbon group and the unsaturated aliphatic hydrocarbon group may have a linear structure, a branched structure or a cyclic structure.
 一般式(2)で表される化合物の、R7を表す上記式(1-d)及び上記式(1-e)におけるR8~R16を表す、無置換の炭素原子数1~6のアルコキシ基としては、一般式(1)で表される化合物の、R2~R5を表す炭素原子数1~6のアルコキシ基と同じものが挙げられる。R8~R16は、アルコキシ基における水素原子の一部がフッ素原子で置換されたものであってもよい。 Of the compound represented by the general formula (2), the above formula represents an R 7 (1-d) and represents the R 8 ~ R 16 in the formula (1-e), of the unsubstituted carbon atoms of 1 to 6 Examples of the alkoxy group include the same ones as the alkoxy group having 1 to 6 carbon atoms which represents R 2 to R 5 in the compound represented by the general formula (1). R 8 to R 16 may be an alkoxy group in which a part of hydrogen atoms are replaced with fluorine atoms.
 一般式(2)で表される化合物の、R7を表す上記式(1-d)及び上記式(1-e)におけるR8~R16を表す、無置換の炭素原子数1~6のチオアルコキシ基としては、一般式(1)で表される化合物の、R1~R5を表す炭素原子数1~6のアルコキシ基が、酸素原子に代わり硫黄原子で結合した基が挙げられる。R8~R16は、チオアルコキシ基における水素原子の一部がフッ素原子で置換されたものであってもよい。 Of the compound represented by the general formula (2), the above formula represents an R 7 (1-d) and represents the R 8 ~ R 16 in the formula (1-e), of the unsubstituted carbon atoms of 1 to 6 Examples of the thioalkoxy group include groups in which the alkoxy group having 1 to 6 carbon atoms, which represents R 1 to R 5 , of the compound represented by the general formula (1) is bonded by a sulfur atom instead of an oxygen atom. R 8 to R 16 may be a thioalkoxy group in which some hydrogen atoms are replaced with fluorine atoms.
 スルホニル基又はアシル基が有する炭素原子数1~8の炭化水素基としては、一般式(1)で表される化合物の、R1~R5を表す炭素原子数1~8の炭化水素基と同じものが挙げられる。 Examples of the hydrocarbon group having 1 to 8 carbon atoms contained in the sulfonyl group or the acyl group include hydrocarbon groups having 1 to 8 carbon atoms represented by R 1 to R 5 of the compound represented by the general formula (1). The same can be mentioned.
 一般式(2)で表される化合物の具体的な例として、例えば下記2-1~2-24で表される化合物が挙げられるが、これらに限定されるものではない。 Specific examples of the compound represented by the general formula (2) include, but are not limited to, the compounds represented by the following 2-1 to 2-24.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 サイクル特性及びレート特性に優れることから、一般式(2)で表される化合物のR7を表す上記式(1-d)におけるR8、R9、R11及びR12としては、水素原子であることが好ましく、R10としては、水素原子、炭素原子数1~6の脂肪族炭化水素基、炭素原子数1~4のアルコキシ基、炭素原子数1~4のチオアルコキシ基、フルオロメトキシ基、フルオロチオメトキシ基、炭素原子数1~4の脂肪族炭化水素基を有するスルホニル基又は炭素原子数1~4の脂肪族炭化水素基を有するアシル基であることが好ましく、メトキシ基、チオメトキシ基、トリフルオロメトキシ基又はメチルスルホニル基であることがより好ましい。サイクル特性及びレート特性に優れることから、一般式(2)で表される化合物のR7を表す上記式(1-e)におけるR14~R16としては、水素原子であることが好ましい。中でも、上記2-1、2-2、2-6、2-7、2-10、2-11、2-12、2-14、2-18及び2-22で表される化合物がより好ましく、上記2-1、2-10、2-11、2-12、2-14及び2-22で表される化合物が更に好ましい。 Since R 8 , R 9 , R 11 and R 12 in the above formula (1-d) representing R 7 of the compound represented by the general formula (2) are hydrogen atoms, since they are excellent in cycle characteristics and rate characteristics, It is preferable that R 10 is a hydrogen atom, an aliphatic hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a thioalkoxy group having 1 to 4 carbon atoms, or a fluoromethoxy group. A fluorothiomethoxy group, a sulfonyl group having an aliphatic hydrocarbon group having 1 to 4 carbon atoms or an acyl group having an aliphatic hydrocarbon group having 1 to 4 carbon atoms is preferable, and a methoxy group or a thiomethoxy group is preferable. A trifluoromethoxy group or a methylsulfonyl group is more preferable. R 14 to R 16 in the above formula (1-e) representing R 7 of the compound represented by the general formula (2) are preferably hydrogen atoms because they have excellent cycle characteristics and rate characteristics. Among them, the compounds represented by the above 2-1, 2-2, 2-6, 2-7, 2-10, 2-11, 2-12, 2-14, 2-18 and 2-22 are more preferable. The compounds represented by the above 2-1, 2-10, 2-11, 2-12, 2-14 and 2-22 are more preferable.
 一般式(2)で表される化合物の製造方法としては、例えば、シュウ酸ジフェニル等のシュウ酸エステル化合物は、有機塩基の存在下、オキサリルクロライドに対し、フェノール等のアルコール化合物を反応させることにより効率良く得ることができる。 As a method for producing the compound represented by the general formula (2), for example, an oxalate ester compound such as diphenyl oxalate is prepared by reacting an oxalyl chloride with an alcohol compound such as phenol in the presence of an organic base. It can be obtained efficiently.
 一般式(3)で表される化合物の、R17~R19を表す炭素原子数1~8の炭化水素基としては、一般式(1)で表される化合物の、R1~R5を表す炭素原子数1~8の炭化水素基と同じものが挙げられる。 Examples of the hydrocarbon group having 1 to 8 carbon atoms which represents R 17 to R 19 in the compound represented by the general formula (3) include R 1 to R 5 in the compound represented by the general formula (1). The same as the represented hydrocarbon group having 1 to 8 carbon atoms can be mentioned.
 一般式(3)で表される化合物の具体的な例として、例えば下記3-1~3-14で表される化合物が挙げられるが、これらに限定されるものではない。 Specific examples of the compound represented by the general formula (3) include, but are not limited to, the compounds represented by the following 3-1 to 3-14.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 サイクル特性及びレート特性に優れることから、一般式(3)で表される化合物は、m=1の場合、R17としては、炭素原子数1~3の脂肪族炭化水素であることが好ましく、メチル基又はエチル基であることがより好ましく、R18及びR19としては、炭素原子数1~3の脂肪族炭化水素基であるか又はR18とR19とが環を形成したシクロヘキシル基であることが好ましく、m=2の場合、R17及びR19としては炭素原子数1~3の脂肪族炭化水素基であることが好ましい。中でも、上記3-1、3-6、3-9、3―10及び3-12で表される化合物がより好ましく、上記3-1、3-9及び3-12で表される化合物が更に好ましい。 The compound represented by the general formula (3) is preferably an aliphatic hydrocarbon having 1 to 3 carbon atoms as R 17 in the case of m=1, since it has excellent cycle characteristics and rate characteristics. It is more preferably a methyl group or an ethyl group, and R 18 and R 19 are each an aliphatic hydrocarbon group having 1 to 3 carbon atoms or a cyclohexyl group in which R 18 and R 19 form a ring. When m=2, R 17 and R 19 are preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms. Among them, the compounds represented by 3-1, 3-6, 3-9, 3-10 and 3-12 are more preferable, and the compounds represented by 3-1, 3-9 and 3-12 are further preferable. preferable.
 一般式(3)で表される化合物の製造方法としては、例えば、プロパノンメタンスルホン酸オキシム等のスルホン酸オキシム化合物は、有機塩基の存在下、メタンスルホニルクロライド等のスルホニルクロライドに対し、アセトキシム等のオキシム化合物を反応させることにより効率良く得ることができる。 As a method for producing the compound represented by the general formula (3), for example, a sulfonic acid oxime compound such as propanone methanesulfonic acid oxime is used in the presence of an organic base, a sulfonyl chloride such as methanesulfonyl chloride, and an acetoxime It can be efficiently obtained by reacting the oxime compound of
 一般式(4)で表される化合物の、R20~R31を表す炭素原子数1~8の炭化水素基としては、一般式(1)で表される化合物の、R1~R5を表す炭素原子数1~8の炭化水素基と同じものが挙げられる。R20~R31を表す炭素原子数1~6のアルコキシ基としては、一般式(1)で表される化合物の、R2~R5を表す炭素原子数1~6のアルコキシ基と同じものが挙げられる。 Examples of the hydrocarbon group having 1 to 8 carbon atoms which represents R 20 to R 31 of the compound represented by the general formula (4) include R 1 to R 5 of the compound represented by the general formula (1). The same as the represented hydrocarbon group having 1 to 8 carbon atoms can be mentioned. The alkoxy group having 1 to 6 carbon atoms which represents R 20 to R 31 is the same as the alkoxy group having 1 to 6 carbon atoms which represents R 2 to R 5 in the compound represented by the general formula (1). Is mentioned.
 一般式(4)で表される化合物の具体的な例として、例えば下記4-1~4-24で表される化合物が挙げられるが、これらに限定されるものではない。 Specific examples of the compound represented by the general formula (4) include, but are not limited to, the compounds represented by the following 4-1 to 4-24.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 サイクル特性及びレート特性に優れることから、一般式(4)で表される化合物のR20及びR21としては、炭素原子数1~4の脂肪族炭化水素基であることが好ましく、メチル基であることがより好ましく、R22、R23、R25~R28、R30及びR31としては、水素原子又はフッ素原子であることが好ましく、水素原子であることがより好ましく、R24及びR29としては、水素原子、フッ素原子、炭素原子数1~3の脂肪族炭化水素基、炭素原子数1~3のアルコキシ基又はニトロ基であることが好ましく、フッ素原子又はニトロ基であることがより好ましい。中でも、上記4-1、4-3、4-9、4-13、4-16及び4-19で表される化合物がより好ましく、上記4-3、4-13及び4-16で表される化合物が更に好ましい。 R 20 and R 21 of the compound represented by the general formula (4) are preferably an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and a methyl group because they have excellent cycle characteristics and rate characteristics. More preferably, R 22 , R 23 , R 25 to R 28 , R 30 and R 31 are each preferably a hydrogen atom or a fluorine atom, more preferably a hydrogen atom, and R 24 and R As 29 , a hydrogen atom, a fluorine atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms or a nitro group is preferable, and a fluorine atom or a nitro group is preferable. More preferable. Of these, the compounds represented by 4-1, 4-3, 4-9, 4-13, 4-16 and 4-19 are more preferable, and the compounds represented by 4-3, 4-13 and 4-16 are more preferable. Are more preferred.
 一般式(4)で表される化合物の製造方法としては、例えば、ビス(4-フルオロフェノキシ)ジメチルシラン等のシラン化合物は、有機塩基の存在下、ジメチルジクロロシラン等のクロロシラン化合物に対し、4-フルオロフェノール等のフェノール化合物を反応させることにより効率良く得ることができる。 As a method for producing the compound represented by the general formula (4), for example, a silane compound such as bis(4-fluorophenoxy)dimethylsilane is used in the presence of an organic base with respect to a chlorosilane compound such as dimethyldichlorosilane. -It can be efficiently obtained by reacting a phenol compound such as fluorophenol.
 本発明の電解質用組成物の形態は特に制限されるものではなく、溶媒として有機溶媒を用いて得られる液体形態、溶媒又は分散媒として、有機溶媒に高分子化合物を溶解してゲル化した高分子ゲルを用いて得られる高分子ゲル形態、溶媒を用いず、分散媒として高分子を用いて得られる高分子形態等を挙げることができる。 The form of the composition for an electrolyte of the present invention is not particularly limited, a liquid form obtained by using an organic solvent as a solvent, a solvent or a dispersion medium, a high molecular compound dissolved in an organic solvent to form a gel. Examples thereof include a polymer gel form obtained by using a molecular gel and a polymer form obtained by using a polymer as a dispersion medium without using a solvent.
 本発明の電解質用組成物に用いる溶媒としては、非水電解質二次電池の非水電解質に通常使用される有機溶媒を使用することができる。有機溶媒の具体例としては、例えば、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物、アマイド化合物、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物、飽和鎖状エステル化合物等が挙げられる。これらの有機溶媒は、1種のみを使用してもよいし、2種以上を組み合わせて使用してもよい。これらの有機溶媒の中でも、比誘電率が高く、電解質用組成物の誘電率を上げる役割を果たすという点で、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物及びアマイド化合物が好ましく、飽和環状カーボネート化合物がより好ましい。 As the solvent used in the composition for an electrolyte of the present invention, an organic solvent usually used for a non-aqueous electrolyte of a non-aqueous electrolyte secondary battery can be used. Specific examples of the organic solvent include, for example, saturated cyclic carbonate compounds, saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds, amide compounds, saturated chain carbonate compounds, chain ether compounds, cyclic ether compounds, saturated chain ester compounds, etc. Is mentioned. These organic solvents may be used alone or in combination of two or more. Among these organic solvents, a saturated cyclic carbonate compound, a saturated cyclic ester compound, a sulfoxide compound, a sulfone compound and an amide compound are preferable because they have a high relative dielectric constant and play a role of increasing the dielectric constant of the electrolyte composition. A saturated cyclic carbonate compound is more preferable.
 飽和環状カーボネート化合物としては、例えば、エチレンカーボネート、1,2-プロピレンカーボネート、1,3-プロピレンカーボネート、1,2-ブチレンカーボネート、1,3-ブチレンカーボネート、1,1-ジメチルエチレンカーボネート等が挙げられる。
 飽和環状エステル化合物としては、例えば、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-ヘキサノラクトン、δ-オクタノラクトン等が挙げられる。
 スルホキシド化合物としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド、ジプロピルスルホキシド、ジフェニルスルホキシド、チオフェン等が挙げられる。
 スルホン化合物としては、例えば、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、ジフェニルスルホン、スルホラン(テトラメチレンスルホンともいう)、3-メチルスルホラン、3,4-ジメチルスルホラン、3,4-ジフェニメチルスルホラン、スルホレン、3-メチルスルホレン、3-エチルスルホレン、3-ブロモメチルスルホレン等が挙げられる。これらの中でも、スルホラン及びテトラメチルスルホランが好ましい。
 アマイド化合物としては、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。
Examples of the saturated cyclic carbonate compound include ethylene carbonate, 1,2-propylene carbonate, 1,3-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate and 1,1-dimethylethylene carbonate. To be
Examples of the saturated cyclic ester compound include γ-butyrolactone, γ-valerolactone, γ-caprolactone, δ-hexanolactone, δ-octanolactone and the like.
Examples of the sulfoxide compound include dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, diphenyl sulfoxide, thiophene and the like.
Examples of the sulfone compound include dimethyl sulfone, diethyl sulfone, dipropyl sulfone, diphenyl sulfone, sulfolane (also referred to as tetramethylene sulfone), 3-methylsulfolane, 3,4-dimethylsulfolane, 3,4-diphenymethylsulfolane, Examples thereof include sulfolene, 3-methylsulfolene, 3-ethylsulfolene, 3-bromomethylsulfolene and the like. Among these, sulfolane and tetramethylsulfolane are preferable.
Examples of the amide compound include N-methylpyrrolidone, dimethylformamide, dimethylacetamide and the like.
 有機溶媒の中でも、電解質用組成物の粘度を低くすることができ、電解質イオンの移動性を高くして出力密度等の電池特性を優れたものにすることができるという点で、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物及び飽和鎖状エステル化合物が好ましい。また、低粘度であり、低温での電解質用組成物の性能を高くすることができるという点で、飽和鎖状カーボネート化合物が特に好ましい。 Among organic solvents, saturated chain carbonates can be used in that the viscosity of the composition for electrolyte can be lowered, and the mobility of electrolyte ions can be increased to improve the battery characteristics such as output density. Compounds, chain ether compounds, cyclic ether compounds and saturated chain ester compounds are preferred. A saturated chain carbonate compound is particularly preferable because it has a low viscosity and can enhance the performance of the composition for electrolytes at low temperatures.
 飽和鎖状カーボネート化合物としては、例えば、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチルブチルカーボネート、メチル-t-ブチルカーボネート、ジイソプロピルカーボネート、t-ブチルプロピルカーボネート等が挙げられる。
 鎖状エーテル化合物及び環状エーテル化合物としては、例えば、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、1,2-ビス(メトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)プロパン、エチレングリコールビス(トリフルオロエチル)エーテル、プロピレングリコールビス(トリフルオロエチル)エーテル、エチレングリコールビス(トリフルオロメチル)エーテル、ジエチレングリコールビス(トリフルオロエチル)エーテル等が挙げられ、これらの中でも、ジオキソランが好ましい。
Examples of the saturated chain carbonate compound include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl butyl carbonate, methyl-t-butyl carbonate, diisopropyl carbonate, t-butyl propyl carbonate and the like.
Examples of the chain ether compound and the cyclic ether compound include dimethoxyethane, ethoxymethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, dioxane, 1,2-bis(methoxycarbonyloxy)ethane, 1,2-bis(ethoxycarbonyl). Oxy)ethane, 1,2-bis(ethoxycarbonyloxy)propane, ethylene glycol bis(trifluoroethyl)ether, propylene glycol bis(trifluoroethyl)ether, ethylene glycol bis(trifluoromethyl)ether, diethylene glycol bis(tri Examples thereof include fluoroethyl) ether, and among these, dioxolane is preferable.
 飽和鎖状エステル化合物としては、分子中の炭素原子数の合計が2~8であるモノエステル化合物及びジエステル化合物が好ましく、具体的な化合物としては、例えば、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、マロン酸メチル、マロン酸エチル、コハク酸メチル、コハク酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、エチレングリコールジアセチル、プロピレングリコールジアセチル等が挙げられ、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、及びプロピオン酸エチルが好ましい。 The saturated chain ester compound is preferably a monoester compound or a diester compound having a total number of carbon atoms in the molecule of 2 to 8, and specific compounds include, for example, methyl formate, ethyl formate, methyl acetate, acetic acid. Ethyl, propyl acetate, isobutyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, trimethyl ethyl acetate, methyl malonate, ethyl malonate, methyl succinate, ethyl succinate, Examples thereof include methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethylene glycol diacetyl, propylene glycol diacetyl, etc., methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, methyl propionate. , And ethyl propionate are preferred.
 その他の有機溶媒として、例えば、アセトニトリル、プロピオニトリル、ニトロメタンやこれらの誘導体、各種イオン液体を用いることもできる。 As other organic solvents, for example, acetonitrile, propionitrile, nitromethane, their derivatives, and various ionic liquids can be used.
 高分子ゲル形態の組成物の調製に用いる高分子としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリビニルクロライド、ポリアクリロニトリル、ポリメチルメタクリレート、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等が挙げられる。
 高分子形態の組成物の調製に用いる高分子としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリスチレンスルホン酸等が挙げられる。
 高分子ゲル形態又は高分子形態の組成物中の配合比率、複合化の方法については特に制限はなく、本技術分野で公知の配合比率、公知の複合化方法を採用することができる。
Examples of the polymer used for preparing the polymer gel type composition include polyethylene oxide, polypropylene oxide, polyvinyl chloride, polyacrylonitrile, polymethylmethacrylate, polyethylene, polyvinylidene fluoride, and polyhexafluoropropylene.
Examples of the polymer used for preparing the polymer form composition include polyethylene oxide, polypropylene oxide, polystyrene sulfonic acid and the like.
There is no particular limitation on the compounding ratio in the polymer gel or polymer composition, and the compounding method, and the compounding ratio and the compounding method known in the art can be used.
 一般式(1)~(4)で表される化合物からなる群から選ばれる少なくとも1種の化合物の含有量は、本発明の電解質用組成物に対して、0.01質量%~10質量%であることが好ましく、0.05質量%~10質量%であることがより好ましく、0.1質量%~5質量%であることが更に好ましい。一般式(1)~(4)で表される化合物の含有量が0.01質量%未満であると、本発明の電解質用組成物を用いた非水電解質二次電池のサイクル特性及びレート特性の向上効果が充分ではないことがある。一方、一般式(1)~(4)で表される化合物の含有量が10質量%超であると、配合量に見合う効果が得られず、かえって電池特性に悪影響を及ぼすことがある。 The content of at least one compound selected from the group consisting of the compounds represented by the general formulas (1) to (4) is 0.01% by mass to 10% by mass based on the composition for an electrolyte of the present invention. Is preferred, 0.05% by mass to 10% by mass is more preferred, and 0.1% by mass to 5% by mass is even more preferred. When the content of the compounds represented by the general formulas (1) to (4) is less than 0.01% by mass, the cycle characteristics and rate characteristics of the non-aqueous electrolyte secondary battery using the composition for electrolyte of the present invention In some cases, the effect of improving is not sufficient. On the other hand, if the content of the compounds represented by the general formulas (1) to (4) is more than 10% by mass, the effect corresponding to the blending amount cannot be obtained, which may adversely affect the battery characteristics.
 本発明の電解質用組成物の形態は特に制限されるものではないが、製造工程が簡便であることから、溶媒を含むものが好ましく、液体形態であることがより好ましい。 The form of the composition for an electrolyte of the present invention is not particularly limited, but it is preferable that the composition contains a solvent, and it is more preferable that it be in a liquid form because the manufacturing process is simple.
<非水電解質>
 本発明の非水電解質は、上記した電解質用組成物と、支持電解質とを含む。支持電解質としては、リチウム塩、ナトリウム塩、カリウム塩などのアルカリ金属塩、マグネシウム塩、カルシウム塩等が挙げられる。
<Non-aqueous electrolyte>
The non-aqueous electrolyte of the present invention contains the above-mentioned composition for electrolytes and a supporting electrolyte. Examples of the supporting electrolyte include alkali metal salts such as lithium salt, sodium salt and potassium salt, magnesium salt, calcium salt and the like.
 本発明の非水電解質に用いられるリチウム塩としては、特に限定されるものではなく、公知のリチウム塩を用いることができる。リチウム塩の具体例としては、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiCF3CO2、LiN(CF3SO22、LiN(C25SO22、LiN(SO2F)2、LiC(CF3SO23、LiB(CF3SO34、LiB(C242、LiBF2(C24)、LiSbF6、LiSiF5、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlF4、LiAlCl4、LiPO22及びこれらの誘導体等が挙げられる。
 液体形態及び高分子ゲル形態の電解質用組成物には、LiPF6、LiBF4、LiClO4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiN(SO2F)2、LiPO22、LiC(CF3SO23、LiCF3SO3の誘導体及びLiC(CF3SO23の誘導体からなる群から選ばれる1種以上のリチウム塩を用いるのが好ましい。
 高分子形態の電解質用組成物には、LiN(CF3SO22、LiN(C25SO22、LiN(SO2F)2、LiC(CF3SO23、LiB(CF3SO34及びLiB(C242からなる群から選ばれる1種以上を用いるのが好ましい。
The lithium salt used in the non-aqueous electrolyte of the present invention is not particularly limited, and known lithium salts can be used. Specific examples of the lithium salt include, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN. (SO 2 F) 2 , LiC(CF 3 SO 2 ) 3 , LiB(CF 3 SO 3 ) 4 , LiB(C 2 O 4 ) 2 , LiBF 2 (C 2 O 4 ), LiSbF 6 , LiSiF 5 , LiSCN , LiClO 4, LiCl, LiF, LiBr, LiI, LiAlF 4, LiAlCl 4, LiPO 2 F 2 , and derivatives thereof.
The liquid and polymer gel electrolyte compositions include LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN. One or more lithium salts selected from the group consisting of (SO 2 F) 2 , LiPO 2 F 2 , LiC(CF 3 SO 2 ) 3 , LiCF 3 SO 3 derivatives and LiC(CF 3 SO 2 ) 3 derivatives. Is preferably used.
Polymeric electrolyte compositions include LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(SO 2 F) 2 , LiC(CF 3 SO 2 ) 3 , LiB( It is preferable to use one or more selected from the group consisting of CF 3 SO 3 ) 4 and LiB(C 2 O 4 ) 2 .
 本発明の非水電解質に用いられるナトリウム塩、カリウム塩としては、特に限定されるものではなく、公知のナトリウム塩、カリウム塩を用いることができる。 The sodium salt and potassium salt used in the non-aqueous electrolyte of the present invention are not particularly limited, and known sodium salt and potassium salt can be used.
 本発明の非水電解質に用いられるマグネシウム塩、カルシウム塩としては、特に限定されるものでははく、公知のマグネシウム塩、カルシウム塩を用いることができる。 The magnesium salt and calcium salt used in the non-aqueous electrolyte of the present invention are not particularly limited, and known magnesium salt and calcium salt can be used.
 非水電解質中の支持電解質の濃度は、低すぎると十分な電流密度が得られないことがあり、一方、高すぎると非水電解質の安定性を損なう恐れがあることから、0.5mol/L~7mol/Lであることが好ましく、0.8mol/L~1.8mol/Lであることがより好ましい。 If the concentration of the supporting electrolyte in the non-aqueous electrolyte is too low, a sufficient current density may not be obtained, while if it is too high, the stability of the non-aqueous electrolyte may be impaired. It is preferably ˜7 mol/L, more preferably 0.8 mol/L to 1.8 mol/L.
 本発明の非水電解質の用途は特に限定されないが、非水電解質二次電池に用いられる非水電解質として好適に利用することができる。 The use of the non-aqueous electrolyte of the present invention is not particularly limited, but it can be suitably used as a non-aqueous electrolyte used in a non-aqueous electrolyte secondary battery.
 本発明の非水電解質は、電池寿命の向上、安全性向上等のため、電極被膜形成剤、酸化防止剤、難燃剤、過充電防止剤等、公知の電解質添加剤を更に含んでもよい。電解質添加剤を用いる場合の濃度は、少なすぎると添加効果が発揮できず、多すぎるとかえって非水電解質二次電池の特性に悪影響を及ぼすことがあることから、非水電解質に対して、0.01質量%~10質量%であることが好ましく、0.1質量%~5質量%であることがより好ましい。 The non-aqueous electrolyte of the present invention may further contain known electrolyte additives such as an electrode film forming agent, an antioxidant, a flame retardant, and an overcharge preventing agent for improving battery life and safety. When the concentration of the electrolyte additive is too low, the effect of addition cannot be exhibited, and when the concentration is too high, the characteristics of the non-aqueous electrolyte secondary battery may be adversely affected. The content is preferably 0.01% by mass to 10% by mass, and more preferably 0.1% by mass to 5% by mass.
<非水電解質二次電池>
 本発明の非水電解質二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、上記した非水電解質とを含むものである。本発明においては、正極と負極との間にセパレータを介在させることが好ましい。以下、本発明の非水電解質二次電池について説明する。
<Non-aqueous electrolyte secondary battery>
The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and the above-mentioned non-aqueous electrolyte. In the present invention, it is preferable to interpose a separator between the positive electrode and the negative electrode. Hereinafter, the non-aqueous electrolyte secondary battery of the present invention will be described.
 本発明で用いる正極は、公知の方法に準じて製造することができる。例えば、正極活物質、バインダー及び導電助剤を含む配合物を、有機溶媒又は水でスラリー化した電極合剤ペーストを集電体に塗布して乾燥することにより、集電体上に電極合剤層が形成された正極を製造することができる。 The positive electrode used in the present invention can be manufactured according to a known method. For example, a mixture containing a positive electrode active material, a binder, and a conductive auxiliary agent is applied to a current collector by applying an electrode mixture paste prepared by slurrying it with an organic solvent or water, and then dried to form an electrode mixture on the current collector. A layered positive electrode can be manufactured.
 正極活物質は、公知のものを用いることができる。公知の正極活物質としては、例えば、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物、リチウム含有ケイ酸塩化合物、リチウム含有遷移金属硫酸化合物等が挙げられる。リチウム遷移金属複合酸化物の遷移金属としては、バナジウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅等が好ましい。これらの正極活物質は、1種のみを使用してもよいし、2種以上を組合せて使用してもよい。 A known positive electrode active material can be used. Examples of known positive electrode active materials include lithium transition metal composite oxides, lithium-containing transition metal phosphate compounds, lithium-containing silicate compounds, lithium-containing transition metal sulfate compounds, and the like. As the transition metal of the lithium-transition metal composite oxide, vanadium, titanium, chromium, manganese, iron, cobalt, nickel, copper and the like are preferable. These positive electrode active materials may be used alone or in combination of two or more.
 リチウム遷移金属複合酸化物の具体例としては、LiCoO2等のリチウムコバルト複合酸化物、LiNiO2等のリチウムニッケル複合酸化物、LiMnO2、LiMn24、Li2MnO3等のリチウムマンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をアルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、リチウム、ニッケル、銅、亜鉛、マグネシウム、ガリウム、ジルコニウム等の他の金属で置換したもの等が挙げられる。主体となる遷移金属原子の一部を他の金属で置換したリチウム遷移金属複合酸化物は、例えば、Li1.1Mn1.8Mg0.14、Li1.1Mn1.85Al0.054、LiNi0.5Co0.2Mn0.32、LiNi0.8Co0.1Mn0.12、LiNi0.5Mn0.52、LiNi0.80Co0.17Al0.032、LiNi0.80Co0.15Al0.052、LiNi1/3Co1/3Mn1/32、LiNi0.6Co0.2Mn0.22、LiMn1.8Al0.24、LiNi0.5Mn1.54、Li2MnO3-LiMO2(M=Co,Ni,Mn)等が挙げられる。 Specific examples of the lithium transition metal composite oxide include lithium cobalt composite oxides such as LiCoO 2 , lithium nickel composite oxides such as LiNiO 2 , and lithium manganese composite oxides such as LiMnO 2 , LiMn 2 O 4 , and Li 2 MnO 3. A part of the transition metal atom that is the main constituent of these lithium-transition metal composite oxides, such as aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, lithium, nickel, copper, zinc, magnesium, gallium, and zirconium. Those substituted with other metals may be mentioned. The lithium transition metal composite oxide in which a part of the main transition metal atom is replaced with another metal is, for example, Li 1.1 Mn 1.8 Mg 0.1 O 4 , Li 1.1 Mn 1.85 Al 0.05 O 4 , LiNi 0.5 Co 0.2 Mn 0.3. O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.5 Mn 0.5 O 2 , LiNi 0.80 Co 0.17 Al 0.03 O 2 , LiNi 0.80 Co 0.15 Al 0.05 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiMn 1.8 Al 0.2 O 4 , LiNi 0.5 Mn 1.5 O 4 , Li 2 MnO 3 -LiMO 2 (M=Co, Ni, Mn) and the like.
 リチウム含有遷移金属リン酸化合物の遷移金属としては、バナジウム、チタン、マンガン、鉄、コバルト、ニッケル等が好ましく、具体例としては、例えば、LiFePO4、LiMxFe1-xPO4(M=Co,Ni,Mn)等のリン酸鉄化合物類、LiCoPO4等のリン酸コバルト化合物類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をアルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、リチウム、ニッケル、銅、亜鉛、マグネシウム、ガリウム、ジルコニウム、ニオブ等の他の金属で置換したもの、Li32(PO43等のリン酸バナジウム化合物類等が挙げられる。 As the transition metal of the lithium-containing transition metal phosphate compound, vanadium, titanium, manganese, iron, cobalt, nickel and the like are preferable, and specific examples thereof include LiFePO 4 , LiM x Fe 1-x PO 4 (M=Co , Ni, Mn) etc., iron phosphate compounds such as LiCoPO 4 , cobalt phosphate compounds such as LiCoPO 4 , and some of the transition metal atoms that are the main constituents of these lithium transition metal phosphate compounds are aluminum, titanium, vanadium, chromium, Substituted with other metals such as manganese, iron, cobalt, lithium, nickel, copper, zinc, magnesium, gallium, zirconium, and niobium, vanadium phosphate compounds such as Li 3 V 2 (PO 4 ) 3 and the like. To be
 リチウム含有ケイ酸塩化合物としては、Li2FeSiO4等が挙げられる。 Examples of the lithium-containing silicate compound include Li 2 FeSiO 4 .
 リチウム含有遷移金属硫酸化合物としては、LiFeSO4、LiFeSO4F等が挙げられる。 Examples of the lithium-containing transition metal sulfuric acid compound include LiFeSO 4 , LiFeSO 4 F and the like.
 正極活物質として、硫黄、硫黄変性有機化合物、硫黄-炭素複合体、Li2x(x=1~8)を用いることもできる。 As the positive electrode active material, sulfur, a sulfur-modified organic compound, a sulfur-carbon composite, or Li 2 S x (x=1 to 8) can also be used.
 硫黄としては、粉末硫黄、不溶性硫黄、沈降硫黄、コロイド硫黄等の種々の形態のものをいずれも使用できる。電極合剤ペーストに均一に分散させることから、粉末硫黄が好ましい。 As sulfur, any of various forms such as powdered sulfur, insoluble sulfur, precipitated sulfur and colloidal sulfur can be used. Powdered sulfur is preferable because it is uniformly dispersed in the electrode mixture paste.
 硫黄変性有機化合物は、硫黄と、ポリアクリロニトリル化合物、エラストマー化合物、ピッチ化合物、多核芳香環化合物、脂肪族炭化水素酸化物、ポリエーテル化合物、ポリチエノアセン化合物、ポリアミド化合物、ヘキサクロロブタジエン化合物等とを混合し、非酸化性ガス雰囲気中250℃~600℃で加熱変性して製造することができる。非酸化性ガス雰囲気とは、酸素濃度が5体積%未満であり、好ましくは2体積%未満であり、より好ましくは、酸素を実質的に含有しない雰囲気、即ち、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気や、硫黄ガス雰囲気のことである。より大きな充放電容量を得る観点から、硫黄変性有機化合物中の硫黄含有量は、25質量%~80質量%であることが好ましい。これらの硫黄変性有機化合物の中でも、大きな充放電容量と安定したサイクル特性が得られることから、硫黄変性ポリアクリロニトリル化合物が好ましい。 The sulfur-modified organic compound is a mixture of sulfur and a polyacrylonitrile compound, an elastomer compound, a pitch compound, a polynuclear aromatic ring compound, an aliphatic hydrocarbon oxide, a polyether compound, a polythienoacene compound, a polyamide compound, a hexachlorobutadiene compound, It can be produced by heat denaturation at 250° C. to 600° C. in a non-oxidizing gas atmosphere. The non-oxidizing gas atmosphere has an oxygen concentration of less than 5% by volume, preferably less than 2% by volume, and more preferably an atmosphere containing substantially no oxygen, that is, an atmosphere of nitrogen, helium, argon or the like. It is an active gas atmosphere or a sulfur gas atmosphere. From the viewpoint of obtaining a larger charge/discharge capacity, the sulfur content in the sulfur-modified organic compound is preferably 25% by mass to 80% by mass. Among these sulfur-modified organic compounds, the sulfur-modified polyacrylonitrile compound is preferable because it can provide a large charge/discharge capacity and stable cycle characteristics.
 硫黄-炭素複合体とは、硫黄と炭素とを機械的に複合化させたもの、硫黄と炭素とを化学的に複合化させたもの、又は多孔性炭素の細孔内に単体硫黄を含有させたものであり、リチウムイオンを吸蔵、放出し得る、二次電池の電極活物質として使用可能なものをいう。硫黄-炭素複合体中の硫黄含有量は、少なすぎると充放電容量が大きくならず、多すぎると電子伝導性が低下することから、25質量%~90質量%が好ましく、30質量%~70質量%がより好ましい。多孔性炭素の細孔内に単体硫黄を担持させる方法は、公知の方法を採用することができる。 The sulfur-carbon composite is a composite of sulfur and carbon mechanically, a composite of sulfur and carbon chemically, or a simple substance of sulfur contained in the pores of porous carbon. And can be used as an electrode active material of a secondary battery capable of inserting and extracting lithium ions. If the sulfur content in the sulfur-carbon composite is too low, the charge/discharge capacity does not increase, and if it is too high, the electron conductivity decreases, so 25% by mass to 90% by mass is preferable, and 30% by mass to 70% by mass. Mass% is more preferable. As a method of supporting elemental sulfur in the pores of the porous carbon, a known method can be adopted.
 硫黄変性有機化合物及び硫黄-炭素複合体中の硫黄含有量は、硫黄及び酸素が分析可能なCHN分析装置、例えば、エレメンター社製vario MICRO cubeを用いて元素分析することで算出することができる。 The sulfur content in the sulfur-modified organic compound and the sulfur-carbon complex can be calculated by elemental analysis using a CHN analyzer capable of analyzing sulfur and oxygen, for example, a Vario MICRO cube manufactured by Elementer.
 正極活物質の粒子径が大き過ぎると均一で平滑な電極合剤層が得られない場合があり、一方、小さ過ぎるとスラリー化工程でのハンドリング性が低下することから、正極活物質の平均粒子径(D50)は0.5μm~100μmであることが好ましく、1μm~50μmであることがより好ましく、1μm~30μmであることが更に好ましい。 If the particle size of the positive electrode active material is too large, it may not be possible to obtain a uniform and smooth electrode mixture layer, while if it is too small, the handling property in the slurrying step will decrease, so the average particle size of the positive electrode active material will be reduced. The diameter (D50) is preferably 0.5 μm to 100 μm, more preferably 1 μm to 50 μm, and further preferably 1 μm to 30 μm.
 本発明において、平均粒子径(D50)とは、レーザー回折光散乱法により測定された50%粒子径をいう。粒子径は体積基準の直径であり、レーザー回折光散乱法では、二次粒子の直径が測定される。 In the present invention, the average particle diameter (D50) means a 50% particle diameter measured by a laser diffraction light scattering method. The particle diameter is a volume-based diameter, and the diameter of secondary particles is measured by the laser diffraction light scattering method.
 正極活物質は、粉砕や造粒等の方法により所望の粒径とすることができる。粉砕は、気体中で行う乾式粉砕でも、水等の液体中で行う湿式粉砕でもよい。工業的な粉砕方法としては、例えば、ボールミル、ローラーミル、ターボミル、ジェットミル、サイクロンミル、ハンマーミル、ピンミル、回転ミル、振動ミル、遊星ミル、アトライター、ビーズミル等が挙げられる。 The positive electrode active material can be made into a desired particle size by a method such as pulverization or granulation. The pulverization may be dry pulverization performed in a gas or wet pulverization performed in a liquid such as water. Examples of industrial pulverization methods include a ball mill, roller mill, turbo mill, jet mill, cyclone mill, hammer mill, pin mill, rotary mill, vibration mill, planetary mill, attritor, and bead mill.
 バインダーは、公知のものを用いることができる。バインダーの具体例としては、例えば、スチレン-ブタジエンゴム、ブタジエンゴム、アクリロニトリル-ブタジエンゴム、エチレン-プロピレン-ジエンゴム、スチレン-イソプレンゴム、フッ素ゴム、ポリエチレン、ポリプロピレン、ポリアクリルアミド、ポリアミド、ポリアミドイミド、ポリイミド、ポリアクリロニトリル、ポリウレタン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン-アクリル酸エステル共重合体、エチレン-ビニルアルコール共重合体、ポリメチルメタクリレート、ポリアクリレート、ポリビニルアルコール、ポリエチレンオキサイド、ポリビニルピロリドン、ポリビニルエーテル、ポリ塩化ビニル、アクリル酸、ポリアクリル酸、メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、セルロースナノファイバー、デンプン等が挙げられる。バインダーは、1種のみを使用してもよいし、2種以上を組合せて使用してもよい。 Known binders can be used. Specific examples of the binder include, for example, styrene-butadiene rubber, butadiene rubber, acrylonitrile-butadiene rubber, ethylene-propylene-diene rubber, styrene-isoprene rubber, fluororubber, polyethylene, polypropylene, polyacrylamide, polyamide, polyamideimide, polyimide, Polyacrylonitrile, polyurethane, polyvinylidene fluoride, polytetrafluoroethylene, styrene-acrylic acid ester copolymer, ethylene-vinyl alcohol copolymer, polymethyl methacrylate, polyacrylate, polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, polyvinyl ether, Examples thereof include polyvinyl chloride, acrylic acid, polyacrylic acid, methyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose, cellulose nanofibers and starch. The binder may be used alone or in combination of two or more.
 バインダーの含有量は、正極活物質100質量部に対して、0.5質量部~30質量部であることが好ましく、1質量部~20質量部であることが更に好ましい。 The content of the binder is preferably 0.5 parts by mass to 30 parts by mass, and more preferably 1 part by mass to 20 parts by mass with respect to 100 parts by mass of the positive electrode active material.
 導電助剤は、電極の導電助剤として公知のものを用いることができる。導電助剤の具体例としては、例えば、天然黒鉛、人造黒鉛、コールタールピッチ、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック、ローラーブラック、ディスクブラック、カーボンナノチューブ、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、剥片化黒鉛、グラフェン、フラーレン、ニードルコークス等の炭素材料;アルミニウム粉、ニッケル粉、チタン粉等の金属粉末;酸化亜鉛、酸化チタン等の導電性金属酸化物;La23、Sm23、Ce23、TiS2等の硫化物が挙げられる。 As the conduction aid, those known as a conduction aid for electrodes can be used. Specific examples of the conductive additive include, for example, natural graphite, artificial graphite, coal tar pitch, carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, roller black, disk black, carbon. Carbon materials such as nanotubes, vapor grown carbon fibers (VGCF), exfoliated graphite, graphene, fullerene, needle coke; metal powders such as aluminum powder, nickel powder, titanium powder; zinc oxide, titanium oxide, etc. Conductive metal oxides; sulfides such as La 2 S 3 , Sm 2 S 3 , Ce 2 S 3 and TiS 2 .
 導電助剤の平均粒子径(D50)は、0.0001μm~100μmであることが好ましく、0.01μm~50μmであることがより好ましい。 The average particle diameter (D50) of the conductive additive is preferably 0.0001 μm to 100 μm, more preferably 0.01 μm to 50 μm.
 導電助剤の含有量は、電極活物質100質量部に対して、通常0.1質量部~50質量部であり、0.5質量部~30質量部であることが好ましく、1質量部~20質量部であることがより好ましい。 The content of the conductive additive is usually 0.1 parts by mass to 50 parts by mass, preferably 0.5 parts by mass to 30 parts by mass, and preferably 1 part by mass to 100 parts by mass of the electrode active material. It is more preferably 20 parts by mass.
 正極の電極合剤ペーストを調製するための溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ニトロメタン、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、ポリエチレンオキシド、テトラヒドロフラン、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン、水、アルコール等が挙げられる。溶媒の使用量は、電極合剤ペーストを塗膜する際に選択する塗布方法にあわせて調整することができ、例えば、ドクターブレード法による塗布の場合、正極活物質、バインダー及び導電助剤の合計量100質量部に対して、15質量部~300質量部であることが好ましく、30質量部~200質量部であることが更に好ましい。 As a solvent for preparing the electrode mixture paste for the positive electrode, for example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, acetonitrile, propylene carbonate, etc. Pionitrile, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, nitromethane, N-methylpyrrolidone, N,N-dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyl triamine, N , N-dimethylaminopropylamine, polyethylene oxide, tetrahydrofuran, dimethylsulfoxide, sulfolane, γ-butyrolactone, water, alcohol and the like. The amount of the solvent used can be adjusted according to the coating method selected when coating the electrode mixture paste. For example, in the case of coating by the doctor blade method, the total of the positive electrode active material, the binder and the conductive additive. The amount is preferably 15 parts by mass to 300 parts by mass, and more preferably 30 parts by mass to 200 parts by mass, relative to 100 parts by mass.
 正極の電極合剤ペーストには、本発明の効果を損なわない範囲で、前記成分に加え、例えば、粘度調整剤、補強材、酸化防止剤、pH調整剤、分散剤等の他の成分を含有させてもよい。これらの他の成分としては公知のものを、公知の配合比率で使用することができる。 The electrode mixture paste for the positive electrode contains, in addition to the above components, other components such as a viscosity modifier, a reinforcing material, an antioxidant, a pH modifier, and a dispersant, in a range that does not impair the effects of the present invention. You may let me. As these other components, known components can be used in a known mixing ratio.
 電極合剤ペーストの製造において、正極活物質、バインダー及び導電助剤を溶媒に分散又は溶解させる際、すべてを一括して溶媒に加えて分散処理してもよいし、別々に加えて分散処理してもよい。溶媒中に、バインダー、導電助剤、正極活物質の順番で逐次添加して分散処理を行なうと、これらを溶媒に均一に分散できるため好ましい。電極合剤ペーストが他の成分を含有する場合、他の成分を一括して加えて分散処理することができるが、他の成分を1種添加するごとに分散処理することが好ましい。 In the production of the electrode mixture paste, when the positive electrode active material, the binder and the conductive auxiliary agent are dispersed or dissolved in the solvent, all of them may be collectively added to the solvent for dispersion treatment, or they may be added separately for dispersion treatment. May be. It is preferable to sequentially add the binder, the conductive auxiliary agent, and the positive electrode active material in this order to the solvent for dispersion treatment, because these can be uniformly dispersed in the solvent. When the electrode mixture paste contains other components, the other components can be collectively added for dispersion treatment, but it is preferable to perform the dispersion treatment every time one other component is added.
 分散処理の方法としては特に制限されないが、工業的な方法として、例えば、通常のボールミル、サンドミル、ビーズミル、サイクロンミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、自転・公転ミキサー、プラネタリーミキサー、フィルミックス、ジェットペースタ等を使用することができる。 The method of dispersion treatment is not particularly limited, but as an industrial method, for example, a usual ball mill, sand mill, bead mill, cyclone mill, pigment disperser, grinder, ultrasonic disperser, homogenizer, rotation/revolution mixer, A planetary mixer, a fill mix, a jet pasta, etc. can be used.
 集電体としては、チタン、チタン合金、アルミニウム、アルミニウム合金、ニッケル、ステンレス鋼、ニッケルメッキ鋼、カーボン等の導電材料が用いられる。集電体の形状としては、箔状、板状、網状、発泡状、不織布状等が挙げられ、集電体は多孔質又は無孔のどちらでも構わない。また、これらの導電材料は、密着性や電気特性を改良するために表面処理が施されている場合がある。これらの導電材料の中でも、導電性や価格の観点からアルミニウムが好ましく、アルミニウム箔が特に好ましい。集電体の厚みは、特に制限はないが、通常5μm~30μmである。 As the current collector, a conductive material such as titanium, titanium alloy, aluminum, aluminum alloy, nickel, stainless steel, nickel plated steel, or carbon is used. Examples of the shape of the current collector include a foil shape, a plate shape, a net shape, a foam shape, and a non-woven cloth shape. The current collector may be porous or non-porous. In addition, these conductive materials may be surface-treated in order to improve adhesion and electrical characteristics. Among these conductive materials, aluminum is preferable and aluminum foil is particularly preferable from the viewpoint of conductivity and price. The thickness of the current collector is not particularly limited, but is usually 5 μm to 30 μm.
 正極の電極合剤ペーストを集電体上に塗布する方法は、特に限定されないが、例えば、ダイコーター法、コンマコーター法、カーテンコーター法、スプレーコーター法、グラビアコーター法、フレキソコーター法、ナイフコーター法、ドクターブレード法、リバースロール法、ハケ塗り法、ディップ法等を用いることができる。電極合剤ペーストの粘性及び乾燥性に合わせて、良好な塗布層の表面状態を得ることが可能となる点で、ダイコーター法、ナイフコーター法、ドクターブレード法及びコンマコーター法が好ましい。 The method of applying the electrode mixture paste of the positive electrode onto the current collector is not particularly limited, and examples thereof include die coater method, comma coater method, curtain coater method, spray coater method, gravure coater method, flexo coater method, knife coater. Method, doctor blade method, reverse roll method, brush coating method, dip method and the like can be used. The die coater method, the knife coater method, the doctor blade method and the comma coater method are preferable in that a good coating layer surface state can be obtained in accordance with the viscosity and the drying property of the electrode mixture paste.
 正極の電極合剤ペーストの集電体上への塗布は、集電体の片面に行ってもよいし、両面に行ってもよい。集電体の両面に塗布する場合は、片面ずつ逐次塗布してもよいし、両面同時に塗布してもよい。また、集電体の表面に連続的に塗布してもよいし、間欠的に塗布してもよいし、ストライプ状に塗布してもよい。塗布層の厚さ、長さ及び幅は、電池の大きさ等に応じて、適宜、決定することができる。 The application of the electrode mixture paste for the positive electrode onto the current collector may be performed on one side or both sides of the current collector. When it is applied to both sides of the current collector, it may be applied one side at a time or may be applied to both sides simultaneously. Further, it may be applied continuously, intermittently or in stripes on the surface of the current collector. The thickness, length and width of the coating layer can be appropriately determined according to the size of the battery and the like.
 集電体上に塗布された正極の電極合剤ペーストを乾燥させる方法としては、特に限定されず、公知の方法を用いることができる。乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、加熱炉などに静置する、遠赤外線や赤外線、又は電子線等を照射することによる乾燥が挙げられる。これらの乾燥方法は組合せて実施してもよい。加熱する場合の温度は、一般的には50℃~180℃程度であるが、温度などの条件は電極合剤ペーストの塗布量、使用した溶媒の沸点等に応じて適宜設定することができる。この乾燥により、電極合剤ペーストの塗膜から溶媒等の揮発成分が揮発し、集電体上に電極合剤層が形成される。 The method for drying the electrode mixture paste for the positive electrode applied on the current collector is not particularly limited, and a known method can be used. Examples of the drying method include drying with warm air, hot air, and low humidity air, vacuum drying, and drying by irradiating with far infrared rays, infrared rays, electron beams, or the like, which is left standing in a heating furnace or the like. These drying methods may be carried out in combination. The temperature for heating is generally about 50° C. to 180° C., but conditions such as temperature can be appropriately set depending on the application amount of the electrode mixture paste, the boiling point of the solvent used, and the like. By this drying, the volatile components such as the solvent volatilize from the coating film of the electrode mixture paste, and the electrode mixture layer is formed on the current collector.
 硫黄変性有機化合物、及び硫黄-炭素複合体などリチウムを含まない材料を正極活物質として用いる場合、リチウムをあらかじめドープすることもできる。前記材料にドープする方法は、公知の方法に従えばよい。例えば、対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電解ドープ法によってリチウムを挿入する方法や、金属リチウム箔を電極に貼り付けた後、電解液の中に放置し、電極へのリチウムの拡散を利用してドープする貼り付けドープ法によりリチウムを挿入する方法、正極活物質とリチウム金属とを機械的に衝突させ、リチウムを挿入するメカニカルドープ法等が挙げられるが、これらに限定されるのもではない。 When a material containing no lithium such as a sulfur-modified organic compound and a sulfur-carbon composite is used as the positive electrode active material, lithium can be pre-doped. The method of doping the material may be a known method. For example, a half battery is assembled using metallic lithium as the counter electrode, and lithium is inserted by an electrolytic doping method in which lithium is electrochemically doped. Alternatively, a metallic lithium foil is attached to an electrode and then left in an electrolytic solution. Then, a method of inserting lithium by a pasting dope method of doping by utilizing diffusion of lithium to an electrode, a mechanical doping method of mechanically colliding a positive electrode active material and a lithium metal, and inserting lithium. However, it is not limited to these.
 本発明で用いる負極は、公知の方法に準じて製造することができる。例えば、負極活物質、バインダー及び導電助剤を含む配合物を、有機溶媒又は水でスラリー化した電極合剤ペーストを集電体に塗布して乾燥することにより、集電体上に電極合剤層が形成された負極を製造することができる。 The negative electrode used in the present invention can be manufactured according to a known method. For example, a mixture containing a negative electrode active material, a binder, and a conductive auxiliary agent is applied to a current collector by applying an electrode mixture paste prepared by slurrying it with an organic solvent or water, and then dried to form an electrode mixture on the current collector. A layered negative electrode can be manufactured.
 負極活物質は、公知のものを用いることができる。公知の負極活物質としては、例えば、天然黒鉛、人造黒鉛、難黒鉛化炭素、易黒鉛化炭素、リチウム、リチウム合金、珪素、珪素合金、酸化珪素、スズ、スズ合金、酸化スズ、リン、ゲルマニウム、インジウム、酸化銅、硫化アンチモン、酸化チタン、酸化鉄、酸化マンガン、酸化コバルト、酸化ニッケル、酸化鉛、酸化ルテニウム、酸化タングステン、酸化亜鉛の他、LiVO2、Li2VO4、Li4Ti512、チタンニオブ系酸化物等の複合酸化物等が挙げられる。これらの負極活物質は、1種のみを使用してもよいし、2種以上を組合せて使用してもよい。 A known negative electrode active material can be used. Known negative electrode active materials include, for example, natural graphite, artificial graphite, non-graphitizable carbon, graphitizable carbon, lithium, lithium alloy, silicon, silicon alloy, silicon oxide, tin, tin alloy, tin oxide, phosphorus, germanium. , Indium, copper oxide, antimony sulfide, titanium oxide, iron oxide, manganese oxide, cobalt oxide, nickel oxide, lead oxide, ruthenium oxide, tungsten oxide, zinc oxide, LiVO 2 , Li 2 VO 4 , Li 4 Ti 5 O 12 , complex oxides such as titanium-niobium-based oxides and the like can be mentioned. These negative electrode active materials may be used alone or in combination of two or more.
 負極活物質として、硫黄、硫黄変性有機化合物、硫黄-炭素複合体、Li2x(x=1~8)を用いることもできる。負極活物質として用いることができる硫黄、硫黄変性有機化合物、硫黄-炭素複合体としては、正極活物質として用いることができる、硫黄、硫黄変性有機化合物、硫黄-炭素複合体と同じものを用いることができる。 As the negative electrode active material, sulfur, a sulfur-modified organic compound, a sulfur-carbon composite, or Li 2 S x (x=1 to 8) can also be used. As the sulfur, sulfur-modified organic compound, and sulfur-carbon composite that can be used as the negative electrode active material, use the same sulfur, sulfur-modified organic compound, and sulfur-carbon composite that can be used as the positive electrode active material. You can
 負極活物質の粒子径が大き過ぎると均一で平滑な電極合剤層が得られない場合があり、一方、小さ過ぎるとスラリー化工程でのハンドリング性が低下することから、負極活物質の平均粒子径(D50)は0.01μm~100μmであることが好ましく、0.5μm~50μmであることがより好ましく、1μm~30μmであることが更に好ましい。 If the particle size of the negative electrode active material is too large, it may not be possible to obtain a uniform and smooth electrode mixture layer, while if it is too small, the handling property in the slurrying process will decrease, so the average particle size of the negative electrode active material. The diameter (D50) is preferably 0.01 μm to 100 μm, more preferably 0.5 μm to 50 μm, and further preferably 1 μm to 30 μm.
 負極活物質は、粉砕、造粒等の方法により所望の粒径とすることができる。粉砕は、気体中で行う乾式粉砕でも、水等の液体中で行う湿式粉砕でもよい。工業的な粉砕方法としては、例えば、ボールミル、ローラーミル、ターボミル、ジェットミル、サイクロンミル、ハンマーミル、ピンミル、回転ミル、振動ミル、遊星ミル、アトライター、ビーズミル等が挙げられる。 The negative electrode active material can be made into a desired particle size by a method such as pulverization or granulation. The pulverization may be dry pulverization performed in a gas or wet pulverization performed in a liquid such as water. Examples of the industrial pulverization method include a ball mill, a roller mill, a turbo mill, a jet mill, a cyclone mill, a hammer mill, a pin mill, a rotary mill, a vibration mill, a planetary mill, an attritor, and a bead mill.
 バインダーは、公知のものを用いることができる。バインダーの具体例としては、正極に用いるバインダーと同様のものが挙げられる。バインダーは、1種のみを使用してもよいし、2種以上を組合せて使用してもよい。 Known binders can be used. Specific examples of the binder include those similar to the binder used for the positive electrode. The binder may be used alone or in combination of two or more.
 バインダーの含有量は、負極活物質100質量部に対して、1質量部~30質量部であることが好ましく、1質量部~20質量部であることが更に好ましい。 The content of the binder is preferably 1 part by mass to 30 parts by mass, and more preferably 1 part by mass to 20 parts by mass with respect to 100 parts by mass of the negative electrode active material.
 導電助剤は、電極の導電助剤として公知のものを用いることができる。導電助剤の具体例としては、正極に用いる導電助剤と同様のものが挙げられる。 As the conductive additive, a known conductive additive for electrodes can be used. Specific examples of the conductive additive include those similar to the conductive additive used for the positive electrode.
 導電助剤の平均粒子径(D50)は、0.0001μm~100μmであることが好ましく、0.01μm~50μmであることがより好ましい。 The average particle diameter (D50) of the conductive additive is preferably 0.0001 μm to 100 μm, more preferably 0.01 μm to 50 μm.
 導電助剤の含有量は、電極活物質100質量部に対して、通常0質量部~50質量部であり、0質量部~30質量部であることが好ましく、0.5質量部~20質量部であることがより好ましい。 The content of the conductive additive is usually 0 parts by mass to 50 parts by mass, preferably 0 parts by mass to 30 parts by mass, and 0.5 parts by mass to 20 parts by mass with respect to 100 parts by mass of the electrode active material. More preferably, it is a part.
 負極の電極合剤ペーストを調製するための溶媒としては、正極の電極合剤ペーストを調製するのに使用される溶媒と同様のものが挙げられる。溶媒の使用量は、電極合剤ペーストを塗膜する際に選択する塗布方法にあわせて調整することができ、例えば、ドクターブレード法による塗布の場合、負極活物質、バインダー及び導電助剤の合計量100質量部に対して、15質量部~300質量部であることが好ましく、30質量部~200質量部であることが更に好ましい。 As the solvent for preparing the electrode mixture paste for the negative electrode, the same solvents as those used for preparing the electrode mixture paste for the positive electrode can be mentioned. The amount of the solvent used can be adjusted according to the coating method selected when coating the electrode mixture paste, for example, in the case of coating by the doctor blade method, the total amount of the negative electrode active material, the binder and the conductive additive. The amount is preferably 15 parts by mass to 300 parts by mass, more preferably 30 parts by mass to 200 parts by mass, relative to 100 parts by mass.
 負極の電極合剤ペーストには、本発明の効果を損なわない範囲で、前記成分に加え、例えば、粘度調整剤、補強材、酸化防止剤、pH調整剤、分散剤等の他の成分を含有させてもよい。これらの他の成分としては公知のものを、公知の配合比率で使用することができる。 The electrode mixture paste of the negative electrode contains, in addition to the above components, other components such as a viscosity adjusting agent, a reinforcing material, an antioxidant, a pH adjusting agent, and a dispersant as long as the effects of the present invention are not impaired. You may let me. As these other components, known components can be used in a known mixing ratio.
 負極の電極合剤ペーストの製造は、正極活物質の代わりに負極活物質を用いる以外は、正極の電極合剤ペーストの製造工程と同様の工程で配合、分散し、製造することができる。 The negative electrode mixture paste can be manufactured by mixing, dispersing and manufacturing in the same process as the positive electrode mixture paste manufacturing process except that the negative electrode active material is used instead of the positive electrode active material.
 集電体としては、チタン、チタン合金、アルミニウム、アルミニウム合金、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、カーボン等の導電材料が用いられる。集電体の形状としては、箔状、板状、網状、発泡状、不織布状等が挙げられ、集電体は多孔質又は無孔のどちらでも構わない。また、これらの導電材料は、密着性や電気特性を改良するために表面処理が施されている場合がある。これらの導電材料の中でも、負極電位での安定性や導電性や価格の観点から銅が好ましく、銅箔が特に好ましい。集電体の厚みは、特に制限はないが、通常3μm~30μmである。 As the current collector, a conductive material such as titanium, titanium alloy, aluminum, aluminum alloy, copper, nickel, stainless steel, nickel plated steel, or carbon is used. Examples of the shape of the current collector include a foil shape, a plate shape, a net shape, a foam shape, and a non-woven cloth shape. The current collector may be porous or non-porous. In addition, these conductive materials may be surface-treated in order to improve adhesion and electrical characteristics. Among these conductive materials, copper is preferable, and copper foil is particularly preferable, from the viewpoint of stability at negative electrode potential, conductivity, and price. The thickness of the current collector is not particularly limited, but is usually 3 μm to 30 μm.
 負極活物質がリチウム、リチウム合金、スズ、スズ合金などの金属又は金属合金の場合、バインダーや導電助剤、溶媒を使用して電極合剤ペーストを調製せず、金属又は合金を、例えば板状、シート状、又はフィルム状等の形態で使用することもできる。また、前記合金を負極活物質として用いる場合、負極活物質自体の電子伝導性が高いため集電体を使用しなくてもよいが、電池の構成の都合によっては、負極活物質と合金を形成しない金属材料を負極集電体として使用することもできる。 When the negative electrode active material is a metal or a metal alloy such as lithium, a lithium alloy, tin, or a tin alloy, the electrode mixture paste is not prepared using a binder, a conductive auxiliary agent, or a solvent, and the metal or alloy is, for example, a plate-like material. It can also be used in the form of a sheet, a film, or the like. When the alloy is used as the negative electrode active material, the negative electrode active material itself has a high electron conductivity, so that it is not necessary to use a current collector. However, depending on the structure of the battery, an alloy is formed with the negative electrode active material. A metal material that does not exist can also be used as the negative electrode current collector.
 負極の電極合剤ペーストを集電体上に塗布する方法は、特に限定されないが、例えば、正極を製造する際に用いられる塗布方法が挙げられる。 The method of applying the electrode mixture paste of the negative electrode onto the current collector is not particularly limited, and examples thereof include a coating method used when manufacturing the positive electrode.
 負極の電極合剤ペーストの集電体上への塗布は、集電体の片面に行ってもよいし、両面に行ってもよい。集電体の両面に塗布する場合は、片面ずつ逐次塗布してもよいし、両面同時に塗布してもよい。また、集電体の表面に連続的に塗布してもよいし、間欠的に塗布してもよいし、ストライプ状に塗布してもよい。塗布層の厚さ、長さ及び幅は、電池の大きさ等に応じて、適宜、決定することができる。 The application of the electrode mixture paste for the negative electrode onto the current collector may be performed on one side or both sides of the current collector. When it is applied to both sides of the current collector, it may be applied one side at a time or may be applied to both sides simultaneously. Further, it may be applied continuously, intermittently or in stripes on the surface of the current collector. The thickness, length and width of the coating layer can be appropriately determined according to the size of the battery and the like.
 集電体上に塗布された負極の電極合剤ペーストを乾燥させる方法としては、特に限定されず、公知の方法を用いることができる。乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、加熱炉などに静置する、遠赤外線や赤外線、又は電子線等を照射することによる乾燥が挙げられる。これらの乾燥方法は組合せて実施してもよい。加熱する場合の温度は、一般的には50℃~180℃程度であるが、温度などの条件は電極合剤ペーストの塗布量、使用した溶媒の沸点等に応じて適宜設定することができる。この乾燥により、電極合剤ペーストの塗膜から溶媒等の揮発成分が揮発し、集電体上に電極合剤層が形成される。 The method of drying the electrode mixture paste of the negative electrode applied on the current collector is not particularly limited, and a known method can be used. Examples of the drying method include drying with warm air, hot air, and low humidity air, vacuum drying, and drying by irradiating with far infrared rays, infrared rays, electron beams, or the like, which is left standing in a heating furnace or the like. These drying methods may be carried out in combination. The temperature for heating is generally about 50° C. to 180° C., but conditions such as temperature can be appropriately set depending on the application amount of the electrode mixture paste, the boiling point of the solvent used, and the like. By this drying, the volatile components such as the solvent volatilize from the coating film of the electrode mixture paste, and the electrode mixture layer is formed on the current collector.
 ケイ素系、スズ系、硫黄系等の、初回不可逆反応が大きな材料を負極活物質として用いる場合、リチウムをあらかじめドープすることもできる。前記材料にドープする方法は、公知の方法に従えばよい。例えば、対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電解ドープ法によってリチウムを挿入する方法や、金属リチウム箔を電極に貼り付けた後、電解液の中に放置し、電極へのリチウムの拡散を利用してドープする貼り付けドープ法によりリチウムを挿入する方法、負極活物質とリチウム金属とを機械的に衝突させ、リチウムを挿入するメカニカルドープ法等が挙げられるが、これらに限定されるのもではない。 When using a material such as a silicon-based material, a tin-based material, or a sulfur-based material that has a large initial irreversible reaction as the negative electrode active material, lithium can be pre-doped. The method of doping the material may be a known method. For example, assembling a half-cell using metallic lithium as the counter electrode and inserting lithium by an electrolytic doping method in which lithium is electrochemically doped, or by attaching a metallic lithium foil to an electrode and then leaving it in an electrolytic solution Then, a method of inserting lithium by a pasting dope method of doping by utilizing diffusion of lithium to the electrode, a mechanical dope method of mechanically colliding a negative electrode active material and lithium metal, and inserting lithium. However, it is not limited to these.
 セパレータとしては、通常用いられる高分子フィルム、ガラスフィルム等を特に限定なく使用できる。高分子フィルムの具体例としては、例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエチレンオキシドやポリプロピレンオキシド等のポリエーテル類、カルボキシメチルセルロースやヒドロキシプロピルセルロース等の種々のセルロース類、ポリ(メタ)アクリル酸及びその種々のエステル類等を主体とする高分子化合物やその誘導体、これらの共重合体や混合物からなるフィルム等が挙げられ、これらのフィルムは、アルミナやシリカなどのセラミック材料、酸化マグネシウム、アラミド樹脂、ポリフッ化ビニリデンでコートされている場合がある。これらのフィルムは、単独で用いることができ、これらの高分子フィルムを重ね合わせて複層フィルムとして用いることもできる。更に、これらの高分子フィルムには、種々の添加剤を用いることができ、その種類や含有量は特に制限されない。これらの高分子フィルムの中でも、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリスルホンからなるフィルムが好ましく用いられる。 As the separator, a commonly used polymer film, glass film or the like can be used without particular limitation. Specific examples of the polymer film include, for example, polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyether sulfone, polycarbonate, polyamide, polyimide, polyethylene oxide and polypropylene. Polyethers such as oxides, various celluloses such as carboxymethyl cellulose and hydroxypropyl cellulose, polymer compounds mainly containing poly(meth)acrylic acid and various esters thereof, derivatives thereof, copolymers thereof, and the like. Examples include films made of a mixture, and these films may be coated with a ceramic material such as alumina or silica, magnesium oxide, an aramid resin, or polyvinylidene fluoride. These films can be used alone or can be used as a multilayer film by superposing these polymer films. Further, various additives can be used in these polymer films, and the kind and content thereof are not particularly limited. Among these polymer films, a film made of polyethylene, polypropylene, polyvinylidene fluoride or polysulfone is preferably used.
 これらの高分子フィルムは、非水電解質が浸み込んでイオンが透過し易いように、微多孔化がなされたものが用いられる。この微多孔化の方法としては、高分子化合物と溶剤の溶液をミクロ相分離させながら製膜し、溶剤を抽出除去して多孔化する「相分離法」と、溶融した高分子化合物を高ドラフトで押し出し製膜した後に熱処理し、結晶を一方向に配列させ、更に延伸によって結晶間に間隙を形成して多孔化をはかる「延伸法」等が挙げられ、用いられる高分子フィルムによって適宜選択される。  These polymer films are microporous so that the non-aqueous electrolyte can penetrate and the ions can easily permeate. As the method of making micropores, a “phase separation method” in which a solution of a polymer compound and a solvent is subjected to microphase separation to form a film, and the solvent is extracted and removed to make the polymer porous, and a molten polymer compound is highly drafted. The film is extruded into a film and then heat-treated to arrange the crystals in one direction, and further, a "stretching method" in which a gap is formed between the crystals to form a porosity, which is appropriately selected depending on the polymer film used. It
 本発明の非水電解質二次電池は、その形状に特に制限はなく、コイン型電池、円筒型電池、角型電池、ラミネート型電池等、種々の形状の電池とすることができる。図1は、本発明の非水電解質二次電池のコイン型電池の構造の一例を概略的に示す縦断面図である。図2は、本発明の非水電解質二次電池の円筒型電池の基本構成を示す概略図である。図3は、本発明の非水電解質二次電池の円筒型電池の内部構造を断面として示す斜視図である。 The shape of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and various shapes such as coin type battery, cylindrical type battery, rectangular type battery and laminated type battery can be used. FIG. 1 is a vertical cross-sectional view schematically showing an example of the structure of a coin-type battery of the non-aqueous electrolyte secondary battery of the present invention. FIG. 2 is a schematic diagram showing the basic configuration of a cylindrical battery of the non-aqueous electrolyte secondary battery of the present invention. FIG. 3 is a perspective view showing the internal structure of a cylindrical battery of the non-aqueous electrolyte secondary battery of the present invention as a cross section.
 図1に示すコイン型非水電解質二次電池10は、正極集電体1aと、正極集電体1a上に形成され、リチウムイオンを放出できる正極合剤層1と、正極集電体1a及び正極合剤層1から構成される正極を収容する正極ケース4と、負極集電体2aと、負極集電体2a上に形成され、正極合剤層1から放出されたリチウムイオンを吸蔵及び放出できる負極合剤層2と、負極集電体2a及び負極合剤層2から構成される負極を収容する負極ケース5と、セパレータ7とを備える。正極ケース4及び負極ケース5の内部は、非水電解質3で満たされている。また、正極ケース4及び負極ケース5の周縁部は、ポリプロピレン製のガスケット6を介してかしめられることにより密閉されている。 A coin-type non-aqueous electrolyte secondary battery 10 shown in FIG. 1 includes a positive electrode current collector 1a, a positive electrode mixture layer 1 formed on the positive electrode current collector 1a and capable of releasing lithium ions, a positive electrode current collector 1a and a positive electrode current collector 1a. A positive electrode case 4 containing a positive electrode composed of the positive electrode mixture layer 1, a negative electrode current collector 2a, and a lithium ion formed on the negative electrode current collector 2a, which absorbs and releases lithium ions released from the positive electrode mixture layer 1 A negative electrode mixture layer 2 that can be formed, a negative electrode case 5 that accommodates a negative electrode composed of the negative electrode current collector 2 a and the negative electrode mixture layer 2, and a separator 7. The interiors of the positive electrode case 4 and the negative electrode case 5 are filled with the non-aqueous electrolyte 3. Further, the peripheral portions of the positive electrode case 4 and the negative electrode case 5 are sealed by being caulked with a polypropylene gasket 6.
 図2及び図3に示す円筒型の非水電解質二次電池10’は、負極板19と正極板21とがセパレータ7を介して巻回された電極体と、電極体を収容するケース23と、電極体を挟むように配置された一対の絶縁板24とを備える。正極板21は、正極集電体1aと、正極集電体1a上に形成され、リチウムイオンを放出できる正極合剤層1とから構成される。負極板19は、負極集電体2aと、負極集電体2a上に形成され、正極合剤層1から放出されたリチウムイオンを吸蔵及び放出できる負極合剤層2とから構成される。ケース23の内部は、非水電解質3で満たされている。ケース23の開放端部では、正極端子17と、正極端子17の内側に設けられた安全弁26及びPTC(Positive Temperature Coefficient)素子27とがガスケット6を介してかしめられることにより密閉されている。負極板19は、負極リード20を介して負極端子18と接続されている。正極板21は、正極リード22を介して正極端子17と接続されている。 The cylindrical non-aqueous electrolyte secondary battery 10 ′ shown in FIGS. 2 and 3 includes an electrode body in which a negative electrode plate 19 and a positive electrode plate 21 are wound with a separator 7 in between, and a case 23 for housing the electrode body. , A pair of insulating plates 24 arranged so as to sandwich the electrode body. The positive electrode plate 21 is composed of a positive electrode current collector 1a and a positive electrode mixture layer 1 formed on the positive electrode current collector 1a and capable of releasing lithium ions. The negative electrode plate 19 includes a negative electrode current collector 2a and a negative electrode mixture layer 2 formed on the negative electrode current collector 2a and capable of absorbing and releasing lithium ions released from the positive electrode mixture layer 1. The inside of the case 23 is filled with the non-aqueous electrolyte 3. At the open end of the case 23, the positive electrode terminal 17 and a safety valve 26 and a PTC (Positive Temperature Coefficient) element 27 provided inside the positive electrode terminal 17 are sealed by being caulked via a gasket 6. The negative electrode plate 19 is connected to the negative electrode terminal 18 via a negative electrode lead 20. The positive electrode plate 21 is connected to the positive electrode terminal 17 via a positive electrode lead 22.
 正極ケース4、負極ケース5及びケース23に用いられる外装部材としては、金属製容器、ラミネートフィルム等が挙げられる。外装部材の厚さは、通常0.5mm以下であり、好ましくは0.3mm以下である。外装部材の形状としては、扁平型(薄型)、角型、円筒型、コイン型、ボタン型等が挙げられる。 As the exterior member used for the positive electrode case 4, the negative electrode case 5, and the case 23, a metal container, a laminated film, etc. may be mentioned. The thickness of the exterior member is usually 0.5 mm or less, preferably 0.3 mm or less. Examples of the shape of the exterior member include a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
 金属製容器は、例えば、ステンレス、アルミニウム又はアルミニウム合金等から形成することができる。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素などの元素を含む合金が好ましい。アルミニウム又はアルミニウム合金において、鉄、銅、ニッケル、クロム等の遷移金属の含有量を1質量%以下にすることで、高温環境下での長期信頼性及び放熱性を飛躍的に向上させることができる。 The metal container can be formed of, for example, stainless steel, aluminum, an aluminum alloy, or the like. As the aluminum alloy, an alloy containing an element such as magnesium, zinc or silicon is preferable. By setting the content of transition metals such as iron, copper, nickel, and chromium in aluminum or an aluminum alloy to 1% by mass or less, long-term reliability and heat dissipation in a high temperature environment can be dramatically improved. ..
 ラミネートフィルムは、樹脂フィルム間に金属層を有する多層フィルムを用いることができる。金属層は、軽量化のためにアルミニウム箔若しくはアルミニウム合金箔が好ましい。樹脂フィルムは、例えば、ポリプロピレン、ポリエチレン、ナイロン、ポリエチレンテレフタレート等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材を形成することができる。 As the laminate film, a multilayer film having a metal layer between resin films can be used. The metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction. For the resin film, for example, a polymer material such as polypropylene, polyethylene, nylon, polyethylene terephthalate can be used. The laminate film can be sealed by heat fusion to form an exterior member.
 以上、本発明の実施形態を説明したが、本発明は、前記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 The embodiments of the present invention have been described above, but the present invention is not limited to the above embodiments. Without departing from the scope of the present invention, various modifications and improvements can be made by those skilled in the art.
 以下に、実施例及び比較例を示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。 The present invention will be described in more detail below by showing Examples and Comparative Examples. The present invention is not limited to these examples.
<正極Aの作製>
 正極活物質としてNCM622(LiNi0.6Co0.2Mn0.22、北京当升社製)を94.0質量部、導電助剤としてアセチレンブラック(デンカブラック、デンカ社製)を3.0質量部、バインダーとしてポリフッ化ビニリデン(クレハ社製)を3.0質量部及び溶媒としてN-メチルピロリドンを90質量部用い、プラネタリーミキサーを用いて分散してスラリー状の電極合剤ペーストを得た。この電極合剤ペーストを、ドクターブレード法によりアルミニウム箔(厚さ15μm)からなる集電体の片面に塗布し、90℃で乾燥の後、プレス成型した。その後、電極を所定の大きさに切断し、更に使用直前に130℃で3時間真空乾燥して正極Aを作製した。
<Production of Positive Electrode A>
94.0 parts by mass of NCM622 (LiNi 0.6 Co 0.2 Mn 0.2 O 2 , manufactured by Beijing Tosho Co., Ltd.) as a positive electrode active material, 3.0 parts by mass of acetylene black (Denka Black, manufactured by Denka Co., Ltd.) as a conduction aid, and a binder. As a solvent, 3.0 parts by mass of polyvinylidene fluoride (manufactured by Kureha Co., Ltd.) and 90 parts by mass of N-methylpyrrolidone as a solvent were dispersed using a planetary mixer to obtain a slurry electrode mixture paste. This electrode mixture paste was applied to one side of a current collector made of aluminum foil (thickness: 15 μm) by the doctor blade method, dried at 90° C., and then press-molded. After that, the electrode was cut into a predetermined size and further vacuum dried at 130° C. for 3 hours immediately before use to prepare a positive electrode A.
<負極Aの作製>
 負極活物質として人造黒鉛(MAGD:日立化成社製)を96.6質量部、導電助剤としてアセチレンブラック(デンカブラック、デンカ社製)を0.4質量部、バインダーとしてスチレン-ブタジエンゴム(40質量%水分散液、日本ゼオン社製)を2.0質量部、カルボキシメチルセルロースナトリウム(CMCNa:ダイセルファインケム社製)を1.0質量部及び溶媒として水を120質量部用い、プラネタリーミキサーを用いて分散してスラリー状の電極合剤ペーストを得た。この電極合剤ペーストを、ドクターブレード法により銅箔(厚さ10μm)からなる集電体の片面に塗布し、90℃で乾燥の後、プレス成型した。その後、電極を所定の大きさに切断し、更に使用直前に130℃で3時間真空乾燥して負極Aを作製した。
<Production of Negative Electrode A>
96.6 parts by mass of artificial graphite (MAGD: manufactured by Hitachi Chemical Co., Ltd.) as a negative electrode active material, 0.4 parts by mass of acetylene black (Denka Black, manufactured by Denka Co., Ltd.) as a conductive additive, and styrene-butadiene rubber (40 2.0% by mass of a mass% aqueous dispersion, manufactured by Nippon Zeon Co., Ltd., 1.0 part by mass of sodium carboxymethylcellulose (CMCNa: manufactured by Daicel FineChem), and 120 parts by mass of water as a solvent, using a planetary mixer. And dispersed to obtain a slurry-like electrode mixture paste. This electrode mixture paste was applied to one side of a current collector made of copper foil (thickness 10 μm) by the doctor blade method, dried at 90° C., and then press-molded. After that, the electrode was cut into a predetermined size and further vacuum dried at 130° C. for 3 hours immediately before use to prepare a negative electrode A.
<電池の作製-1>
[実施例1]
 エチレンカーボネート50体積%及びジエチルカーボネート50体積%からなる混合溶媒に、支持電解質としてLiPF6を1.0mol/Lの濃度で溶解させた溶液を調製した。これに化合物1-1を1.0質量%添加し、非水電解質とした。
 円盤状にカットした正極A及び円盤状にカットした負極Aを用い、セパレータとしてポリプロピレンフィルム(セルガード社製)を挟んでケース内に保持した。その後、先に調製した非水電解質をケース内に注入し、かしめ機により密閉して、実施例1の非水電解質二次電池(φ20mm、厚さ3.2mmのコイン型)を作製した。作製した非水電解質二次電池のサイクル特性及びレート特性を充放電評価-1の方法により評価し、その結果を表1に示す。
<Battery preparation-1>
[Example 1]
A solution was prepared by dissolving LiPF 6 as a supporting electrolyte at a concentration of 1.0 mol/L in a mixed solvent consisting of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate. To this, 1.0% by mass of compound 1-1 was added to obtain a non-aqueous electrolyte.
A positive electrode A cut into a disk shape and a negative electrode A cut into a disk shape were used, and a polypropylene film (manufactured by Celgard) was sandwiched between the separators and held in a case. Then, the previously prepared non-aqueous electrolyte was injected into the case and sealed with a caulking machine to prepare a non-aqueous electrolyte secondary battery of Example 1 (coin type having a diameter of 20 mm and a thickness of 3.2 mm). The cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of Charge/Discharge Evaluation-1, and the results are shown in Table 1.
[実施例2]
 非水電解質に対して、化合物1-1を0.1質量%添加したこと以外は実施例1と同様にして、実施例2の非水電解質二次電池を作製した。作製した非水電解質二次電池のサイクル特性及びレート特性を充放電評価-1の方法により評価し、その結果を表1に示す。
[Example 2]
A non-aqueous electrolyte secondary battery of Example 2 was produced in the same manner as in Example 1 except that 0.1% by mass of Compound 1-1 was added to the non-aqueous electrolyte. The cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of Charge/Discharge Evaluation-1, and the results are shown in Table 1.
[実施例3]
 非水電解質に対して、化合物1-1を5.0質量%添加したこと以外は実施例1と同様にして、実施例3の非水電解質二次電池を作製した。作製した非水電解質二次電池のサイクル特性及びレート特性を充放電評価-1の方法により評価し、その結果を表1に示す。
[Example 3]
A non-aqueous electrolyte secondary battery of Example 3 was produced in the same manner as in Example 1 except that Compound 1-1 was added to the non-aqueous electrolyte in an amount of 5.0% by mass. The cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of Charge/Discharge Evaluation-1, and the results are shown in Table 1.
[実施例4~25]
 化合物1-1の代わりに、表1に示す化合物を非水電解質に添加したこと以外は、実施例1と同様にして、実施例4~25の非水電解質二次電池を作製した。表1中の化合物番号に付記したカッコ内は、非水電解質中の、各添加化合物の重量分率(質量%)を示す。作製した非水電解質二次電池のサイクル特性及びレート特性を充放電評価-1の方法により評価し、その結果を表1に示す。
[Examples 4 to 25]
Nonaqueous electrolyte secondary batteries of Examples 4 to 25 were produced in the same manner as in Example 1 except that the compounds shown in Table 1 were added to the nonaqueous electrolyte instead of the compound 1-1. The numbers in parentheses added to the compound numbers in Table 1 show the weight fraction (mass %) of each additive compound in the non-aqueous electrolyte. The cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of Charge/Discharge Evaluation-1, and the results are shown in Table 1.
[比較例1~7]
 化合物1-1の代わりに、下記化合物5-1~5-7を非水電解質に添加したこと以外は実施例1と同様にして、比較例1~7の非水電解質二次電池を作製した。作製した非水電解質二次電池のサイクル特性及びレート特性を充放電評価-1の方法により評価し、その結果を表1に示す。
[Comparative Examples 1 to 7]
Non-aqueous electrolyte secondary batteries of Comparative Examples 1 to 7 were prepared in the same manner as in Example 1 except that the following compounds 5-1 to 5-7 were added to the non-aqueous electrolyte instead of the compound 1-1. .. The cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of Charge/Discharge Evaluation-1, and the results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
[比較例8]
 化合物1-1を添加しなかったこと以外は実施例1と同様の操作により、比較例8の非水電解質二次電池を作製した。作製した非水電解質二次電池のサイクル特性及びレート特性を充放電評価-1の方法により評価し、その結果を表1に示す。
[Comparative Example 8]
A non-aqueous electrolyte secondary battery of Comparative Example 8 was produced by the same operation as in Example 1 except that Compound 1-1 was not added. The cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of Charge/Discharge Evaluation-1, and the results are shown in Table 1.
<充放電評価-1>
 実施例1~25及び比較例1~8の非水電解質二次電池を25℃の恒温槽に入れ、充電終止電圧を4.20V、放電終止電圧を2.75Vとし、充電レート0.2C、放電レート0.2Cの充放電試験を5回、更に充電レート2C、放電レート2Cの充放電試験を5回行った。その後、45℃の恒温槽に入れ、充電レート0.5C、放電レート0.5Cで100回、計110回の充放電試験を行い、正極活物質当たりの放電容量(mAh/g)を測定した。5回目の放電容量と10回目の放電容量との比(L1)、及び110回目の放電容量と11回目の放電容量との比(L2、L2=110回目の放電容量/11回目の放電容量)を表1に示す。
<Charge/discharge evaluation-1>
The nonaqueous electrolyte secondary batteries of Examples 1 to 25 and Comparative Examples 1 to 8 were placed in a constant temperature bath at 25° C., the charge end voltage was 4.20 V, the discharge end voltage was 2.75 V, and the charge rate was 0.2 C. A charge/discharge test at a discharge rate of 0.2C was performed 5 times, and a charge/discharge test at a charge rate of 2C and a discharge rate 2C was performed 5 times. Then, the battery was placed in a constant temperature bath at 45° C., and a charge/discharge test was performed 100 times at a charge rate of 0.5 C and a discharge rate of 0.5 C, for a total of 110 times, and the discharge capacity (mAh/g) per positive electrode active material was measured. .. Ratio of discharge capacity at 5th time and discharge capacity at 10th time (L1), and ratio of discharge capacity at 110th time and discharge capacity at 11th time (L2, L2=discharge capacity at 110th time/discharge capacity at 11th time) Is shown in Table 1.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
<硫黄変性ポリアクリロニトリルの製造>
 硫黄(シグマアルドリッチ製、粒子径200μm、粉末)200質量部と、ポリアクリロニトリル粉末(シグマアルドリッチ製、開口径30μmのふるいで分級)100質量部とを混合した混合物を、アルミナタンマン管に入れた後、アルミナタンマン管の開口部を、熱電対、ガス導入管及びガス排出管が取り付けられたゴム栓で蓋をした。アルミナタンマン管内にアルゴンガスを100cc/分の流量で導入しながら、混合物を5℃/分の昇温速度で加熱し、100℃に達したところでアルゴンガスを止めた。その後、360℃で加熱を止めたが、温度は400℃まで上昇した。室温付近まで冷却した後、アルミナタンマン管から反応生成物を取り出した。得られた反応生成物を粉砕して、硫黄変性ポリアクリロニトリル(SPANと称する場合もある)を得た。SPANの平均粒子径及び硫黄含有量は下記の通りであった。
・平均粒子径 10μm
・硫黄含有量 38.4質量%
<Production of sulfur-modified polyacrylonitrile>
After adding 200 parts by mass of sulfur (manufactured by Sigma-Aldrich, particle size 200 μm, powder) and 100 parts by mass of polyacrylonitrile powder (manufactured by Sigma-Aldrich, classified by a sieve having an opening diameter of 30 μm) to an alumina Tammann tube The opening of the alumina Tammann tube was covered with a rubber plug to which a thermocouple, a gas inlet tube and a gas outlet tube were attached. While introducing argon gas into the alumina Tamman tube at a flow rate of 100 cc/min, the mixture was heated at a temperature rising rate of 5° C./min, and when the temperature reached 100° C., the argon gas was stopped. Thereafter, the heating was stopped at 360°C, but the temperature rose to 400°C. After cooling to around room temperature, the reaction product was taken out from the alumina Tammann tube. The obtained reaction product was pulverized to obtain sulfur-modified polyacrylonitrile (sometimes referred to as SPAN). The average particle size and sulfur content of SPAN were as follows.
・Average particle size 10μm
・Sulfur content 38.4% by mass
<正極Bの作製>
 正極活物質としてSPANを90.0質量部、導電助剤としてアセチレンブラック(デンカブラック、デンカ社製)を5.0質量部、バインダーとしてスチレン-ブタジエンゴム(40質量%水分散液、日本ゼオン製)を3.0質量部、カルボキシメチルセルロースナトリウム(CMCNa、ダイセルファインケム社製)を2.0質量部及び溶媒として水を120質量部用い、自転・公転ミキサーを用いて分散してスラリー状の電極合剤ペーストを得た。この電極合剤ペーストを、ドクターブレード法によりカーボンコートアルミニウム箔(厚さ22μm)からなる集電体の片面に塗布し、90℃で乾燥の後、プレス成型した。その後、電極を所定の大きさに切断し、更に使用直前に130℃で3時間真空乾燥した。その後、金属リチウムを対極とし、比較例8の非水電解質を用いた半電池を組み、電気化学的にリチウムをドープして正極Bを作製した。
<Production of Positive Electrode B>
90.0 parts by mass of SPAN as a positive electrode active material, 5.0 parts by mass of acetylene black (Denka Black, manufactured by Denka) as a conductive additive, and styrene-butadiene rubber (40% by mass aqueous dispersion, manufactured by Nippon Zeon) as a binder. ), 2.0 parts by mass of sodium carboxymethyl cellulose (CMCNa, manufactured by Daicel FineChem) and 120 parts by mass of water as a solvent, and the slurry-like electrode mixture is dispersed by using a rotation/revolution mixer. An agent paste was obtained. This electrode mixture paste was applied by a doctor blade method to one side of a current collector made of carbon-coated aluminum foil (thickness: 22 μm), dried at 90° C., and then press-molded. After that, the electrode was cut into a predetermined size and further vacuum dried at 130° C. for 3 hours immediately before use. After that, a half battery using the nonaqueous electrolyte of Comparative Example 8 was assembled using metallic lithium as a counter electrode, and lithium was electrochemically doped to produce a positive electrode B.
<電池の作製-2>
[実施例26]
 エチレンカーボネート50体積%及びジエチルカーボネート50体積%からなる混合溶媒に、LiPF6を1.0mol/Lの濃度で溶解させた溶液を調製した。これに化合物1-37を1.0質量%添加し、非水電解質とした。
 円盤状にカットした正極B及び円盤状にカットした負極Aを用い、セパレータとしてポリプロピレンフィルム(セルガード社製)を挟んでケース内に保持した。その後、先に調製した非水電解質をケース内に注入し、かしめ機により密閉して、実施例26の非水電解質二次電池(φ20mm、厚さ3.2mmのコイン型)を作製した。作製した非水電解質二次電池のサイクル特性及びレート特性を充放電評価-2の方法により評価し、その結果を表2に示す。
<Battery preparation-2>
[Example 26]
A solution was prepared by dissolving LiPF 6 at a concentration of 1.0 mol/L in a mixed solvent consisting of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate. Compound 1-37 was added to this in an amount of 1.0% by mass to give a non-aqueous electrolyte.
A positive electrode B cut into a disk shape and a negative electrode A cut into a disk shape were used, and a polypropylene film (manufactured by Celgard) was sandwiched between the separators and held in a case. Then, the non-aqueous electrolyte prepared above was injected into the case and sealed with a caulking machine to prepare a non-aqueous electrolyte secondary battery of Example 26 (coin type having a diameter of 20 mm and a thickness of 3.2 mm). The cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of charge/discharge evaluation-2, and the results are shown in Table 2.
[実施例27~29]
 化合物1-37の代わりに、表2に示す化合物を添加したこと以外は、実施例26と同様にして、実施例27~29の非水電解質二次電池を作製した。作製した非水電解質二次電池のサイクル特性及びレート特性を充放電評価-2の方法により評価し、その結果を表2に示す。
[Examples 27 to 29]
Non-aqueous electrolyte secondary batteries of Examples 27 to 29 were produced in the same manner as in Example 26, except that the compounds shown in Table 2 were added instead of the compound 1-37. The cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of charge/discharge evaluation-2, and the results are shown in Table 2.
[比較例9]
 化合物1-37を添加しなかったこと以外は実施例26と同様の操作により、比較例9の非水電解質二次電池を作製した。作製した非水電解質二次電池のサイクル特性及びレート特性を充放電評価-2の方法により評価し、その結果を表2に示す。
[Comparative Example 9]
A non-aqueous electrolyte secondary battery of Comparative Example 9 was produced by the same operation as in Example 26 except that Compound 1-37 was not added. The cycle characteristics and rate characteristics of the produced non-aqueous electrolyte secondary battery were evaluated by the method of charge/discharge evaluation-2, and the results are shown in Table 2.
<充放電評価-2>
 実施例26~29及び比較例9の非水電解質二次電池を25℃の恒温槽に入れ、充電終止電圧を3.0V、放電終止電圧を0.7Vとし、充電レート0.2C、放電レート0.2Cの充放電試験を5回、更に充電レート2C、放電レート2Cの充放電試験を5回行った。その後、45℃の恒温槽に入れ、充電レート0.5C、放電レート0.5Cで100回、計110回の充放電試験を行い、正極活物質当たりの放電容量(mAh/g)を測定した。5回目の放電容量と10回目の放電容量との比(L3)、及び110回目の放電容量と11回目の放電容量との比(L4、L4=110回目の放電容量/11回目の放電容量)を表2に示す。
<Charge/discharge evaluation-2>
The non-aqueous electrolyte secondary batteries of Examples 26 to 29 and Comparative Example 9 were placed in a constant temperature bath at 25° C., the charge end voltage was 3.0 V, the discharge end voltage was 0.7 V, and the charge rate was 0.2 C and the discharge rate. The 0.2 C charge/discharge test was performed 5 times, and the charge rate 2 C and discharge rate 2 C charge/discharge tests were performed 5 times. Then, the battery was placed in a constant temperature bath at 45° C., and a charge/discharge test was performed 100 times at a charge rate of 0.5 C and a discharge rate of 0.5 C, for a total of 110 times, and the discharge capacity (mAh/g) per positive electrode active material was measured. .. Ratio of discharge capacity at 5th time and discharge capacity at 10th time (L3), and ratio of discharge capacity at 110th time and discharge capacity at 11th time (L4, L4=discharge capacity at 110th time/discharge capacity at 11th time) Is shown in Table 2.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 表1及び表2の結果より、本発明の電解質用組成物を用いることで、サイクル特性及びレート特性を同時に改善した非水電解質二次電池を作製することができる。 From the results of Tables 1 and 2, by using the composition for electrolyte of the present invention, a non-aqueous electrolyte secondary battery with improved cycle characteristics and rate characteristics can be produced.
 1  正極合剤層
 1a 正極集電体
 2  負極合剤層
 2a 負極集電体
 3  非水電解質
 4  正極ケース
 5  負極ケース
 6  ガスケット
 7  セパレータ
 10 コイン型の非水電解質二次電池
 10’ 円筒型の非水電解質二次電池
 17 正極端子
 18 負極端子
 19 負極板
 20 負極リード
 21 正極板
 22 正極リード
 23 ケース
 24 絶縁板
 26 安全弁
 27 PTC素子
1 Positive electrode mixture layer 1a Positive electrode current collector 2 Negative electrode mixture layer 2a Negative electrode current collector 3 Non-aqueous electrolyte 4 Positive electrode case 5 Negative electrode case 6 Gasket 7 Separator 10 Coin type non-aqueous electrolyte secondary battery 10' Cylindrical non- Water electrolyte secondary battery 17 Positive electrode terminal 18 Negative electrode terminal 19 Negative electrode plate 20 Negative electrode lead 21 Positive electrode plate 22 Positive electrode lead 23 Case 24 Insulating plate 26 Safety valve 27 PTC element

Claims (8)

  1.  下記一般式(1)~(4)で表される化合物からなる群から選ばれる少なくとも1種の化合物と、
     溶媒及び分散媒から選ばれる少なくとも1種と
    を含有する電解質用組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、炭素原子数1~8の炭化水素基であり、R2~R5は、各々独立に、水素原子、炭素原子数1~8の炭化水素基、炭素原子数1~6のアルコキシ基又は下記式(1-a)であり、R6は、ニトロ基、スルホン酸基、炭素原子数1~8の炭化水素基、炭素原子数1~6のアルコキシ基、下記式(1-b)又は下記式(1-c)であり、R6が炭素原子数1~8の炭化水素基である場合には、n=1~4の整数であり、R6が、ニトロ基、スルホン酸基、炭素原子数1~6のアルコキシ基又は下記式(1-b)である場合には、n=1であり、R6が下記式(1-c)である場合には、n=2である。)
    Figure JPOXMLDOC01-appb-C000002
    (式中の※は結合位置を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R7は、下記式(1-d)又は下記式(1-e)である。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R8~R16は、各々独立に、水素原子、無置換の炭素原子数1~8の炭化水素基、水素原子の一部がフッ素原子で置換された炭素原子数1~8の炭化水素基、無置換の炭素原子数1~6のアルコキシ基、水素原子の一部がフッ素原子で置換された炭素原子数1~6のアルコキシ基、無置換の炭素原子数1~6のチオアルコキシ基、水素原子の一部がフッ素原子で置換された炭素原子数1~6のチオアルコキシ基、炭素原子数1~8の炭化水素基を有するスルホニル基又は炭素原子数1~8の炭化水素基を有するアシル基であり、※は結合位置を表す。)
    Figure JPOXMLDOC01-appb-C000005
    (式中、m=1又は2であり、m=1の場合、R17~R19は、各々独立に、炭素原子数1~8の炭化水素基であり、R18及びR19は、連結して環を形成してもよく、m=2の場合、R17及びR19は、各々独立に、炭素原子数1~8の炭化水素基であり、R18は単結合である。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R20及びR21は、各々独立に、炭素原子数1~8の炭化水素基又は炭素原子数1~6のアルコキシ基であり、R22~R31は、各々独立に、水素原子、炭素原子数1~8の炭化水素基、炭素原子数1~6のアルコキシ基、ハロゲン原子又はニトロ基である。)
    At least one compound selected from the group consisting of compounds represented by the following general formulas (1) to (4),
    A composition for an electrolyte containing at least one selected from a solvent and a dispersion medium.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 is a hydrocarbon group having 1 to 8 carbon atoms, and R 2 to R 5 are each independently a hydrogen atom, a hydrocarbon group having 1 to 8 carbon atoms, or a carbon atom having 1 carbon atom. An alkoxy group having 1 to 6 or the following formula (1-a), wherein R 6 is a nitro group, a sulfonic acid group, a hydrocarbon group having 1 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or the following formula In the formula (1-b) or the following formula (1-c), when R 6 is a hydrocarbon group having 1 to 8 carbon atoms, n is an integer of 1 to 4 and R 6 is nitro. Group, sulfonic acid group, alkoxy group having 1 to 6 carbon atoms or the following formula (1-b), n=1, and R 6 is the following formula (1-c): , N=2.)
    Figure JPOXMLDOC01-appb-C000002
    (* in the formula represents the bonding position.)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 7 is the following formula (1-d) or the following formula (1-e).)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R 8 to R 16 are each independently a hydrogen atom, an unsubstituted hydrocarbon group having 1 to 8 carbon atoms, or 1 to 8 carbon atoms in which a part of hydrogen atoms are substituted with fluorine atoms. Hydrocarbon group, an unsubstituted alkoxy group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms in which a part of hydrogen atoms have been replaced by a fluorine atom, an unsubstituted alkoxy group having 1 to 6 carbon atoms Thioalkoxy group, thioalkoxy group having 1 to 6 carbon atoms in which some hydrogen atoms are substituted with fluorine atoms, sulfonyl group having a hydrocarbon group having 1 to 8 carbon atoms, or carbonization having 1 to 8 carbon atoms It is an acyl group having a hydrogen group, and * represents the bonding position.)
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, when m=1 or 2, and m=1, R 17 to R 19 are each independently a hydrocarbon group having 1 to 8 carbon atoms, and R 18 and R 19 are linked to each other. To form a ring, and when m=2, R 17 and R 19 are each independently a hydrocarbon group having 1 to 8 carbon atoms, and R 18 is a single bond.)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, R 20 and R 21 are each independently a hydrocarbon group having 1 to 8 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, and R 22 to R 31 are independently hydrogen. An atom, a hydrocarbon group having 1 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a halogen atom or a nitro group.)
  2.  前記一般式(1)におけるR1が、メチル基、アリル基、t-ブチル基又はベンジル基である化合物を含有する請求項1に記載の電解質用組成物。 The composition for an electrolyte according to claim 1, wherein R 1 in the general formula (1) contains a compound which is a methyl group, an allyl group, a t-butyl group or a benzyl group.
  3.  前記一般式(2)におけるR7が前記式(1-d)であり、前記式(1-d)におけるR8、R9、R11及びR12が水素原子であり、R10がメトキシ基、チオメトキシ基、トリフルオロメトキシ基又はメチルスルホニル基である化合物を含有する請求項1に記載の電解質用組成物。 R 7 in the general formula (2) is the formula (1-d), R 8 , R 9 , R 11 and R 12 in the formula (1-d) are hydrogen atoms, and R 10 is a methoxy group. The composition for electrolytes according to claim 1, containing a compound which is a thiomethoxy group, a trifluoromethoxy group or a methylsulfonyl group.
  4.  前記一般式(2)におけるR7が前記式(1-e)であり、前記式(1-e)におけるR14~R16が水素原子である化合物を含有する請求項1に記載の電解質用組成物。 The electrolyte according to claim 1, wherein R 7 in the general formula (2) is the formula (1-e), and R 14 to R 16 in the formula (1-e) is a hydrogen atom. Composition.
  5.  前記一般式(3)におけるR17がメチル基又はエチル基である化合物を含有する請求項1に記載の電解質用組成物。 The composition for electrolytes according to claim 1, containing a compound in which R 17 in the general formula (3) is a methyl group or an ethyl group.
  6.  前記一般式(4)におけるR20及びR21がメチル基であり、R24及びR29がフッ素原子又はニトロ基であり、R22、R23、R25、R26、R27、R28、R30及びR31が水素原子である化合物を含有する請求項1に記載の電解質用組成物。 In the general formula (4), R 20 and R 21 are methyl groups, R 24 and R 29 are fluorine atoms or nitro groups, and R 22 , R 23 , R 25 , R 26 , R 27 , R 28 , The composition for electrolytes according to claim 1, containing a compound in which R 30 and R 31 are hydrogen atoms.
  7.  請求項1~6のいずれか一項に記載の電解質用組成物と、
     支持電解質と
    を含む、非水電解質。
    A composition for an electrolyte according to any one of claims 1 to 6,
    A non-aqueous electrolyte, including a supporting electrolyte.
  8.  正極と、
     負極と、
     請求項7に記載の非水電解質と
    を含む、非水電解質二次電池。
    The positive electrode,
    Negative electrode,
    A non-aqueous electrolyte secondary battery comprising the non-aqueous electrolyte according to claim 7.
PCT/JP2020/004511 2019-02-19 2020-02-06 Electrolyte composition, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery WO2020170833A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021501845A JPWO2020170833A1 (en) 2019-02-19 2020-02-06 Electrolyte compositions, non-aqueous electrolytes and non-aqueous electrolyte secondary batteries
KR1020217024108A KR20210126569A (en) 2019-02-19 2020-02-06 Composition for electrolyte, non-aqueous electrolyte and non-aqueous electrolyte secondary battery
CN202080007551.4A CN113228373A (en) 2019-02-19 2020-02-06 Composition for electrolyte, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-027332 2019-02-19
JP2019027332 2019-02-19

Publications (1)

Publication Number Publication Date
WO2020170833A1 true WO2020170833A1 (en) 2020-08-27

Family

ID=72144264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004511 WO2020170833A1 (en) 2019-02-19 2020-02-06 Electrolyte composition, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery

Country Status (4)

Country Link
JP (1) JPWO2020170833A1 (en)
KR (1) KR20210126569A (en)
CN (1) CN113228373A (en)
WO (1) WO2020170833A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3836264A1 (en) * 2019-12-13 2021-06-16 Hyundai Motor Company Electrolyte solution for lithium secondary batteries and lithium secondary battery including the same
EP3836273A1 (en) * 2019-12-13 2021-06-16 Hyundai Motor Company Electrolyte solution for lithium secondary batteries and lithium secondary battery including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258584B2 (en) * 1981-06-25 1987-12-07 Matsushita Graphic Communic
US20060147809A1 (en) * 2004-05-28 2006-07-06 The University Of Chicago Long life lithium batteries with stabilized electrodes
JP2010262800A (en) * 2009-05-01 2010-11-18 Sony Corp Secondary battery, electrolyte, and dicarbonyl compound
JP2013257958A (en) * 2012-06-11 2013-12-26 Sony Corp Electrolyte for nonaqueous secondary battery, nonaqueous secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic apparatus
KR20150072188A (en) * 2013-12-19 2015-06-29 에스케이이노베이션 주식회사 Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3463407B2 (en) 1995-04-24 2003-11-05 三菱化学株式会社 Electrolyte for lithium ion batteries
JP3080609B2 (en) * 1998-07-31 2000-08-28 三洋電機株式会社 Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP3957415B2 (en) 1998-10-20 2007-08-15 日立マクセル株式会社 Non-aqueous secondary battery
JP4934912B2 (en) 2001-06-06 2012-05-23 三菱化学株式会社 Electrolyte and secondary battery
JP2003257452A (en) * 2001-12-27 2003-09-12 Toray Ind Inc High polymer solid electrolyte and solid high polymer type fuel cell by use of the same
JP4677704B2 (en) * 2002-09-19 2011-04-27 株式会社豊田中央研究所 Dye-sensitized solar cell
JP4770118B2 (en) 2003-02-06 2011-09-14 三菱化学株式会社 Non-aqueous electrolyte and lithium secondary battery
JP5018089B2 (en) 2004-12-27 2012-09-05 宇部興産株式会社 Non-aqueous electrolyte and lithium secondary battery using the same
US7851092B2 (en) 2005-03-02 2010-12-14 U Chicago Argonne Llc Redox shuttles for overcharge protection of lithium batteries
US9184428B2 (en) * 2005-03-15 2015-11-10 Uchicago Argonne Llc Non-aqueous electrolytes for lithium ion batteries
JP4961714B2 (en) 2005-10-19 2012-06-27 宇部興産株式会社 Pentafluorophenyloxy compound, non-aqueous electrolyte using the same, and lithium secondary battery
JP4208894B2 (en) * 2006-05-15 2009-01-14 株式会社東芝 Light emitting element
JP2008210769A (en) 2007-01-31 2008-09-11 Sony Corp Nonaqueous electrolyte battery
CN103078137B (en) * 2008-02-29 2015-09-16 三菱化学株式会社 Nonaqueous electrolytic solution and nonaqueous electrolyte battery
WO2012057311A1 (en) * 2010-10-29 2012-05-03 旭化成イーマテリアルズ株式会社 Nonaqueous electrolyte and nonaqueous secondary battery
JP5834771B2 (en) 2011-10-26 2015-12-24 三菱化学株式会社 Non-aqueous electrolyte and battery using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258584B2 (en) * 1981-06-25 1987-12-07 Matsushita Graphic Communic
US20060147809A1 (en) * 2004-05-28 2006-07-06 The University Of Chicago Long life lithium batteries with stabilized electrodes
JP2010262800A (en) * 2009-05-01 2010-11-18 Sony Corp Secondary battery, electrolyte, and dicarbonyl compound
JP2013257958A (en) * 2012-06-11 2013-12-26 Sony Corp Electrolyte for nonaqueous secondary battery, nonaqueous secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic apparatus
KR20150072188A (en) * 2013-12-19 2015-06-29 에스케이이노베이션 주식회사 Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3836264A1 (en) * 2019-12-13 2021-06-16 Hyundai Motor Company Electrolyte solution for lithium secondary batteries and lithium secondary battery including the same
EP3836273A1 (en) * 2019-12-13 2021-06-16 Hyundai Motor Company Electrolyte solution for lithium secondary batteries and lithium secondary battery including the same
US11444327B2 (en) 2019-12-13 2022-09-13 Hyundai Motor Company Electrolyte solution for lithium secondary batteries and lithium secondary battery including the same

Also Published As

Publication number Publication date
KR20210126569A (en) 2021-10-20
JPWO2020170833A1 (en) 2021-12-23
CN113228373A (en) 2021-08-06

Similar Documents

Publication Publication Date Title
JP7225199B2 (en) Organic sulfur-based electrode active material
WO2019181703A1 (en) Method for suppressing thermal runaway caused by internal short circuit
KR101590678B1 (en) Anode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
WO2019088088A1 (en) Slurry composition, and electrode using slurry composition
JPWO2019208153A1 (en) Non-aqueous electrolyte secondary battery
WO2020170833A1 (en) Electrolyte composition, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
US11223045B2 (en) Method for producing organo-sulfur electrode active material
US20230235103A1 (en) Sulfur-modified polyacrylonitrile, electrode active material containing same, electrode for secondary battery containing said electrode active material, method of manufacturing said electrode, and non-aqueous electrolyte secondary battery using said electrode
JP7304339B2 (en) Lithium ion secondary battery and operating method thereof
US20230387384A1 (en) Method for Manufacturing Positive Electrode for Lithium Secondary Battery and Positive Electrode for Lithium Secondary Battery Manufactured Thereby
JP2001110424A (en) Conductive material for positive electrode of lithium secondary battery and positive electrode for the lithium secondary battery using the conductive material
WO2020017378A1 (en) Nonaqueous electrolyte secondary battery
JP2021118031A (en) Nonaqueous electrolyte secondary battery
JP2021114435A (en) Nonaqueous electrolyte additive, and nonaqueous electrolyte and nonaqueous electrolyte secondary battery that contain the same
JP2019220415A (en) Composition, nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2020027695A (en) Composition, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
JPWO2019176618A1 (en) Non-aqueous electrolyte secondary battery
JPWO2020045561A1 (en) Winding type electrode body
US20230261193A1 (en) Sulfur-modified polyacrylonitrile, electrode active material containing same, electrode for secondary battery containing said electrode active material, method of manufacturing said electrode, and non-aqueous electrolyte secondary battery using said electrode
US20230238511A1 (en) Electrode and lithium ion secondary battery
WO2024057992A1 (en) Sulfur-containing material, sulfur-containing battery material, electrode and battery
WO2023095755A1 (en) Non-aqueous electrolyte secondary battery electrode comprising porous metal-containing current collector and organosulfur-based active material, non-aqueous electrolyte secondary battery containing said electrode, and organosulfur-based active material for manufacturing said electrode
WO2023085245A1 (en) Composition, electrode, battery, and electrode active material
US20220340693A1 (en) Production method of sulfur-modified polyacrylonitrile
JP2021051854A (en) Method for manufacturing nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501845

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20758562

Country of ref document: EP

Kind code of ref document: A1