JP3463407B2 - Electrolyte for lithium ion batteries - Google Patents

Electrolyte for lithium ion batteries

Info

Publication number
JP3463407B2
JP3463407B2 JP09849695A JP9849695A JP3463407B2 JP 3463407 B2 JP3463407 B2 JP 3463407B2 JP 09849695 A JP09849695 A JP 09849695A JP 9849695 A JP9849695 A JP 9849695A JP 3463407 B2 JP3463407 B2 JP 3463407B2
Authority
JP
Japan
Prior art keywords
organic solvent
lithium
volume
carbonate
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09849695A
Other languages
Japanese (ja)
Other versions
JPH08293323A (en
Inventor
仁 鈴木
紀子 島
勝昭 長谷川
勇二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP09849695A priority Critical patent/JP3463407B2/en
Publication of JPH08293323A publication Critical patent/JPH08293323A/en
Application granted granted Critical
Publication of JP3463407B2 publication Critical patent/JP3463407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウムイオン電池用
電解液に関する。
TECHNICAL FIELD The present invention relates to an electrolytic solution for a lithium ion battery.

【0002】[0002]

【従来の技術】電気化学素子は、正極、負電極、電解
液、セパレーター等によって構成されている。この中で
電解液は、電極表面での電気化学反応を速やかに進行さ
せることが目的であるため、イオンの移動を円滑に行う
性能が要求される。電解液の選択には、用いる電極との
反応性、使用電位範囲、使用温度範囲が重要な必要条件
となるため、例えばリチウム一次電池、リチウムイオン
電池、アルミ電解コンデンサー等には非水系電解液が一
般に用いられている。
2. Description of the Related Art An electrochemical device is composed of a positive electrode, a negative electrode, an electrolytic solution, a separator and the like. Among them, the electrolytic solution has a purpose of promptly promoting an electrochemical reaction on the electrode surface, and therefore is required to have a property of smoothly moving ions. For the selection of the electrolytic solution, the reactivity with the electrode to be used, the working potential range, and the working temperature range are important requirements.For example, a non-aqueous electrolyte solution is used for a lithium primary battery, a lithium ion battery, an aluminum electrolytic capacitor, etc. It is commonly used.

【0003】例えば、リチウムイオン電池は使用電位幅
が3V以上であり、極めて活性の高いリチウムを用いる
ことから、エチレンカーボネート、プロピレンカーボネ
ートなどの安定性の高い有機溶媒を用いることによっ
て、電池性能が向上することが報告されている(「機能
材料」vol.15、4月号、48頁(1995年
刊))。また、アルミ電解コンデンサーの有機溶媒には
γ−ブチロラクトン、エチレングリコール、テトラヒド
ロフラン、N,N−ジメチルホルムアミド等(特開昭5
7−76826号、同62−145715号、同63−
226812号、同63−261825号、WO 87
/5149号、特開平1−114030号)が用いられ
ている。
For example, since a lithium-ion battery has a working potential range of 3 V or more and uses highly active lithium, battery performance is improved by using a highly stable organic solvent such as ethylene carbonate or propylene carbonate. It has been reported (“Functional Material” vol. 15, April issue, p. 48 (published in 1995)). In addition, as the organic solvent for the aluminum electrolytic capacitor, γ-butyrolactone, ethylene glycol, tetrahydrofuran, N, N-dimethylformamide, etc. (Japanese Patent Laid-Open No. Sho 5)
7-76826, 62-145715, 63-
226812, 63-261825, and WO 87.
/ 5149, JP-A-1-140030).

【0004】従来用いられている非水系電解液の有機溶
媒は脂肪族エステル、脂肪族カーボネート等である。こ
れら脂肪族系の有機溶媒は、例えばリチウムイオン電池
に用いられているような黒鉛系炭素電極との親和性が低
いため、電極が本来有している表面積を有効に利用して
いるとはいいがたい。この問題点を解決するために、ト
ルエン、ベンゼン等を電解液に添加することが提案され
ている(特開平6−150970号)。これら芳香族系
炭化水素溶媒は、前述のγ−ブチロラクトン、プロピレ
ンカーボネート等の脂肪族エステル、脂肪族カーボネー
ト類に対する親和性が低いため電解液に添加した場合、
放置することによって二相に分離することがあり電極と
電解液の親和性を向上させる目的に反し、かえって電極
の脱ドープ容量を低下させる。また、これら芳香族炭化
水素溶媒は毒性、安全性の点でも問題がある。
Conventionally used organic solvents for non-aqueous electrolytes are aliphatic esters, aliphatic carbonates and the like. Since these aliphatic organic solvents have low affinity with graphite-based carbon electrodes used in, for example, lithium-ion batteries, it can be said that the surface area of the electrodes is effectively used. It's hard. In order to solve this problem, it has been proposed to add toluene, benzene or the like to the electrolytic solution (JP-A-6-150970). These aromatic hydrocarbon solvents, γ-butyrolactone described above, aliphatic esters such as propylene carbonate, when added to the electrolyte because of its low affinity for aliphatic carbonates,
If left unattended, it may separate into two phases, which is contrary to the purpose of improving the affinity between the electrode and the electrolytic solution, but rather reduces the dedoping capacity of the electrode. Further, these aromatic hydrocarbon solvents have problems in terms of toxicity and safety.

【0005】[0005]

【発明が解決しようとする課題】本発明は前記問題点を
鑑みてなされたものであり、炭素電極への親和性を向上
させたリチウムイオン電池用電解液の提供を目的とす
る。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an electrolytic solution for a lithium ion battery having an improved affinity for a carbon electrode.

【0006】[0006]

【課題を解決するための手段】本発明は、正極、炭素質
材料よりなる負極、及び電解液を基本構成とする電池用
の電解液であって、該電解液が、(a)分子量が108
〜220であって、次式群で示されるフェニル基を有す
るエステル類、エーテル類、カーボネート類より選ばれ
た液状有機溶媒1〜50モル%
The present invention provides an electrolytic solution for a battery, which basically comprises a positive electrode, a negative electrode made of a carbonaceous material, and an electrolytic solution, the electrolytic solution having a molecular weight (a) of 108.
To 220, a liquid organic solvent selected from the group consisting of esters, ethers and carbonates having a phenyl group represented by the following formula group: 1 to 50 mol%

【0007】[0007]

【化3】 [Chemical 3]

【0008】(式中、Rは炭素類が1〜4のアルキル基
またはフェニル基である。)
(In the formula, R is an alkyl group having 1 to 4 carbon atoms or a phenyl group.)

【0009】[0009]

【化4】 [Chemical 4]

【0010】(式中、R′は炭素数が1〜4のアルキル
基である。)と、前記(a)以外の有機溶媒(b)99
〜50容量%よりなる有機溶媒に、溶質としてリチウム
塩(c)を溶解してなるものである、リチウムイオン電
池用電解液を提供するものである。
(In the formula, R'is an alkyl group having 1 to 4 carbon atoms), and an organic solvent (b) 99 other than the above (a).
An electrolytic solution for a lithium ion battery, which is obtained by dissolving a lithium salt (c) as a solute in an organic solvent composed of ˜50% by volume.

【0011】(発明の概要)リチウムイオン電池 リチウムイオン電池は、正極、炭素質材料の負極、電解
液を基本構成としている。図1にその構造の1例を示
す。図1において、1は正電極、2は炭素質材料の負電
極、3はセパレータ、4は電池缶、5は封口蓋、6は正
極端子、7は絶縁体である。
(Summary of the Invention) Lithium Ion Battery A lithium ion battery basically comprises a positive electrode, a negative electrode made of a carbonaceous material, and an electrolytic solution. FIG. 1 shows an example of the structure. In FIG. 1, 1 is a positive electrode, 2 is a negative electrode of carbonaceous material, 3 is a separator, 4 is a battery can, 5 is a sealing lid, 6 is a positive electrode terminal, and 7 is an insulator.

【0012】正極 正極としては特に限定されるものではないが、例えば、
TiS2 、TiS3 、MoS2 ,FeS2 等の金属硫化
物、V2 5 ,V6 13、MoO3 等の金属酸化物、L
(1-x) MnO2 、Li(1-x) CoO2 、Li(1-x)
iO2 、Li(1 -x) Coy Sn2 2 等のアルカリ金属
特にリチウム含有複合金属酸化物等が挙げられる。
Positive electrode The positive electrode is not particularly limited, but for example,
Metal sulfides such as TiS 2 , TiS 3 , MoS 2 and FeS 2 , metal oxides such as V 2 O 5 , V 6 O 13 and MoO 3 , L
i (1-x) MnO 2 , Li (1-x) CoO 2 , Li (1-x) N
Examples thereof include alkali metals such as iO 2 , Li (1- x) Co y Sn 2 O 2 and the like, and particularly lithium-containing composite metal oxides.

【0013】負極 本発明で負極として用いられる炭素質材料は特に限定さ
れるものではないが、有機高分子化合物、ピッチ、石
炭、木材等を焼成炭化して得られるもの、有機物質の気
相炭化成長反応により得られるもの、天然黒鉛等の天然
産出炭素質材料等を例示することができる。
Negative Electrode The carbonaceous material used as the negative electrode in the present invention is not particularly limited, but it is obtained by calcining and carbonizing an organic polymer compound, pitch, coal, wood, or gas phase carbonization of an organic substance. Examples thereof include those obtained by the growth reaction and naturally occurring carbonaceous materials such as natural graphite.

【0014】電解液 電解液は、(a)分子量が108〜220のフェニル基
を有する前述のエステル類、エーテル類、カーボネート
類より一種または二種以上選ばれた有機溶媒1〜50容
量%と、(b)この(a)以外の有機溶媒99〜50容
量%の混合溶媒に、(c)電解質のリチウム塩を溶解し
たものである。
Electrolyte Solution The electrolyte solution comprises (a) 1 to 50% by volume of an organic solvent selected from one or more of the above-mentioned esters, ethers and carbonates having a phenyl group having a molecular weight of 108 to 220, (B) The lithium salt of the electrolyte (c) is dissolved in a mixed solvent of 99 to 50% by volume of an organic solvent other than (a).

【0015】(a)有機溶媒:かかるフェニル基を有す
る分子量が108〜220の有機化合物(a)として
は、(a1 )メチルフェニルカーボネート、エチルフェ
ニルカーボネート、プロピルフェニルカーボネート、ブ
チルフェニルカーボネート、ジフェニルカーボネートな
どのカーボネート類;(a2 )アニソール、フェネトー
ルなどのエーテル類;(a3 )酢酸フェニル、プロピオ
ン酸フェニル、酪酸フェニル、安息香酸メチル、安息香
酸エステルなどのエステル類などが挙げられる。これら
フェニル基を有する有機溶媒は単独で、または二種以上
混合して用いられる。このフェニル基を有する液状有機
溶媒(a)は、後述する他の有機溶媒(b)との溶媒の
容量和の1〜50容量%、好ましくは4.5〜20容量
%の割合で用いられる。溶媒中に占める割合が1容量%
未満では電極との親和性の向上が期待できない。50容
量%を越えて用いると電気伝導度が低下する。
(A) Organic solvent: Examples of the organic compound (a) having a phenyl group and a molecular weight of 108 to 220 include (a 1 ) methylphenyl carbonate, ethylphenyl carbonate, propylphenyl carbonate, butylphenyl carbonate, diphenyl carbonate. And the like; ethers such as (a 2 ) anisole and phenetole; and (a 3 ) phenyl acetate, phenyl propionate, phenyl butyrate, methyl benzoate, esters such as benzoate, and the like. These organic solvents having a phenyl group may be used alone or in combination of two or more. The liquid organic solvent (a) having the phenyl group is used in a proportion of 1 to 50% by volume, preferably 4.5 to 20% by volume of the total volume of the solvent with the other organic solvent (b) described later. 1% by volume in the solvent
If it is less than this, improvement in affinity with the electrode cannot be expected. If it is used in excess of 50% by volume, the electric conductivity will decrease.

【0016】(b)他の溶媒:(a)成分以外の有機溶
媒(b)としては、従来より用いられているエチレンカ
ーボネート、プロピレンカーボネート、ブチレンカーボ
ネートなどの環状カーボネート類;ジメチルカーボネー
ト、ジエチルカーボネート、エチルメチルカーボネート
などの鎖状カーボネート類;ジメトキシエタン、ジエト
キシエタンなどの鎖状エーテル類;テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、ジオキサンなどの
環状エーテル類;メチルジグライム、エチルジグライム
などのグライム類;酢酸エチル、プロピオン酸メチル、
プロピオン酸エチルなどのエステル類;γ−ブチロラク
トン、γ−バレロラクトン、δ−バレロラクトンなどの
ラクトン類;エチレングリコール、グリセリン、メチル
セルソルブなどのアルコール類;アセトニトリル、プロ
ピオニトリル、メトキシアセトニトリル、3−メトキシ
プロピオニトリルなどのニトリル類;N−メチルホルム
アミド、N−エチルホルムアミド、N,N−ジメチルホ
ルムアミド、N,N−ジエチルホルムアミド、N−メチ
ルアセトアミド、N−エチルアセトアミド、N,N−ジ
メチルアセトアミド、N−メチルピロリドンなどのアミ
ド類;スルホラン、3−メチルスルホランなどのスルホ
ラン類;トリメチルホスフェート、トリエチルホスフェ
ートなどのリン酸エステル類などが挙げられる。これら
の溶媒は単独もしくは混合して使用される。
(B) Other solvent : As the organic solvent (b) other than the component (a), conventionally used cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate; dimethyl carbonate, diethyl carbonate, Chain carbonates such as ethylmethyl carbonate; chain ethers such as dimethoxyethane and diethoxyethane; cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and dioxane; glymes such as methyl diglyme and ethyl diglyme; acetic acid Ethyl, methyl propionate,
Esters such as ethyl propionate; Lactones such as γ-butyrolactone, γ-valerolactone and δ-valerolactone; Alcohols such as ethylene glycol, glycerin and methylcellosolve; Acetonitrile, propionitrile, methoxyacetonitrile, 3- Nitriles such as methoxypropionitrile; N-methylformamide, N-ethylformamide, N, N-dimethylformamide, N, N-diethylformamide, N-methylacetamide, N-ethylacetamide, N, N-dimethylacetamide, Examples thereof include amides such as N-methylpyrrolidone; sulfolanes such as sulfolane and 3-methylsulfolane; and phosphoric acid esters such as trimethyl phosphate and triethyl phosphate. These solvents are used alone or as a mixture.

【0017】特に、エチレンカーボネートを有機溶媒中
の10〜80容量%と、他のプロピレンカーボネート、
ジエチルカーボネート、γ−ブチロラクトン、テトラヒ
ドロフラン、N−メチルピロリドン、ジオキサン等の1
0〜89容量%(溶媒(a)と(b)の和に対し)を併
用するのが電気伝導度が高い電解液が得られる。
In particular, 10 to 80% by volume of ethylene carbonate in an organic solvent, other propylene carbonate,
1 of diethyl carbonate, γ-butyrolactone, tetrahydrofuran, N-methylpyrrolidone, dioxane, etc.
The combined use of 0 to 89% by volume (based on the sum of the solvents (a) and (b)) gives an electrolytic solution having high electric conductivity.

【0018】(c)電解質 成分(a)と成分(b)の有機溶媒に溶解される電解質
のリチウム塩としては、過塩素酸リチウム、六フッ化リ
ン酸リチウム、ホウフッ化リチウム、リチウムトリフレ
ート、リチウムビス(トリフルオロメタンスルホニル)
イミド、テトラフェニルホウ酸リチウムなどのリチウム
塩などが挙げられる。これらの中でも特に無機質のリチ
ウム塩が好ましく、特に過塩素酸リチウム、六フッ化リ
ン酸リチウム、ホウフッ化リチウムが好ましい。電解液
中の電解質(c)のモル濃度は、0.5〜2.0モル/
リットルが一般である。
(C) As the lithium salt of the electrolyte dissolved in the organic solvent of the electrolyte component (a) and the component (b), lithium perchlorate, lithium hexafluorophosphate, lithium borofluoride, lithium triflate, Lithium bis (trifluoromethanesulfonyl)
Examples thereof include imides and lithium salts such as lithium tetraphenylborate. Among these, inorganic lithium salts are particularly preferable, and lithium perchlorate, lithium hexafluorophosphate and lithium borofluoride are particularly preferable. The molar concentration of the electrolyte (c) in the electrolytic solution is 0.5 to 2.0 mol /
Liters are common.

【0019】他の素材:リチウムイオン電池を組み立て
る場合、更はセパレーターが挙げられる。セパレーター
としては織布、不織布、ガラス織布、合成樹脂微多孔膜
等が挙げられる。更に要すれば、集電体、端子、絶縁板
等の部品を用いて電池が構成される。電池の構造として
は、正極、負極、更に要すればセパレーターを単層又は
複層としたペーパー型電池、積層型電池、又は正極、負
極、更に要すればセパレーターをロール状に巻いた円筒
状電池等の形態が挙げられる。
Other materials: In the case of assembling a lithium ion battery, a separator may be mentioned. Examples of the separator include woven cloth, non-woven cloth, glass woven cloth, and synthetic resin microporous film. Furthermore, if necessary, a battery is constructed using components such as a current collector, terminals, and an insulating plate. As the structure of the battery, a positive electrode, a negative electrode, if necessary, a paper-type battery in which a separator is a single layer or multiple layers, a laminated battery, or a positive electrode, a negative electrode, and if necessary, a cylindrical battery in which a separator is wound in a roll shape. And the like.

【0020】[0020]

【実施例】以下に、実施例を挙げて、本発明を更に具体
的に説明する。 実施例1 負極として、次の三種の炭素質材料より成形したシート
状負極を用いた。 (1)天然黒鉛粉末(関西熱化学社製NG−7;商品
名) (2)人造黒鉛粉末(LONZA社製KS−10;商品
名) (3)人造黒鉛粉末(LONZA社製KS−44;商品
名) 有機溶媒(b)として、純度99.9%以上のプロピレ
ンカーボネート(PC)を100ccに有機溶媒(a)
としてメチルフェニルカーボネート(MPhC)をそれ
ぞれ0cc(0容量%)、5cc(約4.8容量%)、
11cc(約10容量%)および25cc(20容量
%)配合したものを用いた。
EXAMPLES The present invention will be described more specifically below with reference to examples. Example 1 As a negative electrode, a sheet-shaped negative electrode molded from the following three kinds of carbonaceous materials was used. (1) Natural graphite powder (NG-7 manufactured by Kansai Thermo Chemical Co .; trade name) (2) Artificial graphite powder (KS-10 manufactured by LONZA; trade name) (3) Artificial graphite powder (KS-44 manufactured by LONZA) Trade name) As the organic solvent (b), 100 cc of propylene carbonate (PC) having a purity of 99.9% or more is used as the organic solvent (a).
Methyl phenyl carbonate (MPhC) as 0 cc (0% by volume), 5 cc (about 4.8% by volume),
A mixture of 11 cc (about 10% by volume) and 25 cc (20% by volume) was used.

【0021】接触角の測定:23℃、50±5%相対湿
度下の部屋で上記負極シートの各5点(幅5mm、長さ
15mm、厚み2mm)上に上記PC液またはPCとM
PhC混合液を注射器を用いて滴下し、エルマ光学社の
ゴニオメーター式接触角測定器G−1型を用いて接触角
を測定し、5点の平均値を表1に示す。同様に高配向性
熱分解グラファイト(HOPG)上における接触角も測
定した。メチルフェニルカーボネートの含有量が増加す
るに伴い、接触角が小さくなる。
Measurement of contact angle: The above-mentioned PC liquid or PC and M on each 5 points (width 5 mm, length 15 mm, thickness 2 mm) of the above-mentioned negative electrode sheet in a room at 23 ° C. and 50 ± 5% relative humidity.
The PhC mixed solution was dropped using a syringe, and the contact angle was measured using a goniometer-type contact angle measuring instrument G-1 type manufactured by Elma Optical Co., Ltd., and the average value of 5 points is shown in Table 1. Similarly, the contact angle on highly oriented pyrolytic graphite (HOPG) was also measured. The contact angle becomes smaller as the content of methylphenyl carbonate increases.

【0022】[0022]

【表1】 [Table 1]

【0023】実施例2 プロピレンカーボネート(PC)100ccとメチルフ
ェニルカーボネート(MPhC)をそれぞれ5cc(約
4.8vol%)および11cc(10vol%)混合
し調製した混合溶媒についてKS−44シート状電極上
の接触角を測定した。結果を表2に示す。
Example 2 Mixed solvent prepared by mixing 100 cc of propylene carbonate (PC) and 5 cc (about 4.8 vol%) and 11 cc (10 vol%) of methylphenyl carbonate (MPhC), respectively, on a KS-44 sheet electrode. The contact angle was measured. The results are shown in Table 2.

【0024】実施例3 実施例2において、MPhCをアニソール(MOB)に
変更した以外は同様な測定を行った。結果を表2に示
す。アニソールの混合によって全体的に接触角が小さく
なる。 実施例4 実施例2において、MPhCを安息香酸メチル(MB
z)に変更した以外は同様な測定を行った。結果を表2
に示す。
Example 3 The same measurement as in Example 2 was carried out except that MPhC was changed to anisole (MOB). The results are shown in Table 2. The mixing of anisole reduces the contact angle overall. Example 4 In Example 2, MPhC was replaced with methyl benzoate (MB
The same measurement was performed except that it changed to z). The results are shown in Table 2.
Shown in.

【0025】実施例5 実施例2において、MPhCを酢酸フェニル(PhA)
に変更した以外は同様な測定を行った。結果を表2に示
す。 実施例6 実施例2において、MPhCをプロピオン酸フェニル
(PhP)に変更した以外は同様な測定を行った。結果
を表2に示す。
Example 5 In Example 2, MPhC was replaced with phenyl acetate (PhA).
The same measurement was performed except that it was changed to. The results are shown in Table 2. Example 6 The same measurement as in Example 2 was performed except that MPhC was changed to phenyl propionate (PhP). The results are shown in Table 2.

【0026】[0026]

【表2】 [Table 2]

【0027】比較例1 乾燥アルゴン雰囲気下で、充分に乾燥を行った過塩素酸
リチウム106g(1モル)をエチレンカーボネート
(EC)661g(500cc)、ジエチルカーボネー
ト(DEC)488g(500cc)からなる混合溶媒
に溶かし、全量を1000ccとした電解液を調製し
た。NG−7を塗布したシート状電極、金属リチウム、
ポリプロピレン製セパレータによって構成されたハーフ
セルを用いて充放電容量を測定した。このとき電解液を
シート状電極に含浸させるための条件として、35kP
aでの減圧含浸を1分間または常圧での含浸を1分間行
った。このコイン型セルを用いて充放電試験を行い電池
の脱ドープ容量を求めた。結果を表3に示す。
Comparative Example 1 A mixture of 106 g (1 mol) of lithium perchlorate which had been sufficiently dried in a dry argon atmosphere, 661 g (500 cc) of ethylene carbonate (EC) and 488 g (500 cc) of diethyl carbonate (DEC). An electrolytic solution was prepared by dissolving it in a solvent so that the total amount was 1000 cc. Sheet-shaped electrode coated with NG-7, metallic lithium,
The charge / discharge capacity was measured by using a half cell composed of a polypropylene separator. At this time, as a condition for impregnating the sheet electrode with the electrolytic solution, 35 kP
The vacuum impregnation with a was carried out for 1 minute or the impregnation at normal pressure for 1 minute. A charge / discharge test was performed using this coin-type cell to determine the dedoping capacity of the battery. The results are shown in Table 3.

【0028】実施例7 比較例1において、電解液を過塩素酸リチウム106g
(1モル)をEC661g(500cc)、DEC48
8g(500cc)からなる混合溶媒に溶かし、全量を
1000ccとしたものから、過塩素酸リチウム106
g(1モル)を、EC594g(500cc)、DEC
439g(500cc)およびMPhC114g(10
0cc)からなる混合溶媒に溶かし、全量を1000c
cとしたものに変更した以外は同様な操作を行った。結
果を表3に示す。
Example 7 In Comparative Example 1, the electrolytic solution was 106 g of lithium perchlorate.
(1 mol) to EC661g (500 cc), DEC48
It was dissolved in a mixed solvent consisting of 8 g (500 cc) and the total amount was adjusted to 1000 cc.
g (1 mol), EC594g (500 cc), DEC
439 g (500 cc) and MPhC 114 g (10
Dissolved in a mixed solvent consisting of 0 cc) and the total amount is 1000 c
The same operation was carried out except that it was changed to c. The results are shown in Table 3.

【0029】実施例8 比較例1において、電解液を過塩素酸リチウム106g
(1モル)をEC661g(500cc)、DEC48
8g(500cc)からなる混合溶媒に溶かし、全量を
1000ccとしたものから、過塩素酸リチウム106
g(1モル)を、EC627g(500cc)、DEC
463g(500cc)およびMOB50g(50c
c)からなる混合溶媒に溶かし、全量を1000ccと
したものに変更した以外は同様な操作を行った。結果を
表3に示す。
Example 8 In Comparative Example 1, the electrolytic solution was 106 g of lithium perchlorate.
(1 mol) to EC661g (500 cc), DEC48
It was dissolved in a mixed solvent consisting of 8 g (500 cc) and the total amount was adjusted to 1000 cc.
g (1 mol), EC627g (500 cc), DEC
463 g (500 cc) and MOB 50 g (50 c
The same operation was performed except that the solvent was dissolved in the mixed solvent consisting of c) and the total amount was changed to 1000 cc. The results are shown in Table 3.

【0030】[0030]

【表3】 [Table 3]

【0031】比較例2 比較例1において、電極NG−7を電極KS−44に変
更した以外は同様な操作を行った。結果を表4に示す。 実施例9 比較例2において、電解液を実施例7で用いたものに変
更した以外は同様な操作を行った。結果を表4に示す。
MPhCを添加することにより容量が高くなる。 実施例10 比較例2において、電解液を実施例8で用いたものに変
更した以外は同様な操作を行った。結果を表4に示す。
MOBを添加することにより容量が高くなる。
Comparative Example 2 The same operation as in Comparative Example 1 was performed except that the electrode NG-7 was changed to the electrode KS-44. The results are shown in Table 4. Example 9 The same operation as in Comparative Example 2 was performed except that the electrolytic solution used in Example 7 was changed. The results are shown in Table 4.
The capacity is increased by adding MPhC. Example 10 The same operation as in Comparative Example 2 was performed except that the electrolytic solution used in Example 8 was changed. The results are shown in Table 4.
The capacity is increased by adding MOB.

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【発明の効果】炭素電極への親和性を向上させたリチウ
ムイオン電池用非水系電解液であり、炭素電極の有する
表面積を有効に活用でき、リチウムイオン電池の小型
化、高性能化、生産性の向上に寄与することができる。
EFFECTS OF THE INVENTION A non-aqueous electrolyte for a lithium ion battery having an improved affinity for a carbon electrode, which can effectively utilize the surface area of the carbon electrode, which makes the lithium ion battery smaller, more efficient, and more productive. Can contribute to the improvement of

【図面の簡単な説明】[Brief description of drawings]

【図1】リチウムイオン電池の断面図である。FIG. 1 is a cross-sectional view of a lithium ion battery.

【符号の説明】 1 正電極 2 負電極 3 セパレーター 4 電池缶 5 封口蓋 6 正極端子 7 絶縁体[Explanation of symbols] 1 Positive electrode 2 Negative electrode 3 separator 4 battery cans 5 Sealing lid 6 Positive terminal 7 insulator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 勇二 三重県四日市市東邦町1番地 三菱化学 株式会社四日市事業所内 (56)参考文献 特開 平8−273700(JP,A) 特開 平8−106909(JP,A) 特開 平6−267589(JP,A) 特開 昭62−86673(JP,A) 特開 平2−207465(JP,A) 特開 平6−13107(JP,A) 特開 平6−20721(JP,A) 特開 平6−150970(JP,A) 特開 平7−22069(JP,A) 特開 平6−84525(JP,A) 特開 昭64−30178(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuji Yoshida 1 Toho-cho, Yokkaichi-shi, Mie Mitsubishi Kagaku Co., Ltd. Yokkaichi Plant (56) Reference JP-A-8-273700 (JP, A) JP-A-8- 106909 (JP, A) JP-A-6-267589 (JP, A) JP-A-62-86673 (JP, A) JP-A-2-207465 (JP, A) JP-A-6-13107 (JP, A) JP-A-6-20721 (JP, A) JP-A-6-150970 (JP, A) JP-A-7-22069 (JP, A) JP-A-6-84525 (JP, A) JP-A 64-30178 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/40

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極、炭素質材料よりなる負極、及び電
解液を基本構成とする電池用の電解液であって、該電解
液が、 (a)分子量が108〜220であって、ベンゼン環に
下記群より選ばれた置換基を有する液状有機溶媒1〜
容量%、 【化1】−O−R’, −CO−O−R’, −O−C
O−R’ (式中、R’は炭素数1〜4のアルキル基を示す) (b)上記以外の有機溶媒 99〜90容量%よりなる
有機溶媒に、溶質として(c)リチウム塩を溶解してな
るものである、リチウムイオン電池用電解液。
1. An electrolytic solution for a battery comprising a positive electrode, a negative electrode made of a carbonaceous material, and an electrolytic solution as a basic component, wherein the electrolytic solution comprises (a) a molecular weight of 108 to 220 and a benzene ring. liquid organic solvents 1-1 with selected substituents from the following group in
0 % by volume, —O—R ′, —CO—O—R ′, —O—C
OR (in the formula, R'represents an alkyl group having 1 to 4 carbon atoms) (b) Organic solvent other than the above: (c) Lithium salt is dissolved as a solute in an organic solvent composed of 99 to 90 % by volume. An electrolyte solution for a lithium-ion battery, which is formed by:
【請求項2】 液状有機溶媒(a)が、アニソール、フ
ェネトール、酢酸フェニル、プロピオン酸フェニル、酪
酸フェニル、安息香酸メチル及び安息香酸エチルよりな
る群から選ばれたものであり、有機溶媒(b)がエチレ
ンカーボネート、ジエチルカーボネート、及びプロピレ
ンカーボネートよりなる群から選ばれたものである請求
項1記載のリチウムイオン電池用電解液。
2. The liquid organic solvent (a) is selected from the group consisting of anisole, phenetole, phenyl acetate, phenyl propionate, phenyl butyrate, methyl benzoate and ethyl benzoate, and the organic solvent (b). The electrolytic solution for a lithium ion battery according to claim 1, wherein is selected from the group consisting of ethylene carbonate, diethyl carbonate, and propylene carbonate.
【請求項3】 有機溶媒(b)として、エチレンカーボ
ネートとプロピレンカーボネート、ジエチルカーボネー
ト、γ−ブチロラクトン、テトラヒドロフラン、N−メ
チルピロリドン及びジオキサンよりなる群から選ばれた
ものとが併用されており、かつ液状有機溶媒(a)と有
機溶媒(b)との合計に対してエチレンカーボネートが
10〜80容量%、プロピレンカーボネート、ジエチル
カーボネート、γ−ブチロラクトン、テトラヒドロフラ
ン、N−メチルピロリドン及びジオキサンよりなる群か
ら選ばれたものが10〜89容量%を占める請求項1又
は2記載のリチウムイオン電池用電解液。
3. The organic solvent (b) is a combination of ethylene carbonate and a solvent selected from the group consisting of propylene carbonate, diethyl carbonate, γ-butyrolactone, tetrahydrofuran, N-methylpyrrolidone and dioxane, and is in a liquid state. Ethylene carbonate is selected from the group consisting of 10 to 80% by volume of the total amount of the organic solvent (a) and the organic solvent (b), propylene carbonate, diethyl carbonate, γ-butyrolactone, tetrahydrofuran, N-methylpyrrolidone and dioxane. The electrolyte for lithium-ion batteries according to claim 1, wherein the electrolyte occupies 10 to 89% by volume.
【請求項4】 液状有機溶媒(a)と有機溶媒(b)と
の合計に対して液状有機溶媒(a)が4.5〜10容量
%を占める請求項1ないし3のいずれかに記載のリチウ
ムイオン電池用電解液。
4. The liquid organic solvent (a) accounts for 4.5 to 10 % by volume with respect to the total of the liquid organic solvent (a) and the organic solvent (b). Electrolyte for lithium-ion batteries.
JP09849695A 1995-04-24 1995-04-24 Electrolyte for lithium ion batteries Expired - Lifetime JP3463407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09849695A JP3463407B2 (en) 1995-04-24 1995-04-24 Electrolyte for lithium ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09849695A JP3463407B2 (en) 1995-04-24 1995-04-24 Electrolyte for lithium ion batteries

Publications (2)

Publication Number Publication Date
JPH08293323A JPH08293323A (en) 1996-11-05
JP3463407B2 true JP3463407B2 (en) 2003-11-05

Family

ID=14221259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09849695A Expired - Lifetime JP3463407B2 (en) 1995-04-24 1995-04-24 Electrolyte for lithium ion batteries

Country Status (1)

Country Link
JP (1) JP3463407B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111676A1 (en) 2014-01-22 2015-07-30 三菱化学株式会社 Non-aqueous electrolyte solution and non-aqueous electrolyte solution secondary battery using same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664008B1 (en) 1998-06-04 2003-12-16 Mitsubishi Chemical Corporation Secondary battery having nonaqueous electrolyte solution
JP2004022507A (en) * 2002-06-20 2004-01-22 Sony Corp Electrode and battery using it
WO2005091422A1 (en) * 2004-03-22 2005-09-29 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
KR20050096401A (en) 2004-03-30 2005-10-06 삼성에스디아이 주식회사 Electrolyte for lithium battery and lithium battery comprising same
JP4687021B2 (en) * 2004-06-29 2011-05-25 パナソニック株式会社 Non-aqueous electrolyte primary battery
CN101595082B (en) 2007-02-02 2013-08-21 宇部兴产株式会社 Ester compound, and non-aqueous electrolyte solution and lithium secondary battery each using the ester compound
JP5589264B2 (en) * 2008-06-06 2014-09-17 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery
WO2009107786A1 (en) 2008-02-29 2009-09-03 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte battery
JP5773004B2 (en) * 2014-02-20 2015-09-02 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery
WO2016076327A1 (en) * 2014-11-11 2016-05-19 宇部興産株式会社 Non-aqueous electrolyte solution, and power storage device in which non-aqueous electrolyte solution is used
CN108281706A (en) * 2017-12-20 2018-07-13 上海蓄熙新能源材料检测有限公司 A kind of electrolyte suitable for silicon-based anode lithium ion battery
KR20210126569A (en) 2019-02-19 2021-10-20 가부시키가이샤 아데카 Composition for electrolyte, non-aqueous electrolyte and non-aqueous electrolyte secondary battery
EP4020652A4 (en) * 2019-12-25 2023-06-07 Ningde Amperex Technology Limited Electrochemical device and electronic device comprising same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111676A1 (en) 2014-01-22 2015-07-30 三菱化学株式会社 Non-aqueous electrolyte solution and non-aqueous electrolyte solution secondary battery using same
KR20160107262A (en) 2014-01-22 2016-09-13 미쓰비시 가가꾸 가부시키가이샤 Non-aqueous electrolyte solution and non-aqueous electrolyte solution secondary battery using same
US10177414B2 (en) 2014-01-22 2019-01-08 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery using the same
US10777850B2 (en) 2014-01-22 2020-09-15 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
JPH08293323A (en) 1996-11-05

Similar Documents

Publication Publication Date Title
US7713658B2 (en) Material for electrolytic solutions and use thereof
EP2528152B1 (en) Electrolyte for non-aqueous electrolyte batteries and non-aqueous electrolyte battery using the same
KR102025969B1 (en) METHOD FOR STABILIZING LiPF6, ELECTROLYTE SOLUTION FOR NONAQUEOUS SECONDARY BATTERIES HAVING EXCELLENT THERMAL STABILITY, AND NONAQUEOUS SECONDARY BATTERY HAVING EXCELLENT THERMAL STABILITY
JP4463333B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP3463407B2 (en) Electrolyte for lithium ion batteries
JPWO2006115023A1 (en) Non-aqueous electrolyte, electrochemical energy storage device using the same, and non-aqueous electrolyte secondary battery
US7951495B2 (en) Non-aqueous electrolyte for battery and non-aqueous electrolyte battery comprising the same as well as electrolyte for electric double layer capacitor and electric double layer capacitor comprising the same
EP3240094B1 (en) Electrolyte solution for secondary batteries, and secondary battery comprising the same
WO2010029971A1 (en) Electrolyte solution and use thereof
EP1442489A2 (en) Non-aqueous electrolytes for lithium electrochemical cells
WO2020054863A1 (en) Nonaqueous electrolytic solution and nonaqueous secondary battery
JP7103713B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP7115724B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP4431941B2 (en) Nonaqueous electrolyte secondary battery
JP2022126851A (en) Nonaqueous electrolyte solution for batteries, and lithium secondary battery
JPH0922722A (en) Electrolytic solution for lithium ion battery
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
US20090269676A1 (en) Non-aqueous electrolytes for lithium electrochemical cells
JP2019133895A (en) Additive for electrolyte
KR20010036946A (en) Electrolyte for lithium secondary battery
WO2020121850A1 (en) Non-aqueous electrolyte for battery and lithium secondary battery
JP3893627B2 (en) Method for manufacturing lithium ion battery
JP6957179B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP6879799B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP6980502B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

EXPY Cancellation because of completion of term