JPH0922722A - Electrolytic solution for lithium ion battery - Google Patents

Electrolytic solution for lithium ion battery

Info

Publication number
JPH0922722A
JPH0922722A JP7170844A JP17084495A JPH0922722A JP H0922722 A JPH0922722 A JP H0922722A JP 7170844 A JP7170844 A JP 7170844A JP 17084495 A JP17084495 A JP 17084495A JP H0922722 A JPH0922722 A JP H0922722A
Authority
JP
Japan
Prior art keywords
electrolytic solution
carbonate
organic solvent
ion battery
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7170844A
Other languages
Japanese (ja)
Inventor
Hitoshi Suzuki
仁 鈴木
Noriko Shima
紀子 島
Ayako Yonei
綾子 米井
Kenichi Ishigaki
憲一 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP7170844A priority Critical patent/JPH0922722A/en
Publication of JPH0922722A publication Critical patent/JPH0922722A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolytic solution excellent in the affinity with a carbon electrode. SOLUTION: An electrolytic solution concerned is for a battery consisting of a positive electrode, a negative electrode of carbonaceous material, and electrolyte, wherein the electrolytic solution is prepared by dissolving lithium salt (c) as solute in an organic solvent composed of 1-50mol% liquid state organic solvent (a) having a molecular weight of 108-220 and selected among esters, ethers, and carbonates having phenyl radicals and 99-50vol.% organic solvent (b) other than the first named (a).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、持続性の良好なリチウ
ムイオン電池用の電解液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte solution for a lithium ion battery having good durability.

【0002】[0002]

【従来の技術】電気化学素子は、正極、負電極、電解
液、セパレーター等によって構成されている。この中で
電解液は、電極表面での電気化学反応を速やかに進行さ
せることが目的であるため、イオンの移動を円滑に行う
性能が要求される。電解液の選択には、用いる電極との
反応性、使用電位範囲、使用温度範囲が重要な必要条件
となるため、例えばリチウム一次電池、リチウムイオン
電池、アルミ電解コンデンサー等には非水系電解液が一
般に用いられている。
2. Description of the Related Art An electrochemical device is composed of a positive electrode, a negative electrode, an electrolytic solution, a separator and the like. Among them, the electrolytic solution has a purpose of promptly promoting an electrochemical reaction on the electrode surface, and therefore is required to have a property of smoothly moving ions. For the selection of the electrolytic solution, the reactivity with the electrode to be used, the working potential range, and the working temperature range are important necessary conditions. It is commonly used.

【0003】例えば、リチウムイオン電池は使用電位幅
が3V以上であり、極めて活性の高いリチウムを用いる
ことから、エチレンカーボネート、プロピレンカーボネ
ートなどの安定性の高い有機溶媒を用いることによっ
て、電池性能が向上することが報告されている(「機能
材料」vol.15、4月号、48頁(1995年
刊))。
For example, since a lithium-ion battery has a working potential range of 3 V or more and uses highly active lithium, battery performance is improved by using a highly stable organic solvent such as ethylene carbonate or propylene carbonate. It has been reported (“Functional Material” vol. 15, April issue, p. 48 (published in 1995)).

【0004】従来用いられているリチウムイオン電池用
非水系電解液の有機溶媒はジメトキシエタン等の脂肪族
エーテル、プロピレンカーボネート等の脂肪族カーボネ
ート、γ−ブチロラクトン等である。これら脂肪族系の
有機溶媒を用いた電解液は初期特性は良好であるが、サ
イクル特性に問題があり、長期使用に際して電池容量の
低下が見られる。この問題点を解決するために、フルフ
ラール類を添加することが提案されている(特開平6−
338346号)。これら化合物の作用は、負極側で生
成する活性なデンドライトと反応し、有機薄膜層を生成
することにより、電極表面を保護するものである。しか
し、これら化合物はアルデヒド基を有しているため、分
解、重合等の可能性がある。また、電気化学的に生成し
たデンドライトと反応するため、充放電効率が低下する
という問題点がある。
Conventionally used organic solvents for non-aqueous electrolytes for lithium ion batteries are aliphatic ethers such as dimethoxyethane, aliphatic carbonates such as propylene carbonate, and γ-butyrolactone. The electrolytic solution using these aliphatic organic solvents has good initial characteristics, but has a problem in cycle characteristics, and the battery capacity is reduced when used for a long period of time. In order to solve this problem, it has been proposed to add furfurals (JP-A-6-
338346). The action of these compounds is to protect the electrode surface by reacting with the active dendrite generated on the negative electrode side to form an organic thin film layer. However, since these compounds have an aldehyde group, they may be decomposed or polymerized. Further, since it reacts with the electrochemically generated dendrite, there is a problem that the charge / discharge efficiency is reduced.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記問題点
を鑑みてなされたものであり、サイクル特性を向上させ
たリチウムイオン電池用電解液の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide an electrolytic solution for a lithium ion battery having improved cycle characteristics.

【0006】[0006]

【課題を解決するための手段】本発明は、正極、炭素質
材料よりなる負極、及び電解液を基本構成とする電池用
の電解液であって、該電解液が、(a)分子量が108
〜220であって、次式(I)、(II)または(III)で
示されるフェニル基を有するエステル類、エーテル類、
カーボネート類より選ばれた液状有機溶媒1〜30容量
%と、(b)エチレンカーボネートとジエチルカーボネ
ートの混合物99〜70容量%(但し、エチレンカーボ
ネートとジエチルカーボネートの容量比は1:8〜1:
0.15の範囲である)よりなる有機溶媒に溶質の六フ
ッ化リン酸リチウムが0.5〜2.0モル/リットルの
モル濃度で溶解されたものである、リチウムイオン電池
用電解液を提供するものである。
The present invention provides an electrolytic solution for a battery, which basically comprises a positive electrode, a negative electrode made of a carbonaceous material, and an electrolytic solution, the electrolytic solution having a molecular weight (a) of 108.
To 220 and has a phenyl group represented by the following formula (I), (II) or (III), an ether,
1 to 30% by volume of a liquid organic solvent selected from carbonates, and (b) a mixture of ethylene carbonate and diethyl carbonate 99 to 70% by volume (provided that the volume ratio of ethylene carbonate and diethyl carbonate is 1: 8 to 1: 1).
An electrolyte solution for a lithium-ion battery, wherein a solute of lithium hexafluorophosphate is dissolved at a molar concentration of 0.5 to 2.0 mol / liter in an organic solvent consisting of 0.15). It is provided.

【0007】[0007]

【化2】 Embedded image

【0008】(式中、Rは炭素数が1〜4のアルキル基
である。)
(In the formula, R is an alkyl group having 1 to 4 carbon atoms.)

【0009】(発明の概要)リチウムイオン電池 リチウムイオン電池は、正極、炭素質材料の負極、電解
液を基本構成としている。図1と図2にその構造の1例
を示す。図1、図2において、1は正電極、2は炭素質
材料の負電極、3はセパレータ、4は電池缶、5は封口
蓋、6は正極端子、7は絶縁体である。
(Outline of the Invention) Lithium Ion Battery A lithium ion battery basically comprises a positive electrode, a negative electrode made of a carbonaceous material, and an electrolytic solution. 1 and 2 show an example of the structure. 1 and 2, 1 is a positive electrode, 2 is a negative electrode of carbonaceous material, 3 is a separator, 4 is a battery can, 5 is a sealing lid, 6 is a positive electrode terminal, and 7 is an insulator.

【0010】正極 正極としては特に限定されるものではないが、例えば、
TiS2 、TiS3 、MoS2 ,FeS2 等の金属硫化
物、V25 ,V613、MoO3 等の金属酸化物、L
(1-x) MnO2 、Li(1-x) CoO2 、Li(1-x)
iO2 、Li(1 -x) Coy Sn22 等のアルカリ金属
特にリチウム含有複合金属酸化物等が挙げられる。
The positive electrode is not particularly limited, but for example,
Metal sulfides such as TiS 2 , TiS 3 , MoS 2 and FeS 2 , metal oxides such as V 2 O 5 , V 6 O 13 and MoO 3 , L
i (1-x) MnO 2 , Li (1-x) CoO 2 , Li (1-x) N
Examples thereof include alkali metals such as iO 2 , Li (1- x) Co y Sn 2 O 2 and the like, and particularly lithium-containing composite metal oxides.

【0011】負極 本発明で負極として用いられる炭素質材料は特に限定さ
れるものではないが、有機高分子化合物、ピッチ、石
炭、木材等を焼成炭化して得られるもの、有機物質の気
相炭化成長反応により得られるもの、天然黒鉛等の天然
産出炭素質材料等を例示することができる。
Negative Electrode The carbonaceous material used as the negative electrode in the present invention is not particularly limited, but it is obtained by calcining and carbonizing an organic polymer compound, pitch, coal, wood, or gas phase carbonization of an organic substance. Examples thereof include those obtained by the growth reaction and naturally occurring carbonaceous materials such as natural graphite.

【0012】電解液 電解液は、(a)分子量が108〜220のフェニル基
を有する前述の式(I)、(II)および(III)のエステ
ル類、エーテル類、カーボネート類より一種または二種
以上選ばれた有機溶媒1〜30容量%と、(b)エチレ
ンカーボネートとジエチルカーボネートの混合物99〜
70容量%(但し、エチレンカーボネートとジエチルカ
ーボネートの容量比は1:8〜1:0.15の範囲であ
る。)よりなる有機溶媒に、溶質として六フッ化リン酸
リチウムを溶解してなるものである。
Electrolyte Solution The electrolyte solution is (a) one or two kinds selected from the esters, ethers and carbonates of the above formulas (I), (II) and (III) having a phenyl group having a molecular weight of 108 to 220. 1 to 30% by volume of the above-selected organic solvent, and (b) a mixture of ethylene carbonate and diethyl carbonate 99 to
Dissolved lithium hexafluorophosphate as a solute in an organic solvent composed of 70% by volume (however, the volume ratio of ethylene carbonate and diethyl carbonate is in the range of 1: 8 to 1: 0.15). Is.

【0013】(a)有機溶媒:かかるフェニル基を有す
る分子量が108〜220の有機化合物(a)として
は、(a1 )メチルフェニルカーボネート、エチルフェ
ニルカーボネート、プロピルフェニルカーボネート、ブ
チルフェニルカーボネートなどのカーボネート類;(a
2 )アニソール、フェネトールなどのエーテル類;(a
3 )酢酸フェニル、プロピオン酸フェニル、酪酸フェニ
ルなどのエステル類などが挙げられる。これらフェニル
基を有する有機溶媒は単独で、または二種以上混合して
用いられる。このフェニル基を有する液状有機溶媒
(a)は、後述する他の有機溶媒(b)との溶媒の容量
和の1〜30容量%、好ましくは4.5〜20容量%の
割合で用いられる。溶媒中に占める割合が1容量%未満
ではサイクル特性の向上が期待できない。30容量%を
越えて用いると電気伝導度が低下する。
(A) Organic solvent: Examples of the organic compound (a) having a phenyl group and a molecular weight of 108 to 220 include (a 1 ) methylphenyl carbonate, ethylphenyl carbonate, propylphenyl carbonate, butylphenyl carbonate, and other carbonates. Kind; (a
2 ) Ethers such as anisole and phenetole; (a
3 ) Esters such as phenyl acetate, phenyl propionate and phenyl butyrate. These organic solvents having a phenyl group may be used alone or in combination of two or more. The liquid organic solvent (a) having a phenyl group is used in a proportion of 1 to 30% by volume, preferably 4.5 to 20% by volume of the total volume of the solvent with the other organic solvent (b) described later. If the proportion in the solvent is less than 1% by volume, improvement in cycle characteristics cannot be expected. If it is used in excess of 30% by volume, the electric conductivity will decrease.

【0014】(b)エチレンカーボネートとジエチルカ
ーボネートの混合溶媒エチレンカーボネートとジエチル
カーボネートの混合割合は、エチレンカーボネート1容
量に対し、ジエチルカーボネート8〜0.15容量であ
る。この範囲であると電気伝導度が高く、かつ、サイク
ル特性の良好な電解液となる。かかる混合比は、エチレ
ンカーボネートが有機溶媒〔(a)+(b)〕中の10
〜80容量%、ジエチルカーボネートが有機溶媒
〔(a)+(b)〕中の10〜60容量%の範囲で好適
に選ばれる。
(B) Mixed solvent of ethylene carbonate and diethyl carbonate The mixing ratio of ethylene carbonate and diethyl carbonate is 8 to 0.15 volume of diethyl carbonate to 1 volume of ethylene carbonate. Within this range, the electrolyte has high electric conductivity and good cycle characteristics. Such a mixing ratio is such that ethylene carbonate is 10 in the organic solvent [(a) + (b)].
˜80% by volume and diethyl carbonate are preferably selected within the range of 10 to 60% by volume in the organic solvent [(a) + (b)].

【0015】(c)電解質 成分(a)と成分(b)の有機溶媒に溶解される電解質
のリチウム塩は六フッ化リン酸リチウムである。電解液
中の電解質(c)六フッ化リン酸リチウムのモル濃度
は、0.5〜2.0モル/リットルである。
(C) The lithium salt of the electrolyte dissolved in the organic solvent of the electrolyte component (a) and the component (b) is lithium hexafluorophosphate. The molar concentration of the electrolyte (c) lithium hexafluorophosphate in the electrolytic solution is 0.5 to 2.0 mol / liter.

【0016】他の素材:リチウムイオン電池を組み立て
る場合、更にセパレーターが挙げられる。セパレーター
としては織布、不織布、ガラス織布、合成樹脂微多孔膜
等が挙げられる。更に要すれば、集電体、端子、絶縁板
等の部品を用いて電池が構成される。電池の構造として
は、正極、負極、更に要すればセパレーターを単層又は
複層としたペーパー型電池、積層型電池、又は正極、負
極、更に要すればセパレーターをロール状に巻いた円筒
状電池等の形態が挙げられる。
Other materials: In the case of assembling a lithium-ion battery, a separator is further included. Examples of the separator include woven cloth, non-woven cloth, glass woven cloth, and synthetic resin microporous film. If necessary, a battery is configured using components such as a current collector, a terminal, and an insulating plate. As the structure of the battery, a positive electrode, a negative electrode, if necessary, a paper-type battery in which a separator is a single layer or multiple layers, a laminated battery, or a positive electrode, a negative electrode, and if necessary, a cylindrical battery in which a separator is rolled And the like.

【0017】[0017]

【実施例】以下に、実施例を挙げて、本発明を更に具体
的に説明する。 実施例1 乾燥アルゴン雰囲気下で、充分に乾燥を行った六フッ化
リン酸リチウム152g(1モル)をエチレンカーボネ
ート(EC)627g(475cc)、ジエチルカーボ
ネート(DEC)463g(475cc)、メチルフェ
ニルカーボネート(MPhC)57g(50cc)から
なる混合溶媒に溶かし、全量を1000ccとした電解
液を調製した。
The present invention will be described more specifically with reference to the following examples. Example 1 152 g (1 mol) of lithium hexafluorophosphate that had been sufficiently dried under a dry argon atmosphere, 627 g (475 cc) of ethylene carbonate (EC), 463 g (475 cc) of diethyl carbonate (DEC), methylphenyl carbonate (MPhC) was dissolved in a mixed solvent of 57 g (50 cc) to prepare an electrolytic solution having a total amount of 1000 cc.

【0018】このものの25℃での電気伝導度は7.8
mS/cmであった。NG−7(天然黒鉛粉末、関西熱
化学社製、商品名)を塗布したシート状電極、コバルト
酸リチウム、ポリプロピレン製セパレータによって構成
されたコインセルを用いて、50回の充放電試験(0.
2mA定電流)を行い、炭素質材料からの充電容量のサ
イクル変化および充放電効率(放電容量/充電容量)を
測定した。結果を図3と図4に示す。
The electrical conductivity of this product at 25 ° C. is 7.8.
It was mS / cm. A charge-discharge test (0 ..
2 mA constant current) was performed, and the cycle change of the charge capacity from the carbonaceous material and the charge / discharge efficiency (discharge capacity / charge capacity) were measured. The results are shown in FIGS.

【0019】実施例2 実施例1において、電解液を六フッ化リン酸リチウム1
52g(1モル)をEC627g(475cc)、DE
C463g(475cc)、MPhC57g(50c
c)からなる混合溶媒に溶かし、全量を1000ccと
したものから、六フッ化リン酸リチウム152g(1モ
ル)をEC627g(475cc)、DEC463g
(475cc)、アニソール(MOB)50g(50c
c)からなる混合溶媒に溶かし、全量を1000ccと
したものに変更した以外は同様な操作を行った。結果を
図3と図4に示す。なお、電解液の25℃における電気
伝導度は8.0mS/cmであった。
Example 2 In Example 1, the electrolytic solution was changed to lithium hexafluorophosphate 1
52 g (1 mol) of EC627 g (475 cc), DE
C463g (475cc), MPhC57g (50c
Dissolved in a mixed solvent consisting of c) and adjusting the total amount to 1000 cc, 152 g (1 mol) of lithium hexafluorophosphate was added to EC627 g (475 cc), DEC463 g
(475cc), Anisole (MOB) 50g (50c
The same operation was performed except that the solvent was dissolved in the mixed solvent consisting of c) and the total amount was changed to 1000 cc. The results are shown in FIGS. The electric conductivity of the electrolytic solution at 25 ° C. was 8.0 mS / cm.

【0020】実施例3 実施例1において、電解液を六フッ化リン酸リチウム1
52g(1モル)をEC627g(475cc)、DE
C463g(475cc)、MPhC57g(50c
c)からなる混合溶媒に溶かし、全量を1000ccと
したものから、六フッ化リン酸リチウム152g(1モ
ル)をEC627g(475cc)、DEC463g
(475cc)、プロピオン酸フェニル(PhP)53
g(50cc)からなる混合溶媒に溶かし、全量を10
00ccとしたものに変更した以外は同様な操作を行っ
た。結果を図3と図4に示す。なお、電解液の25℃に
おける電気伝導度は7.8mS/cmであった。
Example 3 In Example 1, the electrolytic solution was changed to lithium hexafluorophosphate 1
52 g (1 mol) of EC627 g (475 cc), DE
C463g (475cc), MPhC57g (50c
Dissolved in a mixed solvent consisting of c) and adjusting the total amount to 1000 cc, 152 g (1 mol) of lithium hexafluorophosphate was added to EC627 g (475 cc) and DEC463 g.
(475 cc), phenyl propionate (PhP) 53
Dissolve in a mixed solvent consisting of g (50 cc) and add 10
The same operation was performed except that the value was changed to 00cc. The results are shown in FIGS. The electric conductivity of the electrolytic solution at 25 ° C. was 7.8 mS / cm.

【0021】比較例1 実施例1において、電解液を六フッ化リン酸リチウム1
52g(1モル)をEC627g(475cc)、DE
C463g(475cc)、MPhC57g(50c
c)からなる混合溶媒に溶かし、全量を1000ccと
したものから、六フッ化リン酸リチウム152g(1モ
ル)をEC661g(500cc)、DEC488g
(500cc)からなる混合溶媒に溶かし、全量を10
00ccとしたものに変更した以外は同様な操作を行っ
た。結果を図3と図4に示す。
Comparative Example 1 In Example 1, the electrolytic solution was changed to lithium hexafluorophosphate 1
52 g (1 mol) of EC627 g (475 cc), DE
C463g (475cc), MPhC57g (50c
Dissolved in a mixed solvent consisting of c) and making the total amount 1000 cc, 152 g (1 mol) of lithium hexafluorophosphate was EC661 g (500 cc), DEC 488 g
Dissolve in a mixed solvent consisting of (500 cc),
The same operation was performed except that the value was changed to 00cc. The results are shown in FIGS.

【0022】実施例4 実施例1において、シート状電極をNG−7を塗布した
ものから、KS−44(人造黒鉛粉末、LONZA社
製、商品名)を塗布したものに変更した以外は同様な操
作を行った。結果を図5と図6に示す。
Example 4 Similar to Example 1 except that the sheet electrode coated with NG-7 was changed to the one coated with KS-44 (artificial graphite powder, manufactured by LONZA, trade name). The operation was performed. The results are shown in FIGS.

【0023】実施例5 実施例4において、電解液を六フッ化リン酸リチウム1
52g(1モル)をEC627g(475cc)、DE
C463g(475cc)、MPhC57g(50c
c)からなる混合溶媒に溶かし、全量を1000ccと
したものから、六フッ化リン酸リチウム152g(1モ
ル)をEC627g(475cc)、DEC463g
(475cc)、アニソール(MOB)50g(50c
c)からなる混合溶媒に溶かし、全量を1000ccと
したものに変更した以外は同様な操作を行った。結果を
図5と図6に示す。電解液の電気伝導度は8.0mS/
cmであった。
Example 5 In Example 4, the electrolytic solution was changed to lithium hexafluorophosphate 1
52 g (1 mol) of EC627 g (475 cc), DE
C463g (475cc), MPhC57g (50c
Dissolved in a mixed solvent consisting of c) and adjusting the total amount to 1000 cc, 152 g (1 mol) of lithium hexafluorophosphate was added to EC627 g (475 cc), DEC463 g
(475cc), Anisole (MOB) 50g (50c
The same operation was performed except that the solvent was dissolved in the mixed solvent consisting of c) and the total amount was changed to 1000 cc. The results are shown in FIGS. The electric conductivity of the electrolyte is 8.0 mS /
cm.

【0024】実施例6 実施例4において、電解液を六フッ化リン酸リチウム1
52g(1モル)をEC627g(475cc)、DE
C463g(475cc)、MPhC57g(50c
c)からなる混合溶媒に溶かし、全量を1000ccと
したものから、六フッ化リン酸リチウム152g(1モ
ル)をEC627g(475cc)、DEC463g
(475cc)、プロピオン酸フェニル(PhP)53
g(50cc)からなる混合溶媒に溶かし、全量を10
00ccとしたものに変更した以外は同様な操作を行っ
た。結果を図5と図6に示す。電解液の電気伝導度は
7.8mS/cmであった。
Example 6 In Example 4, the electrolytic solution was changed to lithium hexafluorophosphate 1
52 g (1 mol) of EC627 g (475 cc), DE
C463g (475cc), MPhC57g (50c
Dissolved in a mixed solvent consisting of c) and adjusting the total amount to 1000 cc, 152 g (1 mol) of lithium hexafluorophosphate was added to EC627 g (475 cc) and DEC463 g.
(475 cc), phenyl propionate (PhP) 53
Dissolve in a mixed solvent consisting of g (50 cc) and add 10
The same operation was performed except that the value was changed to 00cc. The results are shown in FIGS. The electric conductivity of the electrolytic solution was 7.8 mS / cm.

【0025】比較例2 実施例4において、電解液を六フッ化リン酸リチウム1
52g(1モル)をEC627g(475cc)、DE
C463g(475cc)、MPhC57g(50c
c)からなる混合溶媒に溶かし、全量を1000ccと
したものから、六フッ化リン酸リチウム152g(1モ
ル)をEC661g(500cc)、DEC488g
(500cc)からなる混合溶媒に溶かし、全量を10
00ccとしたものに変更した以外は同様な操作を行っ
た。結果を図5と図6に示す。
Comparative Example 2 In Example 4, the electrolytic solution was changed to lithium hexafluorophosphate 1
52 g (1 mol) of EC627 g (475 cc), DE
C463g (475cc), MPhC57g (50c
Dissolved in a mixed solvent consisting of c) and adjusting the total amount to 1000 cc, 152 g (1 mol) of lithium hexafluorophosphate was EC661 g (500 cc), DEC 488 g
Dissolve in a mixed solvent consisting of (500 cc),
The same operation was performed except that the value was changed to 00cc. The results are shown in FIGS.

【0026】[0026]

【発明の効果】充放電効率の低下がなく、サイクル特性
を向上させたリチウムイオン電池用非水系電解液であ
り、リチウムイオンの電池の小型化、高性能化に寄与す
ることができる。
EFFECTS OF THE INVENTION A non-aqueous electrolyte for a lithium-ion battery that has improved charge / discharge efficiency and improved cycle characteristics, and can contribute to miniaturization and higher performance of lithium-ion batteries.

【図面の簡単な説明】[Brief description of drawings]

【図1】筒状型リチウムイオン電池の一部を切り欠いた
斜視図である。
FIG. 1 is a perspective view in which a cylindrical lithium ion battery is partially cut away.

【図2】コイン型リチウムイオン電池の一部を切り欠い
た斜視図である。
FIG. 2 is a perspective view in which a coin-type lithium-ion battery is partially cut away.

【図3】負極に天然黒鉛を用いた場合の本発明の電解液
と従来の電解液の充放電サイクル特性図である。
FIG. 3 is a charge / discharge cycle characteristic diagram of an electrolytic solution of the present invention and a conventional electrolytic solution when natural graphite is used for a negative electrode.

【図4】負極に天然黒鉛を用いた場合の本発明の電解液
と従来の電解液の充放電効率特性図である。
FIG. 4 is a charge / discharge efficiency characteristic diagram of an electrolytic solution of the present invention and a conventional electrolytic solution when natural graphite is used for a negative electrode.

【図5】負極に人造黒鉛を用いた場合の本発明の電解液
と従来の電解液の充放電サイクル特性図である。
FIG. 5 is a charge / discharge cycle characteristic diagram of an electrolytic solution of the present invention and a conventional electrolytic solution when artificial graphite is used for a negative electrode.

【図6】負極に人造黒鉛を用いた場合の本発明の電解液
と従来の電解液の充放電効率特性図である。
FIG. 6 is a charge / discharge efficiency characteristic diagram of the electrolytic solution of the present invention and the conventional electrolytic solution when artificial graphite is used for the negative electrode.

【符号の説明】[Explanation of symbols]

1 炭素電極 2 対極 3 セパレータ 4 電池缶 5 ふた 6 端子 7 絶縁体 1 carbon electrode 2 counter electrode 3 separator 4 battery can 5 lid 6 terminal 7 insulator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石垣 憲一 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenichi Ishigaki 3-1, Chuo 8-chome, Ami-cho, Inashiki-gun, Ibaraki Mitsubishi Chemical Corporation Tsukuba Research Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極、炭素質材料よりなる負極、及び電
解液を基本構成とする電池用の電解液であって、該電解
液が、 (a)分子量が108〜220であって、次式(I)、
(II)または(III)で示されるフェニル基を有するエス
テル類、エーテル類、カーボネート類より選ばれた液状
有機溶媒1〜30容量%と、(b)エチレンカーボネー
トとジエチルカーボネートの混合物99〜70容量%
(但し、エチレンカーボネートとジエチルカーボネート
の容量比は1:8〜1:0.15の範囲である)よりな
る有機溶媒に溶質の六フッ化リン酸リチウムが0.5〜
2.0モル/リットルのモル濃度で溶解されたものであ
る、リチウムイオン電池用電解液。 【化1】 (式中、Rは炭素数が1〜4のアルキル基である。)
1. An electrolytic solution for a battery, comprising a positive electrode, a negative electrode made of a carbonaceous material, and an electrolytic solution as a basic component, wherein the electrolytic solution has the following formula: (I),
1 to 30% by volume of a liquid organic solvent selected from esters, ethers and carbonates having a phenyl group represented by (II) or (III), and (b) a mixture of ethylene carbonate and diethyl carbonate 99 to 70% by volume. %
(However, the volume ratio of ethylene carbonate and diethyl carbonate is in the range of 1: 8 to 1: 0.15), the solute of lithium hexafluorophosphate is 0.5 to
An electrolytic solution for a lithium ion battery, which is dissolved at a molar concentration of 2.0 mol / liter. Embedded image (In the formula, R is an alkyl group having 1 to 4 carbon atoms.)
【請求項2】 液状有機溶媒(a)が、メチルフェニル
カーボネート、エチルフェニルカーボネート、プロピル
フェニルカーボネート、ブチルフェニルカーボネート、
アニソール、フェネトール、酢酸フェニル、プロピオン
酸フェニル、酪酸フェニルより選ばれた有機溶媒である
請求項1記載のリチウムイオン電池用電解液。
2. The liquid organic solvent (a) is methylphenyl carbonate, ethylphenyl carbonate, propylphenyl carbonate, butylphenyl carbonate,
The electrolytic solution for a lithium ion battery according to claim 1, which is an organic solvent selected from anisole, phenetole, phenyl acetate, phenyl propionate, and phenyl butyrate.
JP7170844A 1995-07-06 1995-07-06 Electrolytic solution for lithium ion battery Pending JPH0922722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7170844A JPH0922722A (en) 1995-07-06 1995-07-06 Electrolytic solution for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7170844A JPH0922722A (en) 1995-07-06 1995-07-06 Electrolytic solution for lithium ion battery

Publications (1)

Publication Number Publication Date
JPH0922722A true JPH0922722A (en) 1997-01-21

Family

ID=15912382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7170844A Pending JPH0922722A (en) 1995-07-06 1995-07-06 Electrolytic solution for lithium ion battery

Country Status (1)

Country Link
JP (1) JPH0922722A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063612A1 (en) * 1998-06-04 1999-12-09 Mitsubishi Chemical Corporation Secondary battery having nonaqueous electrolyte solution
JP2001006731A (en) * 1999-06-24 2001-01-12 Sony Corp Nonaqueous electrolyte secondary battery
JP2004063432A (en) * 2002-06-05 2004-02-26 Sony Corp Battery
JP2006012696A (en) * 2004-06-29 2006-01-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte primary battery
CN100426582C (en) * 2004-03-30 2008-10-15 三星Sdi株式会社 Electrolyte for lithium battery and lithium battery comprising the same
US7618749B2 (en) 2002-04-03 2009-11-17 Samsung Sdi Co., Ltd. Electrolyte for lithium battery and lithium battery comprising same
JP2011023160A (en) * 2009-07-14 2011-02-03 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution and nonaqueous electrolyte battery
JP2014017258A (en) * 2008-02-29 2014-01-30 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
US8889302B2 (en) 2008-02-29 2014-11-18 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
KR20170094424A (en) 2015-01-14 2017-08-17 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Aqueous electrolyte solution for electrical storage device, and electrical storage device including said aqueous electrolyte solution
JP2019102428A (en) * 2017-12-05 2019-06-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited battery
US10658706B2 (en) 2016-01-14 2020-05-19 The University Of Tokyo Aqueous electrolytic solution for power storage device and power storage device including said aqueous electrolytic solution
US10749184B2 (en) 2017-12-05 2020-08-18 Contemporary Amperex Technology Co., Limited Battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096592A4 (en) * 1998-06-04 2007-05-02 Mitsubishi Chem Corp Secondary battery having nonaqueous electrolyte solution
EP1096592A1 (en) * 1998-06-04 2001-05-02 Mitsubishi Chemical Corporation Secondary battery having nonaqueous electrolyte solution
US6664008B1 (en) 1998-06-04 2003-12-16 Mitsubishi Chemical Corporation Secondary battery having nonaqueous electrolyte solution
WO1999063612A1 (en) * 1998-06-04 1999-12-09 Mitsubishi Chemical Corporation Secondary battery having nonaqueous electrolyte solution
JP2001006731A (en) * 1999-06-24 2001-01-12 Sony Corp Nonaqueous electrolyte secondary battery
JP4501177B2 (en) * 1999-06-24 2010-07-14 ソニー株式会社 Non-aqueous electrolyte secondary battery
US7914928B2 (en) 2002-04-03 2011-03-29 Samsung Sdi Co., Ltd. Electrolyte for lithium battery and lithium battery comprising same
US7618749B2 (en) 2002-04-03 2009-11-17 Samsung Sdi Co., Ltd. Electrolyte for lithium battery and lithium battery comprising same
US8173298B2 (en) 2002-04-03 2012-05-08 Samsung Sdi Co., Ltd. Electrolyte for lithium battery and lithium battery comprising same
JP2004063432A (en) * 2002-06-05 2004-02-26 Sony Corp Battery
US7560195B2 (en) 2004-03-30 2009-07-14 Samsung Sdi Co., Ltd. Electrolyte for lithium battery and lithium battery comprising the same
CN100426582C (en) * 2004-03-30 2008-10-15 三星Sdi株式会社 Electrolyte for lithium battery and lithium battery comprising the same
JP2006012696A (en) * 2004-06-29 2006-01-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte primary battery
JP4687021B2 (en) * 2004-06-29 2011-05-25 パナソニック株式会社 Non-aqueous electrolyte primary battery
US9083058B2 (en) 2008-02-29 2015-07-14 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
JP2014017258A (en) * 2008-02-29 2014-01-30 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
US8889302B2 (en) 2008-02-29 2014-11-18 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
US8916298B2 (en) 2008-02-29 2014-12-23 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
JP2011023160A (en) * 2009-07-14 2011-02-03 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution and nonaqueous electrolyte battery
KR20170094424A (en) 2015-01-14 2017-08-17 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Aqueous electrolyte solution for electrical storage device, and electrical storage device including said aqueous electrolyte solution
US10629958B2 (en) 2015-01-14 2020-04-21 The University Of Tokyo Aqueous electrolytic solution for power storage device and power storage device including said aqueous electrolytic solution
US10658706B2 (en) 2016-01-14 2020-05-19 The University Of Tokyo Aqueous electrolytic solution for power storage device and power storage device including said aqueous electrolytic solution
JP2019102428A (en) * 2017-12-05 2019-06-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited battery
US10658673B2 (en) 2017-12-05 2020-05-19 Contemporary Amperex Technology Co., Limited Battery
US10749184B2 (en) 2017-12-05 2020-08-18 Contemporary Amperex Technology Co., Limited Battery

Similar Documents

Publication Publication Date Title
CN110612632B (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
JP6178316B2 (en) Fluorinated electrolyte composition
CN109792086B (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR101223628B1 (en) Rechargeable lithium battery
US7951495B2 (en) Non-aqueous electrolyte for battery and non-aqueous electrolyte battery comprising the same as well as electrolyte for electric double layer capacitor and electric double layer capacitor comprising the same
WO2003043102A2 (en) Non-aqueous electrolytes for lithium electrochemical cells
CN108701865B (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP4579588B2 (en) Lithium ion secondary battery
JP5062459B2 (en) Nonaqueous electrolyte secondary battery
JP2007018945A (en) Non-aqueous electrolytic solution and lithium secondary battery
JPH0922722A (en) Electrolytic solution for lithium ion battery
JPS6286673A (en) Electrolyte for lithium secondary battery
WO2019115541A1 (en) Electrolyte composition comprising oligomeric silyl ester phosphonates
JP3463407B2 (en) Electrolyte for lithium ion batteries
JP4728598B2 (en) Lithium ion secondary battery
JP2001023688A (en) Nonaqueous electrolyte and lithium secondary battery using it
WO2012105307A1 (en) Lithium ion capacitor
KR20220015410A (en) Electrode Materials Comprising Layered Potassium Metal Oxide, Electrodes Comprising Electrode Materials and Use of Electrode Materials in Electrochemistry
JP2002313416A (en) Non-aqueous electrolyte secondary battery
WO2019065288A1 (en) Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same
KR20190095791A (en) Electrolyte Composition and Secondary Battery Using the Same
JP2019061826A (en) Lithium ion secondary battery
JP2014056663A (en) Sodium secondary battery
JP4579587B2 (en) Lithium ion secondary battery
JP7564740B2 (en) Method for restoring non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery