JP4431941B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4431941B2
JP4431941B2 JP2003162130A JP2003162130A JP4431941B2 JP 4431941 B2 JP4431941 B2 JP 4431941B2 JP 2003162130 A JP2003162130 A JP 2003162130A JP 2003162130 A JP2003162130 A JP 2003162130A JP 4431941 B2 JP4431941 B2 JP 4431941B2
Authority
JP
Japan
Prior art keywords
added
same manner
battery
carbonate
conducted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003162130A
Other languages
Japanese (ja)
Other versions
JP2004363031A (en
JP2004363031A5 (en
Inventor
村井  哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2003162130A priority Critical patent/JP4431941B2/en
Publication of JP2004363031A publication Critical patent/JP2004363031A/en
Publication of JP2004363031A5 publication Critical patent/JP2004363031A5/ja
Application granted granted Critical
Publication of JP4431941B2 publication Critical patent/JP4431941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池に関する。
【0002】
【従来の技術】
従来、正極と負極との間で一方が放出したリチウムイオンを他方に吸蔵させるという可逆反応によって充放電を行う電池は、高電圧・高エネルギー密度を有するため、広く民生用電子機器の電源として用いられている。この種の電池は、電極に使用されているリチウムと水との反応性が大きいために、電解液として水を含まない非水溶媒に電解質塩を溶解させたものが使用されており、このため、非水電解質二次電池と称されている(以下、単に「電池」と称することがある)。
【0003】
ここで、非水溶媒としては、例えばエチルメチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルブチルカーボネート等の鎖状炭酸エステル系化合物と、エチレンカーボネート、プロピレンカーボネート等の環状炭酸エステルとを混合したものが好ましく用いられている。
【0004】
【特許文献1】
特許第3123749号公報
【0005】
【発明が解決しようとする課題】
ところが、鎖状炭酸エステル系化合物や環状炭酸エステル化合物を非水溶媒として使用すると、負極上でエステル交換反応が起こり、電解液中に異種の炭酸エステル系化合物が生成される場合がある。特に、非対称の鎖状炭酸エステルを使用した場合には、負極表面でのエステル交換反応によって、エチルメチルカーボネートやジメチルカーボネートのような低分子量の炭酸エステル系化合物がより多く生成される場合がある。そして、一般に炭酸エステル系化合物は低分子量であるほど沸点が低く、気化し易い。また、正極上で酸化されて分解ガスを発生し易い。このため、非水電解質二次電池を高温環境下で長時間放置した場合に、電池内で生成された低分子量の炭酸エステル系化合物が気化、または分解ガスを発生することによって内圧が上昇し、電池に予期しない膨れが生じる場合があった。
【0006】
このような膨れを抑制するため、ビニレンカーボネートを電解液へ添加することによってエステル交換反応を抑制する技術が開発されてきている。電解液中にビニレンカーボネートが存在すると、負極上でのビニレンカーボネートの還元分解がエステル交換反応に優先して進行し、かつ、この反応の結果負極上に形成される保護皮膜により、鎖状炭酸エステル系化合物と負極との反応が抑制されると考えられる。しかし、ビニレンカーボネート自体は酸化電位が上記の非水溶媒よりも低いために、正極上で酸化分解を受けてガスを生成することがある。このため、電池を高温環境下で充電状態で放置した場合に、ビニレンカーボネートの分解に起因する膨れが生じるおそれがある。
【0007】
本発明は上記した事情に鑑みてなされたものであり、その目的は、高温環境下での放置時の膨れおよび容量の低下を抑制できる非水電解質二次電池を提供することにある。
【0008】
【課題を解決するための手段】
本発明者は、膨れおよび容量の低下を防止できる非水電解質二次電池を開発すべく鋭意研究してきたところ、フッ素化鎖状エーテル系化合物とビニレンカーボネートとを併用することにより、ビニレンカーボネートの分解を抑制できることを見出した。ここで、分解抑制のメカニズムは必ずしも明らかではないが、フッ素化鎖状エーテル化合物はビニレンカーボネートよりも酸化分解を受けやすいことから、正極上でビニレンカーボネートよりも先に分解して保護被膜を形成し、この保護被膜によって、ビニレンカーボネートの分解が抑制されると考えられる。本発明は、かかる新規な知見に基づいてなされたものである。
【0009】
すなわち、本発明は、正極と、負極と、非水溶媒として鎖状炭酸エステル系化合物を含む電解液とを備えた非水電解質二次電池であって、前記電解液には、ビニレンカーボネートおよびフッ素化鎖状エーテル系化合物が添加され、前記フッ素化鎖状エーテル系化合物がフッ素化ジエーテル類であり、前記フッ素化鎖状エーテル系化合物の添加量は前記非水溶媒に対して0.5重量%以上30重量%以下であることを特徴とする。
【0010】
本発明の非水溶媒に使用される鎖状炭酸エステル系化合物としては、非水電解質二次電池に通常に使用されるものであれば特に制限はなく、例えばジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルブチルカーボネート等を使用できる。これらの鎖状炭酸エステル系化合物は、単独で使用されてもよく、2種以上の化合物が混合されていてもよい。特に、エチルメチルカーボネートが含まれていることが好ましく、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートを組み合わせて使用することが好ましい。
また、非水溶媒には、鎖状炭酸エステル系化合物以外に他の溶媒が混合されていてもよい。他の溶媒としては、非水電解質二次電池に通常に使用されるものであれば特に制限はなく、例えばγ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等を使用できる。
【0011】
本発明のビニレンカーボネートの電解液への添加量は、使用する非水溶媒の種類等により変動し、一概に制限されないが、非水溶媒に対して0.1重量%以上2重量%以下であることが好ましい。
【0012】
本発明のフッ素化鎖状エーテル系化合物は、フッ素化モノエーテル類、フッ素化ジエーテル類の他、フッ素化ポリエーテル類であってもよく、あるいはこれらの混合物であってもよい。特に、エーテル基の数が多いほど酸化分解を受けやすく、正極上で保護被膜を形成しやすいと考えられるが、実用性の観点から、下記一般式(1)で示されるフッ素化ジエーテル類が好適である。
【0013】
【化1】
−O−R−O−R
【0014】
ここで、式中R、R、Rは直鎖状、または分岐状のアルキル基であれば特に制限はなく、飽和アルキル基、不飽和アルキル基のいずれであってもよいが、炭素数が1以上7以下であることが好ましい。分子量が大きくなると粘性が高くなり、電解液に混合した際に充放電性能に影響があるためである。
【0015】
なかでも、アルキル基の水素原子の少なくとも一部がフッ素原子により置換されたフッ素化エーテル類を使用することがより好ましい。具体的には、CFCHO−CH−OCH、CFCHO−CHCH−OCH、CFCHO−CHCHCH−OCH、CFCHO−CHCH−OCHCH等を好ましく使用することができる。
【0016】
これらのフッ素化鎖状エーテル系化合物は、単独で使用されてもよく、2種以上の化合物が混合されていてもよい。また、フッ素化鎖状エーテル系化合物の電解液への添加量は、非水溶媒に対して0.5重量%以上30重量%以下である。0.5%重量未満であれば、充分な膨れ防止効果を得ることができず、好ましくない。また、フッ素化鎖状エーテル系化合物は一般に誘電率が低いため、30重量%を超えて添加すると電池の高率放電性能が低下し、好ましくない。
【0017】
【発明の作用、および発明の効果】
本発明によれば、鎖状炭酸エステル系化合物を含む電解液を使用した非水電解質二次電池において、電解液には、ビニレンカーボネートおよびフッ素化鎖状エーテル系化合物が添加され、前記フッ素化鎖状エーテル系化合物がフッ素化ジエーテル類であり、フッ素化鎖状エーテル系化合物の添加量は非水溶媒に対して0.5重量%以上30重量%以下である。このような構成によれば、鎖状炭酸エステル系化合物の負極上でのエステル交換反応がビニレンカーボネートにより抑制されるとともに、ビニレンカーボネート自体の正極上での分解がフッ素化鎖状エーテル系化合物によって抑制される。これにより、電池の膨れおよび容量の低下を抑制することができる。
【0018】
【実施例】
以下、実施例を挙げて本発明をさらに詳細に説明する。
【0019】
1.試験方法
<実施例1>
(1)リチウムイオン二次電池の作製
▲1▼正極の作製
リチウムコバルト複合酸化物を正極活物質とし、この正極活物質に対して結着剤としてのポリフッ化ビニリデンと、導電剤としてのアセチレンブラックとを重量比87:8:5の割合で混合し、N−メチルピロリドンを加えて正極合剤ペーストを調製した。このペーストを、厚さ20μmのアルミニウム箔からなる集電体の両面に均一に塗布し、乾燥後、プレスを行い、正極活物質層を備えた帯状の正極シートを作製した。この正極シートの一端部に、正極リードを溶接した。
【0020】
▲2▼負極の作製
グラファイトを負極活物質とし、このグラファイトに対して結着剤としてのカルボキシメチルセルロース、およびスチレンブタジエンゴムを重量比95:2:3の割合で混合し、適度な水分を加えて負極合剤ペーストを調製した。このペーストを、厚さ15μmの銅箔からなる集電体の両面に均一に塗布し、上記正極シートと同様の方法により、帯状の負極シートを作製した。この負極シートの一端部に、負極リードを溶接した。
【0021】
▲3▼電解液の調製
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、体積比3:7の割合で混合し、非水溶媒を調製した。この非水溶媒に、ビニレンカーボネート(VC)、およびフッ素化鎖状エーテル系化合物であるCFCHO−CHCH−OCH(以下、「TFEME」と略記する)を、非水溶媒の重量に対してそれぞれ0.5%の割合で添加した。次いで、この混合液に電解質としてリチウム塩であるLiPFを濃度1.0mol/lとなるように加え、電解液を調製した。
【0022】
▲4▼角型電池の作製
図1に示す構成の電池1を作製した。
上記1)のとおり作製した正極シート3、上記2)のとおり作製した負極シート4を、セパレータ5を介して積層し、長円渦状に巻回して発電要素2を作製した。なお、セパレータ5としては、厚さ20μmのポリエチレン微多孔膜を使用した。
【0023】
この発電要素2を、角型の電池ケース6に収納し、負極リード11を電池蓋7に備えられた負極端子9に接続した。また、正極リード10を電池蓋7に接続した。そして、電池蓋7を電池ケース6の開口部にレーザー溶接によって取り付けた。この電池ケース6内に、電池蓋7に備えられた注液口から、上記3)で調製した電解液12を過剰にならない程度に真空注液した。このようにして、幅30mm、高さ48mm、厚み5mmの角型電池を組み立てた。なお、電池蓋7には安全弁8が設けられている。
【0024】
(2)放置試験
上記の方法で作成した電池について、25℃の雰囲気下、600mAの定電流で充電開始後3時間まで充電を行った。その後、この電池について600mAの定電流で2.7Vまで放電を行い、初期放電容量を測定した。
次いで、この電池について25℃の雰囲気下、600mAの定電流で4.2Vまで充電後、4.2Vの定電圧で、充電開始後3時間まで充電を行った。充電後、25℃で電池の厚さを測定した。次いで、この電池を80℃で50時間放置した後、25℃で5時間冷却し、冷却後の電池の厚さを測定した。
次に、厚み測定後の電池を、600mAの定電流で2.7Vまで放電した後、初期放電容量の測定と同じ条件で充放電試験を行い、放置試験後の放電容量を測定した。
【0025】
<実施例2>
電解液として、TFEMEの添加量を非水溶媒に対して1.0重量%としたものを用いた他は、実施例1と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0026】
<実施例3>
電解液として、TFEMEの添加量を非水溶媒に対して2.0重量%としたものを用いた他は、実施例1と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0027】
<実施例4>
電解液として、TFEMEの添加量を非水溶媒に対して3.0重量%としたものを用いた他は、実施例1と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0028】
<実施例5>
電解液として、TFEMEの添加量を非水溶媒に対して5.0重量%としたものを用いた他は、実施例1と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0029】
<実施例6>
電解液として、TFEMEの添加量を非水溶媒に対して10.0重量%としたものを用いた他は、実施例1と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0030】
<実施例7>
電解液として、TFEMEの添加量を非水溶媒に対して20.0重量%としたものを用いた他は、実施例1と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0031】
<実施例8>
電解液として、TFEMEの添加量を非水溶媒に対して30.0重量%としたものを用いた他は、実施例1と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0032】
<実施例9>
電解液として、VCの添加量を非水溶媒に対して0.1重量%とし、TFEMEの添加量を非水溶媒に対して3.0重量%としたものを用いた他は、実施例1と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0033】
<実施例10>
電解液として、VCの添加量を非水溶媒に対して1.0重量%とした他は、実施例9と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0034】
<実施例11>
電解液として、VCの添加量を非水溶媒に対して2.0重量%とした他は、実施例9と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0035】
<実施例12>
電解液として、VCの添加量を非水溶媒に対して3.0重量%とした他は、実施例9と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0036】
<実施例13>
電解液として、VCの添加量を非水溶媒に対して5.0重量%とした他は、実施例9と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0037】
<実施例14>
電解液として、実施例1のTFEMEに代えてCFCHO−CH−OCH(以下、「TFEMM」と略記する)を非水溶媒に対して3重量%添加したものを用いた他は、実施例1と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0038】
<実施例15>
電解液として、実施例1のTFEMEに代えてCFCHO−CHCHCH−OCH(以下、「TFEMP」と略記する)を非水溶媒に対して3重量%添加したものを用いた他は、実施例1と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0039】
<実施例16>
電解液として、実施例1のTFEMEに代えてCFCHO−CHCH−OCHCH(以下、「TFEEE」と略記する)を非水溶媒に対して3重量%添加したものを用いた他は、実施例1と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0040】
<実施例17>
実施例1の非水溶媒に代えて、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジエチルカーボネート(DEC)とを、体積比3:4:3の割合で混合したものを用いた他は、実施例4と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0041】
<比較例1>
電解液として、VCを添加しなかったものを用いた他は、実施例1と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0042】
<比較例2>
電解液として、VCを添加しなかったものを用いた他は、実施例2と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0043】
<比較例3>
電解液として、VCを添加しなかったものを用いた他は、実施例3と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0044】
<比較例4>
電解液として、VCを添加しなかったものを用いた他は、実施例4と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0045】
<比較例5>
電解液として、VCを添加しなかったものを用いた他は、実施例5と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0046】
<比較例6>
電解液として、VCを添加しなかったものを用いた他は、実施例6と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0047】
<比較例7>
電解液として、VCを添加しなかったものを用いた他は、実施例7と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0048】
<比較例8>
電解液として、VCを添加しなかったものを用いた他は、実施例8と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0049】
<比較例9>
電解液として、VCを添加しなかったものを用いた他は、実施例14と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0050】
<比較例10>
電解液として、VCを添加しなかったものを用いた他は、実施例15と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0051】
<比較例11>
電解液として、VCを添加しなかったものを用いた他は、実施例16と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0052】
<比較例12>
電解液として、TFEMEを添加しなかったものを用いた他は、実施例9と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0053】
<比較例13>
電解液として、TFEMEを添加しなかったものを用いた他は、実施例4と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0054】
<比較例14>
電解液として、TFEMEを添加しなかったものを用いた他は、実施例10と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0055】
<比較例15>
電解液として、TFEMEを添加しなかったものを用いた他は、実施例11と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0056】
<比較例16>
電解液として、TFEMEを添加しなかったものを用いた他は、実施例12と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0057】
<比較例17>
電解液として、TFEMEを添加しなかったものを用いた他は、実施例13と同様に作製された電池を用いて、実施例1と同様に放置試験を行った。
【0058】
2.結果と考察
表1および表2には、各実施例および比較例における、非水溶媒の組成、フッ素化鎖状エーテル化合物およびVCの添加量を示した。
【0059】
【表1】

Figure 0004431941
【0060】
【表2】
Figure 0004431941
【0061】
表3および表4には、各実施例および比較例における、初期放電容量、放置試験前後の電池の厚さ、および容量保持率を示した。なお、容量保持率(%)は、初期放電容量に対する放置試験後の放電容量の割合で示した。
【0062】
【表3】
Figure 0004431941
【0063】
【表4】
Figure 0004431941
【0064】
[VC添加による効果の検討]
実施例1〜8は、VCを0.5wt%添加し、TFEMEの添加量を0.5〜30.0wt%としたもの、比較例1〜8は、VCを添加せずにTFEMEの添加量を0.5〜30.0wt%としたものである。
初期放電容量は、VCを添加した実施例1〜8の方が、VCを添加しない比較例1〜8よりもやや大きかった。VCを添加せず、TFEMEの添加量が5.0wt%以上の比較例5〜8では、80℃放置試験前の電池厚みがやや大きくなった。その理由は、初期充電時にフッ素化鎖状エーテルの分解が起こり、発生ガスにより初期の電池厚みが大きくなったものと考えられる。しかし、実施例5〜8では、初期の電池厚みは特に大きくはなく、VCを添加することで、初期の電池厚みの増加を抑制することができた。VCを0.5wt%添加し、TFEMEの添加量が2.0wt%以上の実施例3〜8では、80℃放置試験後の電池厚みはやや小さくなった。容量保持率は、VCを添加した実施例1〜8の方が、VCを添加しない比較例1〜8よりもかなり大きかった。
【0065】
[TFEM添加による効果の検討]
実施例4、9〜13は、TFEMEを0.5wt%添加し、VCの添加量を0.1〜5.0wt%としたもの、比較例12〜17は、TFEMEを添加せずにVCの添加量を0.1〜5.0wt%としたものである。
初期放電容量と初期放電容量は、TFEMEを添加した実施例4、9〜13と、TFEMEを添加しない比較例12〜17とで違いは見られなかった。また、実施例4、9〜13および比較例12〜17の場合とも、VCの添加量が大きくなるにしたがって、80℃放置試験後の電池厚みは増大した。この理由は、VCの添加量を増やすと、高温放置時にVCの酸化分解によりガスを発生し、その結果電池厚みが増大する傾向にあるためである。
しかし、電池厚みの増加の程度は、TFEMEを添加した実施例4、9〜13よりも、TFEMEを添加しない比較例12〜17の方が大きかった。このことは、VCの酸化分解は、TFEMEを混合することにより抑制できることを示している。さらに、容量保持率は、実施例4、9〜13の方が比較例12〜17よりもかなり大きかった。理由は明らかではないが、VCのエステル交換反応抑制効果と、TFEMEによる、正極でのVCの酸化分解抑制効果以外に、なんらかの相互作用があるものではないかと考えられる。
【0066】
[フッ素化鎖状エーテルの種類の違いによる効果の検討]
実施例4、14〜16と比較例4、9〜11との比較より、TFEMEに代えてTFEMM、TFEMP、TFEEEを使用した場合においても、同様の効果が得られることがわかった。
【0067】
[非水溶媒の組成の違いによる効果の検討]
実施例4と実施例17との比較より、非水溶媒として、EC:EMCの混合溶媒に代えてEC:EMC:DECの混合溶媒系を使用した場合においても、同様の効果が得られることがわかった。
【0068】
なお、VCとフッ素化鎖状エーテルの添加量は、非水電解質二次電池に用いる負極活物質や正極活物質の種類によっても異なるために、電池の負極活物質と正極活物質の構成次第で変更が可能である。
【図面の簡単な説明】
【図1】本実施例の電池の断面図
【符号の説明】
1…電池(非水電解質二次電池)
3…正極板(正極)
4…負極板(負極)
12…電解液[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
Conventionally, batteries that charge and discharge by a reversible reaction in which lithium ions released between one and the other are occluded between the positive electrode and the negative electrode have high voltage and high energy density, and are widely used as power sources for consumer electronic devices. It has been. This type of battery has a high reactivity between lithium and water used in the electrode, so an electrolyte salt dissolved in a non-aqueous solvent not containing water is used as the electrolyte. Is called a non-aqueous electrolyte secondary battery (hereinafter sometimes simply referred to as “battery”).
[0003]
Here, as the non-aqueous solvent, for example, a mixture of a chain carbonate ester compound such as ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, or methyl butyl carbonate and a cyclic carbonate ester such as ethylene carbonate or propylene carbonate. Is preferably used.
[0004]
[Patent Document 1]
Japanese Patent No. 3123749 gazette
[Problems to be solved by the invention]
However, when a chain carbonate ester compound or a cyclic carbonate ester compound is used as a non-aqueous solvent, a transesterification reaction occurs on the negative electrode, and a different carbonate ester compound may be generated in the electrolytic solution. In particular, when an asymmetric chain ester carbonate is used, a low molecular weight carbonate ester compound such as ethyl methyl carbonate or dimethyl carbonate may be more produced by the transesterification reaction on the negative electrode surface. In general, the lower the molecular weight of the carbonate ester compound, the lower the boiling point and the easier it is to vaporize. Moreover, it is easily oxidized on the positive electrode to generate decomposition gas. For this reason, when the nonaqueous electrolyte secondary battery is left in a high temperature environment for a long time, the internal pressure rises due to vaporization of the low molecular weight carbonate ester compound generated in the battery or generation of decomposition gas, There were cases where unexpected swelling occurred in the battery.
[0006]
In order to suppress such swelling, a technique for suppressing the transesterification reaction by adding vinylene carbonate to the electrolytic solution has been developed. When vinylene carbonate is present in the electrolyte, the reductive decomposition of vinylene carbonate on the negative electrode proceeds in preference to the transesterification reaction, and as a result of this reaction, a chain carbonate ester is formed by the protective film formed on the negative electrode. It is considered that the reaction between the system compound and the negative electrode is suppressed. However, since vinylene carbonate itself has an oxidation potential lower than that of the above non-aqueous solvent, it may undergo oxidative decomposition on the positive electrode to generate gas. For this reason, when the battery is left in a charged state in a high temperature environment, there is a risk of swelling due to the decomposition of vinylene carbonate.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a nonaqueous electrolyte secondary battery that can suppress swelling when left in a high temperature environment and a decrease in capacity.
[0008]
[Means for Solving the Problems]
The present inventor has intensively studied to develop a non-aqueous electrolyte secondary battery that can prevent swelling and capacity reduction. By using a fluorinated chain ether compound and vinylene carbonate in combination, the decomposition of vinylene carbonate can be achieved. It was found that can be suppressed. Here, the mechanism of inhibiting decomposition is not necessarily clear, but since the fluorinated chain ether compound is more susceptible to oxidative degradation than vinylene carbonate, it decomposes on the positive electrode earlier than vinylene carbonate to form a protective film. It is considered that the decomposition of vinylene carbonate is suppressed by this protective film. The present invention has been made based on such novel findings.
[0009]
That is, the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution containing a chain carbonate ester compound as a non-aqueous solvent. The electrolytic solution includes vinylene carbonate and fluorine. The fluorinated chain ether compound is added, the fluorinated chain ether compound is a fluorinated diether, and the addition amount of the fluorinated chain ether compound is 0.5% by weight with respect to the non-aqueous solvent. The content is 30% by weight or less.
[0010]
The chain carbonate ester compound used in the non-aqueous solvent of the present invention is not particularly limited as long as it is normally used in non-aqueous electrolyte secondary batteries. For example, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate , Methyl propyl carbonate, ethyl propyl carbonate, methyl butyl carbonate and the like can be used. These chain carbonate compounds may be used alone, or two or more compounds may be mixed. In particular, it is preferable that ethyl methyl carbonate is contained, and it is preferable to use dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate in combination.
In addition to the chain carbonate ester compound, other solvents may be mixed in the non-aqueous solvent. Other solvents are not particularly limited as long as they are usually used in non-aqueous electrolyte secondary batteries. For example, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxy Ethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate and the like can be used.
[0011]
The amount of vinylene carbonate added to the electrolytic solution of the present invention varies depending on the type of non-aqueous solvent used and is not generally limited, but is 0.1 wt% or more and 2 wt% or less with respect to the non-aqueous solvent. It is preferable.
[0012]
The fluorinated chain ether compound of the present invention may be fluorinated monoethers, fluorinated diethers, fluorinated polyethers, or a mixture thereof. In particular, the greater the number of ether groups, the more likely it is susceptible to oxidative decomposition and the easier it is to form a protective film on the positive electrode. From the viewpoint of practicality, fluorinated diethers represented by the following general formula (1) are preferred. It is.
[0013]
[Chemical 1]
R 1 —O—R 2 —O—R 3
[0014]
Here, R 1 , R 2 , and R 3 in the formula are not particularly limited as long as they are linear or branched alkyl groups, and may be either saturated alkyl groups or unsaturated alkyl groups, but carbon The number is preferably 1 or more and 7 or less. This is because the viscosity increases as the molecular weight increases, and the charge / discharge performance is affected when mixed with the electrolyte.
[0015]
Among these, it is more preferable to use fluorinated ethers in which at least a part of the hydrogen atoms of the alkyl group is substituted with fluorine atoms. Specifically, CF 3 CH 2 O-CH 2 -OCH 3, CF 3 CH 2 O-CH 2 CH 2 -OCH 3, CF 3 CH 2 O-CH 2 CH 2 CH 2 -OCH 3, CF 3 CH 2 O—CH 2 CH 2 —OCH 2 CH 3 or the like can be preferably used.
[0016]
These fluorinated chain ether compounds may be used alone, or two or more compounds may be mixed. The amount of the fluorinated chain ether compound added to the electrolytic solution is 0.5% by weight or more and 30% by weight or less with respect to the non-aqueous solvent. If the weight is less than 0.5%, a sufficient swelling preventing effect cannot be obtained, which is not preferable. Further, since the fluorinated chain ether compound generally has a low dielectric constant, if it is added in excess of 30% by weight, the high rate discharge performance of the battery is lowered, which is not preferable.
[0017]
Operation of the invention and effect of the invention
According to the present invention, in a non-aqueous electrolyte secondary battery using the electrolyte containing chain carbonic ester compound, the electrolytic solution, vinylene carbonate and fluorinated chain ether compound is added, the fluorinated chains The ether ether compound is a fluorinated diether, and the addition amount of the fluorinated chain ether compound is 0.5 wt% or more and 30 wt% or less with respect to the non-aqueous solvent. According to such a configuration, the transesterification reaction of the chain carbonate ester compound on the negative electrode is suppressed by the vinylene carbonate, and the decomposition of the vinylene carbonate itself on the positive electrode is suppressed by the fluorinated chain ether compound. Is done. Thereby, the swelling of a battery and the fall of a capacity | capacitance can be suppressed.
[0018]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0019]
1. Test method <Example 1>
(1) Production of lithium ion secondary battery (1) Production of positive electrode Using lithium cobalt composite oxide as a positive electrode active material, polyvinylidene fluoride as a binder for this positive electrode active material, and acetylene black as a conductive agent Were mixed at a weight ratio of 87: 8: 5, and N-methylpyrrolidone was added to prepare a positive electrode mixture paste. This paste was uniformly applied to both sides of a current collector made of an aluminum foil having a thickness of 20 μm, dried and then pressed to produce a strip-like positive electrode sheet provided with a positive electrode active material layer. A positive electrode lead was welded to one end of the positive electrode sheet.
[0020]
(2) Preparation of negative electrode Graphite is used as a negative electrode active material, carboxymethyl cellulose as a binder and styrene butadiene rubber are mixed in a weight ratio of 95: 2: 3 to this graphite, and appropriate moisture is added. A negative electrode mixture paste was prepared. This paste was uniformly applied to both surfaces of a current collector made of a copper foil having a thickness of 15 μm, and a strip-shaped negative electrode sheet was produced by the same method as that for the positive electrode sheet. A negative electrode lead was welded to one end of the negative electrode sheet.
[0021]
(3) Preparation of electrolytic solution Ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 3: 7 to prepare a non-aqueous solvent. To this non-aqueous solvent, vinylene carbonate (VC) and CF 3 CH 2 O—CH 2 CH 2 —OCH 3 (hereinafter abbreviated as “TFEME”) which is a fluorinated chain ether compound, Each was added at a ratio of 0.5% with respect to the weight of. Next, LiPF 6 that is a lithium salt as an electrolyte was added to the mixed solution to a concentration of 1.0 mol / l to prepare an electrolytic solution.
[0022]
{Circle over (4)} Production of Square Battery A battery 1 having the structure shown in FIG. 1 was produced.
The power generating element 2 was manufactured by laminating the positive electrode sheet 3 manufactured as described in 1) above and the negative electrode sheet 4 manufactured as described in 2) above through the separator 5 and wound in an elliptical spiral shape. The separator 5 was a polyethylene microporous film having a thickness of 20 μm.
[0023]
The power generation element 2 was housed in a rectangular battery case 6, and the negative electrode lead 11 was connected to the negative electrode terminal 9 provided in the battery lid 7. Further, the positive electrode lead 10 was connected to the battery lid 7. The battery lid 7 was attached to the opening of the battery case 6 by laser welding. Into the battery case 6, the electrolyte solution 12 prepared in the above 3) was vacuum-injected from the injection port provided in the battery lid 7 so as not to be excessive. In this way, a square battery having a width of 30 mm, a height of 48 mm, and a thickness of 5 mm was assembled. The battery lid 7 is provided with a safety valve 8.
[0024]
(2) Leaving test The battery prepared by the above method was charged up to 3 hours after the start of charging at a constant current of 600 mA in an atmosphere at 25 ° C. Thereafter, the battery was discharged at a constant current of 600 mA to 2.7 V, and the initial discharge capacity was measured.
Next, the battery was charged to 4.2 V at a constant current of 600 mA in an atmosphere of 25 ° C., and then charged at a constant voltage of 4.2 V for 3 hours after the start of charging. After charging, the battery thickness was measured at 25 ° C. Next, the battery was allowed to stand at 80 ° C. for 50 hours, then cooled at 25 ° C. for 5 hours, and the thickness of the battery after cooling was measured.
Next, after discharging the battery after thickness measurement to 2.7 V at a constant current of 600 mA, a charge / discharge test was performed under the same conditions as the measurement of the initial discharge capacity, and the discharge capacity after the standing test was measured.
[0025]
<Example 2>
A battery produced in the same manner as in Example 1 was used, except that the amount of TFEME added was 1.0% by weight with respect to the non-aqueous solvent. A test was conducted.
[0026]
<Example 3>
A battery produced in the same manner as in Example 1 was used, except that the amount of TFEME added was 2.0% by weight with respect to the non-aqueous solvent. A test was conducted.
[0027]
<Example 4>
A battery manufactured in the same manner as in Example 1 was used, except that the amount of TFEME added was 3.0% by weight with respect to the non-aqueous solvent. A test was conducted.
[0028]
<Example 5>
A battery produced in the same manner as in Example 1 was used, except that the amount of TFEME added was 5.0% by weight with respect to the non-aqueous solvent. A test was conducted.
[0029]
<Example 6>
A battery produced in the same manner as in Example 1 was used, except that the amount of TFEME added was 10.0% by weight with respect to the non-aqueous solvent. A test was conducted.
[0030]
<Example 7>
A battery produced in the same manner as in Example 1 was used, except that the amount of TFEME added was 20.0% by weight with respect to the non-aqueous solvent. A test was conducted.
[0031]
<Example 8>
A battery produced in the same manner as in Example 1 was used, except that the amount of TFEME added was 30.0% by weight with respect to the non-aqueous solvent. A test was conducted.
[0032]
<Example 9>
Example 1 except that the amount of VC added was 0.1% by weight with respect to the non-aqueous solvent and the amount of TFEME was 3.0% by weight with respect to the non-aqueous solvent. Using the battery produced in the same manner as in Example 1, a standing test was conducted in the same manner as in Example 1.
[0033]
<Example 10>
Using the battery produced in the same manner as in Example 9 except that the amount of VC added was 1.0% by weight with respect to the nonaqueous solvent as the electrolytic solution, a standing test was conducted in the same manner as in Example 1. .
[0034]
<Example 11>
Using the battery produced in the same manner as in Example 9 except that the amount of VC added was 2.0% by weight with respect to the nonaqueous solvent as the electrolytic solution, a standing test was conducted in the same manner as in Example 1. .
[0035]
<Example 12>
Using the battery produced in the same manner as in Example 9 except that the amount of VC added was 3.0% by weight with respect to the non-aqueous solvent as the electrolytic solution, a standing test was conducted in the same manner as in Example 1. .
[0036]
<Example 13>
Using the battery produced in the same manner as in Example 9 except that the amount of VC added was 5.0% by weight with respect to the nonaqueous solvent as the electrolytic solution, a standing test was conducted in the same manner as in Example 1. .
[0037]
<Example 14>
Other than using 3% by weight of CF 3 CH 2 O—CH 2 —OCH 3 (hereinafter abbreviated as “TFEMM”) as an electrolytic solution instead of TFEME of Example 1, Used a battery produced in the same manner as in Example 1, and a standing test was conducted in the same manner as in Example 1.
[0038]
<Example 15>
As an electrolytic solution, a solution in which CF 3 CH 2 O—CH 2 CH 2 CH 2 —OCH 3 (hereinafter abbreviated as “TFEMP”) is added in place of TFEME of Example 1 in an amount of 3% by weight based on the nonaqueous solvent Using the battery produced in the same manner as in Example 1 except that was used, a standing test was conducted in the same manner as in Example 1.
[0039]
<Example 16>
As an electrolytic solution, a solution in which CF 3 CH 2 O—CH 2 CH 2 —OCH 2 CH 3 (hereinafter abbreviated as “TFEEEE”) is added in place of TFEME of Example 1 in an amount of 3% by weight based on the nonaqueous solvent. Using the battery produced in the same manner as in Example 1 except that was used, a standing test was conducted in the same manner as in Example 1.
[0040]
<Example 17>
Instead of the non-aqueous solvent of Example 1, ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 4: 3. Using the battery produced in the same manner as in Example 4, a standing test was conducted in the same manner as in Example 1.
[0041]
<Comparative Example 1>
A standing test was conducted in the same manner as in Example 1 except that the electrolyte was one that was not added with VC and a battery produced in the same manner as in Example 1.
[0042]
<Comparative example 2>
A standing test was conducted in the same manner as in Example 1 except that the electrolyte solution used was not added with VC, and a battery produced in the same manner as in Example 2 was used.
[0043]
<Comparative Example 3>
A standing test was conducted in the same manner as in Example 1 except that the electrolyte was one that was not added with VC, and a battery produced in the same manner as in Example 3 was used.
[0044]
<Comparative example 4>
A standing test was conducted in the same manner as in Example 1 except that the electrolyte was one that was not added with VC, and a battery produced in the same manner as in Example 4 was used.
[0045]
<Comparative Example 5>
A standing test was conducted in the same manner as in Example 1 except that the electrolyte solution used was not added with VC, and a battery produced in the same manner as in Example 5 was used.
[0046]
<Comparative Example 6>
A standing test was conducted in the same manner as in Example 1 except that the electrolyte solution used was not added with VC, and a battery produced in the same manner as in Example 6 was used.
[0047]
<Comparative Example 7>
A standing test was conducted in the same manner as in Example 1 except that the electrolyte solution used was not added with VC, and a battery produced in the same manner as in Example 7 was used.
[0048]
<Comparative Example 8>
A standing test was conducted in the same manner as in Example 1 except that the electrolyte was not added with VC and a battery produced in the same manner as in Example 8 was used.
[0049]
<Comparative Example 9>
A standing test was conducted in the same manner as in Example 1 except that the electrolyte was not added with VC and a battery produced in the same manner as in Example 14 was used.
[0050]
<Comparative Example 10>
A standing test was conducted in the same manner as in Example 1 except that the electrolyte was one that was not added with VC and a battery produced in the same manner as in Example 15 was used.
[0051]
<Comparative Example 11>
A standing test was conducted in the same manner as in Example 1 except that the electrolyte solution used was not added with VC, and a battery produced in the same manner as in Example 16 was used.
[0052]
<Comparative Example 12>
A standing test was conducted in the same manner as in Example 1 except that the electrolyte was not added with TFEME and a battery produced in the same manner as in Example 9 was used.
[0053]
<Comparative Example 13>
A standing test was conducted in the same manner as in Example 1 except that the electrolyte solution used was that to which TFEME was not added, and a battery produced in the same manner as in Example 4.
[0054]
<Comparative example 14>
A standing test was conducted in the same manner as in Example 1 except that the electrolyte was not added with TFEME and a battery produced in the same manner as in Example 10 was used.
[0055]
<Comparative Example 15>
A standing test was conducted in the same manner as in Example 1 except that the electrolyte solution used was that to which TFEME was not added, and a battery produced in the same manner as in Example 11.
[0056]
<Comparative Example 16>
A standing test was conducted in the same manner as in Example 1 except that the electrolyte solution used was that to which TFEME was not added, and a battery produced in the same manner as in Example 12.
[0057]
<Comparative Example 17>
A standing test was conducted in the same manner as in Example 1 except that the electrolyte was not added with TFEME and a battery produced in the same manner as in Example 13 was used.
[0058]
2. Results and Discussion Tables 1 and 2 show the composition of the non-aqueous solvent, the addition amount of the fluorinated chain ether compound and VC in each Example and Comparative Example.
[0059]
[Table 1]
Figure 0004431941
[0060]
[Table 2]
Figure 0004431941
[0061]
Tables 3 and 4 show the initial discharge capacity, the thickness of the battery before and after the standing test, and the capacity retention rate in each example and comparative example. The capacity retention rate (%) was expressed as a ratio of the discharge capacity after the standing test to the initial discharge capacity.
[0062]
[Table 3]
Figure 0004431941
[0063]
[Table 4]
Figure 0004431941
[0064]
[Examination of effects of VC addition]
In Examples 1-8, VC was added at 0.5 wt%, and the amount of TFEME added was 0.5-30.0 wt%. In Comparative Examples 1-8, the amount of TFEME added without adding VC Of 0.5 to 30.0 wt%.
The initial discharge capacities of Examples 1 to 8 to which VC was added were slightly larger than those of Comparative Examples 1 to 8 to which VC was not added. In Comparative Examples 5 to 8 in which VC was not added and the amount of TFEME added was 5.0 wt% or more, the battery thickness before the 80 ° C. standing test was slightly increased. The reason is considered that decomposition of the fluorinated chain ether occurred during the initial charge, and the initial cell thickness was increased by the generated gas. However, in Examples 5 to 8, the initial battery thickness was not particularly large, and by adding VC, an increase in the initial battery thickness could be suppressed. In Examples 3 to 8 in which 0.5 wt% of VC was added and the amount of TFEME added was 2.0 wt% or more, the battery thickness after the 80 ° C. standing test was slightly reduced. The capacity retention ratios of Examples 1 to 8 to which VC was added were considerably larger than those of Comparative Examples 1 to 8 to which VC was not added.
[0065]
[Examination of effects of adding TFEM]
In Examples 4 and 9 to 13, 0.5 wt% of TFEME was added and the addition amount of VC was 0.1 to 5.0 wt%, and Comparative Examples 12 to 17 were made of VC without adding TFEME. The addition amount is 0.1 to 5.0 wt%.
There was no difference in the initial discharge capacity and the initial discharge capacity between Examples 4 and 9 to 13 in which TFEME was added and Comparative Examples 12 to 17 in which TFEME was not added. In Examples 4 and 9 to 13 and Comparative Examples 12 to 17, the battery thickness after the 80 ° C. standing test increased as the amount of VC added increased. The reason for this is that if the amount of VC added is increased, gas is generated by oxidative decomposition of VC when left at a high temperature, and as a result, the battery thickness tends to increase.
However, the degree of increase in battery thickness was greater in Comparative Examples 12 to 17 where TFEME was not added than in Examples 4 and 9 to 13 where TFEME was added. This indicates that the oxidative decomposition of VC can be suppressed by mixing TFEME. Furthermore, the capacity retention was significantly higher in Examples 4 and 9 to 13 than in Comparative Examples 12 to 17. The reason is not clear, but it is thought that there is some interaction other than the effect of inhibiting transesterification of VC and the effect of inhibiting oxidative decomposition of VC at the positive electrode by TFEME.
[0066]
[Examination of effects of different types of fluorinated chain ethers]
From comparison between Examples 4 and 14 to 16 and Comparative Examples 4 and 9 to 11, it was found that the same effect can be obtained when TFEMM, TFEMP, or TFEEE is used instead of TFEME.
[0067]
[Examination of effects due to difference in composition of non-aqueous solvent]
From a comparison between Example 4 and Example 17, the same effect can be obtained even when an EC: EMC: DEC mixed solvent system is used as the non-aqueous solvent instead of the EC: EMC mixed solvent. all right.
[0068]
The amount of VC and fluorinated chain ether added varies depending on the type of negative electrode active material and positive electrode active material used in the nonaqueous electrolyte secondary battery. It can be changed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a battery of this example.
1 ... Battery (non-aqueous electrolyte secondary battery)
3. Positive electrode plate (positive electrode)
4 ... Negative electrode plate (negative electrode)
12 ... Electrolytic solution

Claims (1)

正極と、負極と、非水溶媒として鎖状炭酸エステル系化合物を含む電解液とを備えた非水電解質二次電池であって、
前記電解液には、ビニレンカーボネートおよびフッ素化鎖状エーテル系化合物が添加され、前記フッ素化鎖状エーテル系化合物がフッ素化ジエーテル類であり、前記フッ素化鎖状エーテル系化合物の添加量は前記非水溶媒に対して0.5重量%以上30重量%以下であることを特徴とする非水電解質二次電池。
A nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution containing a chain carbonate ester compound as a nonaqueous solvent,
Vinylene carbonate and a fluorinated chain ether-based compound are added to the electrolytic solution, the fluorinated chain ether-based compound is a fluorinated diether, and the amount of the fluorinated chain ether-based compound added is not A non-aqueous electrolyte secondary battery characterized by being 0.5 wt% or more and 30 wt% or less with respect to an aqueous solvent.
JP2003162130A 2003-06-06 2003-06-06 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4431941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162130A JP4431941B2 (en) 2003-06-06 2003-06-06 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162130A JP4431941B2 (en) 2003-06-06 2003-06-06 Nonaqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2004363031A JP2004363031A (en) 2004-12-24
JP2004363031A5 JP2004363031A5 (en) 2006-07-20
JP4431941B2 true JP4431941B2 (en) 2010-03-17

Family

ID=34054365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162130A Expired - Fee Related JP4431941B2 (en) 2003-06-06 2003-06-06 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4431941B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006115023A1 (en) * 2005-04-19 2008-12-18 松下電器産業株式会社 Non-aqueous electrolyte, electrochemical energy storage device using the same, and non-aqueous electrolyte secondary battery
US7691282B2 (en) 2005-09-08 2010-04-06 3M Innovative Properties Company Hydrofluoroether compounds and processes for their preparation and use
US7790312B2 (en) 2005-09-08 2010-09-07 3M Innovative Properties Company Electrolyte composition
JP2009176534A (en) * 2008-01-23 2009-08-06 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
WO2011136226A1 (en) * 2010-04-26 2011-11-03 旭硝子株式会社 Non-aqueous electrolyte solution for secondary battery, and secondary battery
WO2012081710A1 (en) * 2010-12-16 2012-06-21 旭硝子株式会社 Nonaqueous electrolyte for secondary battery and secondary battery
WO2012111335A1 (en) * 2011-02-18 2012-08-23 三洋化成工業株式会社 Agent for forming electrode protection film
US10003100B2 (en) 2012-02-03 2018-06-19 Nec Corporation Nonaqueous electrolyte with fluorine containing ether compound for lithium secondary battery
WO2016152425A1 (en) 2015-03-25 2016-09-29 日本電気株式会社 Hydrofluoroether compound, nonaqueous electrolyte solution and lithium ion secondary battery
US10224571B2 (en) * 2016-09-01 2019-03-05 GM Global Technology Operations LLC Fluorinated ether as electrolyte co-solvent for lithium metal based anode
JP6696590B2 (en) 2016-12-20 2020-05-20 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery and module
WO2018123359A1 (en) 2016-12-27 2018-07-05 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
JPWO2022054343A1 (en) * 2020-09-14 2022-03-17
EP4071872A1 (en) * 2021-04-08 2022-10-12 Solvay SA Liquid electrolyte for lithium secondary batteries

Also Published As

Publication number Publication date
JP2004363031A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP5258353B2 (en) Nonaqueous electrolyte secondary battery
JP4012174B2 (en) Lithium battery with efficient performance
US20120107701A1 (en) Electrolyte solution for chargeable device, electrolyte solution for lithium ion secondary battery, and secondary battery
JP5134770B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery including the same
KR20070103296A (en) Nonaqueous secondary cell
JP5062459B2 (en) Nonaqueous electrolyte secondary battery
JP5360463B2 (en) Non-aqueous electrolyte secondary battery
JP4431941B2 (en) Nonaqueous electrolyte secondary battery
JP2009140641A (en) Nonaqueous electrolyte, gel electrolyte, and secondary battery using the same
WO2021166771A1 (en) Electrolytic solution for secondary cell containing cyclic phosphoric acid ester
JP2009289557A5 (en)
JP5165862B2 (en) Non-aqueous electrolyte and electrochemical energy storage device using the same
JPWO2018173476A1 (en) Non-aqueous electrolyte secondary battery
JP4655536B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2022126851A (en) Nonaqueous electrolyte solution for batteries, and lithium secondary battery
KR100346541B1 (en) Electrolyte for lithium secondary battery
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2005285492A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
JP2019169305A (en) Nonaqueous electrolyte solution for power storage device
JP3949337B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP5842873B2 (en) Non-aqueous electrolyte secondary battery
JP6957179B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4479045B2 (en) Nonaqueous electrolyte secondary battery
JP6894751B2 (en) Non-aqueous electrolyte for batteries, additives for batteries, and lithium secondary batteries

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091209

R150 Certificate of patent or registration of utility model

Ref document number: 4431941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees