JP3893627B2 - Method for manufacturing lithium ion battery - Google Patents

Method for manufacturing lithium ion battery Download PDF

Info

Publication number
JP3893627B2
JP3893627B2 JP10953495A JP10953495A JP3893627B2 JP 3893627 B2 JP3893627 B2 JP 3893627B2 JP 10953495 A JP10953495 A JP 10953495A JP 10953495 A JP10953495 A JP 10953495A JP 3893627 B2 JP3893627 B2 JP 3893627B2
Authority
JP
Japan
Prior art keywords
phenyl
carbonate
organic solvent
electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10953495A
Other languages
Japanese (ja)
Other versions
JPH08306387A (en
Inventor
仁 鈴木
紀子 島
勝昭 長谷川
勇次 ▲吉▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10953495A priority Critical patent/JP3893627B2/en
Publication of JPH08306387A publication Critical patent/JPH08306387A/en
Application granted granted Critical
Publication of JP3893627B2 publication Critical patent/JP3893627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、リチウムイオン電池に関する。
【0002】
【従来の技術】
リチウムイオン電池は、正極、負電極、電解液、セパレータ等によって構成されている。この中で電解液は、電極表面での電気化学反応を速やかに進行させることが目的であるため、イオンの移動を円滑に行う性能が要求される。
電解液の選択には、用いる電極との反応性、使用電位範囲、使用温度範囲が重要な必要条件となるため、リチウムイオン電池には非水系電解液が一般に用いられている。
【0003】
かかる電解液は、非水系の有機溶媒に溶質のリチウム塩が溶解されたものであり、溶媒としてはプロピレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、エチレングリコール等が使用されている。
ここに示したような溶媒は脂肪族エステル、脂肪族カーボネート等であり、リチウムイオン電池に用いられている黒鉛系炭素電極との親和性が低いため、電極が本来有している表面積を有効に利用しているとはいいがたい。この問題点を解決するために、トルエン、ベンゼン等を電解液に添加することが提案されているが、これらの化合物は脂肪族エステル、脂肪族カーボネート類に対する親和性が低いため電解液に添加した場合、放置することによって二相に分離することがあり電極と電解液の親和性を向上させる目的に対する効果に問題があるばかりでなく、毒性、安全性の点でも問題がある。
【0004】
【発明が解決しようとする課題】
本発明は、電池のエネルギー密度が高いリチウムイオン電池の提供を目的とする。
【0005】
【課題を解決するための手段】
本発明は、炭素電極、対極及びこの両者を離隔するセパレータ、並びに電解液を缶内に収容して封口するリチウムイオン電池の製造方法において、炭素電極として式(I)〜(IV)のいずれかで示されるフェニル基を有するエステル類、エーテル類及びカーボネート類より選ばれた有機溶媒で予め浸漬処理されたものを用いることを特徴とするものである(但し、炭素電極として、表面が還元処理されているカーボンを使用する場合を除く)
【0006】
【化2】

Figure 0003893627
【0007】
(式中、Rは炭素数が1〜4のアルキル基である
チウムイオン電池
リチウムイオン電池は、炭素質材料の電極、これとの対極、セパレータ、函体および電解液を基本構成としている。図1および図2にその構造の一例を示す。図1の円筒型電池において、1は炭素質材料よりなる電極、2は対極、3はセパレータ、4は電池缶、5は封口蓋、6は端子、7は絶縁体である(電池便覧;322〜338頁、平成2年丸善株式会社刊)。
【0008】
図2はコイン型電池である。本発明においては、炭素電極が予め、前述の式(I)〜(IV)で示され ェニル基を有するエステル類、エーテル類、カーボネート類より選ばれた有機溶媒に浸漬処理された後に、電池の組み立てに用いられ、ついで電解液が封入される点に特徴がある。
炭素電極
本発明で用いられる炭素質材料は特に限定されるものではないが、有機高分子化合物、ピッチ、石炭、木材等を焼成炭化して得られるもの、有機物質の気相炭化成長反応により得られるもの、天然黒鉛等の天然産出炭素質材料等を例示することができる。特に、d002値が0.37nm以下のものが好ましい。
【0009】
素電極を予め浸漬処理するフェニル基を有する有機溶媒としては(a1)メチルフェニルカーボネート、エチルフェニルカーボネート、プロピルフェニルカーボネート、ブチルフェニルカーボネートなどのカーボネート類;(a2)アニソール、フェネトールなどのエーテル類;(a3)酢酸フェニル、プロピオン酸フェニル、酪酸フェニル、安息香酸メチル、安息香酸エステルなどのエステル類などが挙げられる。これらフェニル基を有する有機溶媒は単独で、または二種以上混合して用いられる。浸漬処理法としては、常圧または30kPa以上の減圧下での処理が挙げられる。浸漬時間は10秒以上である。
【0010】
対極
対極としては特に限定されるものではないが、例えば、TiS2 、TiS3 、MoS2 、FeS2 等の金属硫化物、V2 5 、V6 13、MoO3 等の金属酸化物、リチウム金属、Li(1-x) MnO2 、Li(1-x) CoO2 、Li(1-x) NiO2 、Li(1-x) Coy Sn2 2 等のアルカリ金属、特にリチウム含有複合金属酸化物等が挙げられる。
特にリチウム金属、リチウム含有複合金属酸化物が好ましい。
セパレータ
セパレータとしては高密度ポリエチレン、ポリプロピレン等の織布、不織布、ガラス織布、合成樹脂微多孔膜等が挙げられる。
【0011】
電解液
電解液は、有機溶媒に溶質を0.5〜2モル/リットル溶解させた非水系電解液である。有機溶媒(b)としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート類;ジメトキシエタン、ジエトキシエタンなどの鎖状エーテル類;テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサンなどの環状エーテル類;メチルジグライム、エチルジグライムなどのグライム類;酢酸エチル、プロピオン酸メチル、プロピオン酸エチルなどのエステル類;γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトンなどのラクトン類;エチレングリコール、グリセリン、メチルセルソルブなどのアルコール類;アセトニトリル、プロピオニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリルなどのニトリル類;N−メチルホルムアミド、N−エチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N−エチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルピロリドなどのアミド類;スルホラン、3−メチルスルホランなどのスルホラン類;トリメチルホスフェート、トリエチルホスフェートなどのリン酸エステル類;前記式(I)〜(IV)で示され ェニル基を有する化合物、例えばメチルフェニルカーボネート、エチルフェニルカーボネート、プロピルフェニルカーボネート、ブチルフェニルカーボネート、アニソール、フェネトール、酢酸フェニル、プロピオン酸フェニル、酪酸フェニル、安息香酸メチル、安息香酸エチル等、が挙げられる。これらの溶媒を単独もしくは混合して使用する。
【0012】
好ましくはエチレンカーボネート10〜50容量%と、これ以外の他の有機溶媒の一種または二種以上90〜50容量%とを併用するのがより高い伝導度が得られるので好ましい。
溶質(電解質)としては、過塩素酸リチウム、六フッ化リン酸リチウム、ホウフッ化リチウム、リチウムトリフレート、リチウムビス(トリフルオロメタンスルホニル)イミド、テトラフェニルホウ酸リチウムなどのリチウム塩などが挙げられる。
これらの中でも特に無機質のリチウム塩が好ましく、特に過塩素酸リチウム、六フッ化リン酸リチウム、ホウフッ化リチウムが好ましい。
電解液中の電解質のモル濃度は、0.5〜2.0モル/リットルが一般である。
【0013】
他の素材
リチウムイオン電池を組み立てる場合、前記炭素電極、対極、セパレータ、電解液、缶の他に、集電体、端子、絶縁板等の部品が用いられる。
電池の構造としては、正極、負極、更に要すればセパレータを単層又は複層としたペーパー型電池、積層型電池、コイン型電池、又は正極、負極、更に要すればセパレータをロール状に巻いた円筒状電池等の形態が挙げられる。
【0014】
【実施例】
以下に、実施例を挙げて、本発明を更に具体的に説明する。
実施例1
正極として、次の二種の炭素質材料にポリ四フッ化エチレンを5重量%配合した組成物を銅箔上に塗布し、ついでプレス成形したシート状炭素電極を用いた。
(1)天然黒鉛粉末(関西熱化学社製NG−7;商品名)
(2)人造黒鉛粉末(LONZA社製KS−44;商品名)
乾燥アルゴン雰囲気下で、充分に乾燥を行った過塩素酸リチウム106g(1モル)をエチレンカーボネート(EC)660g(0.5dm3 )、ジエチルカーボネート(DEC)488g(0.5dm3 )からなる混合溶媒に溶かし、全量を1dm3 とした電解液を調製した。
別に、上記炭素電極NG−7をメチルフェニルカーボネート(MPhC)に1分間浸漬させ、引き上げた。
この浸漬処理したシート状炭素、電極、金属リチウム(負極)、ダイセル化学工業社のポリプロピレン製セパレータを図2に示すように缶に挿入し、ついで上記電解液を缶内に注入し、ふたをしたコイン型電池を用いて脱ドープ容量を求めた(電流密度:0.4mA/cm2 、温度:25℃)。結果を表1に示す。
【0015】
比較例1
実施例1において、炭素電極のメチルフェニルカーボネート浸漬処理を行わない他は同様にしてコイン型電池を得た。
該電池の脱ドープ容量は、223mAh/gであった。
実施例2
実施例1において、炭素電極を浸漬処理するMPhCをアニソール(MOB)に変更した以外は同様な操作を行った。結果を表1に示す。
実施例3
実施例1において、炭素電極を浸漬処理するMPhCを酢酸フェニル(PhA)に変更した以外は同様な操作を行った。結果を表1に示す。
実施例4
実施例1において、炭素電極を浸漬処理するMPhCをプロピオン酸フェニル(PhP)に変更した以外は同様な操作を行った。結果を表1に示す。
【0016】
【表1】
Figure 0003893627
【0017】
比較例2
比較例1において、炭素電極NG−7をKS−44に変更した以外は同様な操作を行った。結果を表2に示す。
実施例5
比較例2において、電解液を含浸する前にメチルフェニルカーボネート(MPhC)に浸漬させた以外は同様な操作を行った。結果を表2に示す。
実施例6
実施例5において、MPhCをアニソール(MOB)に変更した以外は同様な操作を行った。結果を表2に示す。
実施例7
実施例5において、MPhCを酢酸フェニル(PhA)に変更した以外は同様な操作を行った。結果を表2に示す。
実施例8
実施例5において、MPhCをプロピオン酸フェニル(PhP)に変更した以外は同様な操作を行った。結果を表2に示す。
【0018】
【表2】
Figure 0003893627
【0019】
【発明の効果】
炭素電極の有する表面積を有効に活用でき、電池のエネルギー密度が向上できるので、電池の小型化、高性能化ができる。
【図面の簡単な説明】
【図1】筒状型リチウムイオン電池の一部を切り欠いた斜視図である。
【図2】コイン型リチウムイオン電池の一部を切り欠いた斜視図である。
【符号の説明】
1 炭素電極
2 対極
3 セパレータ
4 缶
5 ふた
6 端子
7 絶縁体[0001]
[Industrial application fields]
The present invention relates to a lithium ion battery.
[0002]
[Prior art]
A lithium ion battery is composed of a positive electrode, a negative electrode, an electrolytic solution, a separator, and the like. Among these, the electrolytic solution is intended to promptly advance the electrochemical reaction on the electrode surface, and therefore, the performance of smoothly moving ions is required.
For the selection of the electrolytic solution, the reactivity with the electrode to be used, the working potential range, and the working temperature range are important requirements. Therefore, a non-aqueous electrolytic solution is generally used for lithium ion batteries.
[0003]
Such an electrolytic solution is obtained by dissolving a solute lithium salt in a non-aqueous organic solvent, and propylene carbonate, dimethoxyethane, γ-butyrolactone, ethylene glycol, or the like is used as the solvent.
Solvents such as those listed here are aliphatic esters, aliphatic carbonates, etc., and have low affinity with graphite-based carbon electrodes used in lithium ion batteries, so that the surface area inherent to the electrodes is effectively reduced. It is hard to say that you are using it. To solve this problem, it has been proposed to add toluene, benzene, etc. to the electrolyte, but these compounds were added to the electrolyte because of their low affinity for aliphatic esters and aliphatic carbonates. In some cases, it may be separated into two phases when left unattended, which not only has a problem with respect to the effect of improving the affinity between the electrode and the electrolyte, but also has problems in terms of toxicity and safety.
[0004]
[Problems to be solved by the invention]
An object of this invention is to provide the lithium ion battery with the high energy density of a battery.
[0005]
[Means for Solving the Problems]
The present invention provides a carbon electrode, a counter electrode and a separator that separates both, and a lithium ion battery manufacturing method in which an electrolytic solution is contained in a can and sealed, and the carbon electrode is any one of formulas (I) to (IV). It is characterized by using a material that has been previously immersed in an organic solvent selected from esters, ethers, and carbonates having a phenyl group represented by (However, the surface of the carbon electrode is reduced. Except when using carbon) .
[0006]
[Chemical 2]
Figure 0003893627
[0007]
(In the formula, R is an alkyl group having 1 to 4 carbon atoms )
Lithium ion batteries lithium ion battery has a basic structure electrode carbonaceous material, the counter electrode with this separator, a box-body and the electrolyte. 1 and 2 show an example of the structure. In the cylindrical battery of FIG. 1, 1 is an electrode made of a carbonaceous material, 2 is a counter electrode, 3 is a separator, 4 is a battery can, 5 is a sealing lid, 6 is a terminal, and 7 is an insulator (battery manual; 322 ~ 338 pages, published by Maruzen Co., Ltd. in 1990.
[0008]
FIG. 2 shows a coin-type battery. In the present invention, pre-carbon electrode, after being immersed in esters, organic solvent selected from ethers, carbonates having a full Eniru group Ru represented by the aforementioned formula (I) ~ (IV), It is characterized by the fact that it is used for assembling batteries and the electrolyte is then enclosed.
Carbon electrode The carbonaceous material used in the present invention is not particularly limited, but is obtained by firing and carbonizing organic polymer compounds, pitch, coal, wood, etc., and obtained by vapor phase carbonization growth reaction of organic substances. And naturally produced carbonaceous materials such as natural graphite. In particular, the d 002 value is preferably 0.37 nm or less.
[0009]
The organic solvent having a phenyl group which presoaked handle-carbon electrode (a 1) carbonates such as methyl phenyl carbonate, ethyl phenyl carbonate, propyl phenyl carbonate, butyl phenyl carbonate; (a 2) anisole, ethers such as phenetole s; (a 3) phenyl acetate, phenyl propionate, phenyl butyrate, methyl benzoate, and the like esters such as benzoic acid esters. These organic solvents having a phenyl group are used alone or in combination of two or more. Examples of the immersion treatment method include treatment under normal pressure or a reduced pressure of 30 kPa or more. The immersion time is 10 seconds or longer.
[0010]
There are no particular restrictions on the counter <br/> counter, for example, TiS 2, TiS 3, MoS 2, FeS metal sulfides such as 2, V 2 O 5, V 6 O 13, MoO 3 , etc. Alkali metals such as metal oxide, lithium metal, Li (1-x) MnO 2 , Li (1-x) CoO 2 , Li (1-x) NiO 2 , Li (1-x) Co y Sn 2 O 2 In particular, lithium-containing composite metal oxides may be mentioned.
In particular, lithium metal and lithium-containing composite metal oxide are preferable.
Separator Examples of the separator include woven fabrics such as high-density polyethylene and polypropylene, nonwoven fabrics, glass woven fabrics, and synthetic resin microporous membranes.
[0011]
Electrolytic Solution The electrolytic solution is a non-aqueous electrolytic solution in which a solute is dissolved in an organic solvent in an amount of 0.5 to 2 mol / liter. Examples of the organic solvent (b) include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate; chain ethers such as dimethoxyethane and diethoxyethane. Cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and dioxane; glymes such as methyl diglyme and ethyl diglyme; esters such as ethyl acetate, methyl propionate and ethyl propionate; γ-butyrolactone and γ-valerolactone Lactones such as δ-valerolactone; alcohols such as ethylene glycol, glycerin and methyl cellosolve; acetonitrile, propionitrile, methoxyacetonitrile Nitriles such as 3-methoxypropionitrile; N-methylformamide, N-ethylformamide, N, N-dimethylformamide, N, N-diethylformamide, N-methylacetamide, N-ethylacetamide, N, N-dimethyl acetamide, amides such as N- methylpyrrolidone; sulfolane, 3-methylsulfonyl sulfolane such as run; the formula (I) ~ Ru represented by (IV) off Eniru group; trimethyl phosphate, phosphoric acid esters such as triethyl phosphate compounds having, for example, methyl phenyl carbonate, ethyl phenyl carbonate, propyl phenyl carbonate, butyl phenyl carbonate, a Nisoru, phenetole, phenyl acetate, phenyl propionate, phenyl butyrate, methyl benzoate, benzoic San'e Chill and the like. These solvents are used alone or in combination.
[0012]
Preferably, it is preferable to use 10 to 50% by volume of ethylene carbonate in combination with one or more organic solvents other than the above in an amount of 90 to 50% by volume because higher conductivity can be obtained.
Examples of the solute (electrolyte) include lithium salts such as lithium perchlorate, lithium hexafluorophosphate, lithium borofluoride, lithium triflate, lithium bis (trifluoromethanesulfonyl) imide, and lithium tetraphenylborate.
Among these, inorganic lithium salts are particularly preferable, and lithium perchlorate, lithium hexafluorophosphate, and lithium borofluoride are particularly preferable.
The molar concentration of the electrolyte in the electrolytic solution is generally 0.5 to 2.0 mol / liter.
[0013]
Other materials When assembling a lithium ion battery, components such as a current collector, a terminal, and an insulating plate are used in addition to the carbon electrode, the counter electrode, the separator, the electrolytic solution, and the can.
The structure of the battery is as follows: a positive electrode, a negative electrode, and if necessary, a paper-type battery with a separator as a single layer or multiple layers, a laminated battery, a coin-type battery, or a positive electrode, a negative electrode, and further, a separator wound in a roll The form of the cylindrical battery etc. which were included is mentioned.
[0014]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
As the positive electrode, a sheet-like carbon electrode obtained by applying a composition containing 5% by weight of polytetrafluoroethylene to the following two types of carbonaceous materials on a copper foil and then press-molding the composition was used.
(1) Natural graphite powder (NG-7 manufactured by Kansai Thermal Chemical Co., Ltd .; trade name)
(2) Artificial graphite powder (KS-44 manufactured by LONZA; trade name)
106 g (1 mol) of lithium perchlorate that has been sufficiently dried in a dry argon atmosphere is mixed with 660 g (0.5 dm 3 ) of ethylene carbonate (EC) and 488 g (0.5 dm 3 ) of diethyl carbonate (DEC). An electrolyte solution was prepared by dissolving in a solvent to a total amount of 1 dm 3 .
Separately, the carbon electrode NG-7 was immersed in methyl phenyl carbonate (MPhC) for 1 minute and pulled up.
The soaked sheet-like carbon, electrode, metallic lithium (negative electrode), and a separator made of polypropylene from Daicel Chemical Industries, Ltd. were inserted into the can as shown in FIG. 2, and then the electrolyte was poured into the can and covered. The dedoping capacity was determined using a coin-type battery (current density: 0.4 mA / cm 2 , temperature: 25 ° C.). The results are shown in Table 1.
[0015]
Comparative Example 1
A coin-type battery was obtained in the same manner as in Example 1 except that the carbon electrode was not immersed in methylphenyl carbonate.
The battery had a dedoping capacity of 223 mAh / g.
Example 2
In Example 1, the same operation was performed except that MPhC for immersing the carbon electrode was changed to anisole (MOB). The results are shown in Table 1.
Example 3
In Example 1, the same operation was performed except that MPhC for immersing the carbon electrode was changed to phenyl acetate (PhA). The results are shown in Table 1.
Example 4
In Example 1, the same operation was performed except that MPhC for immersing the carbon electrode was changed to phenyl propionate (PhP). The results are shown in Table 1.
[0016]
[Table 1]
Figure 0003893627
[0017]
Comparative Example 2
In Comparative Example 1, the same operation was performed except that the carbon electrode NG-7 was changed to KS-44. The results are shown in Table 2.
Example 5
In Comparative Example 2, the same operation was performed except that it was immersed in methylphenyl carbonate (MPhC) before impregnating with the electrolytic solution. The results are shown in Table 2.
Example 6
In Example 5, the same operation was performed except that MPhC was changed to anisole (MOB). The results are shown in Table 2.
Example 7
In Example 5, the same operation was performed except that MPhC was changed to phenyl acetate (PhA). The results are shown in Table 2.
Example 8
In Example 5, the same operation was performed except that MPhC was changed to phenyl propionate (PhP). The results are shown in Table 2.
[0018]
[Table 2]
Figure 0003893627
[0019]
【The invention's effect】
Since the surface area of the carbon electrode can be used effectively and the energy density of the battery can be improved, the battery can be reduced in size and performance.
[Brief description of the drawings]
FIG. 1 is a perspective view in which a cylindrical lithium ion battery is partially cut away.
FIG. 2 is a perspective view in which a part of a coin-type lithium ion battery is cut away.
[Explanation of symbols]
1 Carbon electrode 2 Counter electrode 3 Separator 4 Can 5 Lid 6 Terminal 7 Insulator

Claims (4)

炭素電極、対極及びこの両者を離隔するセパレータ、並びに電解液を缶内に収容して封口するリチウムイオン電池の製造方法において、炭素電極として式(I)〜(IV)のいずれかで示されるフェニル基を有するエステル類、エーテル類及びカーボネート類より選ばれた有機溶媒で予め浸漬処理されたものを用いることを特徴とする方法(但し、炭素電極として、表面が還元処理されているカーボンを使用する場合を除く)
Figure 0003893627
(式中、Rは炭素数が1〜4のアルキル基である)
A carbon electrode, a counter electrode and a separator separating both of them, and a phenyl ion represented by any one of formulas (I) to (IV) as a carbon electrode in a method for producing a lithium ion battery containing and sealing an electrolyte in a can A method characterized by using a material previously immersed in an organic solvent selected from esters having a group, ethers and carbonates (however, carbon whose surface is reduced is used as a carbon electrode) Except when) .
Figure 0003893627
(Wherein R is an alkyl group having 1 to 4 carbon atoms)
有機溶媒が、メチルフェニルカーボネート、エチルフェニルカーボネート、プロピルフェニルカーボネート、ブチルフェニルカーボネート、アニソール、フェネトール、酢酸フェニル、プロピオン酸フェニル、酪酸フェニル及び安息香酸メチルよりなる群から選ばれるものであることを特徴とする請求項1記載の方法。  The organic solvent is selected from the group consisting of methyl phenyl carbonate, ethyl phenyl carbonate, propyl phenyl carbonate, butyl phenyl carbonate, anisole, phenetole, phenyl acetate, phenyl propionate, phenyl butyrate and methyl benzoate. The method according to claim 1. 電解液が、エチレンカーボネート、ジエチルカーボネート、プロピレンカーボネート、メチルフェニルカーボネート、エチルフェニルカーボネート、プロピルフェニルカーボネート、ブチルフェニルカーボネート、アニソール、フェネトール、酢酸フェニル、プロピオン酸フェニル、酪酸フェニル、安息香酸メチル及び安息香酸エチルよりなる群から選ばれた有機溶媒に、溶質としてリチウム塩を溶解してなるものである、請求項1又は2記載の方法。  The electrolyte is ethylene carbonate, diethyl carbonate, propylene carbonate, methyl phenyl carbonate, ethyl phenyl carbonate, propyl phenyl carbonate, butyl phenyl carbonate, anisole, phenetole, phenyl acetate, phenyl propionate, phenyl butyrate, methyl benzoate and ethyl benzoate. The method according to claim 1 or 2, wherein a lithium salt is dissolved as a solute in an organic solvent selected from the group consisting of: 電解液がエチレンカーボネート10〜50容量%と、他の有機溶媒90〜50容量%との混合溶媒に、リチウム塩を0.5〜2.0モル/リットルとなるように溶解したものであることを特徴とする請求項1ないし3のいずれかに記載の方法。  The electrolyte is a solution in which a lithium salt is dissolved in a mixed solvent of 10 to 50% by volume of ethylene carbonate and 90 to 50% by volume of another organic solvent so as to be 0.5 to 2.0 mol / liter. The method according to claim 1, characterized in that:
JP10953495A 1995-05-08 1995-05-08 Method for manufacturing lithium ion battery Expired - Fee Related JP3893627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10953495A JP3893627B2 (en) 1995-05-08 1995-05-08 Method for manufacturing lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10953495A JP3893627B2 (en) 1995-05-08 1995-05-08 Method for manufacturing lithium ion battery

Publications (2)

Publication Number Publication Date
JPH08306387A JPH08306387A (en) 1996-11-22
JP3893627B2 true JP3893627B2 (en) 2007-03-14

Family

ID=14512694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10953495A Expired - Fee Related JP3893627B2 (en) 1995-05-08 1995-05-08 Method for manufacturing lithium ion battery

Country Status (1)

Country Link
JP (1) JP3893627B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111676A1 (en) 2014-01-22 2015-07-30 三菱化学株式会社 Non-aqueous electrolyte solution and non-aqueous electrolyte solution secondary battery using same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986879A (en) * 1997-12-31 1999-11-16 Covalent Associates Asymmetric organic alkyl ethyl carbonates for non-aqueous power sources
US5994000A (en) * 1997-12-31 1999-11-30 Covalent Associates, Inc. Asymmetric organic alkyl methyl carbonates for non-aqueous power sources
JP3687736B2 (en) * 2000-02-25 2005-08-24 日本電気株式会社 Secondary battery
KR20050096401A (en) 2004-03-30 2005-10-06 삼성에스디아이 주식회사 Electrolyte for lithium battery and lithium battery comprising same
JP5499542B2 (en) * 2009-07-14 2014-05-21 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5699465B2 (en) * 2009-08-31 2015-04-08 三菱化学株式会社 Non-aqueous electrolyte and lithium secondary battery using the same
CN104112870A (en) * 2009-08-31 2014-10-22 三菱化学株式会社 Non-aqueous Electrolytic Solution, And Non-aqueous Electrolyte Battery Comprising Same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111676A1 (en) 2014-01-22 2015-07-30 三菱化学株式会社 Non-aqueous electrolyte solution and non-aqueous electrolyte solution secondary battery using same
KR20160107262A (en) 2014-01-22 2016-09-13 미쓰비시 가가꾸 가부시키가이샤 Non-aqueous electrolyte solution and non-aqueous electrolyte solution secondary battery using same
US10177414B2 (en) 2014-01-22 2019-01-08 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery using the same
US10777850B2 (en) 2014-01-22 2020-09-15 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
JPH08306387A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
JP5306749B2 (en) Electrochemical devices
JP4691871B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP7019062B2 (en) Non-aqueous electrolyte and non-aqueous secondary battery
JP2007299569A (en) Electrochemical energy storage device
WO2020054866A1 (en) Nonaqueous secondary battery
JP7103713B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP7115724B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP3463407B2 (en) Electrolyte for lithium ion batteries
JP2022126851A (en) Nonaqueous electrolyte solution for batteries, and lithium secondary battery
WO2016068033A1 (en) Lithium-ion secondary cell
WO2020121850A1 (en) Non-aqueous electrolyte for battery and lithium secondary battery
JP3893627B2 (en) Method for manufacturing lithium ion battery
JP4910239B2 (en) Non-aqueous electrolyte secondary battery
JP4083040B2 (en) Lithium battery
JPH0922722A (en) Electrolytic solution for lithium ion battery
JP7168158B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
Swiderska-Mocek Properties of LiMn 2 O 4 cathode in electrolyte based on ionic liquid with and without gamma-butyrolactone
JP7084607B2 (en) Non-aqueous electrolyte for power storage devices
JP4876313B2 (en) Non-aqueous electrolyte secondary battery
JP7339921B2 (en) Non-aqueous electrolyte and non-aqueous secondary battery
JP7216805B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP2018170238A (en) Nonaqueous electrolyte solution for battery and lithium secondary battery
JP7326681B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP2002100403A (en) Nonaqueous electrolyte and nonaqueous electrochemical device containing the same
JP6980502B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees