WO2020017378A1 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2020017378A1
WO2020017378A1 PCT/JP2019/026995 JP2019026995W WO2020017378A1 WO 2020017378 A1 WO2020017378 A1 WO 2020017378A1 JP 2019026995 W JP2019026995 W JP 2019026995W WO 2020017378 A1 WO2020017378 A1 WO 2020017378A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
negative electrode
secondary battery
electrolyte secondary
Prior art date
Application number
PCT/JP2019/026995
Other languages
French (fr)
Japanese (ja)
Inventor
健二 撹上
真梨恵 中西
雄太 野原
洋平 青山
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to KR1020207033072A priority Critical patent/KR20210031423A/en
Priority to JP2020531250A priority patent/JPWO2020017378A1/en
Publication of WO2020017378A1 publication Critical patent/WO2020017378A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing a specific component.
  • Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are small, lightweight, have a high energy density, and can be repeatedly charged and discharged, so they can be used in portable electronic devices such as portable personal computers, handy video cameras, and information terminals. It is widely used as a power source for equipment. Further, from the viewpoint of environmental problems, electric vehicles using non-aqueous electrolyte secondary batteries and hybrid vehicles using electric power as a part of power have been put into practical use. Therefore, in recent years, further improvements in the performance of secondary batteries have been demanded from the viewpoints of the usable time of portable electronic devices, the cruising distance of automobiles, and their safety.
  • Charging / discharging capacity is one of the main performances of secondary batteries.
  • a new material for the positive electrode active material and the negative electrode active material has been studied.
  • a material using sulfur as a positive electrode active material has been proposed (for example, Patent Document 1)
  • a material using silicon, tin, or the like as a negative electrode active material has been proposed (for example, Patent Document 2).
  • an initial charging method for example, Patent Document 1
  • a method of controlling the particle size of the electrode active material Eg, Patent Document 2
  • methods of improving the electrolyte by using an electrolyte additive eg, Patent Documents 3 to 5
  • the technique using an electrolyte additive is an excellent method in that the effect can be easily obtained.
  • a solid electrolyte interface (SEI: Solid Electrolyte Interface) is formed on the surface of the electrode active material during charging and discharging, and a solvent used for the non-aqueous electrolyte is used. Decomposition is suppressed and cycle characteristics are improved. However, the film formed on the electrode active material becomes a resistance component in the charging / discharging process, and the rate characteristic showing high-speed charging / discharging performance is disadvantageous.
  • the rate characteristics were not sufficient.
  • the present invention has been made in view of the above circumstances, and has as its main object to provide a nonaqueous electrolyte secondary battery having improved cycle characteristics and rate characteristics.
  • a non-aqueous electrolyte secondary battery that solves the above problems includes a non-aqueous electrolyte including a positive electrode, a negative electrode containing a silicon atom, and a non-aqueous electrolyte containing a compound represented by the general formula (1) and a lithium salt. It is a secondary battery.
  • R 1 to R 3 each independently represent a hydrocarbon group having 1 to 10 carbon atoms
  • R 4 is an n-valent hydrocarbon group having 1 to 10 carbon atoms, and 1 to 10 carbon atoms
  • a non-aqueous electrolyte secondary battery having improved cycle characteristics and rate characteristics is provided by using a combination of a negative electrode containing a silicon atom and a non-aqueous electrolyte containing a compound having a specific structure. It becomes possible to do.
  • FIG. 1 is a longitudinal sectional view schematically showing an example of the structure of a coin-type battery of the nonaqueous electrolyte secondary battery of the present invention.
  • FIG. 2 is a schematic diagram showing a basic configuration of a cylindrical battery of the nonaqueous electrolyte secondary battery of the present invention.
  • FIG. 3 is a perspective view showing the internal structure of the cylindrical battery of the nonaqueous electrolyte secondary battery of the present invention as a cross section.
  • nonaqueous electrolyte secondary battery of the present invention will be described in detail based on preferred embodiments.
  • the positive electrode used in the present invention is not particularly limited, and can be manufactured using a known positive electrode active material and according to a known method.
  • an electrode mixture paste obtained by slurrying a mixture containing a positive electrode active material, a binder and a conductive additive with an organic solvent or water is applied to a current collector and dried to form an electrode mixture on the current collector.
  • a positive electrode having a layer formed thereon can be manufactured.
  • Positive electrode active material includes, for example, lithium transition metal composite oxides, lithium-containing transition metal phosphate compounds, lithium-containing silicate compounds, and lithium-containing transition metal sulfate compounds.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the transition metal of the lithium transition metal composite oxide vanadium, titanium, chromium, manganese, iron, cobalt, nickel, copper, and the like are preferable.
  • the lithium transition metal composite oxide include a lithium cobalt composite oxide such as LiCoO 2 , a lithium nickel composite oxide such as LiNiO 2 , and a lithium manganese composite oxide such as LiMnO 2 , LiMn 2 O 4 , and Li 2 MnO 3.
  • lithium transition metal composite oxide in which part of the main transition metal atom is substituted with another metal examples include, for example, Li 1.1 Mn 1.8 Mg 0.1 O 4 and Li 1.1 Mn 1.85.
  • the transition metal of the lithium-containing transition metal phosphate compound vanadium, titanium, manganese, iron, cobalt, nickel and the like are preferable.
  • transition metal atoms that are the main components of these lithium transition metal phosphate compounds, aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, lithium, nickel, copper, zinc, magnesium, gallium, zirconium, Examples thereof include those substituted with other metals such as niobium, and vanadium phosphate compounds such as Li 3 V 2 (PO 4 ) 3 .
  • lithium-containing silicate compound examples include Li 2 FeSiO 4 and the like, and examples of the lithium-containing transition metal sulfate compound include LiFeSO 4 and LiFeSO 4 F.
  • sulfur a sulfur-carbon composite, and a sulfur-modified organic compound
  • the positive electrode active material various forms such as powdered sulfur, insoluble sulfur, precipitated sulfur, and colloidal sulfur can be used, but powdered sulfur is preferable in consideration of uniformly dispersing the raw material compound.
  • the sulfur-carbon composite is obtained by mechanically complexing sulfur and carbon, or containing sulfur in the pores of porous carbon, and is capable of absorbing and releasing lithium ions.
  • the sulfur content of the sulfur-carbon composite in which sulfur is supported in the pores of the porous carbon is such that when the content is too small, the charge / discharge capacity does not increase, and when the content is too large, the electron conductivity decreases. It is preferably from 90% by mass to 90% by mass, more preferably from 30% by mass to 70% by mass.
  • porous carbon examples include graphite, carbon, carbon black, Ketjen black, acetylene black, graphite, carbon fiber, activated carbon, and mesoporous carbon produced by a known production method.
  • the shape of the porous carbon may be spherical, fibrous, hollow, cylindrical, or amorphous. Two or more of these can be used.
  • Ketjen black, activated carbon, and mesoporous carbon are preferable because of their large surface area and high electron conductivity.
  • the method for forming a composite of sulfur and porous carbon is not particularly limited, and examples thereof include a method of mechanically mixing with various mills, a liquid phase and / or a gas phase method, or a method combining these methods.
  • a ball mill such as a planetary ball mill, a rolling ball mill, a vibrating ball mill, a vertical roller mill such as a ring roller mill, a high-speed rotation mill such as a hammer mill and a cage mill, and an air current such as a jet mill.
  • a type mill and the like can be mentioned.
  • the non-oxidizing atmosphere is an atmosphere having an oxygen concentration of less than 5% by volume, preferably less than 2% by volume, more preferably an atmosphere containing substantially no oxygen, that is, an inert gas atmosphere such as nitrogen, helium, or argon, It is a sulfur gas atmosphere.
  • the average particle diameter (D50) of the positive electrode active material in the present invention is preferably 0.5 ⁇ m to 100 ⁇ m, and more preferably 1 ⁇ m to 50 ⁇ m, from the viewpoint of obtaining a uniform and smooth electrode mixture layer and the handleability in the slurrying step. More preferably, it is more preferably from 1 ⁇ m to 30 ⁇ m.
  • the average particle diameter (D50) refers to a 50% particle diameter measured by a laser diffraction light scattering method. The particle diameter is a volume-based diameter, and the diameter of the secondary particles is measured by the laser diffraction light scattering method.
  • the positive electrode active material can have a desired particle size by a method such as pulverization.
  • the pulverization may be dry pulverization performed in a gas or wet pulverization performed in a liquid such as water.
  • Examples of the industrial pulverization method include a ball mill, a roller mill, a turbo mill, a jet mill, a cyclone mill, a hammer mill, a pin mill, a rotary mill, a vibration mill, a planetary mill, an attritor, and a bead mill.
  • binder binders
  • binders can be used as the binder.
  • conductive assistant those known as conductive assistants for electrodes can be used. Specifically, for example, natural graphite, artificial graphite, coal tar pitch, carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, roller black, disk black, carbon nanotube, gas phase Carbon materials such as carbon fiber (Vapor Carbon Carbon Fiber: VGCF), graphene, fullerene, and needle coke; metal powders such as aluminum powder, nickel powder, and titanium powder; conductive metal oxides such as zinc oxide and titanium oxide; Sulfides such as La 2 S 3 , Sm 2 S 3 , Ce 2 S 3 , and TiS 2 are exemplified.
  • the particle size of the conductive additive is preferably from 0.0001 ⁇ m to 100 ⁇ m, more preferably from 0.01 ⁇ m to 50 ⁇ m.
  • the content of the conductive additive is usually 0.1 to 50 parts by mass, preferably 1 to 30 parts by mass, and more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the electrode active material.
  • solvent examples include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, acetonitrile, and acetonitrile.
  • the amount of the solvent used may be adjusted according to the method selected when coating the slurry.For example, in the case of application by the doctor blade method, the total amount of the positive electrode active material, the binder and the conductive additive is 100 parts by mass. On the other hand, the amount is preferably from 15 to 300 parts by mass, more preferably from 30 to 200 parts by mass.
  • the electrode mixture paste contains, in addition to the above components, other components such as a viscosity adjuster, a reinforcing material, an antioxidant, a pH adjuster, and a dispersant, in a range that does not impair the effects of the present invention. It does not matter.
  • known components can be used in known mixing ratios.
  • Electrode mixture paste manufacturing process In the production of the electrode mixture paste, when dispersing or dissolving the positive electrode active material, the binder and the conductive auxiliary in a solvent, all can be added to the solvent at once and subjected to dispersion treatment, and separately added and dispersed. You can also. It is preferable to sequentially add a binder, a conductive auxiliary agent, and an active material to a solvent in the order of the dispersion treatment, since these can be uniformly dispersed in the solvent. When the electrode mixture paste contains other components, the other components can be added at once and subjected to a dispersion treatment. However, it is preferable to perform the dispersion treatment every time one kind is added.
  • the method of the dispersion treatment is not particularly limited, but as an industrial method, for example, a normal ball mill, a sand mill, a bead mill, a cyclone mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a rotation / revolution mixer, A planetary mixer, a fill mix, a jet paster, or the like can be used.
  • a conductive material such as titanium, a titanium alloy, aluminum, an aluminum alloy, nickel, stainless steel, nickel-plated steel, and carbon is used.
  • the shape of the current collector include a foil shape, a plate shape, a net shape, a foamed shape, and a nonwoven fabric shape.
  • the current collector may be either porous or non-porous.
  • these conductive materials may be subjected to a surface treatment in order to improve adhesion and electrical characteristics.
  • aluminum is preferred from the viewpoint of conductivity and price, and aluminum foil is particularly preferred.
  • the thickness of the current collector is not particularly limited, but is usually 5 to 30 ⁇ m.
  • the method of applying the electrode mixture paste to the current collector is not particularly limited.
  • a die coater method, a comma coater method, a curtain coater method, a spray coater method, a gravure coater method, a flexo coater method, a knife coater method, a doctor coater method Each method such as a blade method, a reverse roll method, a brush coating method, and a dip method can be used.
  • a die coater method, a knife coater method, a doctor blade method, and a comma coater method are preferable in that a good coating layer surface state can be obtained in accordance with the viscosity and drying properties of the electrode mixture paste.
  • the application of the electrode mixture paste to the current collector may be performed on only one side of the current collector, or may be performed on both sides.
  • the current collector can be applied one by one successively, or both surfaces can be applied simultaneously. Further, it can be applied continuously to the surface of the current collector, can be applied intermittently, or can be applied in a stripe shape.
  • the thickness, length and width of the coating layer can be appropriately determined according to the size of the battery and the like.
  • lithium can be doped in advance.
  • the method of doping the material may be a known method. For example, assembling a half-cell using metallic lithium as the counter electrode and inserting lithium by an electrolytic doping method of electrochemically doping lithium, or attaching a metallic lithium foil to the electrode and leaving it in the electrolytic solution There is a method of inserting lithium by a sticking doping method of doping using diffusion of lithium to the electrode, a mechanical doping method of mechanically colliding an active material with lithium metal and inserting lithium, and the like. It is not limited.
  • the negative electrode containing a silicon atom used in the present invention is not particularly limited, and can be produced according to a known method using a negative electrode active material containing a silicon atom.
  • a negative electrode active material containing a silicon atom, an electrode mixture paste obtained by slurrying a composition containing a binder and a conductive auxiliary agent with an organic solvent or water, by coating and drying the current collector, the current collector A negative electrode having an electrode mixture layer formed thereon can be manufactured.
  • the negative electrode active material containing a silicon atom examples include simple substance silicon, silicon nitride, an alloy containing silicon, SiO, SiO x , SiO 2 , and a Si-containing material coated with a carbon material, or a mixture of a Si-containing material and carbon.
  • a composite material of a Si-containing material and a carbon material in which the material is composited is exemplified.
  • the Si-containing material examples include simple silicon, silicon nitride, an alloy containing silicon, SiO, SiO x , and SiO.
  • the negative electrode active material containing a silicon atom may be carbon-coated. As the negative electrode active material containing a silicon atom, only one type may be used, or two or more types may be used in combination.
  • the silicon nitride may have an ⁇ -phase or ⁇ -phase crystal phase.
  • the alloy containing silicon for example, as the second constituent element other than silicon, lithium, aluminum, tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, and antimony And at least one of the group consisting of chromium.
  • X of the SiO x is usually 0.01 or more and less than 2.
  • x is preferably 0.5 to 1.6, and more preferably 0.8 to 1.3.
  • SiO x can be formed using, for example, a reaction between Si and SiO 2 or a disproportionation reaction of silicon monoxide (SiO).
  • a SiO, heat treated in the presence of polymers such as polyvinyl alcohol, by forming a Si and SiO 2 can be prepared SiO x, it is not limited thereto .
  • the heat treatment can be performed, for example, at a temperature of 900 ° C. or higher, preferably 1000 ° C. or higher in an atmosphere containing an organic substance gas and / or steam after pulverizing and mixing SiO and a polymer.
  • the method of compounding when producing a compound of the Si-containing material and the carbon material is not particularly limited.
  • benzene, toluene, xylene, alkane, or the like is decomposed in a gas phase with a carbon source, and CVD method of chemical vapor deposition, method of applying thermoplastic resin such as pitch, tar or furfuryl alcohol on the surface of particles and then firing, or applying mechanical energy between particles and carbon material to composite
  • CVD method A method using a mechanochemical reaction that forms Among them, it is preferable to use the CVD method because the carbon material can be uniformly coated.
  • the negative electrode containing a silicon atom used in the present invention may further contain a carbon material as a negative electrode active material.
  • a carbon material that can be contained as the negative electrode active material a known material from which lithium ions can be inserted and removed can be used.
  • Examples of the carbon material that can be used as the negative electrode active material include natural graphite, artificial graphite, non-graphitizable carbon, graphitizable carbon, and the like.
  • the negative electrode containing a silicon atom used in the present invention may further contain a lithium-transition metal composite oxide (eg, Li 4 Ti 5 O 12 ), tin, or the like as a negative electrode active material.
  • the content of silicon atoms in the negative electrode is not particularly limited, but a small content has a small effect of improving capacity, and a large content increases the rate of change in volume of the negative electrode active material due to charge and discharge and increases the durability of the electrode. And the cycle characteristics of the non-aqueous electrolyte secondary battery decrease. Therefore, the content of silicon atoms in the electrode mixture layer is preferably 1% by mass to 98% by mass, more preferably 2% by mass to 95% by mass, still more preferably 5% by mass to 90% by mass, and 5% by mass. The content is more preferably from 80 to 80% by mass, and most preferably from 5 to 70% by mass.
  • This amount is based on silicon atoms and can be measured by, for example, an inductively coupled plasma emission spectrometer (ICP-AES), an electron beam microanalyzer (EPMA), an energy dispersive X-ray analyzer (EDX), or the like.
  • ICP-AES inductively coupled plasma emission spectrometer
  • EPMA electron beam microanalyzer
  • EDX energy dispersive X-ray analyzer
  • the shape of the negative electrode active material is not particularly limited, but may be, for example, spherical, polyhedral, fibrous, rod-like, plate-like, scale-like, or amorphous, and may be hollow. Among these shapes, a spherical or polyhedral shape is preferable because the electrode mixture layer is formed uniformly.
  • the average particle diameter (D50) of the silicon-containing negative electrode active material in the present invention is preferably 0.01 ⁇ m to 50 ⁇ m, more preferably 0.05 ⁇ m to 30 ⁇ m, and further preferably 0.1 ⁇ m to 20 ⁇ m.
  • the average particle diameter of the negative electrode active material containing the carbon material is in the same range as the preferable range described above for the average particle diameter of the negative electrode active material containing silicon atoms. It may be.
  • the negative electrode active material can have a desired particle size by a method such as pulverization.
  • the pulverization may be dry pulverization performed in a gas or wet pulverization performed in a liquid such as water.
  • Examples of the industrial pulverization method include a ball mill, a roller mill, a turbo mill, a jet mill, a cyclone mill, a hammer mill, a pin mill, a rotary mill, a vibration mill, a planetary mill, an attritor, and a bead mill.
  • the negative electrode active materials may be pulverized for each material and then mixed, or may be mixed and pulverized.
  • binder binder
  • binders can be used as the binder. Specific examples of the binder include, for example, those similar to the binder used for the positive electrode. Only one binder may be used, or two or more binders may be used in combination.
  • the content of the binder is preferably from 1 to 30 parts by mass, more preferably from 1 to 20 parts by mass, per 100 parts by mass of the negative electrode active material.
  • conductive assistant those known as conductive assistants for electrodes can be used. Specifically, the same as the conductive additive used for the positive electrode can be used.
  • the particle size of the conductive additive is preferably from 0.0001 ⁇ m to 100 ⁇ m, more preferably from 0.01 ⁇ m to 50 ⁇ m.
  • the content of the conductive additive is usually 0 to 50 parts by mass, preferably 0.5 to 30 parts by mass, more preferably 1 to 20 parts by mass, based on 100 parts by mass of the negative electrode active material.
  • solvent examples of the solvent for preparing the electrode mixture paste include the same solvents as those used for preparing the positive electrode mixture paste.
  • the amount of the solvent used can be adjusted according to the method selected when coating the slurry. For example, in the case of application by the doctor blade method, the total amount of the negative electrode active material, the binder and the conductive auxiliary agent is 100 parts by mass. Is preferably 15 to 300 parts by mass, more preferably 30 to 200 parts by mass.
  • a viscosity modifier for example, a viscosity modifier, a reinforcing material, an antioxidant, a pH adjuster, and other components such as a dispersant are contained. No problem.
  • known components can be used in known mixing ratios.
  • Electrode mixture paste manufacturing process Except for using the negative electrode active material instead of the positive electrode active material in the production of the electrode mixture paste, it can be blended, dispersed and produced in the same process as the production process of the positive electrode mixture paste.
  • the negative electrode used in the present invention may be used after being doped with lithium in advance.
  • the doping method may be in accordance with a known method. For example, assembling a half-cell using metallic lithium as the counter electrode and inserting lithium by electrolytic doping method of electrochemically doping lithium, or attaching a metallic lithium foil to the electrode and leaving it in the electrolytic solution Doping using the diffusion of lithium into the electrode, a method of inserting lithium by a sticking doping method, a mechanical doping method of mechanically colliding an active material with lithium metal and inserting lithium, and the like.
  • the present invention is not limited to this.
  • the negative electrode active material or the negative electrode used in the present invention may have a film formed on its surface with a material having a siloxane bond.
  • a material having a siloxane bond and a method of forming a film may be in accordance with a known method.
  • the non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention contains a compound represented by the following general formula (1).
  • the cycle characteristics and the rate characteristics of the nonaqueous electrolyte secondary battery using the negative electrode containing a silicon atom are improved. Can be.
  • Examples of the hydrocarbon group having 1 to 10 carbon atoms represented by R 1 to R 3 in the compound represented by the general formula (1) include, for example, a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group. And aromatic hydrocarbon groups.
  • Hydrocarbon group phenyl group, methylphenyl group, ethylphenyl group, t-butylphenyl group, phenylmethyl group Phenylethyl group, and aromatic hydrocarbon groups such as a naphthyl group.
  • the saturated aliphatic hydrocarbon group and the unsaturated aliphatic hydrocarbon group may have a linear structure or a branched structure.
  • the hydrocarbon group having 1 to 10 carbon atoms representing R 1 to R 3 is preferably a hydrocarbon group having 1 to 4 carbon atoms because both the cycle characteristics and the rate characteristics are improved and the production process is simple.
  • An aliphatic hydrocarbon group or an aromatic hydrocarbon group having 6 to 10 carbon atoms is preferable, a methyl group, an ethyl group, a butyl group, a vinyl group or a phenyl group is more preferable, and a methyl group, an ethyl group, a vinyl group or a phenyl group is more preferable. Even more preferred is a methyl group.
  • the content of the compound represented by the general formula (1) is preferably 0.01% by mass to 20% by mass, more preferably 0.05% by mass to 10% by mass, and more preferably 0.1% by mass in the nonaqueous electrolyte. -7% by mass is more preferable, and 0.1-5% by mass is most preferable.
  • the content is 0.01% by mass or more, the cycle characteristics and the rate characteristics are sufficiently improved.
  • the content is 20% by mass or less, the effect of improving the cycle characteristics and the rate characteristics commensurate with the added amount. There is expected.
  • R 1 to R 3 are saturated hydrocarbon groups
  • R 4 is a group in which two methylene groups are connected by a sulfur atom.
  • No. 1-1 to No. 1-29 but is not limited thereto.
  • Compound No. A notation such as 1-28 indicates that the position of the substituent is arbitrary.
  • any one of n R 1 to R 3 is an unsaturated hydrocarbon group, and R 4 is a group in which two methylene groups are connected by a sulfur atom.
  • R 4 is a group in which two methylene groups are connected by a sulfur atom.
  • any one of n R 1 to R 3 is an aromatic hydrocarbon group, and R 4 is a group in which two methylene groups are connected by a sulfur atom.
  • R 4 is a group in which two methylene groups are connected by a sulfur atom.
  • R 4 in the general formula (1) is an n-valent hydrocarbon group having 1 to 10 carbon atoms, an n-valent group in which a hydrocarbon group having 1 to 10 carbon atoms is connected by an oxygen atom or a sulfur atom, or Represents an n-valent heterocyclic group containing an oxygen atom or a sulfur atom, and n represents an integer of 1 to 6.
  • the compound represented by the general formula (1) is a compound represented by the following general formula: This corresponds to a compound substituted with a group represented by the formula (1a).
  • Examples of the hydrocarbons having 1 to 10 carbon atoms in which n hydrogen atoms are substituted by the general formula (1a) include saturated aliphatic hydrocarbons, unsaturated aliphatic hydrocarbons, and aromatic hydrocarbons. Specifically, for example, methane, ethane, propane, n-butane, 2-methylpropane, n-pentane, n-hexane, cyclohexane, methylcyclohexane, n-heptane, n-octane, n-nonane, n-decane And saturated aliphatic hydrocarbons such as n-adamantane, ethene, ethyne, propene, propyne, 1-butene, 2-butene, 1,3-butadiene, 1-pentene, 2-pentene, 1,3-pentadiene, 1- Hexene, 3-hexene, 1,3,5-hexatriene,
  • R 4 in the general formula (1) is an n-valent group in which a hydrocarbon group having 1 to 10 carbon atoms is connected by an oxygen atom or a sulfur atom
  • the compound represented by the general formula (1) is The compound corresponds to a compound in which a hydrocarbon group having 1 to 10 carbon atoms is connected by an oxygen atom or a sulfur atom, wherein n hydrogen atoms are substituted by a group represented by the general formula (1a).
  • Examples of the compound in which a hydrocarbon group having 1 to 10 carbon atoms is linked by an oxygen atom or a sulfur atom include a compound in which a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group is linked by an oxygen atom or a sulfur atom.
  • the linked saturated aliphatic hydrocarbon groups or unsaturated aliphatic hydrocarbon groups may be the same or different.
  • the saturated aliphatic hydrocarbon group or unsaturated aliphatic hydrocarbon group is the same as the saturated aliphatic hydrocarbon group or unsaturated aliphatic hydrocarbon group represented by R 1 to R 3 in the general formula (1). No.
  • connection includes not only a case where the connection is made with one oxygen atom or a sulfur atom but also a case where the connection is made with two or more oxygen atoms or oxygen atoms.
  • the latter case includes, for example, a case where they are linked by -SS-, and a case where they are represented by -S-RS- or the like (R is an alkylene group having 1 or 2 carbon atoms).
  • R 1 to R 3 are methyl groups, for example, the following compound No. 1a-29 to No. 1 1a-58, but not limited thereto.
  • R 1 to R 3 are methyl groups, for example, the following compound No. 1a-59 to No. 1 1a-66, but is not limited thereto.
  • No. A bond extending over a plurality of rings described in 1a-66 means that a bond can be bonded to any position of these rings.
  • R 4 is preferably an n-valent aliphatic hydrocarbon group having 2 to 10 carbon atoms, because of improved cycle characteristics and rate characteristics, a simple production process, and easy availability.
  • Preferred are an n-valent group in which 1 to 10 hydrocarbon groups are connected by a sulfur atom, and an n-valent heterocyclic group having 3 to 6 carbon atoms containing a sulfur atom.
  • the aliphatic hydrocarbon group represented by R 4 an aliphatic hydrocarbon group having 2 to 6 carbon atoms is more preferable, and an unsaturated aliphatic hydrocarbon group having 2 to 4 carbon atoms is most preferable.
  • n-valent group in which a hydrocarbon group having 1 to 10 carbon atoms represented by R 4 is linked by a sulfur atom an aliphatic hydrocarbon group having 1 to 6 carbon atoms is linked to a sulfur atom A group is preferable, and a group in which an aliphatic hydrocarbon group having 1 to 4 carbon atoms is connected to one sulfur atom or the above-mentioned —S—R—S— group is particularly preferable.
  • sulfur-containing n-valent heterocyclic group having 3 to 6 carbon atoms represented by R 4 an aromatic heterocyclic ring having 3 to 8 carbon atoms including a sulfur atom is particularly preferable, and thiophene is most preferable.
  • R 4 is preferably an aromatic hydrocarbon group having 6 to 10 carbon atoms in addition to the above groups.
  • n is preferably 2 to 6, more preferably 2 to 4, and most preferably 2, because the cycle characteristics and rate characteristics of the nonaqueous electrolyte secondary battery are good.
  • the compound No. 1 can be used because the cycle characteristics and the rate characteristics are both improved and the production process is simple.
  • 1-1, No. 1a-1, No. 1; 1a-2, No. 1 1a-29, no. 1a-35, no. 1a-59, no. 1a-68, no. 1a-77, no. 1a-82 and No. 1 No. 1a-92 is preferable.
  • 1-1, No. 1a-1, No. 1; 1a-29, no. Nos. 1a-82 and No. 1 1a-94 is more preferred.
  • the non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention contains a lithium salt.
  • a liquid electrolyte obtained by dissolving a lithium salt in a solvent a polymer gel obtained by dissolving or dispersing a lithium salt in a polymer gel gelled with a polymer compound dissolved in a solvent, A pure polymer electrolyte obtained by using a polymer compound as a dispersion medium and dissolving or dispersing a lithium salt can be used.
  • lithium salt used for the pure polymer electrolyte examples include LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , and LiC (CF 3 SO 2 ) 3. , LiB (CF 3 SO 3 ) 4 , LiB (C 2 O 4 ) 2 and the like.
  • the concentration of the lithium salt in the nonaqueous electrolyte is too low, a sufficient current density may not be obtained, and if the concentration is too high, the stability of the liquid nonaqueous electrolyte may be impaired.
  • L is preferable, and 0.8 to 1.8 mol / L is more preferable.
  • an organic solvent usually used for a non-aqueous electrolyte of a non-aqueous electrolyte secondary battery can be used.
  • the organic solvent usually used for the non-aqueous electrolyte of the non-aqueous electrolyte secondary battery include, for example, a saturated cyclic carbonate compound, a saturated cyclic ester compound, a sulfoxide compound, a sulfone compound, an amide compound, a saturated chain carbonate compound, and a chain ether.
  • the saturated cyclic carbonate compound, the saturated cyclic ester compound, the sulfoxide compound, the sulfone compound and the amide compound have a high relative dielectric constant, and thus play a role of increasing the dielectric constant of the liquid composition, and in particular, the saturated cyclic carbonate compound. Is preferred.
  • saturated cyclic carbonate compound examples include ethylene carbonate, 1,2-propylene carbonate, 1,3-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 1,1-dimethylethylene carbonate and the like.
  • saturated cyclic ester compound examples include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -hexanolactone, ⁇ -octanolactone, and the like.
  • sulfoxide compound examples include dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, diphenyl sulfoxide, and thiophene.
  • sulfone compound examples include dimethyl sulfone, diethyl sulfone, dipropyl sulfone, diphenyl sulfone, sulfolane (also referred to as tetramethylene sulfone), 3-methyl sulfolane, 3,4-dimethyl sulfolane, 3,4-diphenyl sulfolane, sulfolene, Examples include 3-methylsulfolene, 3-ethylsulfolene, and 3-bromomethylsulfolene. Sulfolane and tetramethylsulfolane are preferred.
  • Amide compounds include N-methylpyrrolidone, dimethylformamide, dimethylacetamide and the like.
  • the saturated chain carbonate compound, the chain ether compound, the cyclic ether compound and the saturated chain ester compound can lower the viscosity of the liquid composition and increase the mobility of electrolyte ions.
  • the battery characteristics such as the output density can be improved.
  • the viscosity is low, the performance of the non-aqueous electrolyte at a low temperature can be enhanced, and a saturated chain carbonate compound is particularly preferable.
  • saturated chain carbonate compound examples include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl butyl carbonate, methyl-t-butyl carbonate, diisopropyl carbonate, t-butyl propyl carbonate and the like.
  • chain ether compound or cyclic ether compound examples include dimethoxyethane, ethoxymethoxyethane, diethoxyethane, tetrahydrofuran, dioxolan, dioxane, 1,2-bis (methoxycarbonyloxy) ethane, and 1,2-bis (ethoxycarbonyl).
  • the saturated chain ester compound a monoester compound and a diester compound having a total of 2 to 8 carbon atoms in the molecule are preferable, and specific compounds include, for example, methyl formate, ethyl formate, methyl acetate, acetic acid and the like.
  • organic solvent used for preparing the liquid electrolyte for example, acetonitrile, propionitrile, nitromethane, derivatives thereof, and various ionic liquids can be used.
  • Examples of the polymer used for the polymer gel electrolyte include polyethylene oxide, polypropylene oxide, polyvinyl chloride, polyacrylonitrile, polymethyl methacrylate, polyethylene, polyvinylidene fluoride, and polyhexafluoropropylene.
  • Examples of the polymer used for the pure polymer electrolyte include polyethylene oxide, polypropylene oxide, and polystyrene sulfonic acid.
  • the non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention may further contain a compound represented by the general formula (2) because battery characteristics such as cycle characteristics and safety are improved.
  • R 5 to R 9 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a heterocyclic group having 4 to 6 carbon atoms, and at least one hydrogen atom Represents a hydrocarbon group having 1 to 6 carbon atoms substituted by a fluorine atom, or a heterocyclic group having 4 to 6 carbon atoms substituted by one or more hydrogen atoms by a fluorine atom, and R 10 to R 12 are Each independently represents a halogen atom, a hydrocarbon group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
  • examples of the halogen atom represented by R 5 to R 9 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • examples of the hydrocarbon group having 1 to 6 carbon atoms include a linear or cyclic saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, and an aromatic hydrocarbon group.
  • heterocyclic group having 4 to 6 carbon atoms examples include a thienyl group, a furanyl group, a pyridyl group, a tetrahydrothienyl group, a tetrahydrofuranyl group, and a piperidyl group.
  • Examples of the hydrocarbon group having 1 to 6 carbon atoms in which one or more hydrogen atoms are substituted with a fluorine atom include a linear saturated aliphatic hydrocarbon group in which one or more hydrogen atoms are substituted with a fluorine atom, An unsaturated aliphatic hydrocarbon group in which at least one hydrogen atom has been replaced with a fluorine atom, a cyclic saturated aliphatic hydrocarbon group having at least one hydrogen atom replaced with a fluorine atom, and at least one hydrogen atom having a fluorine atom; And a substituted phenyl group.
  • Examples of the chain saturated aliphatic hydrocarbon group, unsaturated aliphatic hydrocarbon group and cyclic saturated aliphatic hydrocarbon group include the above-mentioned chain saturated aliphatic hydrocarbon group, unsaturated aliphatic hydrocarbon group, and cyclic saturated aliphatic group. And a hydrocarbon group.
  • Examples of the chain saturated aliphatic hydrocarbon group in which one or more hydrogen atoms have been substituted with a fluorine atom include, for example, fluoromethyl group, difluoromethyl group, trifluoromethyl group, 1-fluoroethyl group, 2-fluoroethyl Group, 1-fluoroisopropyl group, 2-fluoroisopropyl group, 1-fluorobutyl group, 2-fluorobutyl group, 3-fluorobutyl group, 1-fluoroisobutyl group, 2-fluoroisobutyl group, 2-fluoro-t- Examples thereof include a butyl group, a 1-fluoropentyl group, a 2-fluoropentyl group, a 3-fluoropentyl group, a 4-fluoropentyl group, and a 1-fluorohexyl group.
  • Examples of the cyclic saturated aliphatic hydrocarbon group in which one or more hydrogen atoms have been substituted with fluorine atoms include a fluorocyclopentyl group and a fluorocyclohexyl group.
  • Examples of the aromatic hydrocarbon group in which one or more hydrogen atoms have been replaced by fluorine atoms include a fluorophenyl group, a difluorophenyl group, a trifluorophenyl group, and the like.
  • heterocyclic group in which one or more hydrogen atoms are substituted with a fluorine atom examples include a fluorothienyl group, a fluorofuranyl group, a fluoropyridyl group, a fluorothiolanyl group, a fluorooxanyl group, a fluoropiperidyl group, and the like.
  • halogen atom represented by R 10 to R 12 and the hydrocarbon group having 1 to 6 carbon atoms in the compound represented by the general formula (2) those similar to R 5 to R 9 can be mentioned.
  • alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, an i-propoxy group, a butoxy group, a pentoxy group, a hexyloxy group and a cyclohexyloxy group.
  • compounds in which R 5 to R 9 are a hydrogen atom or a halogen atom and R 10 to R 12 are a methyl group include, for example, the following compound Nos. 2-1 to No. 2-6.
  • any one of R 5 to R 9 is a saturated aliphatic hydrocarbon group and R 10 to R 12 is a methyl group. 2-7 to No. 2-23.
  • any of R 5 to R 9 is an unsaturated aliphatic hydrocarbon group and R 10 to R 12 is a methyl group, for example, the following compound No. . 2-24 to No. 2-32.
  • compounds in which any of R 5 to R 9 is a cyclic aliphatic hydrocarbon group or a phenyl group and R 10 to R 12 are a methyl group include, for example, Compound No. 2-33-No. 2-35.
  • any of R 5 to R 9 is a heterocyclic group, and R 10 to R 12 are methyl groups. 2-36-No. 2-41.
  • any of R 5 to R 9 is a hydrocarbon group having 1 to 6 carbon atoms in which one or more hydrogen atoms are substituted with a fluorine atom,
  • 10 to R 12 are a methyl group, for example, the following compound No. 2-42 to No. 2-54.
  • any of R 5 to R 9 is a heterocyclic group in which one or more hydrogen atoms are substituted with a fluorine atom, and R 10 to R 12 are a methyl group.
  • R 5 to R 9 is a heterocyclic group in which one or more hydrogen atoms are substituted with a fluorine atom
  • R 10 to R 12 are a methyl group.
  • R 5 to R 9 of the compound represented by the general formula (2) have excellent cycle characteristics and rate characteristics, and are easily available as raw materials. It is preferably a hydrogen group, more preferably a hydrogen atom or an aliphatic hydrocarbon group having 1 to 4 carbon atoms. In addition, a hydrogen atom, a fluorine atom, a methyl group, or a vinyl group is also preferable because excellent battery characteristics are obtained, raw materials are easily available, and synthesis is simple. From these points, it is most preferable that R 5 to R 9 be a hydrogen atom.
  • R 10 to R 12 of the compound represented by the general formula (2) an aliphatic hydrocarbon group having 1 to 6 carbon atoms, particularly 1 to 4 carbon atoms is preferable because of excellent cycle characteristics and rate characteristics. It is preferred that Further, as R 10 to R 12 , a methyl group, a vinyl group or a phenyl group is preferable, and a methyl group is more preferable, because excellent battery characteristics are obtained, raw materials are easily available, and synthesis is simple. .
  • the content of the compound represented by the general formula (2) is preferably from 0.1% by mass to 20% by mass, more preferably from 0.1% by mass to 10% by mass, and more preferably from 0.1% by mass to 10% by mass based on the whole nonaqueous electrolyte. It is more preferably from 5% by mass to 7.0% by mass, most preferably from 1% by mass to 5% by mass.
  • the content is 0.1% by mass or more, a sufficient effect can be exhibited, and when the content is 20% by mass or less, an effect of increasing the amount commensurate with the addition amount is observed, and the battery performance due to an excessive amount of the compound is obtained. Can be prevented more reliably.
  • the non-aqueous electrolyte secondary battery of the present invention can be manufactured by interposing a non-aqueous electrolyte containing the compound represented by the general formula (1) and the lithium salt between the positive electrode and the negative electrode.
  • a separator between the positive electrode and the negative electrode it is preferable to use a separator between the positive electrode and the negative electrode.
  • the separator As the separator, a commonly used polymer film can be used without particular limitation.
  • the polymer film include, for example, polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyethylene oxide, polypropylene oxide, and the like. It is composed of polyethers, various celluloses such as carboxymethylcellulose and hydroxypropylcellulose, polymer compounds mainly composed of poly (meth) acrylic acid and various esters thereof, derivatives thereof, and copolymers and mixtures thereof. Films and the like can be mentioned.
  • the shape of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and may be various shapes such as a coin shape, a cylindrical shape, a square shape, and a laminate type.
  • FIG. 1 shows an example of a coin-type battery of the nonaqueous electrolyte secondary battery of the present invention
  • FIGS. 2 and 3 show examples of a cylindrical battery.
  • 1 is a positive electrode capable of releasing lithium ions
  • 1a is a positive electrode current collector
  • 2 is a negative electrode capable of absorbing and releasing lithium ions released from the positive electrode
  • 2a is A negative electrode current collector
  • 3 is a non-aqueous electrolyte
  • 4 is a positive electrode case made of stainless steel
  • 5 is a negative electrode case made of stainless steel
  • 6 is a gasket made of polypropylene
  • 7 is a separator made of polyethylene.
  • 11 is a negative electrode
  • 12 is a negative electrode current collector
  • 13 is a positive electrode
  • 14 is a positive electrode current collector
  • 15 is a non-aqueous electrolyte
  • 16 is a separator
  • 17 is a positive electrode terminal
  • 18 is a negative electrode terminal
  • 19 is a negative electrode plate
  • 20 is a negative electrode lead
  • 21 is a positive electrode plate
  • 22 is a positive electrode lead
  • 23 is a case
  • 24 is an insulating plate
  • 25 is a gasket
  • 26 is a safety valve.
  • 27 are PTC elements.
  • the external packaging member a laminated film or a metal container can be used.
  • the thickness of the packaging member is usually 0.5 mm or less, preferably 0.3 mm or less.
  • Examples of the shape of the packaging member include a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
  • the laminate film may be a multilayer film having a metal layer between resin films.
  • the metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction.
  • As the resin film for example, a polymer material such as polypropylene, polyethylene, nylon, or polyethylene terephthalate can be used.
  • the laminate film can be formed into a shape of an exterior member by performing sealing by heat fusion.
  • the electrode mixture paste was applied to a current collector made of aluminum foil (thickness: 20 ⁇ m) by a doctor blade method, and allowed to stand at 90 ° C. for 3 hours and dried. Further, press molding was performed. Thereafter, the electrode was cut into a predetermined size, and further dried under vacuum at 150 ° C. for 2 hours immediately before use to produce a positive electrode.
  • the negative electrode A was prepared by dissolving 1.0 mol / L of LiPF 6 in a mixed solvent of 30% by volume of ethylene carbonate, 30% by volume of dimethyl carbonate, and 40% by volume of ethyl methyl carbonate, using lithium metal as a counter electrode. A half-cell was assembled as an electrolyte, and an electrochemically doped lithium was used.
  • Example 2 A coin-type non-aqueous electrolyte secondary battery of Example 2 was produced in the same manner as in Example 1, except that Compound No. 1-1 was dissolved in the mixed solvent at a concentration of 1.0% by mass.
  • Example 3 A coin-type nonaqueous electrolyte secondary battery of Example 3 was produced in the same manner as in Example 1, except that Compound No. 1-1 was dissolved in the mixed solvent at a concentration of 2.0% by mass.
  • Example 4 A coin-type nonaqueous electrolyte secondary battery of Example 4 was produced in the same manner as in Example 1, except that Compound No. 1a-29 was dissolved in the above-mentioned mixed solvent at a concentration of 0.5% by mass.
  • Example 5 A coin-type nonaqueous electrolyte secondary battery of Example 5 was produced in the same manner as in Example 1, except that Compound No. 1a-29 was dissolved in the above mixed solvent at a concentration of 1.0% by mass.
  • Example 6 A coin-type nonaqueous electrolyte secondary battery of Example 6 was produced in the same manner as in Example 1, except that Compound No. 1a-29 was dissolved in the mixed solvent at a concentration of 2.0% by mass.
  • Example 7 A coin-type nonaqueous electrolyte secondary battery of Example 7 was produced in the same manner as in Example 1, except that Compound No. 1a-92 was dissolved in the above mixed solvent at a concentration of 0.5% by mass.
  • Example 9 A coin-type nonaqueous electrolyte secondary battery of Example 9 was produced in the same manner as in Example 1, except that Compound No. 1a-92 was dissolved in the above mixed solvent at a concentration of 2.0% by mass.
  • Example 10 Compound No. 1-1 was added at a concentration of 1.0% by mass, and Compound No. 1-1 was used.
  • a coin-type non-aqueous electrolyte secondary battery of Example 10 was produced in the same manner as in Example 1, except that 2-1 was dissolved in the mixed solvent at a concentration of 1.0% by mass.
  • Example 11 Compound No. 1a-29 was added at a concentration of 1.0% by mass and Compound No. 1a-29 was added.
  • a coin-type non-aqueous electrolyte secondary battery of Example 11 was produced in the same manner as in Example 1, except that 2-1 was dissolved in the mixed solvent at a concentration of 1.0% by mass.
  • Example 12 Compound No. 1a-92 was added at a concentration of 1.0% by mass and Compound No. 1a-92 was added.
  • a coin-type nonaqueous electrolyte secondary battery of Example 12 was produced in the same manner as in Example 1, except that 2-1 was dissolved in the above-mentioned mixed solvent at a concentration of 1.0% by mass.
  • Example 13 Further, a coin-type non-aqueous electrolyte secondary battery of Example 13 was produced in the same manner as in Example 1, except that vinylene carbonate was dissolved in the mixed solvent at a concentration of 0.5% by mass.
  • Example 14 Further, a coin-type nonaqueous electrolyte secondary battery of Example 14 was produced in the same manner as in Example 4, except that vinylene carbonate was dissolved in the mixed solvent at a concentration of 0.5% by mass.
  • Example 15 Further, a coin-type non-aqueous electrolyte secondary battery of Example 15 was produced in the same manner as in Example 7, except that vinylene carbonate was dissolved in the mixed solvent at a concentration of 0.5% by mass.
  • CMCNa manufactured by Daicel Finechem
  • Example 16 A coin-type non-aqueous electrolyte secondary battery of Example 16 was produced in the same manner as in Example 2, except that the negative electrode B was used instead of the negative electrode A.
  • Example 17 A coin-type non-aqueous electrolyte secondary battery of Example 17 was produced in the same manner as in Example 5, except that the negative electrode B was used instead of the negative electrode A.
  • Example 18 A coin-type nonaqueous electrolyte secondary battery of Example 18 was produced in the same manner as in Example 8, except that the negative electrode B was used instead of the negative electrode A.
  • the electrode mixture paste was applied to a current collector made of copper foil (thickness: 10 ⁇ m) by a doctor blade method, and allowed to stand at 90 ° C. for 3 hours and dried. Thereafter, the electrode was cut into a predetermined size, and further dried immediately before use at 150 ° C. for 2 hours under vacuum to produce a negative electrode C.
  • Example 20 A coin-type non-aqueous electrolyte secondary battery of Example 20 was produced in the same manner as in Example 2, except that the negative electrode C was used instead of the negative electrode A.
  • Example 21 A coin-type nonaqueous electrolyte secondary battery of Example 21 was produced in the same manner as in Example 3, except that the negative electrode C was used instead of the negative electrode A.
  • Example 25 A coin-type nonaqueous electrolyte secondary battery of Example 25 was made in the same manner as in Example 7, except that the negative electrode C was used instead of the negative electrode A.
  • Example 28 A coin-type nonaqueous electrolyte secondary battery of Example 28 was produced in the same manner as in Example 10, except that the negative electrode C was used instead of the negative electrode A.
  • Example 33 A coin-type nonaqueous electrolyte secondary battery of Example 33 was made in the same manner as Example 15 except that the negative electrode C was used instead of the negative electrode A.
  • CMCNa sodium carboxymethyl cellulose
  • Example 34 A coin-type nonaqueous electrolyte secondary battery of Example 34 was produced in the same manner as in Example 2, except that the negative electrode A was used instead of the negative electrode A.
  • Example 35 A coin-type nonaqueous electrolyte secondary battery of Example 35 was produced in the same manner as in Example 5, except that the negative electrode D was used instead of the negative electrode A.
  • Example 36 A coin-type nonaqueous electrolyte secondary battery of Example 36 was made in the same manner as in Example 8, except that the negative electrode A was used instead of the negative electrode A.
  • the nonaqueous electrolyte secondary batteries of Examples 1 to 36 have higher capacity retention ratios and superior cycle characteristics than the nonaqueous electrolyte secondary batteries of Comparative Examples 1 to 12.
  • the non-aqueous electrolyte secondary battery had a high capacity retention rate even when the charge / discharge rate was high and had excellent rate characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

This nonaqueous electrolyte secondary battery includes: a positive electrode; a negative electrode containing silicon atoms; and a nonaqueous electrolyte that contains a lithium salt and a compound represented by general formula (1) (in the formula, R1-R3 each independently represent a hydrocarbon group having 1-10 carbon atoms, R4 represents a n-valent hydrocarbon group having 1-10 carbon atoms, a n-valent group in which a hydrocarbon group having 1-10 carbon atoms is coupled with an oxygen atom or a sulfur atom, or a n-valent heterocyclic group that has 3-6 carbon atoms and that includes an oxygen atom or a sulfur atom, and n represents an integer of 1-6).

Description

非水電解質二次電池Non-aqueous electrolyte secondary battery
 本発明は、特定の成分を含有する非水電解質を用いた非水電解質二次電池に関するものである。 The present invention relates to a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing a specific component.
 リチウムイオン二次電池などの非水電解質二次電池は、小型で軽量、かつエネルギー密度が高く、さらに繰り返し充放電が可能であることから、携帯用パソコン、ハンディビデオカメラ、情報端末等の携帯電子機器の電源として広く用いられている。また、環境問題の観点から、非水電解質二次電池を使用した電気自動車や、電力を動力の一部に利用したハイブリッド車の実用化が行われている。そのため近年では、携帯電子機器の使用可能時間、自動車の航続距離、さらにはそれらの安全性の観点から、二次電池のさらなる性能向上が求められている。 Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are small, lightweight, have a high energy density, and can be repeatedly charged and discharged, so they can be used in portable electronic devices such as portable personal computers, handy video cameras, and information terminals. It is widely used as a power source for equipment. Further, from the viewpoint of environmental problems, electric vehicles using non-aqueous electrolyte secondary batteries and hybrid vehicles using electric power as a part of power have been put into practical use. Therefore, in recent years, further improvements in the performance of secondary batteries have been demanded from the viewpoints of the usable time of portable electronic devices, the cruising distance of automobiles, and their safety.
 充放電容量は、二次電池の主要な性能の一つである。充放電容量を向上させるために、正極活物質及び負極活物質に新たな材料を用いることが検討されている。例えば、正極活物質として硫黄を用いた材料が提案され(例えば、特許文献1)、また、負極活物質としてケイ素やスズ等を用いた材料が提案されている(例えば特許文献2)。 Charging / discharging capacity is one of the main performances of secondary batteries. In order to improve the charge / discharge capacity, use of a new material for the positive electrode active material and the negative electrode active material has been studied. For example, a material using sulfur as a positive electrode active material has been proposed (for example, Patent Document 1), and a material using silicon, tin, or the like as a negative electrode active material has been proposed (for example, Patent Document 2).
 負極活物質として提案されているケイ素、スズ等を有する材料は、従来用いられている炭素材料と比べて大きな理論容量を持つ一方で、充放電に伴う体積変化が大きく、電極のひび割れや微粉化、集電体からの剥離、剥離面における電解液との反応等が生じて容量が低下し、サイクル特性(以下、充放電に伴う容量の変化をサイクル特性ということがある。)が良好ではなかった。 Materials containing silicon, tin, etc., which have been proposed as negative electrode active materials, have larger theoretical capacities than conventionally used carbon materials, but have a large volume change due to charge and discharge, resulting in cracking and pulverization of the electrodes. In addition, separation from the current collector, reaction with the electrolytic solution on the separation surface, and the like occur, and the capacity is reduced, and cycle characteristics (hereinafter, a change in capacity due to charge and discharge is sometimes referred to as cycle characteristics) are not good. Was.
 このようなケイ素やスズを有する負極活物質を用いた二次電池のサイクル特性を向上させることを目的として、初期充電の方法(例えば、特許文献1)、電極活物質の粒径を制御する方法(例えば、特許文献2)、電解液添加剤を使用するなど電解質を改良した方法(例えば、特許文献3~5)などが提案されている。なかでも、電解液添加剤を用いる技術は、簡便に効果が得られる点で優れた方法である。電解液添加剤を有する非水電解質を用いた二次電池では、充放電の際に電極活物質表面に固体電解質界面被膜(SEI:Solid Electrolyte Interface)が形成され、非水電解質に用いる溶媒等の分解が抑制され、サイクル特性が向上する。しかし、電極活物質上に形成された膜は充放電過程における抵抗成分となり、高速での充放電性能を示すレート特性は不利なものとなる。 For the purpose of improving the cycle characteristics of a secondary battery using such a negative electrode active material having silicon or tin, an initial charging method (for example, Patent Document 1) and a method of controlling the particle size of the electrode active material (Eg, Patent Document 2) and methods of improving the electrolyte by using an electrolyte additive (eg, Patent Documents 3 to 5) have been proposed. Above all, the technique using an electrolyte additive is an excellent method in that the effect can be easily obtained. In a secondary battery using a non-aqueous electrolyte having an electrolyte additive, a solid electrolyte interface (SEI: Solid Electrolyte Interface) is formed on the surface of the electrode active material during charging and discharging, and a solvent used for the non-aqueous electrolyte is used. Decomposition is suppressed and cycle characteristics are improved. However, the film formed on the electrode active material becomes a resistance component in the charging / discharging process, and the rate characteristic showing high-speed charging / discharging performance is disadvantageous.
特開2015-228289号公報JP-A-2005-228289 US2017084905A1US20170890505A1 US2011052996A1US2011052996A1 US2008096112A1US20080996112A1 US2011091768A1US20111091768A1
 上記先行技術文献に開示された技術による非水電解質二次電池では、レート特性は充分なものではなかった。
 本発明は、上記事情を鑑みてなされたものであり、サイクル特性及びレート特性を改善した非水電解質二次電池を提供することを主目的とする。
In the nonaqueous electrolyte secondary battery according to the technique disclosed in the above-mentioned prior art document, the rate characteristics were not sufficient.
The present invention has been made in view of the above circumstances, and has as its main object to provide a nonaqueous electrolyte secondary battery having improved cycle characteristics and rate characteristics.
 上記課題を解決する非水電解質二次電池は、正極と、ケイ素原子を含有する負極と、一般式(1)で表される化合物及びリチウム塩を含有する非水電解質と、を含む非水電解質二次電池である。
Figure JPOXMLDOC01-appb-C000003
(式中、R~Rは、それぞれ独立に炭素原子数1~10の炭化水素基を表し、Rは、炭素原子数1~10のn価の炭化水素基、炭素原子数1~10の炭化水素基が酸素原子若しくは硫黄原子で連結されたn価の基、又は酸素原子若しくは硫黄原子を含む炭素原子数3~6のn価の複素環基を表し、nは1~6の整数を表す。)
A non-aqueous electrolyte secondary battery that solves the above problems includes a non-aqueous electrolyte including a positive electrode, a negative electrode containing a silicon atom, and a non-aqueous electrolyte containing a compound represented by the general formula (1) and a lithium salt. It is a secondary battery.
Figure JPOXMLDOC01-appb-C000003
(Wherein, R 1 to R 3 each independently represent a hydrocarbon group having 1 to 10 carbon atoms, R 4 is an n-valent hydrocarbon group having 1 to 10 carbon atoms, and 1 to 10 carbon atoms) An n-valent group in which 10 hydrocarbon groups are linked by an oxygen atom or a sulfur atom, or an n-valent heterocyclic group having 3 to 6 carbon atoms containing an oxygen atom or a sulfur atom, wherein n is 1 to 6 Represents an integer.)
 本発明によれば、ケイ素原子を含有する負極と、特定の構造の化合物を含有する非水電解質を組み合わせて用いることで、サイクル特性及びレート特性がともに改善された非水電解質二次電池を提供することが可能になる。 According to the present invention, a non-aqueous electrolyte secondary battery having improved cycle characteristics and rate characteristics is provided by using a combination of a negative electrode containing a silicon atom and a non-aqueous electrolyte containing a compound having a specific structure. It becomes possible to do.
図1は、本発明の非水電解質二次電池のコイン型電池の構造の一例を概略的に示す縦断面図である。FIG. 1 is a longitudinal sectional view schematically showing an example of the structure of a coin-type battery of the nonaqueous electrolyte secondary battery of the present invention. 図2は、本発明の非水電解質二次電池の円筒型電池の基本構成を示す概略図である。FIG. 2 is a schematic diagram showing a basic configuration of a cylindrical battery of the nonaqueous electrolyte secondary battery of the present invention. 図3は、本発明の非水電解質二次電池の円筒型電池の内部構造を断面として示す斜視図である。FIG. 3 is a perspective view showing the internal structure of the cylindrical battery of the nonaqueous electrolyte secondary battery of the present invention as a cross section.
 以下、本発明の非水電解質二次電池について、好ましい実施形態に基づき詳細に説明する。 Hereinafter, the nonaqueous electrolyte secondary battery of the present invention will be described in detail based on preferred embodiments.
<正極>
 本発明で用いる正極は、特に限定されるものではなく、公知の正極活物質を用い、公知の方法に準じて製造することができる。例えば、正極活物質、バインダー及び導電助剤を含む配合物を有機溶媒又は水でスラリー化した電極合剤ペーストを、集電体に塗布して乾燥することにより、集電体上に電極合剤層が形成された正極を製造することができる。
<Positive electrode>
The positive electrode used in the present invention is not particularly limited, and can be manufactured using a known positive electrode active material and according to a known method. For example, an electrode mixture paste obtained by slurrying a mixture containing a positive electrode active material, a binder and a conductive additive with an organic solvent or water is applied to a current collector and dried to form an electrode mixture on the current collector. A positive electrode having a layer formed thereon can be manufactured.
(正極活物質)
 公知の正極活物質としては、例えば、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物、リチウム含有ケイ酸塩化合物、リチウム含有遷移金属硫酸化合物等が挙げられる。正極活物質は、1種のみ使用してもよく、2種以上を組合せて使用してもよい。
(Positive electrode active material)
Known positive electrode active materials include, for example, lithium transition metal composite oxides, lithium-containing transition metal phosphate compounds, lithium-containing silicate compounds, and lithium-containing transition metal sulfate compounds. The positive electrode active material may be used alone or in combination of two or more.
 前記リチウム遷移金属複合酸化物の遷移金属としては、バナジウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅等が好ましい。リチウム遷移金属複合酸化物の具体例としては、LiCoO等のリチウムコバルト複合酸化物、LiNiO等のリチウムニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウムマンガン複合酸化物、及びこれらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をアルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、リチウム、ニッケル、銅、亜鉛、マグネシウム、ガリウム、ジルコニウム等の他の金属で置換したもの等が挙げられる。主体となる遷移金属原子の一部を他の金属で置換したリチウム遷移金属複合酸化物としては、例えば、Li1.1Mn1.8Mg0.1、Li1.1Mn1.85Al0.05、LiNi0.5Co0.2Mn0.3、LiNi0.8Co0.1Mn0.1、LiNi0.5Mn0.5、LiNi0.80Co0.17Al0.03、LiNi0.80Co0.15Al0.05、LiNi1/3Co1/3Mn1/3、LiNi0.6Co0.2Mn0.2、LiMn1.8Al0.2、LiNi0.5Mn1.5、LiMnO-LiMO(M=Co,Ni,Mn)等が挙げられる。 As the transition metal of the lithium transition metal composite oxide, vanadium, titanium, chromium, manganese, iron, cobalt, nickel, copper, and the like are preferable. Specific examples of the lithium transition metal composite oxide include a lithium cobalt composite oxide such as LiCoO 2 , a lithium nickel composite oxide such as LiNiO 2 , and a lithium manganese composite oxide such as LiMnO 2 , LiMn 2 O 4 , and Li 2 MnO 3. Aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, lithium, nickel, copper, zinc, magnesium, gallium, zirconium, etc. And those substituted with other metals. Examples of the lithium transition metal composite oxide in which part of the main transition metal atom is substituted with another metal include, for example, Li 1.1 Mn 1.8 Mg 0.1 O 4 and Li 1.1 Mn 1.85. Al 0.05 O 4 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.5 Mn 0.5 O 2 , LiNi 0 .80 Co 0.17 Al 0.03 O 2 , LiNi 0.80 Co 0.15 Al 0.05 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0. 2 Mn 0.2 O 2 , LiMn 1.8 Al 0.2 O 4 , LiNi 0.5 Mn 1.5 O 4 , Li 2 MnO 3 —LiMO 2 (M = Co, Ni, Mn) and the like. .
 前記リチウム含有遷移金属リン酸化合物の遷移金属としては、バナジウム、チタン、マンガン、鉄、コバルト、ニッケル等が好ましい。前記リチウム含有遷移金属リン酸化合物の具体例としては、LiFePO、LiMFe1-xPO(M=Co,Ni,Mn)等のリン酸鉄化合物類、LiCoPO等のリン酸コバルト化合物類、及びこれらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をアルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、リチウム、ニッケル、銅、亜鉛、マグネシウム、ガリウム、ジルコニウム、ニオブ等の他の金属で置換したもの、Li(PO等のリン酸バナジウム化合物類等が挙げられる。 As the transition metal of the lithium-containing transition metal phosphate compound, vanadium, titanium, manganese, iron, cobalt, nickel and the like are preferable. Specific examples of the lithium-containing transition metal phosphate compound include iron phosphate compounds such as LiFePO 4 and LiM x Fe 1-x PO 4 (M = Co, Ni, Mn), and cobalt phosphate compounds such as LiCoPO 4 . , And part of the transition metal atoms that are the main components of these lithium transition metal phosphate compounds, aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, lithium, nickel, copper, zinc, magnesium, gallium, zirconium, Examples thereof include those substituted with other metals such as niobium, and vanadium phosphate compounds such as Li 3 V 2 (PO 4 ) 3 .
 前記リチウム含有ケイ酸塩化合物としては、LiFeSiO等が挙げられ、前記リチウム含有遷移金属硫酸化合物としては、LiFeSO、LiFeSOF等が挙げられる。 Examples of the lithium-containing silicate compound include Li 2 FeSiO 4 and the like, and examples of the lithium-containing transition metal sulfate compound include LiFeSO 4 and LiFeSO 4 F.
 さらに、正極活物質としては、硫黄、硫黄-炭素複合体、硫黄変性有機化合物を用いることができる。
 前記硫黄としては、粉末硫黄、不溶性硫黄、沈降硫黄、コロイド硫黄等の種々の形態のものを使用できるが、原料化合物に均一に分散させることを考慮すれば、粉末硫黄が好ましい。
Further, sulfur, a sulfur-carbon composite, and a sulfur-modified organic compound can be used as the positive electrode active material.
As the sulfur, various forms such as powdered sulfur, insoluble sulfur, precipitated sulfur, and colloidal sulfur can be used, but powdered sulfur is preferable in consideration of uniformly dispersing the raw material compound.
 前記硫黄-炭素複合体とは、硫黄と炭素を機械的に複合化させたもの、又は多孔性炭素の細孔内に硫黄を含有したものであり、リチウムイオンを吸蔵、放出し得る、二次電池の電極活物質として使用可能なものをいう。多孔性炭素の細孔内に硫黄を担持した硫黄-炭素複合体の硫黄含有量は、含有量が少な過ぎると充放電容量が大きくならず、多過ぎると電子伝導性が低下することから、25質量%~90質量%が好ましく、30質量%~70質量%がより好ましい。前記多孔性炭素としては、例えば、グラファイト、カーボン、カーボンブラック、ケッチェンブラック、アセチレンブラック、黒鉛、炭素繊維、活性炭、及び公知の製造方法により作製されたメソポーラスカーボン等が挙げられる。多孔性炭素の形状は、球状、繊維状、中空状、円筒状、不定形のいずれでも構わない。これらは2種以上用いることができる。前記多孔性炭素の中では、表面積が大きく、かつ電子伝導性が高いことから、ケッチェンブラック、活性炭、及びメソポーラスカーボンが好ましい。硫黄と多孔性炭素を複合化する方法としては、特に限定されないが、各種ミルで機械的に混合する方法や、液相及び/又は気相法、あるいはこれらの方法を組み合わせた方法が挙げられる。機械的に複合化する方法としては、例えば、遊星ボールミル、転動ボールミル、振動ボールミル等のボールミル、リングローラーミル等の竪型ローラーミル、ハンマーミル、ケージミル等の高速回転ミル、ジェットミル等の気流式ミル等が挙げられる。 The sulfur-carbon composite is obtained by mechanically complexing sulfur and carbon, or containing sulfur in the pores of porous carbon, and is capable of absorbing and releasing lithium ions. A material that can be used as an electrode active material for a battery. The sulfur content of the sulfur-carbon composite in which sulfur is supported in the pores of the porous carbon is such that when the content is too small, the charge / discharge capacity does not increase, and when the content is too large, the electron conductivity decreases. It is preferably from 90% by mass to 90% by mass, more preferably from 30% by mass to 70% by mass. Examples of the porous carbon include graphite, carbon, carbon black, Ketjen black, acetylene black, graphite, carbon fiber, activated carbon, and mesoporous carbon produced by a known production method. The shape of the porous carbon may be spherical, fibrous, hollow, cylindrical, or amorphous. Two or more of these can be used. Among the porous carbons, Ketjen black, activated carbon, and mesoporous carbon are preferable because of their large surface area and high electron conductivity. The method for forming a composite of sulfur and porous carbon is not particularly limited, and examples thereof include a method of mechanically mixing with various mills, a liquid phase and / or a gas phase method, or a method combining these methods. As a method of mechanically compounding, for example, a ball mill such as a planetary ball mill, a rolling ball mill, a vibrating ball mill, a vertical roller mill such as a ring roller mill, a high-speed rotation mill such as a hammer mill and a cage mill, and an air current such as a jet mill. A type mill and the like can be mentioned.
 前記硫黄変性有機化合物とは、硫黄を少なくとも25質量%以上、好ましくは30質量%以上含有した有機化合物であり、リチウムイオンを吸蔵、放出し得る、二次電池の電極活物質として使用可能な化合物をいう。硫黄変性有機化合物は、硫黄と、有機化合物、例えばポリアクリロニトリル化合物、エラストマー化合物、ピッチ化合物、多核芳香環化合物、脂肪族炭化水素酸化物、ポリエーテル化合物、ポリアセン化合物、ポリアミド化合物、ヘキサクロロブタジエン化合物等を混合し、非酸化性ガス雰囲気中250℃~600℃で加熱変性して製造することができる。非酸化性雰囲気とは、酸素濃度が5体積%未満、好ましくは2体積%未満、更に好ましくは、酸素を実質的に含有しない雰囲気、即ち、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気や、硫黄ガス雰囲気のことである。 The sulfur-modified organic compound is an organic compound containing at least 25% by mass or more, preferably 30% by mass or more of sulfur and capable of occluding and releasing lithium ions and usable as an electrode active material of a secondary battery. Say. Sulfur-modified organic compounds include sulfur and organic compounds such as polyacrylonitrile compounds, elastomer compounds, pitch compounds, polynuclear aromatic ring compounds, aliphatic hydrocarbon oxides, polyether compounds, polyacene compounds, polyamide compounds, and hexachlorobutadiene compounds. It can be manufactured by mixing and heat denaturing at 250 ° C. to 600 ° C. in a non-oxidizing gas atmosphere. The non-oxidizing atmosphere is an atmosphere having an oxygen concentration of less than 5% by volume, preferably less than 2% by volume, more preferably an atmosphere containing substantially no oxygen, that is, an inert gas atmosphere such as nitrogen, helium, or argon, It is a sulfur gas atmosphere.
 均一で平滑な電極合剤層を得る観点及びスラリー化工程でのハンドリング性の点から、本発明における正極活物質の平均粒子径(D50)は、0.5μm~100μmが好ましく、1μm~50μmがより好ましく、1μm~30μmが更に好ましい。本発明において、平均粒子径(D50)とは、レーザー回折光散乱法により測定された50%粒子径をいう。粒子径は体積基準の直径であり、レーザー回折光散乱法では、二次粒子の直径が測定される。 The average particle diameter (D50) of the positive electrode active material in the present invention is preferably 0.5 μm to 100 μm, and more preferably 1 μm to 50 μm, from the viewpoint of obtaining a uniform and smooth electrode mixture layer and the handleability in the slurrying step. More preferably, it is more preferably from 1 μm to 30 μm. In the present invention, the average particle diameter (D50) refers to a 50% particle diameter measured by a laser diffraction light scattering method. The particle diameter is a volume-based diameter, and the diameter of the secondary particles is measured by the laser diffraction light scattering method.
 正極活物質は、粉砕等の方法により所望の粒径とすることができる。粉砕は、気体中で行う乾式粉砕でも、水等の液体中で行う湿式粉砕でもよい。工業的な粉砕方法としては、例えば、ボールミル、ローラーミル、ターボミル、ジェットミル、サイクロンミル、ハンマーミル、ピンミル、回転ミル、振動ミル、遊星ミル、アトライター、ビーズミルが挙げられる。 The positive electrode active material can have a desired particle size by a method such as pulverization. The pulverization may be dry pulverization performed in a gas or wet pulverization performed in a liquid such as water. Examples of the industrial pulverization method include a ball mill, a roller mill, a turbo mill, a jet mill, a cyclone mill, a hammer mill, a pin mill, a rotary mill, a vibration mill, a planetary mill, an attritor, and a bead mill.
(バインダー)
 前記バインダーとしては、公知のものを用いることができる。具体的には、例えば、スチレン-ブタジエンゴム、ブタジエンゴム、アクリロニトリル-ブタジエンゴム、エチレン-プロピレン-ジエンゴム、スチレン-イソプレンゴム、フッ素ゴム、ポリエチレン、ポリプロピレン、ポリアクリルアミド、ポリアミド、ポリアミドイミド、ポリイミド、ポリアクリロニトリル、ポリウレタン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン-アクリル酸エステル共重合体、エチレン-ビニルアルコール共重合体、ポリメチルメタクリレート、ポリアクリレート、ポリビニルアルコール、ポリエチレンオキサイド、ポリビニルピロリドン、ポリビニルエーテル、ポリ塩化ビニル、アクリル酸、ポリアクリル酸、メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、セルロースナノファイバー、デンプン等が挙げられる。バインダーは1種のみ使用してもよく、2種以上を組合せて使用してもよい。バインダーの含有量は、正極活物質100質量部に対して、1質量部~30質量部が好ましく、1質量部~20質量部がより好ましい。
(binder)
Known binders can be used as the binder. Specifically, for example, styrene-butadiene rubber, butadiene rubber, acrylonitrile-butadiene rubber, ethylene-propylene-diene rubber, styrene-isoprene rubber, fluororubber, polyethylene, polypropylene, polyacrylamide, polyamide, polyamideimide, polyimide, polyacrylonitrile , Polyurethane, polyvinylidene fluoride, polytetrafluoroethylene, styrene-acrylate copolymer, ethylene-vinyl alcohol copolymer, polymethyl methacrylate, polyacrylate, polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, polyvinyl ether, polychloride Vinyl, acrylic acid, polyacrylic acid, methyl cellulose, carboxymethyl cellulose, carboxymethyl cellulose Sodium, cellulose nanofibers, and starch. Only one binder may be used, or two or more binders may be used in combination. The content of the binder is preferably from 1 to 30 parts by mass, more preferably from 1 to 20 parts by mass, per 100 parts by mass of the positive electrode active material.
(導電助剤)
 前記導電助剤としては、電極の導電助剤として公知のものを用いることができる。具体的には、例えば、天然黒鉛、人造黒鉛、コールタールピッチ、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック、ローラーブラック、ディスクブラック、カーボンナノチューブ、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、グラフェン、フラーレン、ニードルコークス、等の炭素材料;アルミニウム粉、ニッケル粉、チタン粉等の金属粉末;酸化亜鉛、酸化チタン等の導電性金属酸化物;La、Sm、Ce、TiS等の硫化物が挙げられる。導電助剤の粒子径は、0.0001μm~100μmが好ましく、0.01μm~50μmがより好ましい。導電助剤の含有量は、電極活物質100質量部に対して、通常0.1~50質量部であり、1~30質量部が好ましく、2~20質量部がより好ましい。
(Conduction aid)
As the conductive assistant, those known as conductive assistants for electrodes can be used. Specifically, for example, natural graphite, artificial graphite, coal tar pitch, carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, roller black, disk black, carbon nanotube, gas phase Carbon materials such as carbon fiber (Vapor Carbon Carbon Fiber: VGCF), graphene, fullerene, and needle coke; metal powders such as aluminum powder, nickel powder, and titanium powder; conductive metal oxides such as zinc oxide and titanium oxide; Sulfides such as La 2 S 3 , Sm 2 S 3 , Ce 2 S 3 , and TiS 2 are exemplified. The particle size of the conductive additive is preferably from 0.0001 μm to 100 μm, more preferably from 0.01 μm to 50 μm. The content of the conductive additive is usually 0.1 to 50 parts by mass, preferably 1 to 30 parts by mass, and more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the electrode active material.
(溶媒)
 前記電極合剤ペーストを調製するための溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ニトロメタン、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、ポリエチレンオキシド、テトラヒドロフラン、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン、水、アルコール等が挙げられる。溶媒の使用量は、スラリーを塗膜する際に選択する方法にあわせて調整すればよく、例えば、ドクターブレード法による塗布の場合、正極活物質、バインダー及び導電助剤の合計量100質量部に対して、15~300質量部が好ましく、30~200質量部がより好ましい。
(solvent)
Examples of the solvent for preparing the electrode mixture paste include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, acetonitrile, and acetonitrile. Pionitrile, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, nitromethane, N-methylpyrrolidone, N, N-dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N , N-dimethylaminopropylamine, polyethylene oxide, tetrahydrofuran, dimethyl sulfoxide, sulfolane, γ-butyrolactone, water, alcohol Etc. The. The amount of the solvent used may be adjusted according to the method selected when coating the slurry.For example, in the case of application by the doctor blade method, the total amount of the positive electrode active material, the binder and the conductive additive is 100 parts by mass. On the other hand, the amount is preferably from 15 to 300 parts by mass, more preferably from 30 to 200 parts by mass.
 前記電極合剤ペーストには、本発明の効果を損なわない範囲で、前記成分に加え、例えば、粘度調整剤、補強材、酸化防止剤、pH調整剤、分散剤等の他の成分を含有させても構わない。これらの他の成分としては公知のものを、公知の配合比率で使用することができる。 The electrode mixture paste contains, in addition to the above components, other components such as a viscosity adjuster, a reinforcing material, an antioxidant, a pH adjuster, and a dispersant, in a range that does not impair the effects of the present invention. It does not matter. As these other components, known components can be used in known mixing ratios.
(電極合剤ペースト製造工程)
 前記電極合剤ペーストの製造において、正極活物質、バインダー及び導電助剤を溶媒に分散又は溶解させる際、すべてを一括して溶媒に加えて分散処理することができ、別々に加えて分散処理することもできる。溶媒中に、バインダー、導電助剤、活物質の順番で逐次添加して分散処理を行なうと、これらを溶媒に均一に分散できるため好ましい。電極合剤ペーストが他の成分を含有する場合、他の成分を一括して加えて分散処理することができるが、1種添加するごとに分散処理することが好ましい。
(Electrode mixture paste manufacturing process)
In the production of the electrode mixture paste, when dispersing or dissolving the positive electrode active material, the binder and the conductive auxiliary in a solvent, all can be added to the solvent at once and subjected to dispersion treatment, and separately added and dispersed. You can also. It is preferable to sequentially add a binder, a conductive auxiliary agent, and an active material to a solvent in the order of the dispersion treatment, since these can be uniformly dispersed in the solvent. When the electrode mixture paste contains other components, the other components can be added at once and subjected to a dispersion treatment. However, it is preferable to perform the dispersion treatment every time one kind is added.
 分散処理の方法としては特に制限されないが、工業的な方法として、例えば、通常のボールミル、サンドミル、ビーズミル、サイクロンミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、自転・公転ミキサー、プラネタリーミキサー、フィルミックス、ジェットペースタ等を使用することができる。 The method of the dispersion treatment is not particularly limited, but as an industrial method, for example, a normal ball mill, a sand mill, a bead mill, a cyclone mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a rotation / revolution mixer, A planetary mixer, a fill mix, a jet paster, or the like can be used.
(集電体)
 前記集電体としては、チタン、チタン合金、アルミニウム、アルミニウム合金、ニッケル、ステンレス鋼、ニッケルメッキ鋼、カーボン等の導電材料が用いられる。集電体の形状としては、箔状、板状、網状、発泡状、不織布状等が挙げられ、集電体は多孔質又は無孔のどちらでも構わない。また、これらの導電材料は、密着性や電気特性を改良するために表面処理が施されている場合がある。これらの導電材料の中でも、導電性や価格の観点からアルミニウムが好ましく、アルミニウム箔が特に好ましい。集電体の厚みは、特に制限はないが、通常5~30μmである。
(Current collector)
As the current collector, a conductive material such as titanium, a titanium alloy, aluminum, an aluminum alloy, nickel, stainless steel, nickel-plated steel, and carbon is used. Examples of the shape of the current collector include a foil shape, a plate shape, a net shape, a foamed shape, and a nonwoven fabric shape. The current collector may be either porous or non-porous. In addition, these conductive materials may be subjected to a surface treatment in order to improve adhesion and electrical characteristics. Among these conductive materials, aluminum is preferred from the viewpoint of conductivity and price, and aluminum foil is particularly preferred. The thickness of the current collector is not particularly limited, but is usually 5 to 30 μm.
(正極製造工程)
 電極合剤ペーストを集電体に塗布する方法は、特に限定されないが、例えば、ダイコーター法、コンマコーター法、カーテンコーター法、スプレーコーター法、グラビアコーター法、フレキソコーター法、ナイフコーター法、ドクターブレード法、リバースロール法、ハケ塗り法、ディップ法等の各手法を用いることができる。電極合剤ペーストの粘性及び乾燥性に合わせて、良好な塗布層の表面状態を得ることが可能となる点で、ダイコーター法、ナイフコーター法、ドクターブレード法、コンマコーター法が好ましい。
(Positive electrode manufacturing process)
The method of applying the electrode mixture paste to the current collector is not particularly limited. For example, a die coater method, a comma coater method, a curtain coater method, a spray coater method, a gravure coater method, a flexo coater method, a knife coater method, a doctor coater method Each method such as a blade method, a reverse roll method, a brush coating method, and a dip method can be used. A die coater method, a knife coater method, a doctor blade method, and a comma coater method are preferable in that a good coating layer surface state can be obtained in accordance with the viscosity and drying properties of the electrode mixture paste.
 電極合剤ペーストの集電体への塗布は、集電体の片面のみに行ってもよく、両面に行うこともできる。集電体の両面に塗布する場合は、片面ずつ逐次塗布することができ、両面同時に塗布することもできる。また、集電体の表面に連続に塗布することができ、間欠して塗布することもでき、ストライプ状で塗布することもできる。塗布層の厚さ、長さや幅は、電池の大きさ等に応じて、適宜、決定することができる。 塗布 The application of the electrode mixture paste to the current collector may be performed on only one side of the current collector, or may be performed on both sides. When applied to both surfaces of the current collector, the current collector can be applied one by one successively, or both surfaces can be applied simultaneously. Further, it can be applied continuously to the surface of the current collector, can be applied intermittently, or can be applied in a stripe shape. The thickness, length and width of the coating layer can be appropriately determined according to the size of the battery and the like.
 集電体上に塗布された電極合剤ペーストを乾燥させる方法としては、特に限定されず、公知の方法を用いることができる。乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、加熱炉などに静置する、遠赤外線や赤外線、又は電子線等を照射することによる乾燥が挙げられる。これらは組合せて実施することができる。加熱する場合の温度は、例えば、一般的には50℃~180℃程度であるが、温度などの条件はスラリー組成物の塗布量、使用した溶媒の沸点等に応じて適宜設定することができる。この乾燥により、電極合剤ペースト組成物の塗膜から溶媒等の揮発成分が揮発し、集電体上に電極合剤層が形成される。 方法 The method of drying the electrode mixture paste applied on the current collector is not particularly limited, and a known method can be used. Examples of the drying method include drying with warm air, hot air, low-humidity air, vacuum drying, standing in a heating furnace or the like, and drying by irradiating far-infrared rays, infrared rays, electron beams, or the like. These can be implemented in combination. The temperature at the time of heating is, for example, generally about 50 ° C. to 180 ° C., but the conditions such as the temperature can be appropriately set according to the application amount of the slurry composition, the boiling point of the solvent used, and the like. . By this drying, volatile components such as a solvent are volatilized from the coating film of the electrode mixture paste composition, and an electrode mixture layer is formed on the current collector.
 硫黄、硫黄-炭素複合体、硫黄変性有機化合物などリチウムを含まない材料を正極活物質として用いる場合、リチウムをあらかじめドープすることもできる。前記材料にドープする方法は、公知の方法に従えばよい。例えば、対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電解ドープ法によってリチウムを挿入する方法や、金属リチウム箔を電極に貼り付けたあと電解液の中に放置し電極へのリチウムの拡散を利用してドープする貼り付けドープ法によりリチウムを挿入する方法、活物質とリチウム金属を機械的に衝突させ、リチウムを挿入するメカニカルドープ法等が挙げられるが、これらに限定されるものではない。 (4) When a lithium-free material such as sulfur, a sulfur-carbon composite, or a sulfur-modified organic compound is used as the positive electrode active material, lithium can be doped in advance. The method of doping the material may be a known method. For example, assembling a half-cell using metallic lithium as the counter electrode and inserting lithium by an electrolytic doping method of electrochemically doping lithium, or attaching a metallic lithium foil to the electrode and leaving it in the electrolytic solution There is a method of inserting lithium by a sticking doping method of doping using diffusion of lithium to the electrode, a mechanical doping method of mechanically colliding an active material with lithium metal and inserting lithium, and the like. It is not limited.
<負極>
 本発明で用いるケイ素原子を含有する負極は、特に限定されるものではなく、ケイ素原子を含有する負極活物質を用い、公知の方法に準じて製造することができる。例えば、ケイ素原子を含有する負極活物質、バインダー及び導電助剤を含む配合物を有機溶媒又は水でスラリー化した電極合剤ペーストを、集電体に塗布して乾燥することにより、集電体上に電極合剤層が形成された負極を製造することができる。
<Negative electrode>
The negative electrode containing a silicon atom used in the present invention is not particularly limited, and can be produced according to a known method using a negative electrode active material containing a silicon atom. For example, a negative electrode active material containing a silicon atom, an electrode mixture paste obtained by slurrying a composition containing a binder and a conductive auxiliary agent with an organic solvent or water, by coating and drying the current collector, the current collector A negative electrode having an electrode mixture layer formed thereon can be manufactured.
(負極活物質)
 ケイ素原子を含有する負極活物質としては、例えば、単体ケイ素、窒化ケイ素、ケイ素を含有する合金、SiO、SiO、SiO、及びSi含有材料を炭素材料で被膜した、又はSi含有材料と炭素材料を複合化したSi含有材料と炭素材料の複合化物などが挙げられる。前記のSi含有材料としては単体ケイ素、窒化ケイ素、ケイ素を含有する合金、SiO、SiO、SiOが挙げられる。ケイ素原子を含有する負極活物質は、カーボンコートされていてもよい。ケイ素原子を含有する負極活物質は、1種のみ使用してもよく、2種以上を組合せて使用してもよい。
(Negative electrode active material)
Examples of the negative electrode active material containing a silicon atom include simple substance silicon, silicon nitride, an alloy containing silicon, SiO, SiO x , SiO 2 , and a Si-containing material coated with a carbon material, or a mixture of a Si-containing material and carbon. A composite material of a Si-containing material and a carbon material in which the material is composited is exemplified. Examples of the Si-containing material include simple silicon, silicon nitride, an alloy containing silicon, SiO, SiO x , and SiO. The negative electrode active material containing a silicon atom may be carbon-coated. As the negative electrode active material containing a silicon atom, only one type may be used, or two or more types may be used in combination.
 前記窒化ケイ素(Si)は、結晶相がα相であっても、β相であってもよい。
 前記ケイ素を含有する合金としては、例えば、ケイ素以外の第2の構成元素として、リチウム、アルミニウム、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムからなる群のうちの少なくとも1種を含むものが挙げられる。
The silicon nitride (Si 3 N 4 ) may have an α-phase or β-phase crystal phase.
As the alloy containing silicon, for example, as the second constituent element other than silicon, lithium, aluminum, tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, and antimony And at least one of the group consisting of chromium.
 前記SiOのxは、通常、0.01以上2未満である。xを一定以上とすることで、高いSi比率に起因して生じ得る充放電時の体積変化を抑制でき、当該体積変化によるサイクル特性の低下を防止できる。xを一定以下とすることでSi比率を高めて容量の低下を抑制できる。これらの点からx=0.5~1.6が好ましく、0.8~1.3がより好ましい。SiOは、例えば、SiとSiOの反応や、一酸化ケイ素(SiO)の不均化反応を利用して形成することができる。具体的には、例えば、SiOを、ポリビニルアルコールなどのポリマーの存在下で熱処理し、Si及びSiOを生成させることにより、SiOを調製することができるが、これに限定されるものではない。前記熱処理は、例えば、SiOとポリマーとを粉砕混合した後、有機物ガス及び/又は蒸気を含む雰囲気下、900℃以上、好ましくは1000℃以上の温度で行うことができる。 X of the SiO x is usually 0.01 or more and less than 2. By setting x to a certain value or more, it is possible to suppress a volume change at the time of charging and discharging that may occur due to a high Si ratio, and to prevent a decrease in cycle characteristics due to the volume change. By setting x to be equal to or less than a certain value, the decrease in capacity can be suppressed by increasing the Si ratio. From these points, x is preferably 0.5 to 1.6, and more preferably 0.8 to 1.3. SiO x can be formed using, for example, a reaction between Si and SiO 2 or a disproportionation reaction of silicon monoxide (SiO). Specifically, for example, a SiO, heat treated in the presence of polymers such as polyvinyl alcohol, by forming a Si and SiO 2, can be prepared SiO x, it is not limited thereto . The heat treatment can be performed, for example, at a temperature of 900 ° C. or higher, preferably 1000 ° C. or higher in an atmosphere containing an organic substance gas and / or steam after pulverizing and mixing SiO and a polymer.
 Si含有材料と炭素材料の複合化物を製造する際の複合化方法としては、特に限定されないが、例えば、ベンゼン、トルエン、キシレン、アルカン等を炭素源として気相中で分解し、粒子の表面に化学的に蒸着させるCVD方法、ピッチ、タールあるいはフルフリルアルコールなどの熱可塑性樹脂を粒子の表面に塗布した後に焼成する方法、あるいは粒子と炭素材料との間に機械的エネルギーを作用させて複合体を形成するメカノケミカル反応を用いた方法を用いることができる。なかでも、均一に炭素材料を被覆できることからCVD法を用いることが好ましい。 The method of compounding when producing a compound of the Si-containing material and the carbon material is not particularly limited.For example, benzene, toluene, xylene, alkane, or the like is decomposed in a gas phase with a carbon source, and CVD method of chemical vapor deposition, method of applying thermoplastic resin such as pitch, tar or furfuryl alcohol on the surface of particles and then firing, or applying mechanical energy between particles and carbon material to composite A method using a mechanochemical reaction that forms Among them, it is preferable to use the CVD method because the carbon material can be uniformly coated.
 負極は、炭素材料と複合化されているかいないかに関わらず、単体ケイ素又はSiO(X=0.5~1.6)を含有することが充放電容量及びサイクル特性が優れている点で特に好ましい。 Regardless of whether the negative electrode is composited with a carbon material or not, it is particularly preferable that the negative electrode contains silicon or SiO x (X = 0.5 to 1.6) because of its excellent charge / discharge capacity and cycle characteristics. preferable.
 本発明で用いるケイ素原子を含有する負極は、負極活物質として更に炭素材料を含有してもよい。負極活物質として含有することができる炭素材料としては、リチウムイオンが脱挿入可能な公知の材料を用いることができる。負極活物質として用いることができる炭素材料としては、例えば、天然黒鉛、人造黒鉛、難黒鉛化炭素、易黒鉛化炭素等が挙げられる。本発明で用いるケイ素原子を含有する負極は、負極活物質として更にリチウム-遷移金属複合酸化物(例えば、LiTi12)やスズ等を含有してもよい。 The negative electrode containing a silicon atom used in the present invention may further contain a carbon material as a negative electrode active material. As the carbon material that can be contained as the negative electrode active material, a known material from which lithium ions can be inserted and removed can be used. Examples of the carbon material that can be used as the negative electrode active material include natural graphite, artificial graphite, non-graphitizable carbon, graphitizable carbon, and the like. The negative electrode containing a silicon atom used in the present invention may further contain a lithium-transition metal composite oxide (eg, Li 4 Ti 5 O 12 ), tin, or the like as a negative electrode active material.
 前記負極におけるケイ素原子の含有量は、特に限定されないが、含有量が少ないと容量の改善効果が小さく、含有量が多いと充放電に伴う負極活物質の体積変化率が大きくなって電極の耐久性及び非水電解質二次電池のサイクル特性が低下する。そのため、電極合剤層中のケイ素原子の含有量は、1質量%~98質量%が好ましく、2質量%~95質量%がより好ましく、5質量%~90質量%が更に好ましく、5質量%~80質量%が更に一層好ましく、5質量%~70質量%が最も好ましい。この量はケイ素原子基準の量であり、例えば誘導結合プラズマ発光分光分析装置(ICP-AES)や電子線マイクロアナライザー(EPMA)、エネルギー分散型X線分析装置(EDX)等により測定できる。 The content of silicon atoms in the negative electrode is not particularly limited, but a small content has a small effect of improving capacity, and a large content increases the rate of change in volume of the negative electrode active material due to charge and discharge and increases the durability of the electrode. And the cycle characteristics of the non-aqueous electrolyte secondary battery decrease. Therefore, the content of silicon atoms in the electrode mixture layer is preferably 1% by mass to 98% by mass, more preferably 2% by mass to 95% by mass, still more preferably 5% by mass to 90% by mass, and 5% by mass. The content is more preferably from 80 to 80% by mass, and most preferably from 5 to 70% by mass. This amount is based on silicon atoms and can be measured by, for example, an inductively coupled plasma emission spectrometer (ICP-AES), an electron beam microanalyzer (EPMA), an energy dispersive X-ray analyzer (EDX), or the like.
 負極活物質の形状は、特に限定されないが、例えば、球状、多面体状、繊維状、棒状、板状、鱗片状、又は無定形状であり、これらは中空状であってもよい。これらの形状の中で、電極合剤層が均一に形成されることから、球状又は多面体状が好ましい。 形状 The shape of the negative electrode active material is not particularly limited, but may be, for example, spherical, polyhedral, fibrous, rod-like, plate-like, scale-like, or amorphous, and may be hollow. Among these shapes, a spherical or polyhedral shape is preferable because the electrode mixture layer is formed uniformly.
 ケイ素原子を含む負極活物質の粒子径は、大き過ぎると均一で平滑な電極合剤層が得られない場合があり、小さ過ぎるとスラリー化工程でのハンドリング性が低下する。そのため、本発明におけるケイ素原子を含む負極活物質の平均粒子径(D50)は、0.01μm~50μmが好ましく、0.05μm~30μmがより好ましく、0.1μm~20μmが更に好ましい。なお負極活物質がケイ素を含まない炭素材料を含む場合、該炭素材料を含めた負極活物質の平均粒子径を、ケイ素原子を含む負極活物質の平均粒子径に関する上述した好ましい範囲と同様の範囲としてもよい。 If the particle diameter of the negative electrode active material containing silicon atoms is too large, a uniform and smooth electrode mixture layer may not be obtained, and if the particle diameter is too small, the handling property in the slurrying step is reduced. Therefore, the average particle diameter (D50) of the silicon-containing negative electrode active material in the present invention is preferably 0.01 μm to 50 μm, more preferably 0.05 μm to 30 μm, and further preferably 0.1 μm to 20 μm. When the negative electrode active material contains a carbon material that does not contain silicon, the average particle diameter of the negative electrode active material containing the carbon material is in the same range as the preferable range described above for the average particle diameter of the negative electrode active material containing silicon atoms. It may be.
 負極活物質は、粉砕等の方法により所望の粒径とすることができる。粉砕は、気体中で行う乾式粉砕でも、水等の液体中で行う湿式粉砕でもよい。工業的な粉砕方法としては、例えば、ボールミル、ローラーミル、ターボミル、ジェットミル、サイクロンミル、ハンマーミル、ピンミル、回転ミル、振動ミル、遊星ミル、アトライター、ビーズミルが挙げられる。複数種類の負極活物質を用いる場合、負極活物質の粉砕は材料ごとに粉砕した後に混合してもよいし、混合した後に粉砕してもよい。 The negative electrode active material can have a desired particle size by a method such as pulverization. The pulverization may be dry pulverization performed in a gas or wet pulverization performed in a liquid such as water. Examples of the industrial pulverization method include a ball mill, a roller mill, a turbo mill, a jet mill, a cyclone mill, a hammer mill, a pin mill, a rotary mill, a vibration mill, a planetary mill, an attritor, and a bead mill. When a plurality of types of negative electrode active materials are used, the negative electrode active materials may be pulverized for each material and then mixed, or may be mixed and pulverized.
(バインダー)
 前記バインダーは、公知のものを用いることができる。バインダーの具体例としては、例えば、正極に用いるバインダーと同様のものが挙げられる。バインダーは1種のみ使用してもよく、2種以上を組合せて使用してもよい。バインダーの含有量は、負極活物質100質量部に対して、1質量部~30質量部が好ましく、1質量部~20質量部がより好ましい。
(binder)
Known binders can be used as the binder. Specific examples of the binder include, for example, those similar to the binder used for the positive electrode. Only one binder may be used, or two or more binders may be used in combination. The content of the binder is preferably from 1 to 30 parts by mass, more preferably from 1 to 20 parts by mass, per 100 parts by mass of the negative electrode active material.
(導電助剤)
 前記導電助剤としては、電極の導電助剤として公知のものを用いることができる。具体的には、正極に用いる導電助剤と同様のものが挙げられる。
 導電助剤の粒子径は、0.0001μm~100μmが好ましく、0.01μm~50μmがより好ましい。
 導電助剤の含有量は、負極活物質100質量部に対して、通常0~50質量部であり、0.5~30質量部が好ましく、1~20質量部がより好ましい。
(Conduction aid)
As the conductive assistant, those known as conductive assistants for electrodes can be used. Specifically, the same as the conductive additive used for the positive electrode can be used.
The particle size of the conductive additive is preferably from 0.0001 μm to 100 μm, more preferably from 0.01 μm to 50 μm.
The content of the conductive additive is usually 0 to 50 parts by mass, preferably 0.5 to 30 parts by mass, more preferably 1 to 20 parts by mass, based on 100 parts by mass of the negative electrode active material.
(溶媒)
 前記電極合剤ペーストを調製するための溶媒としては、例えば、正極の電極合剤ペーストを調製するのに使用される溶媒と同様のものが挙げられる。溶媒の使用量は、スラリーを塗膜する際に選択する方法にあわせて調整することができ、例えば、ドクターブレード法による塗布の場合、負極活物質、バインダー及び導電助剤の合計量100質量部に対し、15~300質量部が好ましく、30~200質量部が更に好ましい。
(solvent)
Examples of the solvent for preparing the electrode mixture paste include the same solvents as those used for preparing the positive electrode mixture paste. The amount of the solvent used can be adjusted according to the method selected when coating the slurry. For example, in the case of application by the doctor blade method, the total amount of the negative electrode active material, the binder and the conductive auxiliary agent is 100 parts by mass. Is preferably 15 to 300 parts by mass, more preferably 30 to 200 parts by mass.
 電極合剤ペーストには、本発明の効果を損なわない範囲で、前記成分に加え、例えば、粘度調整剤、補強材、酸化防止剤、pH調整剤、分散剤等の他の成分を含有させても構わない。これらの他の成分としては公知のものを、公知の配合比率で使用することができる。 In the electrode mixture paste, in addition to the above components, within a range not impairing the effects of the present invention, for example, a viscosity modifier, a reinforcing material, an antioxidant, a pH adjuster, and other components such as a dispersant are contained. No problem. As these other components, known components can be used in known mixing ratios.
(電極合剤ペースト製造工程)
 電極合剤ペーストの製造において、正極活物質の代わりに負極活物質を用いる以外は、正極の電極合剤ペーストの製造工程と同様の工程で配合、分散し、製造することができる。
(Electrode mixture paste manufacturing process)
Except for using the negative electrode active material instead of the positive electrode active material in the production of the electrode mixture paste, it can be blended, dispersed and produced in the same process as the production process of the positive electrode mixture paste.
(集電体)
 前記集電体としては、チタン、チタン合金、アルミニウム、アルミニウム合金、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、カーボン等の導電材料が用いられる。集電体の形状としては、箔状、板状、網状、発泡状、不織布状等が挙げられ、集電体は多孔質又は無孔のどちらでも構わない。また、これらの導電材料は、密着性や電気特性を改良するために表面処理が施されている場合がある。これらの導電材料のなかでも、負極電位での安定性、導電性及び価格の観点から銅が好ましく、銅箔が特に好ましい。集電体の厚みは、特に制限はないが、通常5~30μmである。
(Current collector)
As the current collector, a conductive material such as titanium, a titanium alloy, aluminum, an aluminum alloy, copper, nickel, stainless steel, nickel-plated steel, and carbon is used. Examples of the shape of the current collector include a foil shape, a plate shape, a net shape, a foamed shape, and a nonwoven fabric shape. The current collector may be either porous or non-porous. In addition, these conductive materials may be subjected to a surface treatment in order to improve adhesion and electrical characteristics. Among these conductive materials, copper is preferred from the viewpoints of stability at negative electrode potential, conductivity, and price, and copper foil is particularly preferred. The thickness of the current collector is not particularly limited, but is usually 5 to 30 μm.
 本発明で用いる負極は、リチウムをあらかじめドープして使用することもできる。ドープの方法は、公知の方法に従えばよい。例えば、対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電解ドープ法によってリチウムを挿入する方法や、金属リチウム箔を電極に貼り付けたあと電解液の中に放置し電極へのリチウムの拡散を利用してドープする、貼り付けドープ法によりリチウムを挿入する方法、活物質とリチウム金属を機械的に衝突させ、リチウムを挿入するメカニカルドープ法等が挙げられるが、これらに限定されるものではない。 負極 The negative electrode used in the present invention may be used after being doped with lithium in advance. The doping method may be in accordance with a known method. For example, assembling a half-cell using metallic lithium as the counter electrode and inserting lithium by electrolytic doping method of electrochemically doping lithium, or attaching a metallic lithium foil to the electrode and leaving it in the electrolytic solution Doping using the diffusion of lithium into the electrode, a method of inserting lithium by a sticking doping method, a mechanical doping method of mechanically colliding an active material with lithium metal and inserting lithium, and the like. However, the present invention is not limited to this.
 本発明で用いる負極活物質又は負極は、その表面にシロキサン結合を有する材料で被膜が形成されていてもよい。シロキサン結合を有する材料や、被膜を形成する方法は、公知の方法に従えばよい。 負極 The negative electrode active material or the negative electrode used in the present invention may have a film formed on its surface with a material having a siloxane bond. A material having a siloxane bond and a method of forming a film may be in accordance with a known method.
<非水電解質>
 本発明の非水電解質二次電池に用いられる非水電解質は、下記一般式(1)で表される化合物を含有する。
<Non-aqueous electrolyte>
The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention contains a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
(式中、R~Rは、それぞれ独立に炭素原子数1~10の炭化水素基を表し、Rは、炭素原子数1~10のn価の炭化水素基、炭素原子数1~10の炭化水素基が酸素原子若しくは硫黄原子で連結されたn価の基、又は酸素原子若しくは硫黄原子を含む炭素原子数3~6のn価の複素環基を表し、nは1~6の整数を表す。)
 n個存在するRは互いに同一であっても異なっていてもよい。それぞれn個存在するR及びRも同様である。
Figure JPOXMLDOC01-appb-C000004
(Wherein, R 1 to R 3 each independently represent a hydrocarbon group having 1 to 10 carbon atoms, R 4 is an n-valent hydrocarbon group having 1 to 10 carbon atoms, and 1 to 10 carbon atoms) An n-valent group in which 10 hydrocarbon groups are linked by an oxygen atom or a sulfur atom, or an n-valent heterocyclic group having 3 to 6 carbon atoms containing an oxygen atom or a sulfur atom, wherein n is 1 to 6 Represents an integer.)
n number R 1 present may or may not be the same as each other. The same applies to R 2 and R 3 each having n pieces.
 非水電解質が上記一般式(1)で表される化合物を含有することによって、ケイ素原子を含有する負極を用いた非水電解質二次電池の、サイクル特性及びレート特性を良好なものとすることができる。 When the nonaqueous electrolyte contains the compound represented by the general formula (1), the cycle characteristics and the rate characteristics of the nonaqueous electrolyte secondary battery using the negative electrode containing a silicon atom are improved. Can be.
 一般式(1)で表される化合物における、R~Rで表される炭素原子数1~10の炭化水素基としては、例えば、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、芳香族炭化水素基等が挙げられる。具体的には、メチル基、エチル基、プロピル基、i-プロピル基、ブチル基、2-ブチル基、i-ブチル基、t-ブチル基、ペンチル基、2-ペンチル基、3-ペンチル基、i-ペンチル基、ヘキシル基、2-ヘキシル基、3-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、ノニル基、デシル基、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、ノルボルナン基、アダマンチル基等の飽和脂肪族炭化水素基、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、オクテニル基、シクロペンテニル基、シクロヘキセニル基、シクロオクテニル基、ノルボルネン基等の不飽和脂肪族炭化水素基、フェニル基、メチルフェニル基、エチルフェニル基、t-ブチルフェニル基、フェニルメチル基、フェニルエチル基、ナフチル基等の芳香族炭化水素基が挙げられる。前記飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基は、直鎖状構造であっても、分岐状構造であっても構わない。なかでも、R~Rを表す炭素原子数1~10の炭化水素基としては、サイクル特性及びレート特性がともに改善されること、製造工程が簡便なことから、炭素原子数1~4の脂肪族炭化水素基又は炭素数6~10の芳香族炭化水素基が好ましく、メチル基、エチル基、ブチル基、ビニル基又はフェニル基がより好ましく、メチル基、エチル基、ビニル基又はフェニル基が更に好ましく、メチル基が最も好ましい。 Examples of the hydrocarbon group having 1 to 10 carbon atoms represented by R 1 to R 3 in the compound represented by the general formula (1) include, for example, a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group. And aromatic hydrocarbon groups. Specifically, methyl, ethyl, propyl, i-propyl, butyl, 2-butyl, i-butyl, t-butyl, pentyl, 2-pentyl, 3-pentyl, i-pentyl, hexyl, 2-hexyl, 3-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, nonyl, decyl, cyclopentyl, cyclohexyl, methylcyclohexyl, norbornane Group, saturated aliphatic hydrocarbon group such as adamantyl group, unsaturated aliphatic group such as vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, octenyl group, cyclopentenyl group, cyclohexenyl group, cyclooctenyl group, norbornene group, etc. Hydrocarbon group, phenyl group, methylphenyl group, ethylphenyl group, t-butylphenyl group, phenylmethyl group Phenylethyl group, and aromatic hydrocarbon groups such as a naphthyl group. The saturated aliphatic hydrocarbon group and the unsaturated aliphatic hydrocarbon group may have a linear structure or a branched structure. Among them, the hydrocarbon group having 1 to 10 carbon atoms representing R 1 to R 3 is preferably a hydrocarbon group having 1 to 4 carbon atoms because both the cycle characteristics and the rate characteristics are improved and the production process is simple. An aliphatic hydrocarbon group or an aromatic hydrocarbon group having 6 to 10 carbon atoms is preferable, a methyl group, an ethyl group, a butyl group, a vinyl group or a phenyl group is more preferable, and a methyl group, an ethyl group, a vinyl group or a phenyl group is more preferable. Even more preferred is a methyl group.
 一般式(1)で表される化合物の含有量は、非水電解質中の0.01質量%~20質量%が好ましく、0.05質量%~10質量%がより好ましく、0.1質量%~7質量%が更に好ましく、0.1質量%~5質量%が最も好ましい。含有量を0.01質量%以上にすることで、サイクル特性及びレート特性が十分に改善される、また、20質量%以下にすることで、添加量に見合ったサイクル特性及びレート特性の改善効果が期待される。 The content of the compound represented by the general formula (1) is preferably 0.01% by mass to 20% by mass, more preferably 0.05% by mass to 10% by mass, and more preferably 0.1% by mass in the nonaqueous electrolyte. -7% by mass is more preferable, and 0.1-5% by mass is most preferable. When the content is 0.01% by mass or more, the cycle characteristics and the rate characteristics are sufficiently improved. When the content is 20% by mass or less, the effect of improving the cycle characteristics and the rate characteristics commensurate with the added amount. There is expected.
 一般式(1)で表される化合物のうち、R~Rが飽和炭化水素基であり、Rが2つのメチレン基が硫黄原子で連結された基である化合物として、例えば下記の化合物No.1-1~No.1-29が挙げられるが、これに限定されるものではない。化合物No.1-28の様な表記は、置換基の位置が任意であることを示す。 Among the compounds represented by the general formula (1), R 1 to R 3 are saturated hydrocarbon groups, and R 4 is a group in which two methylene groups are connected by a sulfur atom. No. 1-1 to No. 1-29, but is not limited thereto. Compound No. A notation such as 1-28 indicates that the position of the substituent is arbitrary.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(1)で表される化合物のうち、n個存在するR~Rの何れかが不飽和炭化水素基であり、Rが2つのメチレン基が硫黄原子で連結された基である化合物として、例えば下記の化合物No.1-30~No.1-53が挙げられるが、これに限定されるものではない。 In the compound represented by the general formula (1), any one of n R 1 to R 3 is an unsaturated hydrocarbon group, and R 4 is a group in which two methylene groups are connected by a sulfur atom. As one compound, for example, the following compound No. 1-30 to No. 1-53, but is not limited thereto.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(1)で表される化合物のうち、n個存在するR~Rの何れかが芳香族炭化水素基であり、Rが2つのメチレン基が硫黄原子で連結された基である化合物として、例えば下記の化合物No.1-54~No.60が挙げられるが、これに限定されるものではない。 In the compound represented by the general formula (1), any one of n R 1 to R 3 is an aromatic hydrocarbon group, and R 4 is a group in which two methylene groups are connected by a sulfur atom. As a certain compound, for example, the following compound No. 1-54 to No. 60, but is not limited thereto.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(1)のRは、炭素原子数1~10のn価の炭化水素基、炭素原子数1~10の炭化水素基が酸素原子若しくは硫黄原子で連結されたn価の基、または酸素原子若しくは硫黄原子を含むn価の複素環基を表し、nは1~6の整数を表す。Rが炭素原子数1~10のn価の炭化水素基である場合、一般式(1)で表される化合物は、炭素原子数1~10の炭化水素のn個の水素原子が下記一般式(1a)で表される基で置換された化合物に相当する。 R 4 in the general formula (1) is an n-valent hydrocarbon group having 1 to 10 carbon atoms, an n-valent group in which a hydrocarbon group having 1 to 10 carbon atoms is connected by an oxygen atom or a sulfur atom, or Represents an n-valent heterocyclic group containing an oxygen atom or a sulfur atom, and n represents an integer of 1 to 6. When R 4 is an n-valent hydrocarbon group having 1 to 10 carbon atoms, the compound represented by the general formula (1) is a compound represented by the following general formula: This corresponds to a compound substituted with a group represented by the formula (1a).
Figure JPOXMLDOC01-appb-C000008
(式中、R~Rは、一般式(1)と同義であり、*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000008
(In the formula, R 1 to R 3 have the same meaning as in the general formula (1), and * represents a binding site.)
 n個の水素原子が一般式(1a)に置換される、炭素原子数1~10の炭化水素としては、飽和脂肪族炭化水素、不飽和脂肪族炭化水素、芳香族炭化水素等が挙げられる。具体的には、例えば、メタン、エタン、プロパン、n-ブタン、2-メチルプロパン、n-ペンタン、n-ヘキサン、シクロヘキサン、メチルシクロヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン、n-アダマンタン等の飽和脂肪族炭化水素、エテン、エチン、プロペン、プロピン、1-ブテン、2-ブテン、1,3-ブタジエン、1-ペンテン、2-ペンテン、1,3-ペンタジエン、1-ヘキセン、3-ヘキセン、1,3,5-ヘキサトリエン、シクロヘキセン、1-ヘプテン、1-オクテン、3-オクテン、1,3,5,7-オクタテトラエン、1-ノネン、1-デセン等の不飽和脂肪族炭化水素、ベンゼン、フェノール、メチルベンゼン、ジメチルベンゼン、エチルベンゼン、ブチルベンゼン、ナフタレン等の芳香族炭化水素が挙げられる。 Examples of the hydrocarbons having 1 to 10 carbon atoms in which n hydrogen atoms are substituted by the general formula (1a) include saturated aliphatic hydrocarbons, unsaturated aliphatic hydrocarbons, and aromatic hydrocarbons. Specifically, for example, methane, ethane, propane, n-butane, 2-methylpropane, n-pentane, n-hexane, cyclohexane, methylcyclohexane, n-heptane, n-octane, n-nonane, n-decane And saturated aliphatic hydrocarbons such as n-adamantane, ethene, ethyne, propene, propyne, 1-butene, 2-butene, 1,3-butadiene, 1-pentene, 2-pentene, 1,3-pentadiene, 1- Hexene, 3-hexene, 1,3,5-hexatriene, cyclohexene, 1-heptene, 1-octene, 3-octene, 1,3,5,7-octatetraene, 1-nonene, 1-decene and the like Aroma of unsaturated aliphatic hydrocarbons, benzene, phenol, methylbenzene, dimethylbenzene, ethylbenzene, butylbenzene, naphthalene, etc. Group hydrocarbons.
 一般式(1)のRが、炭素原子数1~10の炭化水素基が酸素原子若しくは硫黄原子で連結されたn価の基である場合、一般式(1)で表される化合物は、炭素原子数1~10の炭化水素基が酸素原子若しくは硫黄原子で連結された化合物のn個の水素原子が一般式(1a)で表される基で置換された化合物に相当する。 When R 4 in the general formula (1) is an n-valent group in which a hydrocarbon group having 1 to 10 carbon atoms is connected by an oxygen atom or a sulfur atom, the compound represented by the general formula (1) is The compound corresponds to a compound in which a hydrocarbon group having 1 to 10 carbon atoms is connected by an oxygen atom or a sulfur atom, wherein n hydrogen atoms are substituted by a group represented by the general formula (1a).
 炭素原子数1~10の炭化水素基が酸素原子若しくは硫黄原子で連結された化合物としては、飽和脂肪族炭化水素基又は不飽和脂肪族炭化水素基が酸素原子若しくは硫黄原子で連結された化合物が挙げられる。連結される飽和脂肪族炭化水素基又は不飽和脂肪族炭化水素基は同一であっても、異なるものであってもよい。飽和脂肪族炭化水素基又は不飽和脂肪族炭化水素基は、前記一般式(1)のR~Rで表される飽和脂肪族炭化水素基又は不飽和脂肪族炭化水素基と同じものが挙げられる。なお、酸素原子若しくは硫黄原子で連結されたとは、1つの酸素原子若しくは硫黄原子で連結された場合のみならず、2個以上の酸素原子若しくは酸素原子で連結されている場合を含む。後者の場合とは、例えば-S-S-で連結されている場合や、-S-R-S-等の(Rは炭素数1~2のアルキレン基)で表される場合等が挙げられる。 Examples of the compound in which a hydrocarbon group having 1 to 10 carbon atoms is linked by an oxygen atom or a sulfur atom include a compound in which a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group is linked by an oxygen atom or a sulfur atom. No. The linked saturated aliphatic hydrocarbon groups or unsaturated aliphatic hydrocarbon groups may be the same or different. The saturated aliphatic hydrocarbon group or unsaturated aliphatic hydrocarbon group is the same as the saturated aliphatic hydrocarbon group or unsaturated aliphatic hydrocarbon group represented by R 1 to R 3 in the general formula (1). No. Note that the expression “connected by an oxygen atom or a sulfur atom” includes not only a case where the connection is made with one oxygen atom or a sulfur atom but also a case where the connection is made with two or more oxygen atoms or oxygen atoms. The latter case includes, for example, a case where they are linked by -SS-, and a case where they are represented by -S-RS- or the like (R is an alkylene group having 1 or 2 carbon atoms). .
 一般式(1)のRが酸素原子若しくは硫黄原子を含む炭素原子数3~6のn価の複素環基である場合、一般式(1)で表される化合物は、炭素原子数3~6の複素環のn個の水素原子が一般式(1a)で表される基で置換された化合物に相当する。酸素原子を含む炭素原子数3~6の複素環としては、例えば、1,3-プロピレンオキシド、テトラヒドロフラン、テトラヒドロピラン、フラン等が挙げられる。硫黄原子を含む炭素原子数3~6の複素環としては、例えば、トリメチレンスルフィド、テトラヒドロチオフェン、テトラヒドロチオピラン、チオフェン等が挙げられる。 When R 4 in the general formula (1) is an n-valent heterocyclic group having 3 to 6 carbon atoms containing an oxygen atom or a sulfur atom, the compound represented by the general formula (1) is a compound having 3 to 6 carbon atoms. This corresponds to a compound in which n hydrogen atoms of the heterocyclic ring 6 are substituted with a group represented by the general formula (1a). Examples of the heterocyclic ring having 3 to 6 carbon atoms including an oxygen atom include 1,3-propylene oxide, tetrahydrofuran, tetrahydropyran, and furan. Examples of the heterocyclic ring having 3 to 6 carbon atoms including a sulfur atom include trimethylene sulfide, tetrahydrothiophene, tetrahydrothiopyran, thiophene and the like.
 飽和炭化水素の2個の水素原子が一般式(1a)で表される基で置換され、R~Rがメチル基である化合物として、例えば下記の化合物No.1a-1~No.1a-28が挙げられるが、以下に限定されるものではない。 As a compound in which two hydrogen atoms of a saturated hydrocarbon are substituted with a group represented by the general formula (1a) and R 1 to R 3 are methyl groups, for example, the following compound No. 1a-1 to No. 1 1a-28, but not limited thereto.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 不飽和炭化水素の2個の水素原子が一般式(1a)で表される基で置換され、R~Rがメチル基である化合物として、例えば下記の化合物No.1a-29~No.1a-58が挙げられるが、以下に限定されるものではない。 As a compound in which two hydrogen atoms of an unsaturated hydrocarbon are substituted with a group represented by the general formula (1a), and R 1 to R 3 are methyl groups, for example, the following compound No. 1a-29 to No. 1 1a-58, but not limited thereto.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 芳香族炭化水素の2個の水素原子が一般式(1a)で表される基で置換され、R~Rがメチル基である化合物として、例えば下記の化合物No.1a-59~No.1a-66が挙げられるが、これに限定されるものではない。なおNo.1a-66に記載の複数の環に亘る結合手は、これらの環の任意の位置に結合手が結合可能であることを意味する。 As a compound in which two hydrogen atoms of an aromatic hydrocarbon are substituted by a group represented by the general formula (1a), and R 1 to R 3 are methyl groups, for example, the following compound No. 1a-59 to No. 1 1a-66, but is not limited thereto. No. A bond extending over a plurality of rings described in 1a-66 means that a bond can be bonded to any position of these rings.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 飽和脂肪族炭化水素基又は不飽和脂肪族炭化水素基が硫黄原子で連結された化合物の2個の水素原子が、一般式(1a)で表される基で置換され、R~Rがメチル基である化合物として、例えば下記の化合物No.1a-67~1a-84が挙げられる。また、これらの化合物の硫黄原子の一部又は全てを酸素原子に置き換えた化合物も例として挙げられる(例えばNo.1a-85~1a-86)。しかし、本発明はこれらに限定されるものではない。 Two hydrogen atoms of a compound in which a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group is linked by a sulfur atom are substituted with a group represented by the general formula (1a), and R 1 to R 3 are As the compound that is a methyl group, for example, the following compound No. 1a-67 to 1a-84. In addition, compounds in which some or all of the sulfur atoms of these compounds are replaced with oxygen atoms are also examples (eg, Nos. 1a-85 to 1a-86). However, the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 酸素原子若しくは硫黄原子を含む炭素原子数3~6の複素環の2個の水素原子が、一般式(1a)で表される基で置換され、R~Rがメチル基である化合物として、例えば下記の化合物No.1a-87~No.1a-94が挙げられるが、これに限定されるものではない。 A compound in which two hydrogen atoms of a heterocyclic group having 3 to 6 carbon atoms including an oxygen atom or a sulfur atom are substituted with a group represented by the general formula (1a), and R 1 to R 3 are methyl groups. For example, the following compound No. 1a-87 to No. 1 1a-94, but is not limited thereto.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 Rとしては、サイクル特性及びレート特性がともに改善されること、製造工程が簡便なことや入手が容易なことから、炭素原子数2~10のn価の脂肪族炭化水素基、炭素原子数1~10の炭化水素基が硫黄原子で連結されたn価の基、硫黄原子を含む炭素原子数3~6のn価の複素環基が好ましい。Rとして表される脂肪族炭化水素基としては、炭素原子数2~6の脂肪族炭化水素基が更に好ましく、炭素原子数2~4の不飽和脂肪族炭化水素基が最も好ましい。Rとして表される炭素原子数1~10の炭化水素基が硫黄原子で連結されたn価の基としては、炭素原子数1~6の脂肪族炭化水素基が硫黄原子に連結されている基が好ましく、炭素原子数1~4の脂肪族炭化水素基が1つの硫黄原子又は前記-S-R-S-基で連結されている基が特に好ましい。Rで表される硫黄原子を含む炭素原子数3~6のn価の複素環基としては、特に硫黄原子を含む炭素原子数3~8の芳香族複素環が好ましく、チオフェンが最も好ましい。更に、Rとしては、上記の基に加えて、炭素原子数6~10の芳香族炭化水素基であることも好ましい。nとしては、非水電解質二次電池のサイクル特性およびレート特性が良好であることから2~6が好ましく、2~4がより好ましく、2が最も好ましい。 R 4 is preferably an n-valent aliphatic hydrocarbon group having 2 to 10 carbon atoms, because of improved cycle characteristics and rate characteristics, a simple production process, and easy availability. Preferred are an n-valent group in which 1 to 10 hydrocarbon groups are connected by a sulfur atom, and an n-valent heterocyclic group having 3 to 6 carbon atoms containing a sulfur atom. As the aliphatic hydrocarbon group represented by R 4 , an aliphatic hydrocarbon group having 2 to 6 carbon atoms is more preferable, and an unsaturated aliphatic hydrocarbon group having 2 to 4 carbon atoms is most preferable. As the n-valent group in which a hydrocarbon group having 1 to 10 carbon atoms represented by R 4 is linked by a sulfur atom, an aliphatic hydrocarbon group having 1 to 6 carbon atoms is linked to a sulfur atom A group is preferable, and a group in which an aliphatic hydrocarbon group having 1 to 4 carbon atoms is connected to one sulfur atom or the above-mentioned —S—R—S— group is particularly preferable. As the sulfur-containing n-valent heterocyclic group having 3 to 6 carbon atoms represented by R 4 , an aromatic heterocyclic ring having 3 to 8 carbon atoms including a sulfur atom is particularly preferable, and thiophene is most preferable. Further, R 4 is preferably an aromatic hydrocarbon group having 6 to 10 carbon atoms in addition to the above groups. n is preferably 2 to 6, more preferably 2 to 4, and most preferably 2, because the cycle characteristics and rate characteristics of the nonaqueous electrolyte secondary battery are good.
 一般式(1)で表される化合物としては、サイクル特性及びレート特性がともに改善されること、製造工程が簡便なことから、前記化合物No.1-1、No.1a-1、No.1a-2、No.1a-29、No.1a-35、No.1a-59、No.1a-68、No.1a-77、No.1a-82及びNo.1a-92が好ましく、No.1-1、No.1a-1、No.1a-29、No.1a-82及びNo.1a-94が更に好ましい。 化合物 As the compound represented by the general formula (1), the compound No. 1 can be used because the cycle characteristics and the rate characteristics are both improved and the production process is simple. 1-1, No. 1a-1, No. 1; 1a-2, No. 1 1a-29, no. 1a-35, no. 1a-59, no. 1a-68, no. 1a-77, no. 1a-82 and No. 1 No. 1a-92 is preferable. 1-1, No. 1a-1, No. 1; 1a-29, no. Nos. 1a-82 and No. 1 1a-94 is more preferred.
 本発明の非水電解質二次電池に用いられる非水電解質は、リチウム塩を含有する。非水電解質としては、リチウム塩を溶媒に溶解して得られる液体電解質、溶媒に溶解した高分子化合物でゲル化した高分子ゲルに、リチウム塩を溶解又は分散して得られる高分子ゲル電解質、分散媒として高分子化合物を用い、リチウム塩を溶解又は分散させて得られる純正高分子電解質を使用することができる。 非 The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention contains a lithium salt. As the non-aqueous electrolyte, a liquid electrolyte obtained by dissolving a lithium salt in a solvent, a polymer gel obtained by dissolving or dispersing a lithium salt in a polymer gel gelled with a polymer compound dissolved in a solvent, A pure polymer electrolyte obtained by using a polymer compound as a dispersion medium and dissolving or dispersing a lithium salt can be used.
 液体電解質及び高分子ゲル電解質に用いられるリチウム塩としては、特に限定されるものではなく、従来公知のリチウム塩、例えば、LiPF、LiBF、LiAsF、LiCFSO、LiCFCO、LiN(CFSO、LiN(CSO、LiN(SOF)、LiC(CFSO、LiB(CFSO、LiB(C、LiBF(C)、LiSbF、LiSiF、LiSCN、LiClO、LiCl、LiF、LiBr、LiI、LiAlF、LiAlCl、LiPO、及びこれらの誘導体等が挙げられ、なかでも、LiPF、LiBF、LiClO、LiCFSO、LiN(CFSO、LiN(CSO、LiN(SOF)、LiPO、LiC(CFSO並びにLiCFSOの誘導体及びLiC(CFSOの誘導体が好ましい。リチウム塩は1種のみ使用してもよく、2種以上を組合せて使用してもよい。
The lithium salt used for the liquid electrolyte and the polymer gel electrolyte is not particularly limited, and conventionally known lithium salts, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , LiC (CF 3 SO 2 ) 3 , LiB (CF 3 SO 3 ) 4 , LiB (C 2 O 4) 2, LiBF 2 ( C 2 O 4), LiSbF 6, LiSiF 5, LiSCN, LiClO 4, LiCl, LiF, LiBr, LiI, LiAlF 4, LiAlCl 4, LiPO 2 F 2, and derivatives of these Among them, LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiN (C 3 SO 2) 2, LiN ( C 2 F 5 SO 2) 2, LiN (SO 2 F) 2, LiPO 2 F 2, LiC (CF 3 SO 2) 3 and derivatives LiCF 3 SO 3 and LiC (CF 3 Derivatives of SO 2 ) 3 are preferred. Only one lithium salt may be used, or two or more lithium salts may be used in combination.
 純正高分子電解質に用いられるリチウム塩としては、例えば、LiN(CFSO、LiN(CSO、LiN(SOF)、LiC(CFSO、LiB(CFSO、LiB(C等が挙げられる。 Examples of the lithium salt used for the pure polymer electrolyte include LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , and LiC (CF 3 SO 2 ) 3. , LiB (CF 3 SO 3 ) 4 , LiB (C 2 O 4 ) 2 and the like.
 非水電解質中のリチウム塩の濃度は、低すぎると十分な電流密度が得られないことがあり、高すぎると液体非水電解質の安定性を損なう恐れがあることから、0.5~7mol/Lが好ましく、0.8~1.8mol/Lがより好ましい。 If the concentration of the lithium salt in the nonaqueous electrolyte is too low, a sufficient current density may not be obtained, and if the concentration is too high, the stability of the liquid nonaqueous electrolyte may be impaired. L is preferable, and 0.8 to 1.8 mol / L is more preferable.
 前記液体電解質に用いる有機溶媒としては、非水電解質二次電池の非水電解質に通常使用される有機溶媒を使用することができる。非水電解質二次電池の非水電解質に通常使用される有機溶媒としては、例えば、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物、アマイド化合物、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物、飽和鎖状エステル化合物等が挙げられる。有機溶媒は1種のみ使用してもよく、2種以上を組合せて使用してもよい。 と し て As the organic solvent used for the liquid electrolyte, an organic solvent usually used for a non-aqueous electrolyte of a non-aqueous electrolyte secondary battery can be used. Examples of the organic solvent usually used for the non-aqueous electrolyte of the non-aqueous electrolyte secondary battery include, for example, a saturated cyclic carbonate compound, a saturated cyclic ester compound, a sulfoxide compound, a sulfone compound, an amide compound, a saturated chain carbonate compound, and a chain ether. Compounds, cyclic ether compounds, saturated chain ester compounds and the like. Only one organic solvent may be used, or two or more organic solvents may be used in combination.
 前記有機溶媒のうち、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物及びアマイド化合物は、比誘電率が高いため、液体組成物の誘電率を上げる役割を果たし、特に飽和環状カーボネート化合物が好ましい。 Among the organic solvents, the saturated cyclic carbonate compound, the saturated cyclic ester compound, the sulfoxide compound, the sulfone compound and the amide compound have a high relative dielectric constant, and thus play a role of increasing the dielectric constant of the liquid composition, and in particular, the saturated cyclic carbonate compound. Is preferred.
 飽和環状カーボネート化合物としては、例えば、エチレンカーボネート、1,2-プロピレンカーボネート、1,3-プロピレンカーボネート、1,2-ブチレンカーボネート、1,3-ブチレンカーボネート、1,1-ジメチルエチレンカーボネート等が挙げられる。
 飽和環状エステル化合物としては、例えば、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-ヘキサノラクトン、δ-オクタノラクトン等が挙げられる。
 スルホキシド化合物としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド、ジプロピルスルホキシド、ジフェニルスルホキシド、チオフェン等が挙げられる。
 スルホン化合物としては、例えば、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、ジフェニルスルホン、スルホラン(テトラメチレンスルホンともいう)、3-メチルスルホラン、3,4-ジメチルスルホラン、3,4-ジフェニルスルホラン、スルホレン、3-メチルスルホレン、3-エチルスルホレン、3-ブロモメチルスルホレン等が挙げられ、スルホラン、テトラメチルスルホランが好ましい。
 アマイド化合物としては、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。
Examples of the saturated cyclic carbonate compound include ethylene carbonate, 1,2-propylene carbonate, 1,3-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 1,1-dimethylethylene carbonate and the like. Can be
Examples of the saturated cyclic ester compound include γ-butyrolactone, γ-valerolactone, γ-caprolactone, δ-hexanolactone, δ-octanolactone, and the like.
Examples of the sulfoxide compound include dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, diphenyl sulfoxide, and thiophene.
Examples of the sulfone compound include dimethyl sulfone, diethyl sulfone, dipropyl sulfone, diphenyl sulfone, sulfolane (also referred to as tetramethylene sulfone), 3-methyl sulfolane, 3,4-dimethyl sulfolane, 3,4-diphenyl sulfolane, sulfolene, Examples include 3-methylsulfolene, 3-ethylsulfolene, and 3-bromomethylsulfolene. Sulfolane and tetramethylsulfolane are preferred.
Amide compounds include N-methylpyrrolidone, dimethylformamide, dimethylacetamide and the like.
 前記有機溶媒のうち、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物及び飽和鎖状エステル化合物は、液体組成物の粘度を低くすることができ、電解質イオンの移動性を高くすることができる等、出力密度等の電池特性を優れたものにすることができる。また、低粘度であるため、低温での非水電解質の性能を高くすることができ、特に飽和鎖状カーボネート化合物が好ましい。
 飽和鎖状カーボネート化合物としては、例えば、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチルブチルカーボネート、メチル-t-ブチルカーボネート、ジイソプロピルカーボネート、t-ブチルプロピルカーボネート等が挙げられる。
 鎖状エーテル化合物又は環状エーテル化合物としては、例えば、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、1,2-ビス(メトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)プロパン、エチレングリコールビス(トリフルオロエチル)エーテル、プロピレングリコールビス(トリフルオロエチル)エーテル、エチレングリコールビス(トリフルオロメチル)エーテル、ジエチレングリコールビス(トリフルオロエチル)エーテル等が挙げられ、これらの中でも、ジオキソランが好ましい。
 飽和鎖状エステル化合物としては、分子中の炭素原子数の合計が2~8であるモノエステル化合物及びジエステル化合物が好ましく、具体的な化合物としては、例えば、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、マロン酸メチル、マロン酸エチル、コハク酸メチル、コハク酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、エチレングリコールジアセチル、プロピレングリコールジアセチル等が挙げられ、これらの中でも、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、及びプロピオン酸エチルが好ましい。
Among the organic solvents, the saturated chain carbonate compound, the chain ether compound, the cyclic ether compound and the saturated chain ester compound can lower the viscosity of the liquid composition and increase the mobility of electrolyte ions. For example, the battery characteristics such as the output density can be improved. Further, since the viscosity is low, the performance of the non-aqueous electrolyte at a low temperature can be enhanced, and a saturated chain carbonate compound is particularly preferable.
Examples of the saturated chain carbonate compound include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl butyl carbonate, methyl-t-butyl carbonate, diisopropyl carbonate, t-butyl propyl carbonate and the like.
Examples of the chain ether compound or cyclic ether compound include dimethoxyethane, ethoxymethoxyethane, diethoxyethane, tetrahydrofuran, dioxolan, dioxane, 1,2-bis (methoxycarbonyloxy) ethane, and 1,2-bis (ethoxycarbonyl). Oxy) ethane, 1,2-bis (ethoxycarbonyloxy) propane, ethylene glycol bis (trifluoroethyl) ether, propylene glycol bis (trifluoroethyl) ether, ethylene glycol bis (trifluoromethyl) ether, diethylene glycol bis (tri Fluorooxo) ether and the like, and among these, dioxolan is preferable.
As the saturated chain ester compound, a monoester compound and a diester compound having a total of 2 to 8 carbon atoms in the molecule are preferable, and specific compounds include, for example, methyl formate, ethyl formate, methyl acetate, acetic acid and the like. Ethyl, propyl acetate, isobutyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, ethyl trimethyl acetate, methyl malonate, ethyl malonate, methyl succinate, ethyl succinate, Methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethylene glycol diacetyl, propylene glycol diacetyl and the like, among which methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, propyl acetate, isobutyl acetate, butyl acetate ,Professional Methyl propionic acid, and ethyl propionate are preferred.
 その他、液体電解質の調製に用いる有機溶媒として、例えば、アセトニトリル、プロピオニトリル、ニトロメタンやこれらの誘導体、各種イオン液体を用いることもできる。 In addition, as the organic solvent used for preparing the liquid electrolyte, for example, acetonitrile, propionitrile, nitromethane, derivatives thereof, and various ionic liquids can be used.
 高分子ゲル電解質に用いる高分子としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリビニルクロライド、ポリアクリロニトリル、ポリメチルメタクリレート、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等が挙げられる。純正高分子電解質に用いる高分子としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリスチレンスルホン酸等が挙げられる。
 高分子ゲル電解質、または純正高分子電解質中の配合比率、複合化の方法については特に制限はなく、本技術分野で公知の配合比率、公知の複合化方法を採用することができる。
Examples of the polymer used for the polymer gel electrolyte include polyethylene oxide, polypropylene oxide, polyvinyl chloride, polyacrylonitrile, polymethyl methacrylate, polyethylene, polyvinylidene fluoride, and polyhexafluoropropylene. Examples of the polymer used for the pure polymer electrolyte include polyethylene oxide, polypropylene oxide, and polystyrene sulfonic acid.
There is no particular limitation on the mixing ratio and the method of compounding in the polymer gel electrolyte or the pure polymer electrolyte, and a compounding ratio and a known compounding method known in the art can be adopted.
 本発明の非水電解質二次電池に用いられる非水電解質は、サイクル特性などの電池特性及び安全性が向上することから、更に一般式(2)で表される化合物を含有してもよい。 非 The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention may further contain a compound represented by the general formula (2) because battery characteristics such as cycle characteristics and safety are improved.
Figure JPOXMLDOC01-appb-C000014
(式中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素原子数1~6の炭化水素基、炭素原子数4~6の複素環基、1つ以上の水素原子がフッ素原子で置換された炭素原子数1~6の炭化水素基、又は1つ以上の水素原子がフッ素原子で置換された炭素原子数4~6の複素環基を表し、R10~R12はそれぞれ独立に、ハロゲン原子、炭素原子数1~6の炭化水素基、又は炭素原子数1~6のアルコキシ基を表す。)
Figure JPOXMLDOC01-appb-C000014
(Wherein, R 5 to R 9 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a heterocyclic group having 4 to 6 carbon atoms, and at least one hydrogen atom Represents a hydrocarbon group having 1 to 6 carbon atoms substituted by a fluorine atom, or a heterocyclic group having 4 to 6 carbon atoms substituted by one or more hydrogen atoms by a fluorine atom, and R 10 to R 12 are Each independently represents a halogen atom, a hydrocarbon group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.)
 一般式(2)で表される化合物における、R~Rで表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。炭素原子数1~6の炭化水素基としては、例えば、鎖状又は環状飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、芳香族炭化水素基等が挙げられる。具体的には、メチル基、エチル基、プロピル基、i-プロピル基、ブチル基、2-ブチル基、i-ブチル基、t-ブチル基、ペンチル基、2-ペンチル基、3-ペンチル基、i-ペンチル基、ヘキシル基、2-ヘキシル基、3-ヘキシル基等の鎖状飽和脂肪族炭化水素基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等の不飽和脂肪族炭化水素基;シクロペンチル基、シクロヘキシル基等の炭素原子数5~6の環状脂肪族炭化水素基;フェニル基の芳香族炭化水素基等が挙げられる。炭素原子数4~6の複素環基としては、チエニル基、フラニル基、ピリジル基、テトラヒドロチエニル基、テトラヒドロフラニル基、ピペリジル基等が挙げられる。 In the compound represented by the general formula (2), examples of the halogen atom represented by R 5 to R 9 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Examples of the hydrocarbon group having 1 to 6 carbon atoms include a linear or cyclic saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, and an aromatic hydrocarbon group. Specifically, methyl, ethyl, propyl, i-propyl, butyl, 2-butyl, i-butyl, t-butyl, pentyl, 2-pentyl, 3-pentyl, linear saturated aliphatic hydrocarbon groups such as i-pentyl group, hexyl group, 2-hexyl group and 3-hexyl group; unsaturated aliphatic hydrocarbon groups such as vinyl group, allyl group, butenyl group, pentenyl group and hexenyl group A cycloaliphatic hydrocarbon group having 5 to 6 carbon atoms such as a cyclopentyl group and a cyclohexyl group; and an aromatic hydrocarbon group such as a phenyl group. Examples of the heterocyclic group having 4 to 6 carbon atoms include a thienyl group, a furanyl group, a pyridyl group, a tetrahydrothienyl group, a tetrahydrofuranyl group, and a piperidyl group.
 1つ以上の水素原子がフッ素原子で置換された炭素原子数1~6の炭化水素基としては、1つ以上の水素原子がフッ素原子で置換された鎖状飽和脂肪族炭化水素基、一つ以上の水素原子がフッ素原子で置換された不飽和脂肪族炭化水素基、一つ以上の水素原子がフッ素原子で置換された環状飽和脂肪族炭化水素基、1つ以上の水素原子がフッ素原子で置換されたフェニル基等が挙げられる。鎖状飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、環状飽和脂肪族炭化水素基としては、前記の鎖状飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、環状飽和脂肪族炭化水素基等が挙げられる。 Examples of the hydrocarbon group having 1 to 6 carbon atoms in which one or more hydrogen atoms are substituted with a fluorine atom include a linear saturated aliphatic hydrocarbon group in which one or more hydrogen atoms are substituted with a fluorine atom, An unsaturated aliphatic hydrocarbon group in which at least one hydrogen atom has been replaced with a fluorine atom, a cyclic saturated aliphatic hydrocarbon group having at least one hydrogen atom replaced with a fluorine atom, and at least one hydrogen atom having a fluorine atom; And a substituted phenyl group. Examples of the chain saturated aliphatic hydrocarbon group, unsaturated aliphatic hydrocarbon group and cyclic saturated aliphatic hydrocarbon group include the above-mentioned chain saturated aliphatic hydrocarbon group, unsaturated aliphatic hydrocarbon group, and cyclic saturated aliphatic group. And a hydrocarbon group.
 1つ以上の水素原子がフッ素原子で置換された、鎖状飽和脂肪族炭化水素基としては、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、1-フルオロエチル基、2-フルオロエチル基、1-フルオロイソプロピル基、2-フルオロイソプロピル基、1-フルオロブチル基、2-フルオロブチル基、3-フルオロブチル基、1-フルオロイソブチル基、2-フルオロイソブチル基、2-フルオロ-t-ブチル基、1-フルオロペンチル基、2-フルオロペンチル基、3-フルオロペンチル基、4-フルオロペンチル基、1-フルオロヘキシル基等が挙げられる。
 1つ以上の水素原子がフッ素原子で置換された、環状飽和脂肪族炭化水素基としては、例えば、フルオロシクロペンチル基、フルオロシクロヘキシル基等が挙げられる。
 1つ以上の水素原子がフッ素原子で置換された芳香族炭化水素基としては、例えば、フルオロフェニル基、ジフルオロフェニル基、トリフルオロフェニル基等が挙げられる。
 1つ以上の水素原子がフッ素原子で置換された複素環基としては、例えば、フルオロチエニル基、フルオロフラニル基、フルオロピリジル基、フルオロチオラニル基、フルオロオキサニル基、フルオロピペリジル基等が挙げられる。
Examples of the chain saturated aliphatic hydrocarbon group in which one or more hydrogen atoms have been substituted with a fluorine atom include, for example, fluoromethyl group, difluoromethyl group, trifluoromethyl group, 1-fluoroethyl group, 2-fluoroethyl Group, 1-fluoroisopropyl group, 2-fluoroisopropyl group, 1-fluorobutyl group, 2-fluorobutyl group, 3-fluorobutyl group, 1-fluoroisobutyl group, 2-fluoroisobutyl group, 2-fluoro-t- Examples thereof include a butyl group, a 1-fluoropentyl group, a 2-fluoropentyl group, a 3-fluoropentyl group, a 4-fluoropentyl group, and a 1-fluorohexyl group.
Examples of the cyclic saturated aliphatic hydrocarbon group in which one or more hydrogen atoms have been substituted with fluorine atoms include a fluorocyclopentyl group and a fluorocyclohexyl group.
Examples of the aromatic hydrocarbon group in which one or more hydrogen atoms have been replaced by fluorine atoms include a fluorophenyl group, a difluorophenyl group, a trifluorophenyl group, and the like.
Examples of the heterocyclic group in which one or more hydrogen atoms are substituted with a fluorine atom include a fluorothienyl group, a fluorofuranyl group, a fluoropyridyl group, a fluorothiolanyl group, a fluorooxanyl group, a fluoropiperidyl group, and the like. Can be
 一般式(2)で表される化合物における、R10~R12で表されるハロゲン原子及び炭素原子数1~6の炭化水素基としては、R~Rと同様なものが挙げられる。炭素原子数1~6のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、i-プロポキシ基、ブトキシ基、ペンチロキシ基、ヘキシロキシ基、シクロヘキシロキシ基等が挙げられる。 As the halogen atom represented by R 10 to R 12 and the hydrocarbon group having 1 to 6 carbon atoms in the compound represented by the general formula (2), those similar to R 5 to R 9 can be mentioned. Examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, an i-propoxy group, a butoxy group, a pentoxy group, a hexyloxy group and a cyclohexyloxy group.
 一般式(2)で表される化合物のうち、R~Rが水素原子又はハロゲン原子であり、R10~R12がメチル基である化合物として、例えば下記の化合物No.2-1~No.2-6が挙げられる。 Among the compounds represented by the general formula (2), compounds in which R 5 to R 9 are a hydrogen atom or a halogen atom and R 10 to R 12 are a methyl group include, for example, the following compound Nos. 2-1 to No. 2-6.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(2)で表される化合物のうち、R~Rの何れかが飽和脂肪族炭化水素基であり、R10~R12がメチル基である化合物として、例えば下記の化合物No.2-7~No.2-23が挙げられる。 Among the compounds represented by the general formula (2), any one of R 5 to R 9 is a saturated aliphatic hydrocarbon group and R 10 to R 12 is a methyl group. 2-7 to No. 2-23.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 一般式(2)で表される化合物のうち、R~Rの何れかが不飽和脂肪族炭化水素基であり、R10~R12がメチル基である化合物として、例えば下記の化合物No.2-24~No.2-32が挙げられる。 Among the compounds represented by the general formula (2), as a compound in which any of R 5 to R 9 is an unsaturated aliphatic hydrocarbon group and R 10 to R 12 is a methyl group, for example, the following compound No. . 2-24 to No. 2-32.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一般式(2)で表される化合物のうち、R~Rの何れかが環状脂肪族炭化水素基又はフェニル基であり、R10~R12がメチル基である化合物として、例えば下記の化合物No.2-33~No.2-35が挙げられる。 Among the compounds represented by the general formula (2), compounds in which any of R 5 to R 9 is a cyclic aliphatic hydrocarbon group or a phenyl group and R 10 to R 12 are a methyl group include, for example, Compound No. 2-33-No. 2-35.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 一般式(2)で表される化合物のうち、R~Rの何れかが複素環基であり、R10~R12がメチル基である化合物として、例えば下記の化合物No.2-36~No.2-41が挙げられる。 Among the compounds represented by the general formula (2), any of R 5 to R 9 is a heterocyclic group, and R 10 to R 12 are methyl groups. 2-36-No. 2-41.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 一般式(2)で表される化合物のうち、R~Rの何れかが、1つ以上の水素原子がフッ素原子で置換された炭素原子数1~6の炭化水素基であり、R10~R12がメチル基である化合物として、例えば下記の化合物No.2-42~No.2-54が挙げられる。 In the compound represented by the general formula (2), any of R 5 to R 9 is a hydrocarbon group having 1 to 6 carbon atoms in which one or more hydrogen atoms are substituted with a fluorine atom, As a compound in which 10 to R 12 are a methyl group, for example, the following compound No. 2-42 to No. 2-54.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 一般式(2)で表される化合物のうち、R~Rの何れかが、1つ以上の水素原子がフッ素原子で置換された複素環基であり、R10~R12がメチル基である化合物として、例えば下記の化合物No.2-55~No.2-60が挙げられる。 In the compound represented by the general formula (2), any of R 5 to R 9 is a heterocyclic group in which one or more hydrogen atoms are substituted with a fluorine atom, and R 10 to R 12 are a methyl group. For example, the following compound No. 2-55-No. 2-60.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 一般式(2)で表される化合物のR~Rとしてはサイクル特性及びレート特性が優れていること、原料が入手しやすい事から、水素原子又は炭素原子数1~6の脂肪族炭化水素基であることが好ましく、水素原子又は炭素原子数1~4の脂肪族炭化水素基であることが更に好ましい。また優れた電池特性が得られること、原料が入手しやすいこと、合成が簡便であることなどから水素原子、フッ素原子、メチル基又はビニル基であることも好ましい。これらの点から、R~Rとしては水素原子であることが最も好ましい。 R 5 to R 9 of the compound represented by the general formula (2) have excellent cycle characteristics and rate characteristics, and are easily available as raw materials. It is preferably a hydrogen group, more preferably a hydrogen atom or an aliphatic hydrocarbon group having 1 to 4 carbon atoms. In addition, a hydrogen atom, a fluorine atom, a methyl group, or a vinyl group is also preferable because excellent battery characteristics are obtained, raw materials are easily available, and synthesis is simple. From these points, it is most preferable that R 5 to R 9 be a hydrogen atom.
 一般式(2)で表される化合物のうち、R~Rが水素原子である化合物として、例えば下記の化合物No.2-61~No.2-127が挙げられる。 Among the compounds represented by the general formula (2), compounds in which R 5 to R 9 are hydrogen atoms include, for example, the following compound Nos. 2-61 ~ No. 2-127.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 一般式(2)で表される化合物のR10~R12としては、サイクル特性やレート特性等が優れることから、炭素原子数1~6、特に炭素原子数1~4の脂肪族炭化水素基であることが好ましい。またR10~R12としては、優れた電池特性が得られること、原料が入手しやすいこと、合成が簡便であることなどから、メチル基、ビニル基又はフェニル基が好ましく、メチル基がより好ましい。 As R 10 to R 12 of the compound represented by the general formula (2), an aliphatic hydrocarbon group having 1 to 6 carbon atoms, particularly 1 to 4 carbon atoms is preferable because of excellent cycle characteristics and rate characteristics. It is preferred that Further, as R 10 to R 12 , a methyl group, a vinyl group or a phenyl group is preferable, and a methyl group is more preferable, because excellent battery characteristics are obtained, raw materials are easily available, and synthesis is simple. .
 一般式(2)で表される化合物の含有量は、非水電解質全体に対して、0.1質量%~20質量%が好ましく、0.1質量%~10質量%がより好ましく、0.5質量%~7.0質量%が更に好ましく、1質量%~5質量%が最も好ましい。含有量が0.1質量%以上とすることで十分な効果を発揮でき、20質量%以下とすることで、添加量に見合った増量効果がみられるほか、化合物量が多すぎることによる電池性能の低下をより確実に防止できる。 The content of the compound represented by the general formula (2) is preferably from 0.1% by mass to 20% by mass, more preferably from 0.1% by mass to 10% by mass, and more preferably from 0.1% by mass to 10% by mass based on the whole nonaqueous electrolyte. It is more preferably from 5% by mass to 7.0% by mass, most preferably from 1% by mass to 5% by mass. When the content is 0.1% by mass or more, a sufficient effect can be exhibited, and when the content is 20% by mass or less, an effect of increasing the amount commensurate with the addition amount is observed, and the battery performance due to an excessive amount of the compound is obtained. Can be prevented more reliably.
 本発明で用いる非水電解質は、電池寿命の向上、安全性向上等のため、電極被膜形成剤、酸化防止剤、難燃剤、過充電防止剤等、公知の電解質添加剤を含んでもよい。電解質添加剤を用いる場合の電解質中の濃度は、その添加効果を発揮させ、且つ非水電解質二次電池の特性に悪影響を及ぼさない観点から、非水電解質全体に対して、0.01質量%~10質量%が好ましく、0.1質量%~5質量%がより好ましい。 非 The non-aqueous electrolyte used in the present invention may contain a known electrolyte additive such as an electrode film forming agent, an antioxidant, a flame retardant, an overcharge inhibitor, etc. for the purpose of improving battery life, improving safety, and the like. When the electrolyte additive is used, the concentration in the electrolyte is 0.01% by mass with respect to the entire nonaqueous electrolyte, from the viewpoint of exerting the addition effect and not adversely affecting the characteristics of the nonaqueous electrolyte secondary battery. It is preferably from 10% by mass to 10% by mass, more preferably from 0.1% by mass to 5% by mass.
 本発明で用いる非水電解質は、前記液体電解質等に、一般式(1)で表される化合物及びリチウム塩、並びに必要に応じて一般式(2)で表される化合物及びその他の電解質添加剤を混合することによって調製できる。混合方法は特に制限されず、公知の方法で混合すればよい。 The non-aqueous electrolyte used in the present invention includes the compound represented by the general formula (1) and the lithium salt, and if necessary, the compound represented by the general formula (2) and other electrolyte additives in the liquid electrolyte or the like. Can be prepared by mixing The mixing method is not particularly limited, and mixing may be performed by a known method.
<非水電解質二次電池>
 上述した一般式(1)で表される化合物及びリチウム塩を含有する非水電解質を、正極と負極の間に介在させることにより、本発明の非水電解質二次電池を製造することができる。本発明の非水電解質二次電池では、正極と負極の間にセパレータを用いることが好ましい。以下に、本発明の非水電解質二次電池について説明する。
<Non-aqueous electrolyte secondary battery>
The non-aqueous electrolyte secondary battery of the present invention can be manufactured by interposing a non-aqueous electrolyte containing the compound represented by the general formula (1) and the lithium salt between the positive electrode and the negative electrode. In the nonaqueous electrolyte secondary battery of the present invention, it is preferable to use a separator between the positive electrode and the negative electrode. Hereinafter, the nonaqueous electrolyte secondary battery of the present invention will be described.
(セパレータ)
 前記セパレータとしては、通常用いられる高分子フィルムを特に限定なく使用できる。高分子フィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエチレンオキシドやポリプロピレンオキシド等のポリエーテル類、カルボキシメチルセルロースやヒドロキシプロピルセルロース等の種々のセルロース類、ポリ(メタ)アクリル酸及びその種々のエステル類等を主体とする高分子化合物やその誘導体、これらの共重合体や混合物からなるフィルム等が挙げられ、これらのフィルムは、アルミナやシリカなどのセラミック材料、酸化マグネシウム、アラミド樹脂、ポリフッ化ビニリデンでコートされている場合がある。これらのフィルムは、単独で用いることができ、これらのフィルムを重ね合わせて複層フィルムとして用いることもできる。さらに、これらのフィルムには、種々の添加剤を用いることができ、その種類や含有量は特に制限されない。これらのフィルムの中でも、二次電池の製造方法で製造される二次電池には、ポリエチレンやポリプロピレン、ポリフッ化ビニリデン、ポリスルホンからなるフィルムが好ましく用いられる。
(Separator)
As the separator, a commonly used polymer film can be used without particular limitation. Examples of the polymer film include, for example, polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyethylene oxide, polypropylene oxide, and the like. It is composed of polyethers, various celluloses such as carboxymethylcellulose and hydroxypropylcellulose, polymer compounds mainly composed of poly (meth) acrylic acid and various esters thereof, derivatives thereof, and copolymers and mixtures thereof. Films and the like can be mentioned. These films are coated with ceramic materials such as alumina and silica, magnesium oxide, aramid resin, and polyvinylidene fluoride. There is. These films can be used alone, and can be used as a multilayer film by laminating these films. Furthermore, various additives can be used for these films, and the types and contents thereof are not particularly limited. Among these films, a film made of polyethylene, polypropylene, polyvinylidene fluoride, or polysulfone is preferably used for a secondary battery manufactured by a method for manufacturing a secondary battery.
 これらのフィルムは、電解質がしみ込んでイオンが透過し易いように、微多孔化がなされたものが用いられる。この微多孔化の方法としては、高分子化合物と溶剤の溶液をミクロ相分離させながら製膜し、溶剤を抽出除去して多孔化する「相分離法」と、溶融した高分子化合物を高ドラフトで押し出し製膜した後に熱処理し、結晶を一方向に配列させ、更に延伸によって結晶間に間隙を形成して多孔化をはかる「延伸法」等が挙げられ、用いられるフィルムによって適宜選択される。 フ ィ ル ム These films are finely porous so that the electrolyte can be easily absorbed and ions can easily pass therethrough. The microporous method includes a phase separation method in which a film of a polymer compound and a solvent is formed while microphase-separating the solution, and the solvent is extracted and removed to form a porous layer. The film is extruded to form a film, and then heat-treated, the crystals are arranged in one direction, and a gap is formed between the crystals by stretching to make the crystal porous, and the like.
(形状)
 本発明の非水電解質二次電池の形状は、特に制限を受けず、コイン型、円筒型、角型、ラミネート型等、種々の形状とすることができる。図1は、本発明の非水電解質二次電池のコイン型電池の一例を、図2及び図3は円筒型電池の一例をそれぞれ示したものである。
(shape)
The shape of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and may be various shapes such as a coin shape, a cylindrical shape, a square shape, and a laminate type. FIG. 1 shows an example of a coin-type battery of the nonaqueous electrolyte secondary battery of the present invention, and FIGS. 2 and 3 show examples of a cylindrical battery.
 図1に示すコイン型の非水電解質二次電池10において、1はリチウムイオンを放出できる正極、1aは正極集電体、2は正極から放出されたリチウムイオンを吸蔵、放出できる負極、2aは負極集電体、3は非水電解質、4はステンレス製の正極ケース、5はステンレス製の負極ケース、6はポリプロピレン製のガスケット、7はポリエチレン製のセパレータである。 In the coin-type non-aqueous electrolyte secondary battery 10 shown in FIG. 1, 1 is a positive electrode capable of releasing lithium ions, 1a is a positive electrode current collector, 2 is a negative electrode capable of absorbing and releasing lithium ions released from the positive electrode, and 2a is A negative electrode current collector, 3 is a non-aqueous electrolyte, 4 is a positive electrode case made of stainless steel, 5 is a negative electrode case made of stainless steel, 6 is a gasket made of polypropylene, and 7 is a separator made of polyethylene.
 また、図2及び図3に示す円筒型の非水電解質二次電池10'において、11は負極、12は負極集電体、13は正極、14は正極集電体、15は非水電解質、16はセパレータ、17は正極端子、18は負極端子、19は負極板、20は負極リード、21は正極板、22は正極リード、23はケース、24は絶縁板、25はガスケット、26は安全弁、27はPTC素子である。 In the cylindrical non-aqueous electrolyte secondary battery 10 'shown in FIGS. 2 and 3, 11 is a negative electrode, 12 is a negative electrode current collector, 13 is a positive electrode, 14 is a positive electrode current collector, 15 is a non-aqueous electrolyte, 16 is a separator, 17 is a positive electrode terminal, 18 is a negative electrode terminal, 19 is a negative electrode plate, 20 is a negative electrode lead, 21 is a positive electrode plate, 22 is a positive electrode lead, 23 is a case, 24 is an insulating plate, 25 is a gasket, and 26 is a safety valve. , 27 are PTC elements.
(外部包装)
 外部包装部材としては、ラミネートフィルム又は金属製容器を用いることができる。包装部材の厚さは、通常0.5mm以下であり、好ましくは0.3mm以下である。包装部材の形状としては、扁平型(薄型)、角型、円筒型、コイン型、ボタン型等が挙げられる。
(External packaging)
As the external packaging member, a laminated film or a metal container can be used. The thickness of the packaging member is usually 0.5 mm or less, preferably 0.3 mm or less. Examples of the shape of the packaging member include a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
 ラミネートフィルムは、樹脂フィルム間に金属層を有する多層フィルムを用いることもできる。金属層は、軽量化のためにアルミニウム箔若しくはアルミニウム合金箔が好ましい。樹脂フィルムは、例えばポリプロピレン、ポリエチレン、ナイロン、ポリエチレンテレフタレート等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材の形状に形成することができる。 The laminate film may be a multilayer film having a metal layer between resin films. The metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction. As the resin film, for example, a polymer material such as polypropylene, polyethylene, nylon, or polyethylene terephthalate can be used. The laminate film can be formed into a shape of an exterior member by performing sealing by heat fusion.
 金属製容器は、例えば、ステンレス、アルミニウム又はアルミニウム合金等から形成することができる。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素などの元素を含む合金が好ましい。アルミニウム又はアルミニウム合金において、鉄、銅、ニッケル、クロム等の遷移金属の含有量を1%以下にすることで、高温環境下での長期信頼性及び放熱性を飛躍的に向上させることができる。 The metal container can be formed from, for example, stainless steel, aluminum, or an aluminum alloy. As the aluminum alloy, an alloy containing an element such as magnesium, zinc, or silicon is preferable. By making the content of transition metals such as iron, copper, nickel, and chromium into aluminum or an aluminum alloy to 1% or less, long-term reliability and heat dissipation under a high-temperature environment can be dramatically improved.
 以上、本発明の実施形態を説明したが、本発明は、前記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 Although the embodiment of the present invention has been described above, the present invention is not limited to the embodiment. The present invention can be implemented in various forms with modifications, improvements, and the like that can be made by those skilled in the art without departing from the gist of the present invention.
 以下に、実施例及び比較例により本発明を更に詳細に説明する。ただし、以下の実施例等により本発明は何等制限されるものではない。なお、実施例中の「部」や「%」は、特にことわらない限り、質量基準である。 本 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited at all by the following examples. In the examples, “parts” and “%” are based on mass unless otherwise specified.
<実施例1>
(正極の作製)
 正極活物質としてLiNi1/3Co1/3Mn1/3(D50=10.6μm)を90.0質量部、導電助剤としてアセチレンブラック(デンカ社製)を5.0質量部、バインダーとしてポリフッ化ビニリデン(クレハ社製)を5.0質量部、溶媒としてN-メチルピロリドンを80質量部用いて、自転・公転ミキサーにより混合し、電極合剤ペーストを得た。前記電極合剤ペーストを、ドクターブレード法によりアルミニウム箔(厚さ20μm)からなる集電体に塗布し、90℃で3時間静置して乾燥した。さらに、プレス成型を行った。その後、この電極を所定の大きさにカットし、更に使用直前に150℃で2時間真空乾燥して正極を作製した。
<Example 1>
(Preparation of positive electrode)
90.0 parts by mass of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (D50 = 10.6 μm) as a positive electrode active material, 5.0 parts by mass of acetylene black (manufactured by Denka Corporation) as a conductive additive, Using 5.0 parts by mass of polyvinylidene fluoride (manufactured by Kureha Corporation) as a binder and 80 parts by mass of N-methylpyrrolidone as a solvent, mixing was performed by a rotation / revolution mixer to obtain an electrode mixture paste. The electrode mixture paste was applied to a current collector made of aluminum foil (thickness: 20 μm) by a doctor blade method, and allowed to stand at 90 ° C. for 3 hours and dried. Further, press molding was performed. Thereafter, the electrode was cut into a predetermined size, and further dried under vacuum at 150 ° C. for 2 hours immediately before use to produce a positive electrode.
(負極Aの作製)
 負極活物質としてカーボンコートSiO(x=1.0、D50=5.4μm)を80.0質量部(ケイ素原子量として50.1質量部)、導電助剤としてアセチレンブラック(デンカ社製)を5.0質量部、バインダーとしてポリイミド樹脂(ドリームボンド、I.S.T社製)を15.0質量部、溶媒としてN-メチルピロリドンを100質量部用いて、自転・公転ミキサーにより混合し、電極合剤ペーストを得た。前記電極合剤ペーストを、ドクターブレード法によりステンレス箔(厚さ10μm)からなる集電体に塗布し、90℃で3時間静置して乾燥し、さらに真空下にて350℃で3時間静置して乾燥した。その後、この電極を所定の大きさにカットし、更に使用直前に150℃で2時間真空乾燥して負極Aを作製した。
(Preparation of negative electrode A)
80.0 parts by mass (50.1 parts by mass of silicon atom) of carbon coat SiO x (x = 1.0, D50 = 5.4 μm) as a negative electrode active material, and acetylene black (manufactured by Denka Corporation) as a conductive auxiliary agent Using 5.0 parts by mass, 15.0 parts by mass of a polyimide resin (Dream Bond, manufactured by IST) as a binder, and 100 parts by mass of N-methylpyrrolidone as a solvent, mixed by a rotation / revolution mixer, An electrode mixture paste was obtained. The electrode mixture paste is applied to a current collector made of stainless steel foil (thickness: 10 μm) by a doctor blade method, left standing at 90 ° C. for 3 hours, dried, and further left under vacuum at 350 ° C. for 3 hours. And dried. Thereafter, this electrode was cut into a predetermined size, and further vacuum-dried at 150 ° C. for 2 hours immediately before use to prepare a negative electrode A.
(電池の組み立て)
 エチレンカーボネートを30体積%、ジメチルカーボネートを30体積%、エチルメチルカーボネートを40体積%からなる混合溶媒に、LiPFを1.0mol/L、化合物No.1-1を0.5質量%の濃度となるよう溶解し、非水電解質を調製した。
 前記正極と負極Aを、セパレータとしてガラスフィルターを挟んでケース内に保持した。その後、先に調製した非水電解質をケース内に注入し、かしめ機により密封、封止して実施例1のコイン型非水電解質二次電池を作製した。負極Aは、金属リチウムを対極とし、エチレンカーボネートを30体積%、ジメチルカーボネートを30体積%、エチルメチルカーボネートを40体積%からなる混合溶媒にLiPFを1.0mol/L溶解したものを非水電解質として半電池を組み、電気化学的にリチウムをドープしたものを用いた。
(Battery assembly)
Ethylene carbonate 30 vol%, the dimethyl carbonate 30% by volume of a mixed solvent consisting of ethyl methyl carbonate from 40 vol%, the LiPF 6 1.0 mol / L, compound No. 1-1 was dissolved to a concentration of 0.5% by mass to prepare a non-aqueous electrolyte.
The positive electrode and the negative electrode A were held in a case with a glass filter as a separator. Thereafter, the previously prepared non-aqueous electrolyte was injected into the case, and sealed and sealed with a caulking machine to produce a coin-type non-aqueous electrolyte secondary battery of Example 1. The negative electrode A was prepared by dissolving 1.0 mol / L of LiPF 6 in a mixed solvent of 30% by volume of ethylene carbonate, 30% by volume of dimethyl carbonate, and 40% by volume of ethyl methyl carbonate, using lithium metal as a counter electrode. A half-cell was assembled as an electrolyte, and an electrochemically doped lithium was used.
<実施例2>
 化合物No.1-1を1.0質量%の濃度で前記混合溶媒に溶解した他は実施例1と同様にして、実施例2のコイン型非水電解質二次電池を作製した。
<Example 2>
A coin-type non-aqueous electrolyte secondary battery of Example 2 was produced in the same manner as in Example 1, except that Compound No. 1-1 was dissolved in the mixed solvent at a concentration of 1.0% by mass.
<実施例3>
 化合物No.1-1を2.0質量%の濃度で前記混合溶媒に溶解した他は実施例1と同様にして、実施例3のコイン型非水電解質二次電池を作製した。
<Example 3>
A coin-type nonaqueous electrolyte secondary battery of Example 3 was produced in the same manner as in Example 1, except that Compound No. 1-1 was dissolved in the mixed solvent at a concentration of 2.0% by mass.
<実施例4>
 化合物No.1a-29を0.5質量%の濃度で前記混合溶媒に溶解した他は実施例1と同様にして、実施例4のコイン型非水電解質二次電池を作製した。
<Example 4>
A coin-type nonaqueous electrolyte secondary battery of Example 4 was produced in the same manner as in Example 1, except that Compound No. 1a-29 was dissolved in the above-mentioned mixed solvent at a concentration of 0.5% by mass.
<実施例5>
 化合物No.1a-29を1.0質量%の濃度で前記混合溶媒に溶解した他は実施例1と同様にして、実施例5のコイン型非水電解質二次電池を作製した。
<Example 5>
A coin-type nonaqueous electrolyte secondary battery of Example 5 was produced in the same manner as in Example 1, except that Compound No. 1a-29 was dissolved in the above mixed solvent at a concentration of 1.0% by mass.
<実施例6>
 化合物No.1a-29を2.0質量%の濃度で前記混合溶媒に溶解した他は実施例1と同様にして、実施例6のコイン型非水電解質二次電池を作製した。
<Example 6>
A coin-type nonaqueous electrolyte secondary battery of Example 6 was produced in the same manner as in Example 1, except that Compound No. 1a-29 was dissolved in the mixed solvent at a concentration of 2.0% by mass.
<実施例7>
 化合物No.1a-92を0.5質量%の濃度で前記混合溶媒に溶解した他は実施例1と同様にして、実施例7のコイン型非水電解質二次電池を作製した。
<Example 7>
A coin-type nonaqueous electrolyte secondary battery of Example 7 was produced in the same manner as in Example 1, except that Compound No. 1a-92 was dissolved in the above mixed solvent at a concentration of 0.5% by mass.
<実施例8>
 化合物No.1a-92を1.0質量%の濃度で前記混合溶媒に溶解した他は実施例1と同様にして、実施例8のコイン型非水電解質二次電池を作製した。
<Example 8>
A coin-type nonaqueous electrolyte secondary battery of Example 8 was produced in the same manner as in Example 1, except that Compound No. 1a-92 was dissolved in the above mixed solvent at a concentration of 1.0% by mass.
<実施例9>
 化合物No.1a-92を2.0質量%の濃度で前記混合溶媒に溶解した他は実施例1と同様にして、実施例9のコイン型非水電解質二次電池を作製した。
<Example 9>
A coin-type nonaqueous electrolyte secondary battery of Example 9 was produced in the same manner as in Example 1, except that Compound No. 1a-92 was dissolved in the above mixed solvent at a concentration of 2.0% by mass.
<実施例10>
 化合物No.1-1を1.0質量%の濃度で、及び化合物No.2-1を1.0質量%の濃度でそれぞれ前記混合溶媒に溶解した他は実施例1と同様にして、実施例10のコイン型非水電解質二次電池を作製した。
<Example 10>
Compound No. 1-1 was added at a concentration of 1.0% by mass, and Compound No. 1-1 was used. A coin-type non-aqueous electrolyte secondary battery of Example 10 was produced in the same manner as in Example 1, except that 2-1 was dissolved in the mixed solvent at a concentration of 1.0% by mass.
<実施例11>
 化合物No.1a-29を1.0質量%の濃度で、及び化合物No.2-1を1.0質量%の濃度でそれぞれ前記混合溶媒に溶解した他は実施例1と同様にして、実施例11のコイン型非水電解質二次電池を作製した。
<Example 11>
Compound No. 1a-29 was added at a concentration of 1.0% by mass and Compound No. 1a-29 was added. A coin-type non-aqueous electrolyte secondary battery of Example 11 was produced in the same manner as in Example 1, except that 2-1 was dissolved in the mixed solvent at a concentration of 1.0% by mass.
<実施例12>
 化合物No.1a-92を1.0質量%の濃度で、及び化合物No.2-1を1.0質量%の濃度でそれぞれ前記混合溶媒に溶解した他は実施例1と同様にして、実施例12のコイン型非水電解質二次電池を作製した。
<Example 12>
Compound No. 1a-92 was added at a concentration of 1.0% by mass and Compound No. 1a-92 was added. A coin-type nonaqueous electrolyte secondary battery of Example 12 was produced in the same manner as in Example 1, except that 2-1 was dissolved in the above-mentioned mixed solvent at a concentration of 1.0% by mass.
<実施例13>
 更にビニレンカーボネートを0.5質量%の濃度で前記混合溶媒に溶解した他は実施例1と同様にして、実施例13のコイン型非水電解質二次電池を作製した。
<Example 13>
Further, a coin-type non-aqueous electrolyte secondary battery of Example 13 was produced in the same manner as in Example 1, except that vinylene carbonate was dissolved in the mixed solvent at a concentration of 0.5% by mass.
<実施例14>
 更にビニレンカーボネートを0.5質量%の濃度で前記混合溶媒に溶解した他は実施例4と同様にして、実施例14のコイン型非水電解質二次電池を作製した。
<Example 14>
Further, a coin-type nonaqueous electrolyte secondary battery of Example 14 was produced in the same manner as in Example 4, except that vinylene carbonate was dissolved in the mixed solvent at a concentration of 0.5% by mass.
<実施例15>
 更にビニレンカーボネートを0.5質量%の濃度で前記混合溶媒に溶解した他は実施例7と同様にして、実施例15のコイン型非水電解質二次電池を作製した。
<Example 15>
Further, a coin-type non-aqueous electrolyte secondary battery of Example 15 was produced in the same manner as in Example 7, except that vinylene carbonate was dissolved in the mixed solvent at a concentration of 0.5% by mass.
<実施例16>
(負極Bの作製)
 負極活物質としてカーボンコートSiO(x=1.0、D50=5.4μm)を9.0質量部(ケイ素原子量として5.6質量部)及び人造黒鉛(D50=21.3μm)を81.0質量部、導電助剤としてアセチレンブラック(デンカ社製)を5.0質量部、バインダーとしてスチレン-ブタジエンゴム(40質量%水分散液、日本ゼオン社製)を3.0質量部及びカルボキシメチルセルロースナトリウム(CMCNa:ダイセルファインケム社製)を2.0質量部、溶媒として水を100質量部用い、自転・公転ミキサーにより混合し、電極合剤ペーストを得た。前記電極合剤ペーストを、ドクターブレード法により銅箔(厚さ10μm)からなる集電体に塗布し、90℃で3時間静置して乾燥した。さらに、プレス成型を行った。その後、この電極を所定の大きさにカットし、更に使用直前に150℃で2時間真空乾燥して負極Bを作製した。
<Example 16>
(Preparation of negative electrode B)
As the negative electrode active material, 9.0 parts by mass of carbon-coated SiO x (x = 1.0, D50 = 5.4 μm) (5.6 parts by mass as silicon atom weight) and artificial graphite (D50 = 21.3 μm) were used. 0 parts by mass, 5.0 parts by mass of acetylene black (manufactured by Denka) as a conductive aid, 3.0 parts by mass of styrene-butadiene rubber (40 mass% aqueous dispersion, manufactured by Zeon Corporation) as a binder, and carboxymethyl cellulose Using 2.0 parts by mass of sodium (CMCNa: manufactured by Daicel Finechem) and 100 parts by mass of water as a solvent, the mixture was mixed by a rotation / revolution mixer to obtain an electrode mixture paste. The electrode mixture paste was applied to a current collector made of copper foil (thickness: 10 μm) by a doctor blade method, and allowed to stand at 90 ° C. for 3 hours and dried. Further, press molding was performed. Thereafter, this electrode was cut into a predetermined size, and further dried immediately before use at 150 ° C. for 2 hours under vacuum to prepare a negative electrode B.
 負極Aの代わりに負極Bを用いた他は、実施例2と同様にして、実施例16のコイン型非水電解質二次電池を作製した。 コ イ ン A coin-type non-aqueous electrolyte secondary battery of Example 16 was produced in the same manner as in Example 2, except that the negative electrode B was used instead of the negative electrode A.
<実施例17>
 負極Aの代わりに負極Bを用いた他は、実施例5と同様にして、実施例17のコイン型非水電解質二次電池を作製した。
<Example 17>
A coin-type non-aqueous electrolyte secondary battery of Example 17 was produced in the same manner as in Example 5, except that the negative electrode B was used instead of the negative electrode A.
<実施例18>
 負極Aの代わりに負極Bを用いた他は、実施例8と同様にして、実施例18のコイン型非水電解質二次電池を作製した。
<Example 18>
A coin-type nonaqueous electrolyte secondary battery of Example 18 was produced in the same manner as in Example 8, except that the negative electrode B was used instead of the negative electrode A.
<実施例19>
(負極Cの作製)
 負極活物質としてSi(D50=2.8μm)を80.0質量部、導電助剤としてアセチレンブラック(デンカ社製)を5.0質量部、バインダーとしてポリイミド樹脂(ドリームボンド、I.S.T.社製)15.0質量部、溶媒としてN-メチルピロリドンを100質量部用い、自転・公転ミキサーにより混合し、電極合剤ペーストを得た。前記電極合剤ペーストを、ドクターブレード法により銅箔(厚さ10μm)からなる集電体に塗布し、90℃で3時間静置して乾燥した。その後、この電極を所定の大きさにカットし、更に使用直前に150℃で2時間真空乾燥して負極Cを作製した。
<Example 19>
(Preparation of negative electrode C)
80.0 parts by mass of Si (D50 = 2.8 μm) as a negative electrode active material, 5.0 parts by mass of acetylene black (manufactured by Denka) as a conductive aid, and a polyimide resin (Dream Bond, IST) as a binder 15.0 parts by mass) and 100 parts by mass of N-methylpyrrolidone as a solvent were mixed by a rotation / revolution mixer to obtain an electrode mixture paste. The electrode mixture paste was applied to a current collector made of copper foil (thickness: 10 μm) by a doctor blade method, and allowed to stand at 90 ° C. for 3 hours and dried. Thereafter, the electrode was cut into a predetermined size, and further dried immediately before use at 150 ° C. for 2 hours under vacuum to produce a negative electrode C.
 負極Aの代わりに負極Cを用いた他は、実施例1と同様にして、実施例19のコイン型非水電解質二次電池を作製した。 コ イ ン A coin-type nonaqueous electrolyte secondary battery of Example 19 was produced in the same manner as in Example 1, except that the negative electrode C was used instead of the negative electrode A.
<実施例20>
 負極Aの代わりに負極Cを用いた他は、実施例2と同様にして、実施例20のコイン型非水電解質二次電池を作製した。
<Example 20>
A coin-type non-aqueous electrolyte secondary battery of Example 20 was produced in the same manner as in Example 2, except that the negative electrode C was used instead of the negative electrode A.
<実施例21>
 負極Aの代わりに負極Cを用いた他は、実施例3と同様にして、実施例21のコイン型非水電解質二次電池を作製した。
<Example 21>
A coin-type nonaqueous electrolyte secondary battery of Example 21 was produced in the same manner as in Example 3, except that the negative electrode C was used instead of the negative electrode A.
<実施例22>
 負極Aの代わりに負極Cを用いた他は、実施例4と同様にして、実施例22のコイン型非水電解質二次電池を作製した。
<Example 22>
A coin-type nonaqueous electrolyte secondary battery of Example 22 was produced in the same manner as in Example 4, except that the negative electrode C was used instead of the negative electrode A.
<実施例23>
 負極Aの代わりに負極Cを用いた他は、実施例5と同様にして、実施例23のコイン型非水電解質二次電池を作製した。
<Example 23>
A coin-type nonaqueous electrolyte secondary battery of Example 23 was made in the same manner as in Example 5, except that the negative electrode C was used instead of the negative electrode A.
<実施例24>
 負極Aの代わりに負極Cを用いた他は、実施例6と同様にして、実施例24のコイン型非水電解質二次電池を作製した。
<Example 24>
A coin-type nonaqueous electrolyte secondary battery of Example 24 was made in the same manner as in Example 6, except that the negative electrode C was used instead of the negative electrode A.
<実施例25>
 負極Aの代わりに負極Cを用いた他は、実施例7と同様にして、実施例25のコイン型非水電解質二次電池を作製した。
<Example 25>
A coin-type nonaqueous electrolyte secondary battery of Example 25 was made in the same manner as in Example 7, except that the negative electrode C was used instead of the negative electrode A.
<実施例26>
 負極Aの代わりに負極Cを用いた他は、実施例8と同様にして、実施例26のコイン型非水電解質二次電池を作製した。
<Example 26>
A coin-type nonaqueous electrolyte secondary battery of Example 26 was made in the same manner as in Example 8, except that the negative electrode A was used instead of the negative electrode A.
<実施例27>
 負極Aの代わりに負極Cを用いた他は、実施例9と同様にして、実施例27のコイン型非水電解質二次電池を作製した。
<Example 27>
A coin-type nonaqueous electrolyte secondary battery of Example 27 was made in the same manner as Example 9 except that the negative electrode C was used instead of the negative electrode A.
<実施例28>
 負極Aの代わりに負極Cを用いた他は、実施例10と同様にして、実施例28のコイン型非水電解質二次電池を作製した。
<Example 28>
A coin-type nonaqueous electrolyte secondary battery of Example 28 was produced in the same manner as in Example 10, except that the negative electrode C was used instead of the negative electrode A.
<実施例29>
 負極Aの代わりに負極Cを用いた他は、実施例11と同様にして、実施例29のコイン型非水電解質二次電池を作製した。
<Example 29>
A coin-type non-aqueous electrolyte secondary battery of Example 29 was produced in the same manner as in Example 11, except that the negative electrode C was used instead of the negative electrode A.
<実施例30>
 負極Aの代わりに負極Cを用いた他は、実施例12と同様にして、実施例30のコイン型非水電解質二次電池を作製した。
<Example 30>
A coin-type non-aqueous electrolyte secondary battery of Example 30 was produced in the same manner as in Example 12, except that the negative electrode C was used instead of the negative electrode A.
<実施例31>
 負極Aの代わりに負極Cを用いた他は、実施例13と同様にして、実施例31のコイン型非水電解質二次電池を作製した。
<Example 31>
A coin-type nonaqueous electrolyte secondary battery of Example 31 was produced in the same manner as in Example 13, except that the negative electrode C was used instead of the negative electrode A.
<実施例32>
 負極Aの代わりに負極Cを用いた他は、実施例14と同様にして、実施例32のコイン型非水電解質二次電池を作製した。
<Example 32>
A coin-type nonaqueous electrolyte secondary battery of Example 32 was produced in the same manner as in Example 14, except that the negative electrode C was used instead of the negative electrode A.
<実施例33>
 負極Aの代わりに負極Cを用いた他は、実施例15と同様にして、実施例33のコイン型非水電解質二次電池を作製した。
<Example 33>
A coin-type nonaqueous electrolyte secondary battery of Example 33 was made in the same manner as Example 15 except that the negative electrode C was used instead of the negative electrode A.
<実施例34>
(負極Dの作製)
 負極活物質としてSi(D50=2.8μm)を9.0質量部及び人造黒鉛(D50=21.3μm)を81.0質量部、導電助剤としてアセチレンブラック(デンカ社製)を5.0質量部、バインダーとしてスチレン-ブタジエンゴム(40質量%水分散液、日本ゼオン社製)を3.0質量部及びカルボキシメチルセルロースナトリウム(CMCNa:ダイセルファインケム社製)を2.0質量部、溶媒として水を100質量部用い、自転・公転ミキサーにより混合し、電極合剤ペーストを得た。前記電極合剤ペーストを、ドクターブレード法により銅箔(厚さ10μm)からなる集電体に塗布し、90℃で3時間静置して乾燥した。さらに、プレス成型を行った。その後、この電極を所定の大きさにカットし、更に使用直前に150℃で2時間真空乾燥して負極Dを作製した。
<Example 34>
(Preparation of negative electrode D)
9.0 parts by mass of Si (D50 = 2.8 μm) and 81.0 parts by mass of artificial graphite (D50 = 21.3 μm) as a negative electrode active material, and 5.0 of acetylene black (manufactured by Denka) as a conductive aid. Parts by mass, 3.0 parts by mass of a styrene-butadiene rubber (40 mass% aqueous dispersion, manufactured by Zeon Corporation) as a binder, 2.0 parts by mass of sodium carboxymethyl cellulose (CMCNa: manufactured by Daicel Finechem), and water as a solvent. Was mixed with a rotation / revolution mixer to obtain an electrode mixture paste. The electrode mixture paste was applied to a current collector made of copper foil (thickness: 10 μm) by a doctor blade method, and allowed to stand at 90 ° C. for 3 hours and dried. Further, press molding was performed. Thereafter, this electrode was cut into a predetermined size, and further vacuum-dried at 150 ° C. for 2 hours immediately before use to prepare a negative electrode D.
 負極Aの代わりに負極Dを用いた他は、実施例2と同様にして、実施例34のコイン型非水電解質二次電池を作製した。 コ イ ン A coin-type nonaqueous electrolyte secondary battery of Example 34 was produced in the same manner as in Example 2, except that the negative electrode A was used instead of the negative electrode A.
<実施例35>
 負極Aの代わりに負極Dを用いた他は、実施例5と同様にして、実施例35のコイン型非水電解質二次電池を作製した。
<Example 35>
A coin-type nonaqueous electrolyte secondary battery of Example 35 was produced in the same manner as in Example 5, except that the negative electrode D was used instead of the negative electrode A.
<実施例36>
 負極Aの代わりに負極Dを用いた他は、実施例8と同様にして、実施例36のコイン型非水電解質二次電池を作製した。
<Example 36>
A coin-type nonaqueous electrolyte secondary battery of Example 36 was made in the same manner as in Example 8, except that the negative electrode A was used instead of the negative electrode A.
<比較例1>
 化合物No.1-1を用いずに非水電解質を調製した他は実施例1と同様にして、比較例1のコイン型非水電解質二次電池を作製した。
<Comparative Example 1>
Compound No. A coin-type non-aqueous electrolyte secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that a non-aqueous electrolyte was prepared without using 1-1.
<比較例2>
 化合物No.1-1の代わりにビニレンカーボネートを1.0質量%の濃度で溶解した他は実施例1と同様にして、比較例2のコイン型非水電解質二次電池を作製した。
<Comparative Example 2>
Compound No. A coin-type nonaqueous electrolyte secondary battery of Comparative Example 2 was produced in the same manner as in Example 1, except that vinylene carbonate was dissolved at a concentration of 1.0% by mass instead of 1-1.
<比較例3>
 化合物No.1-1の代わりにフルオロエチレンカーボネートを1.0質量%の濃度で溶解した他は実施例1と同様にして、比較例3のコイン型非水電解質二次電池を作製した。
<Comparative Example 3>
Compound No. A coin-type nonaqueous electrolyte secondary battery of Comparative Example 3 was produced in the same manner as in Example 1, except that fluoroethylene carbonate was dissolved at a concentration of 1.0% by mass instead of 1-1.
<比較例4>
 負極Aの代わりに負極Bを用いた他は比較例1と同様にして、比較例4のコイン型非水電解質二次電池を作製した。
<Comparative Example 4>
A coin-type nonaqueous electrolyte secondary battery of Comparative Example 4 was produced in the same manner as in Comparative Example 1 except that the negative electrode B was used instead of the negative electrode A.
<比較例5>
 負極Aの代わりに負極Bを用いた他は比較例2と同様にして、比較例5のコイン型非水電解質二次電池を作製した。
<Comparative Example 5>
A coin-type nonaqueous electrolyte secondary battery of Comparative Example 5 was produced in the same manner as in Comparative Example 2 except that the negative electrode B was used instead of the negative electrode A.
<比較例6>
 負極Aの代わりに負極Bを用いた他は比較例3と同様にして、比較例6のコイン型非水電解質二次電池を作製した。
<Comparative Example 6>
A coin-type nonaqueous electrolyte secondary battery of Comparative Example 6 was produced in the same manner as Comparative Example 3 except that the negative electrode B was used instead of the negative electrode A.
<比較例7>
 負極Aの代わりに負極Cを用いた他は比較例1と同様にして、比較例7のコイン型非水電解質二次電池を作製した。
<Comparative Example 7>
A coin-type nonaqueous electrolyte secondary battery of Comparative Example 7 was produced in the same manner as in Comparative Example 1, except that the negative electrode C was used instead of the negative electrode A.
<比較例8>
 負極Aの代わりに負極Cを用いた他は比較例2と同様にして、比較例8のコイン型非水電解質二次電池を作製した。
<Comparative Example 8>
A coin-type nonaqueous electrolyte secondary battery of Comparative Example 8 was produced in the same manner as in Comparative Example 2 except that the negative electrode C was used instead of the negative electrode A.
<比較例9>
 負極Aの代わりに負極Cを用いた他は比較例3と同様にして、比較例9のコイン型非水電解質二次電池を作製した。
<Comparative Example 9>
A coin-type non-aqueous electrolyte secondary battery of Comparative Example 9 was produced in the same manner as Comparative Example 3 except that the negative electrode C was used instead of the negative electrode A.
<比較例10>
 負極Aの代わりに負極Dを用いた他は比較例1と同様にして、比較例10のコイン型非水電解質二次電池を作製した。
<Comparative Example 10>
A coin-type nonaqueous electrolyte secondary battery of Comparative Example 10 was produced in the same manner as in Comparative Example 1 except that the negative electrode A was used instead of the negative electrode A.
<比較例11>
 負極Aの代わりに負極Dを用いた他は比較例2と同様にして、比較例11のコイン型非水電解質二次電池を作製した。
<Comparative Example 11>
A coin-type nonaqueous electrolyte secondary battery of Comparative Example 11 was produced in the same manner as in Comparative Example 2 except that the negative electrode D was used instead of the negative electrode A.
<比較例12>
 負極Aの代わりに負極Dを用いた他は比較例3と同様にして、比較例12のコイン型非水電解質二次電池を作製した。
<Comparative Example 12>
A coin-type nonaqueous electrolyte secondary battery of Comparative Example 12 was produced in the same manner as in Comparative Example 3 except that the negative electrode D was used instead of the negative electrode A.
<充放電評価>
 実施例1~36及び比較例1~12のコイン型非水電解質二次電池を、30℃の恒温槽に入れ、充電終止電圧を4.3V、放電終止電圧を2.5Vとし、充電レート0.2C、放電レート0.2Cの充放電試験を10サイクル行った。その後、充電レート1.0C、放電レート1.0Cの充放電試験を100サイクル、充電レート2.0C、放電レート2.0Cの充放電試験を100サイクル、更に充電レート3.0C、放電レート3.0Cの充放電試験を100サイクル、合計310サイクル行った。20サイクル目の放電容量に対する、110サイクル目、160サイクル目、260サイクル目の放電容量の比(容量維持率)を表1及び表2に示す。容量維持率1=110サイクルの放電容量/20サイクルの放電容量、容量維持率2=160サイクルの放電容量/20サイクルの放電容量、容量維持率3=260サイクルの放電容量/20サイクルの放電容量である。
<Charge / discharge evaluation>
The coin-type non-aqueous electrolyte secondary batteries of Examples 1 to 36 and Comparative Examples 1 to 12 were placed in a thermostat at 30 ° C., the charge end voltage was set to 4.3 V, the discharge end voltage was set to 2.5 V, and the charge rate was set to 0. 10 cycles of a charge / discharge test at 0.2 C and a discharge rate of 0.2 C were performed. Thereafter, 100 cycles of a charge / discharge test at a charge rate of 1.0 C and a discharge rate of 1.0 C, 100 cycles of a charge / discharge test at a charge rate of 2.0 C and a discharge rate of 2.0 C, and a charge rate of 3.0 C and a discharge rate of 3 A 100 C charge / discharge test was performed for 100 cycles, for a total of 310 cycles. Tables 1 and 2 show the ratio (capacity retention) of the discharge capacity at the 110th, 160th, and 260th cycles to the discharge capacity at the 20th cycle. Capacity retention rate 1 = discharge capacity of 110 cycles / discharge capacity of 20 cycles, capacity retention rate 2 = discharge capacity of 160 cycles / discharge capacity of 20 cycles, capacity retention rate 3 = discharge capacity of 260 cycles / discharge capacity of 20 cycles It is.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 
Figure JPOXMLDOC01-appb-T000025
 
 表1に示す様に、実施例1~実施例36の非水電解質二次電池は、比較例1~比較例12の非水電解質二次電池と比べて容量維持率が高く、サイクル特性が優れており、かつ充放電レートが大きい場合であっても容量維持率が高く、レート特性にも優れた非水電解質二次電池であった。 As shown in Table 1, the nonaqueous electrolyte secondary batteries of Examples 1 to 36 have higher capacity retention ratios and superior cycle characteristics than the nonaqueous electrolyte secondary batteries of Comparative Examples 1 to 12. Thus, the non-aqueous electrolyte secondary battery had a high capacity retention rate even when the charge / discharge rate was high and had excellent rate characteristics.
1  正極
1a 正極集電体
2  負極
2a 負極集電体
3  非水電解質
4  正極ケース
5  負極ケース
6  ガスケット
7  セパレータ
10 コイン型非水電解質二次電池
10’円筒型非水電解質二次電池
11 負極
12 負極集電体
13 正極
14 正極集電体
15 非水電解質
16 セパレータ
17 正極端子
18 負極端子
19 負極板
20 負極リード
21 正極板
22 正極リード
23 ケース
24 絶縁板
25 ガスケット
26 安全弁
27 PTC素子
REFERENCE SIGNS LIST 1 positive electrode 1 a positive electrode current collector 2 negative electrode 2 a negative electrode current collector 3 nonaqueous electrolyte 4 positive electrode case 5 negative electrode case 6 gasket 7 separator 10 coin-type nonaqueous electrolyte secondary battery 10 ′ cylindrical nonaqueous electrolyte secondary battery 11 negative electrode 12 Negative electrode current collector 13 Positive electrode 14 Positive electrode current collector 15 Nonaqueous electrolyte 16 Separator 17 Positive terminal 18 Negative terminal 19 Negative plate 20 Negative lead 21 Positive plate 22 Positive lead 23 Case 24 Insulating plate 25 Gasket 26 Safety valve 27 PTC element

Claims (10)

  1.  正極と、
     ケイ素原子を含有する負極と、
     一般式(1)で表される化合物及びリチウム塩を含有する非水電解質と、
    を含む非水電解質二次電池。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R~Rは、それぞれ独立に炭素原子数1~10の炭化水素基を表し、Rは、炭素原子数1~10のn価の炭化水素基、炭素原子数1~10の炭化水素基が酸素原子若しくは硫黄原子で連結されたn価の基、又は酸素原子若しくは硫黄原子を含む炭素原子数3~6のn価の複素環基を表し、nは1~6の整数を表す。)
    A positive electrode,
    A negative electrode containing a silicon atom,
    A non-aqueous electrolyte containing the compound represented by the general formula (1) and a lithium salt;
    Non-aqueous electrolyte secondary battery containing.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, R 1 to R 3 each independently represent a hydrocarbon group having 1 to 10 carbon atoms, R 4 is an n-valent hydrocarbon group having 1 to 10 carbon atoms, and 1 to 10 carbon atoms) An n-valent group in which 10 hydrocarbon groups are linked by an oxygen atom or a sulfur atom, or an n-valent heterocyclic group having 3 to 6 carbon atoms containing an oxygen atom or a sulfur atom, wherein n is 1 to 6 Represents an integer.)
  2.  一般式(1)で表される化合物のRが、炭素原子数2~10のn価の脂肪族炭化水素基、炭素原子数1~10の炭化水素基が硫黄原子で連結されたn価の基、または硫黄原子を含む炭素原子数3~6のn価の複素環基を表し、nが2である、請求項1に記載の非水電解質二次電池。 R 4 of the compound represented by the general formula (1) is an n-valent aliphatic hydrocarbon group having 2 to 10 carbon atoms, or an n-valent hydrocarbon group having 1 to 10 carbon atoms connected by a sulfur atom. 2. The non-aqueous electrolyte secondary battery according to claim 1, wherein n represents 2 or a n-valent heterocyclic group having 3 to 6 carbon atoms including a sulfur atom.
  3.  一般式(1)で表される化合物の含有量が、非水電解質中において0.01質量%~20質量%である請求項1又は2に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the content of the compound represented by the general formula (1) is 0.01% by mass to 20% by mass in the non-aqueous electrolyte.
  4.  非水電解質が、更に一般式(2)で表される化合物を含有する、請求項1~3のいずれか1項に記載の非水電解質二次電池。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素原子数1~6の炭化水素基、炭素原子数4~6の複素環基、1つ以上の水素原子がフッ素原子で置換された炭素原子数1~6の炭化水素基、又は1つ以上の水素原子がフッ素原子で置換された炭素原子数4~6の複素環基を表し、R10~R12はそれぞれ独立に、ハロゲン原子、炭素原子数1~6の炭化水素基、又は炭素原子数1~6のアルコキシ基を表す。)
    The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the non-aqueous electrolyte further contains a compound represented by the general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, R 5 to R 9 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a heterocyclic group having 4 to 6 carbon atoms, and at least one hydrogen atom Represents a hydrocarbon group having 1 to 6 carbon atoms substituted by a fluorine atom, or a heterocyclic group having 4 to 6 carbon atoms substituted by one or more hydrogen atoms by a fluorine atom, and R 10 to R 12 are Each independently represents a halogen atom, a hydrocarbon group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.)
  5.  一般式(2)で表される化合物のR~Rが、それぞれ独立に、水素原子又は炭素原子数1~6の脂肪族炭化水素基であり、R10~R12がそれぞれ独立に炭素原子数1~6の脂肪族炭化水素基である、請求項1~4のいずれか1項に記載の非水電解質二次電池。 R 5 to R 9 of the compound represented by the general formula (2) are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 6 carbon atoms, and R 10 to R 12 are each independently a carbon atom. The non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the non-aqueous electrolyte secondary battery is an aliphatic hydrocarbon group having 1 to 6 atoms.
  6.  負極が、カーボンコートを有する場合があるSiO(x=0.5~1.6)又はカーボンコートを有する場合がある単体ケイ素を含有する、請求項1~5のいずれか1項に記載の非水電解質二次電池。 The negative electrode according to any one of claims 1 to 5, wherein the negative electrode contains SiO x (x = 0.5 to 1.6) that may have a carbon coat or elemental silicon that may have a carbon coat. Non-aqueous electrolyte secondary battery.
  7.  前記SiO又は単体ケイ素の平均粒子径が、0.01~50μmである、請求項1~6のいずれか1項に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein the average particle diameter of the SiO x or the elemental silicon is 0.01 to 50 μm.
  8.  負極の電極合剤層中のケイ素原子の含有量が、1質量%~98質量%である、請求項1~7のいずれか1項に記載の非水電解質二次電池。 (8) The nonaqueous electrolyte secondary battery according to any one of (1) to (7), wherein the content of silicon atoms in the electrode mixture layer of the negative electrode is 1% by mass to 98% by mass.
  9.  一般式(1)で表される化合物のRが、炭素原子数2~6のn価の脂肪族炭化水素基、炭素原子数1~6の脂肪族炭化水素基が硫黄原子で連結されたn価の基、または硫黄原子を含む炭素原子数1~6のn価の複素環基を表し、nが2であり、R~Rは、それぞれ独立に炭素原子数1~6の炭化水素基を表し、
     負極が、カーボンコートを有する場合があるSiO(x=0.5~1.6)又はカーボンコートを有する場合がある単体ケイ素を含有する、請求項1~8の何れか1項に記載の非水電解質二次電池。
    In the compound represented by the general formula (1), R 4 is an n-valent aliphatic hydrocarbon group having 2 to 6 carbon atoms, and an aliphatic hydrocarbon group having 1 to 6 carbon atoms connected by a sulfur atom. represents an n-valent group or an n-valent heterocyclic group having 1 to 6 carbon atoms containing a sulfur atom, wherein n is 2 and R 1 to R 3 each independently represent a carbon atom having 1 to 6 carbon atoms; Represents a hydrogen group,
    9. The negative electrode according to claim 1, wherein the negative electrode contains SiO x (x = 0.5 to 1.6) that may have a carbon coat or elemental silicon that may have a carbon coat. Non-aqueous electrolyte secondary battery.
  10.  負極が、更に炭素材料を含有する、請求項1~9のいずれか1項に記載の非水電解質二次電池。 (10) The nonaqueous electrolyte secondary battery according to any one of (1) to (9), wherein the negative electrode further contains a carbon material.
PCT/JP2019/026995 2018-07-19 2019-07-08 Nonaqueous electrolyte secondary battery WO2020017378A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207033072A KR20210031423A (en) 2018-07-19 2019-07-08 Non-aqueous electrolyte secondary battery
JP2020531250A JPWO2020017378A1 (en) 2018-07-19 2019-07-08 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018136151 2018-07-19
JP2018-136151 2018-07-19

Publications (1)

Publication Number Publication Date
WO2020017378A1 true WO2020017378A1 (en) 2020-01-23

Family

ID=69164044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026995 WO2020017378A1 (en) 2018-07-19 2019-07-08 Nonaqueous electrolyte secondary battery

Country Status (3)

Country Link
JP (1) JPWO2020017378A1 (en)
KR (1) KR20210031423A (en)
WO (1) WO2020017378A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220263136A1 (en) * 2020-04-14 2022-08-18 Lg Energy Solution, Ltd. Lithium-sulfur battery electrolyte and lithium-sulfur battery comprising same
CN115149104A (en) * 2022-08-16 2022-10-04 昆明理工大学 Battery electrolyte containing additive and application thereof in lithium-sulfur battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231225A (en) * 2001-02-01 2002-08-16 Hitachi Chem Co Ltd Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
JP2007123097A (en) * 2005-10-28 2007-05-17 Sony Corp Battery
JP2013118168A (en) * 2011-11-01 2013-06-13 Adeka Corp Nonaqueous electrolyte secondary battery
WO2014017321A1 (en) * 2012-07-26 2014-01-30 株式会社Adeka Electricity storage device
JP2015092476A (en) * 2013-10-04 2015-05-14 旭化成株式会社 Nonaqueous electrolyte, electrolyte for lithium ion secondary batteries and nonaqueous electrolyte battery
JP2015216097A (en) * 2013-11-01 2015-12-03 日立化成株式会社 Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery using the same
WO2016013480A1 (en) * 2014-07-23 2016-01-28 株式会社Adeka Nonaqueous electrolyte secondary battery, nonaqueous electrolyte solution and compound
WO2016076145A1 (en) * 2014-11-11 2016-05-19 新日鉄住金化学株式会社 Nonaqueous electrolyte secondary battery
WO2016147872A1 (en) * 2015-03-17 2016-09-22 株式会社Adeka Non-aqueous electrolyte, and non-aqueous electrolyte secondary cell
WO2017047626A1 (en) * 2015-09-17 2017-03-23 株式会社Adeka Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
JP2017130474A (en) * 2017-05-01 2017-07-27 ソニー株式会社 Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4329806B2 (en) 2006-10-13 2009-09-09 ソニー株式会社 Secondary battery
JP5446183B2 (en) 2007-09-12 2014-03-19 三菱化学株式会社 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
JP5446612B2 (en) 2009-08-28 2014-03-19 Tdk株式会社 Lithium ion secondary battery
WO2013069197A1 (en) 2011-11-11 2013-05-16 株式会社豊田自動織機 Negative-electrode material and negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP6361291B2 (en) 2014-05-30 2018-07-25 株式会社豊田自動織機 Initial charging method for lithium ion secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231225A (en) * 2001-02-01 2002-08-16 Hitachi Chem Co Ltd Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
JP2007123097A (en) * 2005-10-28 2007-05-17 Sony Corp Battery
JP2013118168A (en) * 2011-11-01 2013-06-13 Adeka Corp Nonaqueous electrolyte secondary battery
WO2014017321A1 (en) * 2012-07-26 2014-01-30 株式会社Adeka Electricity storage device
JP2015092476A (en) * 2013-10-04 2015-05-14 旭化成株式会社 Nonaqueous electrolyte, electrolyte for lithium ion secondary batteries and nonaqueous electrolyte battery
JP2015216097A (en) * 2013-11-01 2015-12-03 日立化成株式会社 Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery using the same
WO2016013480A1 (en) * 2014-07-23 2016-01-28 株式会社Adeka Nonaqueous electrolyte secondary battery, nonaqueous electrolyte solution and compound
WO2016076145A1 (en) * 2014-11-11 2016-05-19 新日鉄住金化学株式会社 Nonaqueous electrolyte secondary battery
WO2016147872A1 (en) * 2015-03-17 2016-09-22 株式会社Adeka Non-aqueous electrolyte, and non-aqueous electrolyte secondary cell
WO2017047626A1 (en) * 2015-09-17 2017-03-23 株式会社Adeka Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
JP2017130474A (en) * 2017-05-01 2017-07-27 ソニー株式会社 Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220263136A1 (en) * 2020-04-14 2022-08-18 Lg Energy Solution, Ltd. Lithium-sulfur battery electrolyte and lithium-sulfur battery comprising same
CN115149104A (en) * 2022-08-16 2022-10-04 昆明理工大学 Battery electrolyte containing additive and application thereof in lithium-sulfur battery
CN115149104B (en) * 2022-08-16 2024-02-27 昆明理工大学 Battery electrolyte containing additive and application of battery electrolyte in lithium-sulfur battery

Also Published As

Publication number Publication date
JPWO2020017378A1 (en) 2021-08-02
KR20210031423A (en) 2021-03-19

Similar Documents

Publication Publication Date Title
JP6253411B2 (en) Lithium secondary battery
CN105576279B (en) Lithium secondary battery
WO2019181703A1 (en) Method for suppressing thermal runaway caused by internal short circuit
US20190334173A1 (en) Composite graphite particles, method for producing same, and use thereof
WO2019088088A1 (en) Slurry composition, and electrode using slurry composition
US20200243860A1 (en) Method for producing organo-sulfur electrode active material
WO2019208153A1 (en) Nonaqueous electrolyte secondary battery
WO2020170833A1 (en) Electrolyte composition, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
KR20200135301A (en) Lithium ion secondary battery, and its operation method
WO2020017378A1 (en) Nonaqueous electrolyte secondary battery
WO2022004696A1 (en) Sulfur-modified polyacrylonitrile, electrode active material containing same, secondary battery electrode containing said electrode active material, manufacturing method for said electrode, and nonaqueous electrolyte secondary battery using said electrode
JP2013134921A (en) Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7216073B2 (en) Non-aqueous electrolyte secondary battery
JP2020027695A (en) Composition, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
JP2019220415A (en) Composition, nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2021118031A (en) Nonaqueous electrolyte secondary battery
JP2021114435A (en) Nonaqueous electrolyte additive, and nonaqueous electrolyte and nonaqueous electrolyte secondary battery that contain the same
WO2024057992A1 (en) Sulfur-containing material, sulfur-containing battery material, electrode and battery
US20220340693A1 (en) Production method of sulfur-modified polyacrylonitrile
TWI822957B (en) Method for manufacturing positive electrode active material for lithium ion secondary batteries, positive electrode active material for lithium ion secondary batteries, lithium ion secondary battery
WO2021251234A1 (en) Electrode and lithium ion secondary battery
WO2023085245A1 (en) Composition, electrode, battery, and electrode active material
WO2021124522A1 (en) Electrode active material, method for producing same, composition for forming electrode mixture layer, electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2021051854A (en) Method for manufacturing nonaqueous electrolyte secondary battery
KR20140008954A (en) Negative active material for lithium secondary battery, anode comprising the same, and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531250

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838681

Country of ref document: EP

Kind code of ref document: A1