JP2009181767A - Composite carbon material for negative electrode material of lithium secondary battery and its manufacturing method - Google Patents

Composite carbon material for negative electrode material of lithium secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2009181767A
JP2009181767A JP2008018818A JP2008018818A JP2009181767A JP 2009181767 A JP2009181767 A JP 2009181767A JP 2008018818 A JP2008018818 A JP 2008018818A JP 2008018818 A JP2008018818 A JP 2008018818A JP 2009181767 A JP2009181767 A JP 2009181767A
Authority
JP
Japan
Prior art keywords
particles
metal
powder
graphite
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008018818A
Other languages
Japanese (ja)
Other versions
JP5257740B2 (en
Inventor
Akira Kondo
明 近藤
Kentaro Takizawa
健太郎 瀧澤
Kenichi Kimura
謙一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2008018818A priority Critical patent/JP5257740B2/en
Publication of JP2009181767A publication Critical patent/JP2009181767A/en
Application granted granted Critical
Publication of JP5257740B2 publication Critical patent/JP5257740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite carbon material for negative electrodes of lithium ion secondary battery, having higher capacity than the theoretical capacity of graphite, high energy density, excellent charging/discharging cycle characteristics, and excellent initial irreversible capacity. <P>SOLUTION: A composite carbon material for negative electrodes of lithium ion secondary battery includes graphite core particles and a carbide layer formed on the surface of each graphite core particle. The carbide layer contains metal particles or metal compound particles which store and discharge lithium or a set of metal particles or metal compound particles which store and discharge lithium and graphite particles. The particle size aspect ratio is 1.0-2.0. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ノート型パソコン等の高容量を必要とする部位に使用されるリチウムイオン二次電池の負極材として用いられるリチウムイオン二次電池の負極材用複合炭素材料及びその製造方法に関する。   The present invention relates to a composite carbon material for a negative electrode material of a lithium ion secondary battery used as a negative electrode material of a lithium ion secondary battery used in a site requiring high capacity, such as a notebook computer, and a method for producing the same.

ノート型パソコンや携帯電話に使用されるリチウム二次電池には、更なる高容量化が求められている。しかしながら、現行の黒鉛負極材料の容量は、ほぼ理論容量の372mAh/gに達しているため、理論容量が大きい負極材料が望まれている。   Lithium secondary batteries used in notebook computers and mobile phones are required to have higher capacities. However, since the capacity of the current graphite negative electrode material almost reaches the theoretical capacity of 372 mAh / g, a negative electrode material having a large theoretical capacity is desired.

SiやSnに代表されるリチウムと合金化可能な金属系負極材料は、理論容量は大きい。しかし、該金属系負極材料は、理論容量こそ大きいが、導電性が低いことや、充放電サイクルにおける膨張が大きく、容量劣化が激しいという欠点があった。そのため、該金属系負極材料には、導電性の付与や膨張緩和が必要となる。   Metal-based negative electrode materials that can be alloyed with lithium typified by Si and Sn have a large theoretical capacity. However, the metal-based negative electrode material has a large theoretical capacity, but has a drawback of low electrical conductivity, large expansion during a charge / discharge cycle, and severe capacity deterioration. For this reason, the metal-based negative electrode material needs to be imparted with conductivity and relaxed.

これまで、該金属系負極材料に導電性を付与する方法として、(i)金属系材料への炭素前駆体の被覆、(ii)遷移金属のドープ、(iii)金属系材料と炭素との複合化、が行われてきた。   Until now, as a method of imparting conductivity to the metal-based negative electrode material, (i) coating of a carbon precursor on the metal-based material, (ii) doping of a transition metal, (iii) composite of the metal-based material and carbon Has been carried out.

ところが、該(i)及び該(ii)の方法で得られる金属系負極材料は、導電性を付与することができるものの、充放電サイクルの膨張収縮に伴う金属の微細化によって、徐々に導電性が低下するため、実用レベルには程遠いといった欠点があった。   However, although the metal-based negative electrode material obtained by the method (i) and the method (ii) can impart conductivity, the conductivity is gradually reduced by the refinement of the metal accompanying expansion and contraction of the charge / discharge cycle. Has a disadvantage that it is far from the practical level.

また、該(iii)の方法により得られる金属系材料としては、例えば、特開2004−185975号公報(特許文献1)には、黒鉛粒子に対し、Siを機械的衝撃力を利用したメカノケミカル処理により固定化し、さらにその上を炭素層で被覆した三層構造を持つ複合材料が開示されている。また、特開2002−8652号公報(特許文献2)には、黒鉛粒子の表面にSiを付着し、黒鉛粒子の少なくとも一部、複合体の表面の少なくとも一部が炭素被覆されていることを特徴とする複合炭素材料が開示されている。また、特開2002−255529号公報(特許文献3)又は特開2006−49266号公報(引用文献4)には、平均粒径が15μmの黒鉛粒子と、Si粒子上にフェノール樹脂を用いてカーボンブラックを付着した複合粒子をイソプロピルアルコール/フェノール樹脂溶液を用いて湿式混合後、焼成炭化することにより得た黒鉛粒子上にSi/カーボンブラック複合粒子が付着した構造を持つ複合炭素材料が開示されている。   In addition, as a metal material obtained by the method (iii), for example, in Japanese Patent Application Laid-Open No. 2004-185975 (Patent Document 1), mechanochemical using Si with mechanical impact force on graphite particles is disclosed. A composite material having a three-layer structure, which is fixed by treatment and further covered with a carbon layer, is disclosed. Japanese Patent Laid-Open No. 2002-8652 (Patent Document 2) states that Si is attached to the surface of graphite particles, and at least a part of the graphite particles and at least a part of the surface of the composite are covered with carbon. A featured composite carbon material is disclosed. Japanese Patent Laid-Open No. 2002-255529 (Patent Document 3) or Japanese Patent Application Laid-Open No. 2006-49266 (Cited Document 4) discloses graphite particles having an average particle diameter of 15 μm and carbon using a phenol resin on Si particles. Disclosed is a composite carbon material having a structure in which Si / carbon black composite particles are adhered onto graphite particles obtained by wet-mixing composite particles with black attached using isopropyl alcohol / phenol resin solution and then calcined by firing. Yes.

しかし、特許文献1及び特許文献2では、サイクルを経ると、Si粒子自体の粒破壊が起こり、大部分のSiが数サイクル後には、ほとんど機能しなくなるという問題があった。   However, Patent Document 1 and Patent Document 2 have a problem that the Si particles themselves break down after a cycle, and most of the Si hardly functions after several cycles.

また、特許文献3及び特許文献4では、上記問題に加えて、凹凸な形状であるため、充填密度が小さく、結果的に体積当たりのエネルギー密度が小さくなるという問題があった。また、凹凸な形状は、プレス工程時に剥離し、不可逆容量の増加を招くという問題もあった。更には、カーボンブラック自体が、初期の不可逆容量が大きいので、サイクル寿命が短いという問題もあった。   Moreover, in patent document 3 and patent document 4, in addition to the said problem, since it was an uneven | corrugated shape, there existed a problem that the packing density was small and the energy density per volume became small as a result. In addition, the uneven shape is peeled off during the pressing process, resulting in an increase in irreversible capacity. Furthermore, since carbon black itself has a large initial irreversible capacity, there is also a problem that the cycle life is short.

金属系材料の寿命を長くするために、Si粒子自体の寿命も長くする必要がある。その手法として、Si粒子の微細化が行われている。しかし、Si粒子の微細化という手法では、大粒のものを用いる場合に比べ、格段にサイクル寿命が向上するものの、サイクル後の膨張収縮により、徐々に集電体との剥離が生じ、結果的にサイクル劣化してしまうという問題がある。また、金属系材料の寿命を長くするために、薄膜化するという手法も行われているが、微細化と同様の問題があることに加えて、電池を組んだ際に電池の容積に占める活物質厚みが薄くなり、電池容量が小さくなるという問題もある。   In order to extend the life of the metal-based material, it is necessary to increase the life of the Si particles themselves. As a technique for this, Si particles are miniaturized. However, in the technique of miniaturizing Si particles, the cycle life is remarkably improved as compared with the case of using large particles, but due to the expansion and contraction after the cycle, separation from the current collector occurs gradually, resulting in There is a problem that the cycle deteriorates. In addition, in order to extend the life of the metal-based material, a method of thinning is also performed. However, in addition to the same problem as miniaturization, the battery occupies the active capacity when the battery is assembled. There is also a problem that the material thickness is reduced and the battery capacity is reduced.

また、特開2003−17051号公報(特許文献5)には、黒鉛/SiOの混合粉をボールミルで微粉砕し、フルフリルアルコール中に分散させ塩酸を加えて重合後、1000℃で焼成炭化することにより、0.1〜1μmのSiOマトリクス中に2〜10nmのSiが分散し、かつ、5〜20μmの炭素マトリクス中にこのSiO/Si複合体と黒鉛の複合体が分散している複合炭素材料が開示されている。 In JP 2003-17051 A (Patent Document 5), a graphite / SiO mixed powder is finely pulverized with a ball mill, dispersed in furfuryl alcohol, added with hydrochloric acid, polymerized, and calcined at 1000 ° C. Thus, 2 to 10 nm of Si is dispersed in a 0.1 to 1 μm SiO 2 matrix, and this SiO 2 / Si composite and graphite composite is dispersed in a 5 to 20 μm carbon matrix. A composite carbon material is disclosed.

しかしながら、特許文献5の複合炭素材料は、長寿命ではあるが、工業的に不向きな上、フルフリルアルコールから形成される炭素マトリックスは1000℃の処理の段階では非結晶で比重が低いものとなり、結果的に極板密度が低くなるため、単位重量当たりの容量は大きいものの、単位体積当たりの容量は小さく、高容量のSiを使うメリットを生かせないという問題があった。   However, although the composite carbon material of Patent Document 5 has a long life, it is unsuitable for industrial use, and the carbon matrix formed from furfuryl alcohol is amorphous and has a low specific gravity at the stage of processing at 1000 ° C. As a result, since the electrode plate density is low, the capacity per unit weight is large, but the capacity per unit volume is small, and there is a problem that the merit of using high capacity Si cannot be utilized.

特開2004−185975号公報(特許請求の範囲)JP 2004-185975 A (Claims) 特開2002−8652号公報(特許請求の範囲)JP 2002-8652 A (Claims) 特開2002−255529号公報(段落番号0050〜0051)JP 2002-255529 A (paragraph numbers 0050 to 0051) 特開2006−49266号公報(段落番号0073〜0075)JP 2006-49266 A (paragraph numbers 0073 to 0075) 特開2003−17051号公報(段落番号0098)JP 2003-17051 A (paragraph number 0098)

つまり、優れた充放電サイクル特性を備えた、エネルギー密度が高いリチウムイオン二次電池の負極材料は、未だ達成されていない。   That is, a negative electrode material for a lithium ion secondary battery having excellent charge / discharge cycle characteristics and high energy density has not yet been achieved.

従って、本発明の課題は、容量が黒鉛の理論容量より高く、エネルギー密度が高く、優れた充放電サイクル特性を有し、且つ、優れた初期不可逆容量を示すリチウムイオン二次電池の負極材用複合炭素材料を提供することにある。また、本発明の課題は、そのようなリチウムイオン二次電池の負極材用複合炭素材料を、工業的に製造することができる製造方法を提供することにある。   Therefore, an object of the present invention is for a negative electrode material for a lithium ion secondary battery having a capacity higher than the theoretical capacity of graphite, high energy density, excellent charge / discharge cycle characteristics, and excellent initial irreversible capacity. It is to provide a composite carbon material. Moreover, the subject of this invention is providing the manufacturing method which can manufacture industrially the composite carbon material for negative electrode materials of such a lithium ion secondary battery.

本発明者らは、上記目的を達成するため鋭意研究を重ねた結果、核となる黒鉛粒子にあらかじめ炭素質物質からなる被覆層を形成させた後、被覆層を有する黒鉛核粒子と、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子、あるいは、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子を内包している金属内包粒子と、を摩擦及び圧縮することにより、該被覆層に該金属粒子又は金属化合物粒子を埋め込み、且つ、該被覆層の表面を滑らかにすることができるので、次いで、炭化焼成することにより、黒鉛核粒子と、表面が滑らかであり且つリチウムを吸蔵及び放出する金属粒子又は金属化合物粒子が埋め込まれた炭化物層と、からなるリチウムイオン二次電池の負極材用複合炭素材料が得られ、このようにして得られた複合炭素材料は、容量が黒鉛の理論容量より高く、エネルギー密度が高く、優れた充放電サイクル特性を有し、且つ、優れた初期不可逆容量を示すことを見出し、本発明を完成させた。   As a result of intensive studies to achieve the above object, the inventors of the present invention formed a coating layer made of a carbonaceous material in advance on graphite particles serving as a nucleus, and then formed graphite core particles having a coating layer and lithium. Metal particles or metal compound particles that occlude and release, or metal inclusion particles that occlude and release lithium or metal inclusion particles that encapsulate metal compound particles, are rubbed and compressed into the coating layer. Alternatively, the metal compound particles can be embedded and the surface of the coating layer can be smoothed, and then carbonized and calcined, whereby graphite core particles and metal particles that have a smooth surface and occlude and release lithium. Alternatively, a composite carbon material for a negative electrode material of a lithium ion secondary battery comprising a carbide layer embedded with metal compound particles and a composite obtained in this manner is obtained. Material cost, the capacity is higher than the theoretical capacity of graphite, high energy density and has excellent charge-discharge cycle characteristics, and, found to exhibit excellent initial irreversible capacity, thereby completing the present invention.

すなわち、本発明は、黒鉛核粒子と、該黒鉛核粒子の表面に形成されている炭化物層と、からなり、
該炭化物層には、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子、あるいは、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子と黒鉛微粒子とが、埋め込まれており、
粒子径アスペクト比が1.0〜2.0であること、
を特徴とするリチウムイオン二次電池の負極材用複合炭素材料を提供するものである。
That is, the present invention comprises graphite core particles and a carbide layer formed on the surface of the graphite core particles,
In the carbide layer, metal particles or metal compound particles that occlude and release lithium, or metal particles or metal compound particles that occlude and release lithium and graphite fine particles are embedded,
The particle diameter aspect ratio is 1.0 to 2.0,
A composite carbon material for a negative electrode material of a lithium ion secondary battery is provided.

また、本発明は、黒鉛核粒子粉末と、炭素質物質と、溶融性有機物と、を加熱混練して、該黒鉛核粒子の表面に該炭素質物質及び該溶融性有機物からなる被覆層を被覆し、該被覆層を有する黒鉛核粒子の素粒粉末を得る第一工程と、
該被覆層を有する黒鉛核粒子の素粒粉末と、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子の粉末、あるいは、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子を内包している金属内包炭素質粒子の粉末と、を混合し、得られた混合粉末を摩擦及び圧縮することにより、該被覆層を有する黒鉛核粒子の素粒粉末の該被覆層に、該金属粒子又は金属化合物粒子、あるいは、該金属内包粒子を埋め込むと共に整粒し、粒子径アスペクト比が1.0〜2.0の金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子の整粒粉末を得る第二工程と、
該金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子の整粒粉末を、非酸化性雰囲気下、850〜1,400℃で焼成炭化して、リチウムイオン二次電池の負極材用複合炭素材料を得る第三工程と、
を行い得られることを特徴とするリチウムイオン二次電池の負極材用複合炭素材料を提供するものである。
Further, the present invention provides a method in which graphite core particle powder, a carbonaceous material, and a meltable organic material are heated and kneaded to coat the surface of the graphite core particle with the coating layer composed of the carbonaceous material and the meltable organic material. And a first step of obtaining an elementary powder of graphite core particles having the coating layer,
A powder of graphite core particles having the coating layer and a metal particle or metal compound particle powder that occludes and releases lithium, or a metal inclusion that encloses metal particles or metal compound particles that occlude and release lithium. A powder of carbonaceous particles, and by friction and compression of the obtained mixed powder, the metal particles or metal compound particles are applied to the coating layer of the graphite core particle elementary powder having the coating layer, Alternatively, the metal-encapsulated particles are embedded and sized to obtain a sized powder of graphite core particles having a coating layer embedded with metal particles or metal compound particles having a particle diameter aspect ratio of 1.0 to 2.0. Two steps,
A sized powder of graphite core particles having a coating layer in which the metal particles or metal compound particles are embedded is calcined and carbonized at 850 to 1,400 ° C. in a non-oxidizing atmosphere to obtain a negative electrode material for a lithium ion secondary battery A third step of obtaining a composite carbon material for use,
A composite carbon material for a negative electrode material of a lithium ion secondary battery is provided.

また、本発明は、黒鉛核粒子粉末と、炭素質物質と、溶融性有機物と、を加熱混練して、該黒鉛核粒子の表面に該炭素質物質及び該溶融性有機物からなる被覆層を被覆し、該被覆層を有する黒鉛核粒子の素粒粉末を得る第一工程と、
該被覆層を有する黒鉛核粒子の素粒粉末と、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子の粉末、あるいは、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子を内包している金属内包炭素質粒子の粉末と、を混合し、得られた混合粉末を摩擦及び圧縮することにより、該被覆層を有する黒鉛核粒子の素粒粉末の該被覆層に、該金属粒子又は金属化合物粒子、あるいは、該金属内包炭素質粒子を埋め込むと共に整粒し、粒子径アスペクト比が1.0〜2.0の金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子の整粒粉末を得る第二工程と、
該金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子の整粒粉末を、非酸化性雰囲気下、850〜1,400℃で焼成炭化して、リチウムイオン二次電池の負極材用複合炭素材料を得る第三工程と、
を有することを特徴とするリチウムイオン二次電池の負極材用複合炭素材料の製造方法を提供するものである。
Further, the present invention provides a method in which graphite core particle powder, a carbonaceous material, and a meltable organic material are heated and kneaded to coat the surface of the graphite core particle with the coating layer composed of the carbonaceous material and the meltable organic material. And a first step of obtaining an elementary powder of graphite core particles having the coating layer,
A powder of graphite core particles having the coating layer and a metal particle or metal compound particle powder that occludes and releases lithium, or a metal inclusion that encloses metal particles or metal compound particles that occlude and release lithium. A powder of carbonaceous particles, and by friction and compression of the obtained mixed powder, the metal particles or metal compound particles are applied to the coating layer of the graphite core particle elementary powder having the coating layer, Alternatively, a sized powder of graphite core particles embedded with the metal-encapsulating carbonaceous particles and sized, and having a coating layer embedded with metal particles or metal compound particles having a particle diameter aspect ratio of 1.0 to 2.0. A second step to obtain;
A sized powder of graphite core particles having a coating layer in which the metal particles or metal compound particles are embedded is calcined and carbonized at 850 to 1,400 ° C. in a non-oxidizing atmosphere to obtain a negative electrode material for a lithium ion secondary battery A third step of obtaining a composite carbon material for use,
The manufacturing method of the composite carbon material for negative electrode materials of a lithium ion secondary battery characterized by having.

本発明によれば、容量が黒鉛の理論容量より高く、エネルギー密度が高く、優れた充放電サイクル特性を有し、且つ、優れた初期不可逆容量を示すリチウムイオン二次電池の負極材用複合炭素材料を提供することができる。また、本発明の課題は、そのようなリチウムイオン二次電池の負極材用複合炭素材料を、工業的に製造することができる製造方法を提供することができる。   According to the present invention, the composite carbon for a negative electrode material of a lithium ion secondary battery having a capacity higher than the theoretical capacity of graphite, high energy density, excellent charge / discharge cycle characteristics, and excellent initial irreversible capacity. Material can be provided. Moreover, the subject of this invention can provide the manufacturing method which can manufacture the composite carbon material for negative electrode materials of such a lithium ion secondary battery industrially.

本発明のリチウムイオン二次電池の負極材用複合炭素材料の製造方法は、黒鉛核粒子粉末と、炭素質物質と、溶融性有機物と、を加熱混練して、該黒鉛核粒子の表面に該炭素質物質及び該溶融性有機物からなる被覆層を被覆し、該被覆層を有する黒鉛核粒子の素粒粉末を得る第一工程と、
該被覆層を有する黒鉛核粒子の素粒粉末と、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子の粉末、あるいは、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子を内包している金属内包炭素質粒子の粉末と、を混合し、得られた混合粉末を摩擦及び圧縮することにより、該被覆層を有する黒鉛核粒子の素粒粉末の該被覆層に、該金属粒子又は該金属化合物粒子、あるいは、該金属内包炭素質粒子を埋め込むと共に整粒し、粒子径アスペクト比が1.0〜2.0の金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子の整粒粉末を得る第二工程と、
該金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子の整粒粉末を、非酸化性雰囲気下、850〜1,400℃で焼成炭化して、リチウムイオン二次電池の負極材用複合炭素材料を得る第三工程と、
を有するリチウムイオン二次電池の負極材用複合炭素材料の製造方法である。
The method for producing a composite carbon material for a negative electrode material of a lithium ion secondary battery according to the present invention comprises heating and kneading graphite core particle powder, a carbonaceous material, and a fusible organic substance, to the surface of the graphite core particle. A first step of coating a coating layer made of a carbonaceous material and the fusible organic substance, and obtaining a granular powder of graphite core particles having the coating layer;
A powder of graphite core particles having the coating layer and a metal particle or metal compound particle powder that occludes and releases lithium, or a metal inclusion that encloses metal particles or metal compound particles that occlude and release lithium. The powder of carbonaceous particles is mixed, and the resulting mixed powder is rubbed and compressed to form the metal particles or the metal compound particles on the coating layer of the graphite core particle powder having the coating layer. Alternatively, the sized powder of graphite core particles having a coating layer in which the metal-containing carbonaceous particles are embedded and sized, and a metal particle or metal compound particle having a particle diameter aspect ratio of 1.0 to 2.0 is embedded. A second step of obtaining
A sized powder of graphite core particles having a coating layer in which the metal particles or metal compound particles are embedded is calcined and carbonized at 850 to 1,400 ° C. in a non-oxidizing atmosphere to obtain a negative electrode material for a lithium ion secondary battery A third step of obtaining a composite carbon material for use,
It is a manufacturing method of the composite carbon material for negative electrode materials of the lithium ion secondary battery which has this.

本発明のリチウムイオン二次電池の負極材用複合炭素材料の製造方法に係る該第一工程は、該黒鉛核粒子粉末と、該炭素質物質と、該溶融性有機物と、を加熱混練することにより、該黒鉛核粒子の表面に、該炭素質物質と該溶融性有機物の混合物からなる該被覆層を被覆し、該被覆層を有する黒鉛核粒子の素粒粉末を得る工程である。   In the first step according to the method for producing a composite carbon material for a negative electrode material of a lithium ion secondary battery of the present invention, the graphite core particle powder, the carbonaceous material, and the meltable organic substance are heated and kneaded. In this step, the surface of the graphite core particles is coated with the coating layer made of a mixture of the carbonaceous material and the fusible organic material to obtain a granular powder of graphite core particles having the coating layer.

該第一工程に係る該黒鉛核粒子粉末としては、特に制限されないが、例えば、天然黒鉛又は人造黒鉛や、人造黒鉛電極の破砕品や、コークスや、これらの混合物が挙げられ、該黒鉛核粒子粉末の形状としては、球状又は鱗片状のものが挙げられ、予め粉砕処理したものや分級処理をしたもの、予め球状化処理したものであってもよい。該黒鉛核粒子粉末に係る該人造黒鉛としては、例えば、2500℃以上の熱履歴を持つ人造黒鉛が挙げられる。そして、該黒鉛核粒子粉末としては、充放電容量が高くなるという点で、球状又は鱗片状の天然黒鉛、あるいは、2500℃以上の熱履歴を持つ人造黒鉛が好ましい。   The graphite core particle powder according to the first step is not particularly limited, and examples thereof include natural graphite or artificial graphite, artificial graphite electrode crushed products, coke, and mixtures thereof. Examples of the shape of the powder include a spherical shape or a scale-like shape, and those that have been previously pulverized, classified, or previously spheroidized may be used. Examples of the artificial graphite related to the graphite core particle powder include artificial graphite having a thermal history of 2500 ° C. or higher. The graphite core particle powder is preferably spherical or scale-like natural graphite or artificial graphite having a thermal history of 2500 ° C. or higher in that the charge / discharge capacity is increased.

該黒鉛核粒子粉末は、例えば、天然黒鉛、人造黒鉛、人造黒鉛電極の破砕品、コークス等を、ローラーミルや衝撃粉砕機等の粉砕機を用いて粉砕し、分級して得られる。   The graphite core particle powder is obtained, for example, by pulverizing and classifying natural graphite, artificial graphite, a pulverized product of artificial graphite electrode, coke or the like using a pulverizer such as a roller mill or an impact pulverizer.

該黒鉛核粒子粉末のアスペクト比であるが、後述する該第二工程で球状化されて、アスペクト比が1.0〜2.0になり、後述する該第三工程においてもこの形状が維持されるため、該第一工程で用いる該黒鉛核粒子粉末のアスペクト比は2.0以上であってもよい。そのため、該黒鉛核粒子粉末のアスペクト比は、特に制限されないが、該黒鉛核粒子粉末のアスペクト比が2.0以下であることが、リチウムイオン二次電池の負極内での充填性が高くなるので充放電容量が優れる点で好ましい。   The aspect ratio of the graphite core particle powder is spheroidized in the second step, which will be described later, and the aspect ratio becomes 1.0 to 2.0, and this shape is maintained in the third step, which will be described later. Therefore, the aspect ratio of the graphite core particle powder used in the first step may be 2.0 or more. Therefore, the aspect ratio of the graphite core particle powder is not particularly limited, but when the aspect ratio of the graphite core particle powder is 2.0 or less, the filling property in the negative electrode of the lithium ion secondary battery becomes high. Therefore, it is preferable in terms of excellent charge / discharge capacity.

該黒鉛核粒子粉末は、予め球状化処理されたものを用いてもよいが、この球状化する方法としては、例えば、鱗片状黒鉛等の非球状の黒鉛粒子を、ハイブリダイゼーションシステムを用いて高速気流中衝撃法により、粒子同士の衝突、磨耗及び圧縮作用により球状化処理する方法が挙げられる。このような予め球状化処理された該黒鉛核粒子粉末としては、例えば、中越黒鉛工業株式会社製の球状化黒鉛が挙げられる。   The graphite core particle powder may be spheroidized in advance, but as a method of spheroidizing, for example, non-spherical graphite particles such as flaky graphite may be used at high speed using a hybridization system. A method of spheroidizing treatment by collision between particles, wear and compression by the impact method in airflow is mentioned. Examples of the graphite core particle powder that has been spheroidized in advance include spheroidized graphite manufactured by Chuetsu Graphite Industries Co., Ltd.

該黒鉛核粒子粉末の体積基準メディアン径は、1〜30μmであることが好ましい。該黒鉛核粒子粉末の体積基準メディアン径が、上記範囲より大きくなると、リチウムイオン二次電池として大電流放電する際、リチウムイオンの粒内拡散距離が長くなり、出力特性が低くなり易くなり、また、リチウムイオン二次電池の負極を作成する際、活物質塗工時における膜厚を薄く均一な層にすることが困難になり易く、体積当たりの出力特性が低くなり易い。また、該黒鉛核粒子粉末の体積基準メディアン径が、上記範囲より小さいと、比表面積が大きくなり過ぎて、初期の不可逆容量が大きくなり易い。なお、本発明において、該体積基準メディアン径は、レーザー回折式の粒度分布測定装置(島津製作所製SALD2000)により測定された値であり、体積を基準としたメディアン径である。   The volume-based median diameter of the graphite core particle powder is preferably 1 to 30 μm. When the volume-based median diameter of the graphite core particle powder is larger than the above range, when a large current is discharged as a lithium ion secondary battery, the intragranular diffusion distance of lithium ions becomes long, and the output characteristics tend to be low. When preparing a negative electrode of a lithium ion secondary battery, it is difficult to make the film thickness thin and uniform during coating of the active material, and the output characteristics per volume are likely to be low. If the volume-based median diameter of the graphite core particle powder is smaller than the above range, the specific surface area becomes too large and the initial irreversible capacity tends to increase. In the present invention, the volume-based median diameter is a value measured by a laser diffraction type particle size distribution measuring apparatus (SALD 2000 manufactured by Shimadzu Corporation), and is a median diameter based on volume.

該黒鉛核粒子粉末のX線広角回折法により測定した(002)面の面間隔d(002)は、好ましくは0.3500nm以下、特に好ましくは0.3400nm以下、更に好ましくは0.3358nm以下である。該黒鉛核粒子粉末のX線広角回折法により測定した(002)面の面間隔d(002)が、上記範囲を超えると、放電可逆容量が330mAh/g未満となる。なお、本発明においては、グラファイトモノクロメーターで単色化したCuKα線を用い、反射式ディフラクトメーター法によって、広角X線回折曲線を測定し、学振法を用いて、該面間隔d(002)を測定した。   The (002) plane spacing d (002) of the graphite core particle powder measured by the X-ray wide angle diffraction method is preferably 0.3500 nm or less, particularly preferably 0.3400 nm or less, more preferably 0.3358 nm or less. is there. When the interplanar spacing d (002) of the (002) plane measured by the X-ray wide angle diffraction method of the graphite core particle powder exceeds the above range, the discharge reversible capacity becomes less than 330 mAh / g. In the present invention, a CuKα ray monochromatized with a graphite monochromator is used to measure a wide-angle X-ray diffraction curve by a reflective diffractometer method, and the interplanar spacing d (002) is determined using a Gakushin method. Was measured.

該炭素質物質としては、ピッチ、タール、常温で液状のフェノール系樹脂、エポキシ系樹脂などの有機高分子等が挙げられ、ピッチが、粘性が高いので次の第二工程におけるリチウムを吸蔵及び放出する金属粒子又は金属化合物粒子の粉末、あるいは、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子を内包している金属内包炭素質粒子の粉末を良好に固着できる点や第三工程での焼成炭化時の炭化率が高くなる点で好ましい。そして、該炭素質物質に係る該ピッチとしては、特に制限されず、コールタールピッチ、石油ピッチ、縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ、ヘテロ原子含有縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ等が挙げられ、これらのうち、コールタールピッチが好ましい。   Examples of the carbonaceous material include pitch, tar, organic polymers such as phenolic resins that are liquid at room temperature, epoxy resins, and the like, and since the pitch is highly viscous, lithium is occluded and released in the next second step. Metal particles or metal compound particles powder that absorbs or releases metal particles or metal compound carbon particles that encapsulate and release lithium, and the carbonization by firing in the third step. It is preferable in that the carbonization rate at the time increases. The pitch related to the carbonaceous material is not particularly limited, and coal tar pitch, petroleum pitch, organic synthetic pitch obtained by polycondensation of a condensed polycyclic aromatic hydrocarbon compound, and heteroatom-containing condensed polycyclic aroma. An organic synthetic pitch obtained by polycondensation of a group hydrocarbon compound is exemplified, and among these, coal tar pitch is preferable.

該炭素質物質に係る該ピッチの軟化点は、環球法で測定された軟化点が好ましくは70〜250℃、特に好ましくは70〜150℃、更に好ましくは70〜90℃である。該ピッチの軟化点が、上記範囲未満だと、該第二工程において、ピッチ溶融分が装置内壁に付着してしまい、連続運転ができなくなるという不具合が生じ易く、また、上記範囲を超えると、ピッチの軟化状態が悪くなるため分散性が悪くなり易く、該第二工程において、球状化が困難となり易い。また、軟化点の異なるピッチ同士を二種以上混合することや、タールを添加することにより、軟化点を上記範囲に調整したピッチを用いてもよい。   The softening point of the pitch relating to the carbonaceous material is preferably 70 to 250 ° C, particularly preferably 70 to 150 ° C, and more preferably 70 to 90 ° C, as measured by the ring and ball method. If the pitch softening point is less than the above range, in the second step, the pitch melt will adhere to the inner wall of the apparatus, and it is likely to cause a problem that continuous operation cannot be performed. Since the softened state of the pitch deteriorates, the dispersibility tends to deteriorate, and in the second step, spheroidization tends to be difficult. Moreover, you may use the pitch which adjusted the softening point to the said range by mixing 2 or more types of pitches from which a softening point differs, or adding tar.

該炭素質物質に係る該ピッチとしては、負極材としての初回充放電ロスが低くなる点で、濾過などの方法によりフリーカーボンを除去したピッチ又はキノリン不溶分の含有率が1%未満であるピッチが好ましい。   The pitch related to the carbonaceous material is a pitch in which free carbon is removed by a method such as filtration or a quinoline insoluble content is less than 1% in that the initial charge / discharge loss as a negative electrode material is reduced. Is preferred.

該第一工程に係る該溶融性有機物は、該第一工程で加熱混練する際の加熱温度での粘度が20Pa・s以下の有機物を指し、該溶融性有機物としては、合成油、天然油、ステアリン酸、合成ワックス、天然ワックス等が挙げられる。そして、該溶融性有機物は、好ましくは空気中400℃に加熱した時の揮発分が50%以上であって、且つ、不活性雰囲気中800℃に加熱した時の残炭率が3%以下である。該第一工程において、該黒鉛核粒子粉末と該ピッチ等の該炭素質物質とを加熱混合する際に、該炭素質物質が低粘度の溶融状態になる必要があるので、該炭素質物質の粘度を低下させるために該溶融性有機物が用いられる。そのため、該溶融性有機物は、分子量が小さい方が好ましく、加熱混練中に過度の黒鉛核粒子の粉砕が生じるのを防ぐものが好ましい。また、該溶融性有機物は、該第二工程において、潤滑剤としても作用し、造粒粉末が微粉化するのを防ぐ効果がある。また、該溶融性有機物は、生産面を考慮すると、装置の金属磨耗を抑える効果、装置内部へのピッチの付着を抑える効果も有する。また、該第三工程において、該金属又は金属化合物が埋め込まれた被覆層を有する黒鉛核粒子の整粒粉末を焼成炭化する際に、該整粒粉末中に含まれる該溶融性有機物が揮散する際のガス圧によって、該整粒粉末の周辺の酸素を追い出す効果、あるいは、該溶融性有機物と酸素が反応して酸素濃度を低下させるという効果もある。そのため、該溶融性有機物は、空気中400℃に加熱した時に50%以上が揮発する有機物であり、揮発分が50%より少ないと該整粒粉末の周辺の酸素濃度が十分に低下し難くなり、該炭素質物質由来の炭素の結晶性が低下し易くなり、可逆容量も低下し易くなる。また、該溶融性有機物中の残炭分は、可逆容量を低下させることになるので、できるだけ残炭率が低いことが望ましいため、該溶融性有機物は、不活性雰囲気中で800℃まで加熱した時の残炭率が3%以下であることが好ましい。なお、該不活性雰囲気とは、窒素ガス、ヘリウムガス、アルゴンガス等の不活性ガスの雰囲気を指す。   The fusible organic substance according to the first step refers to an organic substance having a viscosity at a heating temperature of 20 Pa · s or less at the time of heating and kneading in the first step. Examples of the fusible organic substance include synthetic oil, natural oil, Examples include stearic acid, synthetic wax, and natural wax. The meltable organic matter preferably has a volatile content of 50% or more when heated to 400 ° C. in air, and a residual carbon ratio of 3% or less when heated to 800 ° C. in an inert atmosphere. is there. In the first step, when the graphite core particle powder and the carbonaceous material such as the pitch are heated and mixed, the carbonaceous material needs to be in a molten state with a low viscosity. The fusible organic material is used to reduce the viscosity. For this reason, the meltable organic material preferably has a small molecular weight, and is preferably one that prevents excessive pulverization of graphite core particles during heating and kneading. In addition, the fusible organic substance also acts as a lubricant in the second step, and has an effect of preventing the granulated powder from being pulverized. In addition, when considering the production aspect, the fusible organic substance also has an effect of suppressing metal wear of the apparatus and an effect of suppressing adhesion of pitch to the inside of the apparatus. Further, in the third step, when the sized powder of graphite core particles having a coating layer in which the metal or metal compound is embedded is calcined, the fusible organic matter contained in the sized powder is volatilized. There is also an effect of expelling oxygen around the sized powder by the gas pressure at the time, or an effect of reducing the oxygen concentration by reacting the fusible organic substance with oxygen. Therefore, the fusible organic substance is an organic substance that volatilizes 50% or more when heated to 400 ° C. in the air, and if the volatile content is less than 50%, the oxygen concentration around the granulated powder is not easily lowered. The crystallinity of carbon derived from the carbonaceous material is likely to be reduced, and the reversible capacity is also likely to be reduced. In addition, since the remaining carbon content in the meltable organic matter lowers the reversible capacity, it is desirable that the remaining coal rate is as low as possible. Therefore, the meltable organic matter was heated to 800 ° C. in an inert atmosphere. It is preferable that the remaining charcoal rate at the time is 3% or less. In addition, this inert atmosphere refers to the atmosphere of inert gas, such as nitrogen gas, helium gas, and argon gas.

該第一工程において加熱混練する際の該炭素質物質の配合量は、該黒鉛核粒子粉末100重量部に対して5〜40重量部とするのが好ましく、5〜30重量部とするのが特に好ましく、5〜25重量部とするのが更に好ましい。該炭素質物質の配合量が、上記範囲未満だと、該黒鉛核粒子の表面に該炭素質物質を均一に被覆することが困難となり易く、また、粒度分布の微細部が多くなりブロードとなり易い。
また、該炭素質物質の配合量が、上記範囲を超えると、粒子同士が過剰に凝集するため、個々の造粒粒子を1個づつ解砕することが困難となり易く、複合炭素材料の粒子径が大きくなり易く、また、被覆層の厚みが不均一となり易く、また、該炭素質物質単独の粉末が存在し易くなる。そのうえ、粗大な塊が形成されるため複合炭素材料の粉砕が必要なり、電池特性として初回充放電ロスが大きくなり易い。また、該第二工程において、余分な該炭素質物質が装置内部に付着するため、連続的な運転が困難となる不具合が生じ易くなる。
The blending amount of the carbonaceous material at the time of heat kneading in the first step is preferably 5 to 40 parts by weight with respect to 100 parts by weight of the graphite core particle powder, and 5 to 30 parts by weight. Particularly preferred is 5 to 25 parts by weight. When the blending amount of the carbonaceous material is less than the above range, it is difficult to uniformly coat the surface of the graphite core particles with the carbonaceous material, and the fine part of the particle size distribution is likely to be broad and easily spread. .
Further, if the amount of the carbonaceous material exceeds the above range, the particles are excessively aggregated, so that it is difficult to disintegrate individual granulated particles one by one, and the particle size of the composite carbon material Tends to be large, the thickness of the coating layer tends to be uneven, and the powder of the carbonaceous material alone tends to exist. In addition, since a coarse lump is formed, the composite carbon material needs to be pulverized, and the initial charge / discharge loss tends to increase as battery characteristics. Further, in the second step, excess carbonaceous material adheres to the inside of the apparatus, so that a problem that makes continuous operation difficult is likely to occur.

該第一工程において加熱混練する際の該溶融性有機物の配合量は、該黒鉛核粒子粉末100重量部に対して1〜30重量部とするのが好ましく、3〜20重量部とするのが特に好ましい。該溶融性有機物の配合量が、上記範囲未満だと、該第二工程において、外部エネルギーの付与が過剰となり、結果として微粉が多く残存してしまい易く、微粉の除去が難しい上、収率が低下し易くなり、また、上記範囲を超えると、該第二工程で該被覆層を有する黒鉛核粒子の整粒化が困難となり易く、また、粗大な塊が形成され易くなる。   The blending amount of the meltable organic substance in the first step is preferably 1 to 30 parts by weight, and preferably 3 to 20 parts by weight with respect to 100 parts by weight of the graphite core particle powder. Particularly preferred. When the blending amount of the fusible organic material is less than the above range, in the second step, external energy is excessively applied, and as a result, a lot of fine powder is likely to remain, and it is difficult to remove the fine powder. If it exceeds the above range, it is difficult to size the graphite core particles having the coating layer in the second step, and a coarse lump is likely to be formed.

該第一工程では、該黒鉛核粒子粉末と、該炭素質物質と、該溶融性有機物と、を加熱しながら混練する。該第一工程での該黒鉛核粒子粉末と、該炭素質物質と、該溶融性有機物と、の混練方法としては、
(i)先に、該黒鉛核粒子粉末及び該溶融性有機物を加熱混練した後、該炭素質物質を添加して加熱混練する方法
(ii)先に、該黒鉛核粒子粉末及び該炭素質物質を加熱混練した後、該溶融性有機物を添加して加熱混練する方法
(iii)該黒鉛核粒子粉末、該炭素質物質及び該溶融性有機物を加熱混練する方法、
等が挙げられる。これらのうち、該黒鉛核粒子粉末の過度の微粉砕化を防ぐことができる点で、該(i)及び該(iii)の方法が好ましい。
In the first step, the graphite core particle powder, the carbonaceous material, and the meltable organic substance are kneaded while being heated. As a method of kneading the graphite core particle powder, the carbonaceous material, and the meltable organic substance in the first step,
(I) A method in which the graphite core particle powder and the meltable organic substance are first heat-kneaded and then the carbonaceous material is added and heat-kneaded. (Ii) The graphite core particle powder and the carbonaceous material are previously added. (Iii) A method of heat-kneading the graphite core particle powder, the carbonaceous material and the meltable organic material,
Etc. Among these, the methods (i) and (iii) are preferable in that excessive pulverization of the graphite core particle powder can be prevented.

該第一工程で加熱混練を行う際の加熱温度は、該炭素質物質の軟化点を超える温度であり、好ましくは該炭素質物質の軟化点より20℃以上高い温度である。   The heating temperature at the time of heat kneading in the first step is a temperature exceeding the softening point of the carbonaceous material, preferably 20 ° C. or more higher than the softening point of the carbonaceous material.

該第一工程の加熱混練の操作の形態例を示すと、該黒鉛核粒子粉末、該炭素質物質及び該溶融性有機物を混練装置内に投入し、混練しながら装置容器内の温度を該炭素質物質の軟化点を超える所定温度にまで昇温させ、加熱しながら十分に混練する。加熱混練する時間は、混練装置の容量、混練羽形状、該黒鉛核粒子粉末、該炭素質物質及び該溶融性有機物の投入量などにより、適宜選択されるが、該炭素質物質の融点を超える温度で通常10分間〜2時間である。加熱混練後、室温まで冷却して該被覆層を有する黒鉛核粒子の素粒粉末を得る。   An example of the operation of the heat kneading operation in the first step is as follows. The graphite core particle powder, the carbonaceous material and the meltable organic substance are put into a kneading apparatus, and the temperature in the apparatus container is set to the carbon temperature while kneading. The temperature is raised to a predetermined temperature exceeding the softening point of the material and kneaded sufficiently while heating. The time for heating and kneading is appropriately selected depending on the capacity of the kneading apparatus, the shape of the kneading blade, the graphite core particle powder, the carbonaceous material and the meltable organic material, etc., but exceeds the melting point of the carbonaceous material. The temperature is usually 10 minutes to 2 hours. After heating and kneading, the mixture is cooled to room temperature to obtain a graphite core particle powder having the coating layer.

該第一工程で、加熱混練を行うための混練装置としては、特に制限されず、通常、粉体を加熱しながら攪拌又は混練できるものであればよく、ミキサー、ニーダー、加圧蓋を設けた加圧式ニーダー等が挙げられる。   The kneading apparatus for performing heat kneading in the first step is not particularly limited as long as it can normally stir or knead while heating the powder, and is provided with a mixer, a kneader, and a pressure lid. A pressure kneader may be used.

このようにして、該第一工程で、該黒鉛核粒子粉末と、該炭素質物質と、該溶融性有機物と、を加熱混練することにより、該黒鉛核粒子の粒子表面に、該炭素質物質及び該溶融性有機物からなる被覆層を被覆させて、該被覆層を有する黒鉛核粒子の素粒粉末を得る。   In this way, in the first step, the graphite core particle powder, the carbonaceous material, and the fusible organic substance are heated and kneaded to thereby form the carbonaceous material on the particle surface of the graphite core particles. And the coating layer which consists of this meltable organic substance is coat | covered, and the granular powder of the graphite core particle which has this coating layer is obtained.

該第一工程により得られる該被覆層を有する黒鉛核粒子の素粒粉末の該被覆層の厚みは、好ましくは0.3μm以下、特に好ましくは0.01〜0.2μmである。該被覆層を有する黒鉛核粒子の素粒粉末の該被覆層の厚みが、上記範囲内にあることにより、リチウムイオン二次電池の容量劣化が起こり難くなる。   The thickness of the covering layer of the elementary powder of graphite core particles having the covering layer obtained by the first step is preferably 0.3 μm or less, particularly preferably 0.01 to 0.2 μm. When the thickness of the covering layer of the graphite core particle powder having the covering layer is within the above range, the capacity of the lithium ion secondary battery is hardly deteriorated.

該第一工程により得られる該被覆層を有する黒鉛核粒子の素粒粉末のレーザー回折法により測定した体積基準メディアン径は、特に制限されないが、概ね5〜40μmである。   The volume-based median diameter measured by the laser diffraction method of the graphite core particle elementary powder having the coating layer obtained in the first step is not particularly limited, but is approximately 5 to 40 μm.

次いで、本発明のリチウムイオン二次電池の負極材用複合炭素材料の製造方法に係る該第二工程を行う。   Next, the second step according to the method for producing the composite carbon material for a negative electrode material of the lithium ion secondary battery of the present invention is performed.

該第二工程の第一の形態例は、該被覆層を有する黒鉛核粒子の素粒粉末と、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子の粉末と、を混合し、得られた混合粉末を摩擦及び圧縮することにより、該被覆層を有する黒鉛核粒子の該被覆層に、該金属粒子又は該金属化合物粒子を埋め込み、該リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子の整粒粉末を得る工程である(以下、第二工程(A)とも記載する。)。また、該第二工程(A)では、該黒鉛核粒子が摩擦及び圧縮されることにより、黒鉛の微粒子破片が生じる場合もあるが、このような場合、該黒鉛の微粒子破片も、該被覆層に埋め込まれる。なお、以下、該第二工程(A)に係る該リチウムを吸蔵及び放出する金属粒子を、該第二工程(A)に係る金属粒子とも記載し、また、該第二工程(A)に係る該リチウムを吸蔵及び放出する金属化合物粒子を、該第二工程(A)に係る金属化合物粒子とも記載する。つまり、該第二工程(A)は、該リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子を、直接、該被覆層に埋め込む工程である。   In the first embodiment of the second step, the graphite core particle elementary powder having the coating layer is mixed with the metal particle or metal compound particle powder that occludes and releases lithium, and the resultant mixture is obtained. By rubbing and compressing the powder, the metal particles or metal compound particles are embedded in the coating layer of the graphite core particles having the coating layer, and the metal particles or metal compound particles that absorb and release lithium are embedded. This is a step of obtaining a sized powder of graphite core particles having a coating layer (hereinafter also referred to as second step (A)). In the second step (A), the graphite core particles may be rubbed and compressed to produce fine graphite particles. In such a case, the fine graphite particles are also separated from the coating layer. Embedded in. Hereinafter, the metal particles that occlude and release the lithium according to the second step (A) are also referred to as the metal particles according to the second step (A), and also according to the second step (A). The metal compound particles that occlude and release lithium are also referred to as metal compound particles according to the second step (A). That is, the second step (A) is a step of directly embedding the metal particles or metal compound particles that occlude and release lithium in the coating layer.

あるいは、該第二工程の第二の形態例は、該被覆層を有する黒鉛核粒子の素粒粉末と、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子を内包している金属内包炭素質粒子の粉末と、を混合し、得られた混合粉末を摩擦及び圧縮することにより、該被覆層を有する黒鉛核粒子の該被覆層に、該金属内包炭素質粒子を埋め込み、該金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子の整粒粉末を得る工程である(以下、第二工程(B)とも記載する。)。また、該第二工程(B)では、該黒鉛核粒子が摩擦及び圧縮されることにより、黒鉛の微粒子破片が生じる場合もあるが、このような場合、該黒鉛の微粒子破片も、該被覆層に埋め込まれる。なお、以下、該リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子を内包している金属内包炭素質粒子を、第二工程(B)に係る金属内包炭素質粒子とも記載する。つまり、該第二工程(B)は、該リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子を、該第二工程(B)に係る金属内包炭素質粒子を介して、該被覆層に埋め込む工程である。   Alternatively, the second embodiment of the second step is the following: a metal-encapsulated carbonaceous particle including a graphite core particle elementary powder having the coating layer, and metal particles or metal compound particles that occlude and release lithium. Are mixed, and the resulting mixed powder is rubbed and compressed to embed the metal-containing carbonaceous particles in the coating layer of the graphite core particles having the coating layer, and the metal particles or metal compound This is a step of obtaining a sized powder of graphite core particles having a coating layer in which the particles are embedded (hereinafter also referred to as second step (B)). In the second step (B), the graphite core particles may be rubbed and compressed to produce graphite fine particles. In such a case, the graphite fine particles may also be used as the coating layer. Embedded in. Hereinafter, the metal-encapsulated carbonaceous particles encapsulating the metal particles or metal compound particles that occlude and release lithium are also referred to as metal-encapsulated carbonaceous particles according to the second step (B). That is, in the second step (B), the metal particles or metal compound particles that occlude and release lithium are embedded in the coating layer through the metal-containing carbonaceous particles according to the second step (B). It is.

また、該第二工程(A)及び(B)では、該混合粉末を摩擦及び圧縮することにより、該被覆層を有する黒鉛核粒子の素粒粉末は、粒子径アスペクト比が1.0〜2.0に整粒される。   In addition, in the second steps (A) and (B), the mixed powder is rubbed and compressed, whereby the graphite core particle elementary powder having the coating layer has a particle diameter aspect ratio of 1.0 to 2. Sized to 0.0.

該第二工程(A)に係る金属粒子としては、Si、アモルファスSiなどの結晶性の低いものがリチウムイオンを吸蔵した際の膨張量およびリチウムイオンを放出した際の収縮量が小さく、サイクル特性が良いという点で好ましい。   As the metal particles according to the second step (A), those having low crystallinity such as Si and amorphous Si have a small expansion amount when occluded lithium ions and a small amount of contraction when lithium ions are released, and cycle characteristics. Is preferable in that it is good.

該第二工程(A)に係る金属化合物粒子としては、SiO、または珪素を含むSi−Mg、Si−Al、Si−Feなど金属合金等が挙げられ、これらのうち、SiO(式中、0.8≦x≦1.5)であることが、該第三工程での焼成炭化で、SiOの不均化反応が起こり微細Siを形成させることができ、且つSiOが膨張緩和材として機能する点で好ましく、SiO(式中、x=1)が特に好ましい。 Examples of the metal compound particles according to the second step (A) include SiO x , and metal alloys such as Si—Mg, Si—Al, and Si—Fe containing silicon. Among these, SiO x (wherein 0.8 ≦ x ≦ 1.5), the calcining carbonization in the third step can cause disproportionation reaction of SiO to form fine Si, and SiO 2 is an expansion relaxation material. Is preferable, and SiO (wherein x = 1) is particularly preferable.

該第二工程(A)では、該第二工程(A)に係る金属粒子と該第二工程(A)に係る金属化合物粒子とを組み合わせてもよい。   In the second step (A), the metal particles according to the second step (A) and the metal compound particles according to the second step (A) may be combined.

該第二工程(A)に係る金属粒子及び該第二工程(A)に係る金属化合物粒子の最大粒子径は、2μm以下であることが好ましく、0.1〜2μmであることが特に好ましい。該第二工程(A)に係る金属化合物粉末が、SiOの場合、該第三工程における焼成炭化により、微細なSi相とSiO相に分離するが、微細化して分散されたSi相の導電性を確保するために、該第二工程(A)に係る金属化合物粉末の粒径はできるだけ小さいことが好ましい。該第二工程(A)に係る金属化合物粉末の粒径が大きい程、粒中心部のSi相を絶縁体のSiO相が覆うことになり、活物質としてのリチウムの挿入脱離の機能が阻害され易くなる。
また、複合炭素材料の炭化物層の厚みが3μmを超えると、容量劣化を起こし易くなり、且つ、厚みが3μmの被覆層を形成されること自体が困難となり易い。そのため、複合炭素材料の炭化物層の厚みは3μm以下であることが好ましいが、該第二工程(A)に係る金属粒子及び該第二工程(A)に係る金属化合物粒子の最大粒子径が2μmを超えると、3μm以下の厚みの該被覆層に、該第二工程(A)に係る金属粒子及び該第二工程(A)に係る金属化合物粒子を埋め込むことが困難となり易い。
The maximum particle diameter of the metal particles according to the second step (A) and the metal compound particles according to the second step (A) is preferably 2 μm or less, and particularly preferably 0.1 to 2 μm. When the metal compound powder according to the second step (A) is SiO x , it is separated into a fine Si phase and a SiO 2 phase by calcination carbonization in the third step. In order to ensure conductivity, the particle size of the metal compound powder according to the second step (A) is preferably as small as possible. As the particle size of the metal compound powder according to the second step (A) is larger, the Si phase at the center of the particle is covered with the SiO 2 phase of the insulator, and the function of insertion / extraction of lithium as the active material is increased. It becomes easy to be disturbed.
Further, when the thickness of the carbide layer of the composite carbon material exceeds 3 μm, capacity deterioration is likely to occur, and it is difficult to form a coating layer having a thickness of 3 μm. Therefore, the thickness of the carbide layer of the composite carbon material is preferably 3 μm or less, but the maximum particle diameter of the metal particles according to the second step (A) and the metal compound particles according to the second step (A) is 2 μm. When the thickness exceeds 50 μm, it is difficult to embed the metal particles according to the second step (A) and the metal compound particles according to the second step (A) in the coating layer having a thickness of 3 μm or less.

該第二工程(A)において、該第二工程(A)に係る金属粒子又は該第二工程(A)に係る金属化合物粒子の混合量は、該被覆層を有する黒鉛核粒子の素粒粉末100重量部に対して、好ましくは0.5〜50重量部、特に好ましくは1〜30重量部である。該第二工程(A)に係る金属粒子又は該第二工程(A)に係る金属化合物粒子の混合量が、上記範囲未満だと、高容量化の効果が得られ難くなり、一方、上記範囲を超えると、Si等の金属に均一に導電性を付与することが困難となり易くなり、サイクル特性が低くなり易い。   In the second step (A), the mixing amount of the metal particles according to the second step (A) or the metal compound particles according to the second step (A) Preferably it is 0.5-50 weight part with respect to 100 weight part, Most preferably, it is 1-30 weight part. If the mixing amount of the metal particles according to the second step (A) or the metal compound particles according to the second step (A) is less than the above range, it is difficult to obtain an effect of increasing the capacity, while the above range. If it exceeds 1, it will be difficult to uniformly impart conductivity to a metal such as Si, and cycle characteristics will tend to be low.

該第二工程(B)に係る金属内包炭素質粒子は、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子が、ピッチ、ポリマー等の焼成炭化により炭化物となる物質、又はピッチ、ポリマー等の炭化物の粒子中に、内包されている粒子である。   The metal-encapsulated carbonaceous particles according to the second step (B) are substances in which metal particles or metal compound particles that occlude and release lithium become carbides by firing carbonization of pitches, polymers, etc., or carbides such as pitches, polymers, etc. The particles are encapsulated in the particles.

該第二工程(B)に係る金属内包炭素質粒子において、該金属粒子又は該金属化合物粒子が内包される物質は、ピッチ、フェノール系樹脂やエポキシ系樹脂やフラン系樹脂などのポリマー等の焼成炭化により炭化物となる物質、又はピッチ、ポリマー等の炭化物であるが、これらは、該第三工程を行って得られるリチウムイオン二次電池の負極材用複合炭素材料の炭化物層中では、黒鉛微粒子となって存在することになる。   In the metal-encapsulated carbonaceous particles according to the second step (B), the metal particles or the substance in which the metal compound particles are encapsulated is a baked polymer such as pitch, phenol resin, epoxy resin, furan resin, or the like. Substances that become carbides by carbonization, or carbides such as pitch and polymer, these are graphite fine particles in the carbide layer of the composite carbon material for the negative electrode material of the lithium ion secondary battery obtained by performing the third step. Will exist.

該第二工程(B)に係る金属内包炭素質粒子において、内包されている金属粒子は、Siが挙げられる。また、該第二工程(B)に係る金属内包粒子において、内包されている金属化合物粉末としては、SiO、または珪素を含むSi−Mg、Si−Al、Si−Feなど金属合金等が挙げられ、これらのうち、SiO(式中、0.8≦x≦1.5)であることが、該第三工程での焼成炭化で、SiOの不均化反応が起こり微細Siを形成させることができ、且つSiOが膨張緩和材として機能する点で好ましく、SiO(式中、x=1)が特に好ましい。 In the metal-encapsulated carbonaceous particles according to the second step (B), the encapsulated metal particles include Si. In addition, in the metal-encapsulated particles according to the second step (B), examples of the encapsulated metal compound powder include SiO x , metal alloys such as Si—Mg, Si—Al, and Si—Fe containing silicon. Of these, SiO x (wherein 0.8 ≦ x ≦ 1.5) means that disproportionation reaction of SiO occurs and fine Si is formed by calcination carbonization in the third step. SiO 2 is preferable in that it functions as an expansion relaxation material, and SiO x (wherein x = 1) is particularly preferable.

該第二工程(B)に係る金属内包炭素質粒子は、金属粒子と金属化合物粒子の両方が内包されたものでもよい。   The metal-encapsulated carbonaceous particles according to the second step (B) may be those in which both metal particles and metal compound particles are encapsulated.

該第二工程(B)に係る金属内包炭素質粒子の最大粒子径は、2μm以下であることが好ましく、0.1〜2μmであることが特に好ましい。複合炭素材料の炭化物層の厚みが3μmを超えると、容量劣化を起こし易くなり、且つ、厚みが3μmの被覆層を形成させること自体が困難となり易い、そのため、複合炭素材料の炭化物層の厚みは3μm以下であることが好ましいが、該第二工程(B)に係る金属内包炭素質粒子の最大粒子径が2μmを超えると、3μm以下の厚みの該被覆層に、該第二工程(B)に係る金属内包炭素質粒子を埋め込むことが困難となり易い。   The maximum particle size of the metal-containing carbonaceous particles according to the second step (B) is preferably 2 μm or less, and particularly preferably 0.1 to 2 μm. If the thickness of the carbide layer of the composite carbon material exceeds 3 μm, capacity deterioration is likely to occur, and it is difficult to form a coating layer having a thickness of 3 μm. Therefore, the thickness of the carbide layer of the composite carbon material is Although it is preferably 3 μm or less, when the maximum particle diameter of the metal-containing carbonaceous particles according to the second step (B) exceeds 2 μm, the coating layer having a thickness of 3 μm or less is formed on the second layer (B). It tends to be difficult to embed the metal-containing carbonaceous particles according to the above.

該第二工程(B)に係る金属内包炭素質粒子を製造する方法としては、
(I)該金属粒子又は金属化合物粒子の粉末と、ピッチとを混合し、加熱混練して、溶融ピッチ中に該金属粒子又は該金属化合物粒子を混合し、次いで、冷却固化し、粉砕し、次いで、表面を酸化して不融化する方法、
(II)モノマー中に、該金属粒子又は該金属化合物粒子を分散させた状態で重合、固化する方法、
(III)該(I)又は該(II)の方法で得られた金属内包粒子を、焼成炭化する方法、
等が挙げられる。また、該(II)の方法では、該金属粒子又は該金属化合物粒子の粉末とともに、グラファイト、アセチレンブラック、カーボンブラック等の既に炭化されている物質の粉末や、ピッチ、樹脂、ポリマー等の非酸化性雰囲気下で焼成炭化することにより炭化する物質の粉末を併用することもできる。
As a method for producing the metal-containing carbonaceous particles according to the second step (B),
(I) The powder of the metal particles or metal compound particles and pitch are mixed, heated and kneaded, the metal particles or metal compound particles are mixed in the molten pitch, then cooled and solidified, pulverized, Next, a method of oxidizing the surface to make it infusible,
(II) a method of polymerizing and solidifying the metal particles or the metal compound particles in a state of being dispersed in the monomer,
(III) A method in which the metal-encapsulated particles obtained by the method (I) or (II) are calcined and carbonized,
Etc. In the method (II), the powder of the carbon particles such as graphite, acetylene black, carbon black, and non-oxidized powder, pitch, resin, polymer, etc. It is also possible to use a powder of a substance that carbonizes by firing and carbonizing in a neutral atmosphere.

該第二工程では、該第二工程(B)に係る金属内包炭素質粒子を用いることが、該第三工程での焼成炭化の際に、粒子の形状安定性が高まる点、及び複合炭素材料の炭化物層に、微小な黒鉛等の炭化物を埋め込むことができるので、導電性を付与でき、膨張緩和を高める点で、好ましい。   In the second step, the use of the metal-containing carbonaceous particles according to the second step (B) increases the shape stability of the particles during firing carbonization in the third step, and a composite carbon material Since a carbide such as fine graphite can be embedded in the carbide layer, it is preferable in terms of providing conductivity and enhancing expansion relaxation.

該第二工程(B)において、該第二工程(B)に係る金属内包炭素質粒子の混合量は、該被覆層を有する黒鉛核粒子の素粒粉末100重量部に対して、好ましくは0.5〜50重量部、特に好ましくは1〜30重量部である。該第二工程(B)に係る金属内包炭素質粒子の混合量が、上記範囲未満だと、高容量化の効果が得られ難くなり、一方、上記範囲を超えると、Si等の金属に均一に導電性を付与することが困難となり易くなり、サイクル特性が低くなり易い。   In the second step (B), the mixing amount of the metal-containing carbonaceous particles according to the second step (B) is preferably 0 with respect to 100 parts by weight of the elementary powder of graphite core particles having the coating layer. 0.5 to 50 parts by weight, particularly preferably 1 to 30 parts by weight. If the mixing amount of the metal-encapsulating carbonaceous particles according to the second step (B) is less than the above range, it is difficult to obtain the effect of increasing the capacity. It tends to be difficult to impart conductivity to the metal, and the cycle characteristics tend to be low.

該第二工程では、該被覆層を有する黒鉛核粒子の素粒粉末と、該第二工程(A)に係る金属粒子又は該第二工程(A)に係る金属化合物粒子の粉末、あるいは、該第二工程(B)に係る金属内包炭素質粒子と、を混合し、得られる混合粉末を、摩擦及び圧縮する。   In the second step, the graphite core particles having the coating layer and the metal particles according to the second step (A) or the metal compound particles according to the second step (A), or The metal-containing carbonaceous particles according to the second step (B) are mixed, and the resulting mixed powder is rubbed and compressed.

該第二工程では、メカノフージョンシステム(ホソカワミクロン株式会社製)、ハイブリダイザー(株式会社奈良機械製作所社製)等を用いて、該混合粉末を、繰り返し摩擦させ圧縮して、該混合粉末に外部から機械的エネルギーを加え続ける。このことにより、該被覆層を有する黒鉛核粒子の素粒粉末の該被覆層に、該第二工程(A)に係る金属粒子又は該第二工程(A)に係る金属化合物粒子の粉末、あるいは、該第二工程(B)に係る金属内包炭素質粒子と、該黒鉛核粒子が摩擦及び圧縮されることにより生じる黒鉛の微粒子破片とが埋め込まれ、更に、埋め込みの際に生じる穴が、機械的エネルギーが加えられることより閉じ、そして、粒子径アスペクト比が1.0〜2.0に整粒される。   In the second step, the mixed powder is repeatedly rubbed and compressed using a mechano-fusion system (manufactured by Hosokawa Micron Corporation), a hybridizer (manufactured by Nara Machinery Co., Ltd.), etc., and externally applied to the mixed powder. Continue adding mechanical energy. Accordingly, the powder of the graphite core particles having the coating layer is coated with the metal particles according to the second step (A) or the metal compound particles according to the second step (A), or The metal-encapsulated carbonaceous particles according to the second step (B) and graphite fine particles generated by the friction and compression of the graphite core particles are embedded. It is closed by adding mechanical energy, and the particle diameter aspect ratio is sized to 1.0 to 2.0.

このようにして、該第二工程により、粒子径アスペクト比が1.0〜2.0であり、且つ、該黒鉛核粒子が摩擦及び圧縮されることにより生じる黒鉛の微粒子破片と、金属粒子又は金属化合物粒子とが埋め込まれた被覆層を有する黒鉛核粒子の整粒粉末が得られる。   Thus, by the second step, the particle diameter aspect ratio is 1.0 to 2.0, and the graphite fine particles generated by friction and compression of the graphite core particles, the metal particles or A sized powder of graphite core particles having a coating layer embedded with metal compound particles is obtained.

なお、該混合粉末を摩擦及び圧縮する装置、すなわち、外部から機械的エネルギーを加える具体的な装置としては、上記装置に限定されるものではなく、該混合粉末を摩擦させ圧縮することができるものであればよい。   A device for friction and compression of the mixed powder, that is, a specific device for applying mechanical energy from the outside is not limited to the above device, and can mix and compress the mixed powder. If it is.

該混合粉末に対して機械的エネルギーを付与する方法としては、例えば、図1に示すハイブリダイザー(株式会社奈良機械製作所製)を用いる方法が挙げられる。図1に示すハイブリダイザー内に、該被覆層を有する黒鉛核粒子の素粒粉末と、該第二工程(A)に係る金属粒子又は該第二工程(A)に係る金属化合物粒子の粉末、あるいは、該第二工程(B)に係る金属内包炭素質粒子とを、原料投入口1より投入し、回転部8を、回転周速20〜100m/sで1分〜3分回転させる。このとき、原料循環路2を通してドラム6と該回転部8の隙間に投入された該被覆層を有する黒鉛核粒子の素粒粉末と、該第二工程(A)に係る金属粒子又は該第二工程(A)に係る金属化合物粒子の粉末、あるいは、該第二工程(B)に係る金属内包炭素質粒子との混合粉末に対し、該ドラム6と該回転部8との回転速度の差異により生じる摩擦力、圧縮力及び衝突力により、該混合粉末に機械的エネルギーが加えられる。なお、3はステーター、4はジャケット、5は原料排出部、7はブレードである。   Examples of a method for imparting mechanical energy to the mixed powder include a method using a hybridizer (manufactured by Nara Machinery Co., Ltd.) shown in FIG. In the hybridizer shown in FIG. 1, graphite core particles having the coating layer, metal particles according to the second step (A) or metal compound particles according to the second step (A), Or the metal inclusion | inner_cover carbonaceous particle which concerns on this 2nd process (B) is thrown in from the raw material inlet 1, and the rotation part 8 is rotated for 1 minute-3 minutes at the rotational peripheral speed 20-100 m / s. At this time, an elementary powder of graphite core particles having the coating layer put into the gap between the drum 6 and the rotating portion 8 through the raw material circulation path 2, the metal particles according to the second step (A), or the second Due to the difference in rotational speed between the drum 6 and the rotating portion 8 with respect to the powder of the metal compound particles according to the step (A) or the mixed powder with the metal-containing carbonaceous particles according to the second step (B). Mechanical energy is applied to the mixed powder by the generated frictional force, compressive force, and impact force. In addition, 3 is a stator, 4 is a jacket, 5 is a raw material discharge | emission part, 7 is a braid | blade.

図1に示す該ハイブリダイザーで該混合粉末に機械的エネルギーを加えている際の該ハイブリダイザー内部の温度は、機械的エネルギーの付与により上昇するが、該第一工程に係る該炭素質物質の軟化点+20℃の温度以下に調整することが好ましい。該ハイブリダイザー内の温度が、該炭素質物質の軟化点+20℃を超えると、該炭素質物質が造粒粒子の間隙より溶融して溶出し、溶出した該炭素質物質が該ハイブリダイザー内部に付着し易くなるため、定常的な連続運転が困難となり易い。なお、該炭素質物質の軟化点+20℃の温度以下に調整するとは、例えば、該炭素質物質の軟化点が90℃の場合、該ハイブリダイザー内部の温度を、110℃以下にするということである。   The temperature inside the hybridizer when mechanical energy is applied to the mixed powder by the hybridizer shown in FIG. 1 increases due to the application of mechanical energy, but the carbonaceous material of the first step It is preferable to adjust the temperature to a softening point + 20 ° C. or lower. When the temperature in the hybridizer exceeds the softening point of the carbonaceous material + 20 ° C., the carbonaceous material melts and elutes from the gaps between the granulated particles, and the eluted carbonaceous material enters the hybridizer. Since it becomes easy to adhere, regular continuous operation tends to be difficult. Note that the adjustment to a temperature below the softening point of the carbonaceous material + 20 ° C. means, for example, that when the softening point of the carbonaceous material is 90 ° C., the temperature inside the hybridizer is set to 110 ° C. or below. is there.

図1に示す該ハイブリダイザーで該混合粉末に機械的エネルギーを加えている際の該回転部8の回転周速は、20〜100m/sが好ましい。該回転部8の回転周速が、20m/s未満だと、該混合粉末が受ける機械的エネルギーが小さく、該黒鉛の微粒子破片、該第二工程(A)に係る金属粒子又は該第二工程(A)に係る金属化合物粒子、あるいは、該第二工程(B)に係る金属内包炭素質粒子が埋め込まれ難くなり、また、100m/sを超えても、100m/sの場合と、リチウムイオン二次電池の負極材用複合炭素材料の性能に大差がなく、コスト的な面、装置の安全性等を考慮すると上限は100m/sとするのが好ましい。また、該ハイブリダイザーで該混合粉末に機械的エネルギーを加えている際の処理時間は、30秒〜5分が好ましく、1分〜3分が特に好ましい。該処理時間が、30秒未満では埋め込みが起り難く、また、5分を超えても、リチウムイオン二次電池負極材用炭素粒子粉末の物性がほとんど変化しないため、生産性を考慮すると、該処理時間は、2分以下が特に好ましい。   The rotational peripheral speed of the rotating part 8 when mechanical energy is applied to the mixed powder by the hybridizer shown in FIG. 1 is preferably 20 to 100 m / s. When the rotating peripheral speed of the rotating unit 8 is less than 20 m / s, the mechanical energy received by the mixed powder is small, the graphite fine particles, the metal particles according to the second step (A), or the second step. It becomes difficult to embed the metal compound particles according to (A) or the metal-encapsulated carbonaceous particles according to the second step (B), and even if it exceeds 100 m / s, the case of 100 m / s and lithium ion There is no great difference in the performance of the composite carbon material for the negative electrode material of the secondary battery, and the upper limit is preferably set to 100 m / s in consideration of cost, device safety, and the like. The treatment time when mechanical energy is applied to the mixed powder with the hybridizer is preferably 30 seconds to 5 minutes, particularly preferably 1 minute to 3 minutes. When the treatment time is less than 30 seconds, embedding is difficult to occur, and even when it exceeds 5 minutes, the physical properties of the carbon particle powder for a lithium ion secondary battery negative electrode material hardly change. The time is particularly preferably 2 minutes or less.

また、該第二工程では、該混合粉末への摩擦力及び圧縮力が強すぎて、該被覆層を有する黒鉛核粒子の破壊が生じてしまう場合には、磨耗を減らすために、該第一工程に係る該溶融性有機物を添加することができる。その際、該溶融性有機物の投入量は、コスト及び処理時間を考慮して、適宜決定される。   Further, in the second step, when the frictional force and compressive force on the mixed powder are too strong and the graphite core particles having the coating layer are destroyed, the first step is performed in order to reduce wear. The meltable organic substance relating to the process can be added. At that time, the amount of the meltable organic substance to be charged is appropriately determined in consideration of cost and processing time.

なお、該第二工程では、該混合粉末を摩擦及び圧縮する際の処理条件、例えば、該ハイブリダイザーを用いる場合であれば、該回転部8の回転周速、処理時間、処理温度等を上記のように適宜選択することにより、粒子径アスペクト比を1.0〜2.0に整粒することができる。
該第二工程を行い得られる粒子径アスペクト比が1.0〜2.0に整粒された粒子は、次の第三工程でもその形状が維持されるので、該第三工程を行い得られる負極材用複合炭素材料は、粒子径アスペクト比が1.0〜2.0と小さく、リチウムイオン二次電池の負極材用複合炭素材料として高容量な特性を発揮することができる。
In the second step, the processing conditions for friction and compression of the mixed powder, for example, when using the hybridizer, the rotational peripheral speed, processing time, processing temperature, etc. of the rotating unit 8 are set as described above. By appropriately selecting as described above, the particle diameter aspect ratio can be adjusted to 1.0 to 2.0.
Since the particle size aspect ratio obtained by performing the second step is adjusted to a particle size aspect ratio of 1.0 to 2.0, the shape is maintained even in the next third step, so that the third step can be performed. The composite carbon material for negative electrode material has a small particle diameter aspect ratio of 1.0 to 2.0, and can exhibit high capacity characteristics as a composite carbon material for negative electrode material of a lithium ion secondary battery.

該第二工程を行い得られる該金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子では、該被覆層の厚みは、3μm以下であることが、容量劣化が起こり難くなる点で好ましく、0.5〜1.5μmであることが特に好ましい。   In the graphite core particles having a coating layer in which the metal particles or metal compound particles obtained by performing the second step are embedded, the thickness of the coating layer is 3 μm or less in that capacity deterioration is unlikely to occur. It is particularly preferably 0.5 to 1.5 μm.

次いで、本発明のリチウムイオン二次電池の負極材用複合炭素材料の製造方法に係る該第三工程を行う。該第三工程は、該金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子の整粒粉末を、非酸化性雰囲気下、850〜1,400℃で焼成炭化して、リチウムイオン二次電池の負極材用複合炭素材料を得る工程である。   Next, the third step according to the method for producing the composite carbon material for a negative electrode material of the lithium ion secondary battery of the present invention is performed. In the third step, the sized powder of graphite core particles having a coating layer in which the metal particles or metal compound particles are embedded is calcined and carbonized at 850 to 1,400 ° C. in a non-oxidizing atmosphere to obtain lithium ions. This is a step of obtaining a composite carbon material for a negative electrode material of a secondary battery.

該第三工程で、該金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子の整粒粉末を焼成炭化する際の焼成炭化温度は、850〜1,400℃、好ましくは850〜1,350℃、特に好ましくは900〜1,100℃である。該第三工程において、該焼成炭化温度が、上記範囲未満だと、該溶融性有機物の揮散が十分でなく、また、該炭素質物質中の低分子有機未燃分が残存し、リチウムイオン二次電池の充放電効率の低下やサイクル特性の劣化が起こる。また、該第三工程において、該焼成炭化温度が、上記範囲を超えると、Si等の金属と炭素とが反応して、SiC等の金属炭化物となるので好ましくない。   In the third step, the calcining carbonization temperature when calcining the carbonized particles of graphite core particles having a coating layer in which the metal particles or metal compound particles are embedded is 850 to 1,400 ° C., preferably 850 1,350 ° C., particularly preferably 900 to 1,100 ° C. In the third step, if the calcination carbonization temperature is less than the above range, volatilization of the fusible organic matter is not sufficient, and low-molecular organic unburned components in the carbonaceous material remain, and lithium ion The secondary battery is deteriorated in charge / discharge efficiency and cycle characteristics. In the third step, if the firing carbonization temperature exceeds the above range, a metal such as Si reacts with carbon to form a metal carbide such as SiC, which is not preferable.

特に、該被覆層に埋め込まれている該金属化合物粒子が、SiOの場合、該第三工程における焼成炭化で加熱されることにより、SiOが、不均化反応により、SiとSiOの2相に分離する。例えば、x=1の場合、下記式:
2SiO → Si + SiO
のとおりである。
この不均化反応は、800℃より高温で進行し、温度が高くなる程、Si相の結晶が大きくなり、Si(220)のピークの半値幅が小さくなる。
また、1400℃より高い温度では、Siと炭素が反応して、SiCに変化してしまう。SiCは、リチウムの挿入に対して全く不活性であるため、SiCが生成すると、活物質の容量が低くなる。
従って、該被覆層に埋め込まれている該金属化合物粒子が、SiOの場合、焼成温度は、850〜1,400℃、好ましくは850〜1,350℃、特に好ましくは900〜1,100℃である。
In particular, when the metal compound particles embedded in the coating layer are SiO x , the SiO x is heated by the calcination carbonization in the third step, so that the SiO x becomes Si and SiO 2 by a disproportionation reaction. Separate into two phases. For example, when x = 1, the following formula:
2SiO → Si + SiO 2
It is as follows.
This disproportionation reaction proceeds at a temperature higher than 800 ° C., and the higher the temperature, the larger the Si phase crystals and the smaller the half width of the Si (220) peak.
Further, at a temperature higher than 1400 ° C., Si reacts with carbon and changes to SiC. Since SiC is completely inactive with respect to insertion of lithium, when SiC is generated, the capacity of the active material is lowered.
Therefore, when the metal compound particles embedded in the coating layer are SiO x , the firing temperature is 850 to 1,400 ° C., preferably 850 to 1,350 ° C., particularly preferably 900 to 1,100 ° C. It is.

該第三工程では、非酸化性雰囲気下で焼成炭化を行うが、該非酸化性雰囲気下とは、窒素ガス、ヘリウムガス、アルゴンガス等の不活性ガス雰囲気下や、該ピッチ等の炭素質物質が酸化消耗することなく炭化する雰囲気である。   In the third step, calcination carbonization is performed in a non-oxidizing atmosphere. The non-oxidizing atmosphere is an inert gas atmosphere such as nitrogen gas, helium gas, or argon gas, or a carbonaceous material such as the pitch. Is an atmosphere that carbonizes without oxidative consumption.

このように、該第三工程で、該金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子の整粒粉末を焼成炭化することにより、該金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子から、該溶融性有機物が揮散すると共に、該被覆層を構成している該炭素質物質が炭化して炭化物層となり、本発明のリチウムイオン二次電池の負極材用複合炭素材料が得られる。   Thus, in the third step, the metal particles or metal compound particles are embedded by firing and carbonizing the granulated graphite core particles having the coating layer in which the metal particles or metal compound particles are embedded. For the negative electrode material of the lithium ion secondary battery of the present invention, the fusible organic material is volatilized from the graphite core particles having the coating layer, and the carbonaceous material constituting the coating layer is carbonized to become a carbide layer. A composite carbon material is obtained.

また、該第二工程(B)を有し、且つ、該第二工程(B)に係る金属内包炭素質粒子中に未炭化物が存在する場合、該第三工程では、該金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子から、該溶融性有機物が揮散すると共に、該被覆層を構成している該炭素質物質が炭化して炭化物層となることに加えて、該第二工程(B)に係る金属内包炭素質粒子中の未炭化物が炭化し黒鉛微粒子となり、本発明のリチウムイオン二次電池の負極材用複合炭素材料が得られる。   In addition, when there is an uncarburized substance in the metal-containing carbonaceous particles according to the second step (B) that has the second step (B), in the third step, the metal particles or the metal compound In addition to volatilization of the fusible organic matter from the graphite core particles having the coating layer in which the particles are embedded, the carbonaceous material constituting the coating layer is carbonized to form a carbide layer. The uncarburized substance in the metal-encapsulated carbonaceous particles in the second step (B) is carbonized to become graphite fine particles, and the composite carbon material for the negative electrode material of the lithium ion secondary battery of the present invention is obtained.

該第三工程を行った後、該第三工程を行い得られた該リチウムイオン二次電池の負極材用複合炭素材料末を、必要に応じて、解砕又は分級することができる。該解砕を行うための解砕装置としては、特に制限されず、ターボミル(株式会社マツボー製)、クイックミル(株式会社セイシン企業製)、スーパーローター(日清エンジニアリング株式会社製)等の装置が例示される。また、該分級では、最小粒子径1μm以上、最大粒子径55μm以下、メディアン径5〜25μmに、リチウムイオン二次電池の負極材用複合炭素材料を調整することができる。   After performing the third step, the composite carbon material powder for the negative electrode material of the lithium ion secondary battery obtained by performing the third step can be crushed or classified as necessary. The crushing device for performing the crushing is not particularly limited, and devices such as a turbo mill (manufactured by Matsubo Co., Ltd.), a quick mill (manufactured by Seishin Enterprise Co., Ltd.), a super rotor (manufactured by Nisshin Engineering Co., Ltd.), etc. Illustrated. In the classification, the composite carbon material for the negative electrode material of the lithium ion secondary battery can be adjusted to a minimum particle diameter of 1 μm or more, a maximum particle diameter of 55 μm or less, and a median diameter of 5 to 25 μm.

このようにして、本発明のリチウムイオン二次電池の負極材用複合炭素材料の製造方法を行い得られるリチウムイオン二次電池の負極材用複合炭素材料、すなわち、本発明のリチウムイオン二次電池の負極材用複合炭素材料は、黒鉛核粒子と、該黒鉛核粒子の表面に形成されている炭化物層と、からなり、
該炭化物層には、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子、あるいは、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子と黒鉛微粒子とが、埋め込まれており、
粒子径アスペクト比が1.0〜2.0である、
リチウムイオン二次電池の負極材用複合炭素材料である。
Thus, the composite carbon material for the negative electrode material of the lithium ion secondary battery obtained by performing the method for producing the composite carbon material for the negative electrode material of the lithium ion secondary battery of the present invention, that is, the lithium ion secondary battery of the present invention. The composite carbon material for negative electrode material comprises graphite core particles and a carbide layer formed on the surface of the graphite core particles,
In the carbide layer, metal particles or metal compound particles that occlude and release lithium, or metal particles or metal compound particles that occlude and release lithium and graphite fine particles are embedded,
The particle diameter aspect ratio is 1.0 to 2.0.
It is a composite carbon material for a negative electrode material of a lithium ion secondary battery.

本発明のリチウムイオン二次電池の負極材用複合炭素材料では、粒子径アスペクト比は1.0〜2.0、好ましくは1.0〜1.6、特に好ましく1.0〜1.3である。該粒子アスペクト比が上記範囲内であることにより、負極での充填性と電解液を含有するバランスがとれて充放電容量が高くなる。該粒子径アスペクト比が2.0より大きくなると、活物質層塗工時において黒鉛層方向が基盤と平行に配向しやすく、活物質層が基盤から剥離し易くなり、サイクル特性が劣化する不具合が生じる。
該粒子径アスペクト比の調節は、該第二工程での摩擦又は圧縮の条件、例えば、ハイブリダイザーではその回転速度、該第一工程での該黒鉛核粒子粉末、該炭素質物質を選択することにより可能となる。なお、本発明では、SEM(走査型電子顕微鏡)観察にて、該負極材用複合炭素材料から粒子100個を任意に選び出し、粒子の最長径を最小径で除した値の平均値を、該粒子径アスペクト比とする。
In the composite carbon material for a negative electrode material of the lithium ion secondary battery of the present invention, the particle diameter aspect ratio is 1.0 to 2.0, preferably 1.0 to 1.6, particularly preferably 1.0 to 1.3. is there. When the particle aspect ratio is in the above range, the chargeability at the negative electrode is balanced with the electrolyte content, and the charge / discharge capacity is increased. When the particle diameter aspect ratio is larger than 2.0, the graphite layer direction is likely to be oriented parallel to the substrate when the active material layer is applied, the active material layer is easily peeled off from the substrate, and the cycle characteristics deteriorate. Arise.
The particle diameter aspect ratio is adjusted by selecting the friction or compression conditions in the second step, for example, the rotational speed of the hybridizer, the graphite core particle powder in the first step, and the carbonaceous material. Is possible. In the present invention, in SEM (scanning electron microscope) observation, 100 particles are arbitrarily selected from the composite carbon material for a negative electrode material, and an average value of values obtained by dividing the longest diameter of the particles by the minimum diameter, The particle diameter is the aspect ratio.

本発明のリチウムイオン二次電池の負極材用複合炭素材料に係る該リチウムを吸蔵及び放出する金属粒子としては、Siが挙げられる。また、本発明のリチウムイオン二次電池の負極材用複合炭素材料に係る該リチウムを吸蔵及び放出する金属化合物粒子としては、SiO、または珪素を含むSi−Mg、Si−Al、Si−Feなど金属合金等が挙げられ、これらのうち、SiO(式中、0.8≦y≦1.5)であることが特に好ましい。そして、酸化珪素の不均化反応により生成した珪素及び酸化珪素粒子であることが、Siが微細であり、且つSiOが膨張緩和材として機能するため、リチウムイオン二次電池の高容量で長寿命となる点で特に好ましい。 Si is mentioned as a metal particle which occludes and discharge | releases this lithium which concerns on the composite carbon material for negative electrode materials of the lithium ion secondary battery of this invention. In addition, as the metal compound particles that occlude and release lithium according to the composite carbon material for the negative electrode material of the lithium ion secondary battery of the present invention, SiO y or Si—Mg containing silicon, Si—Al, Si—Fe Among them, SiO y (wherein 0.8 ≦ y ≦ 1.5) is particularly preferable. Since the silicon and silicon oxide particles generated by the disproportionation reaction of silicon oxide are fine in Si and SiO 2 functions as an expansion relaxation material, the lithium ion secondary battery has a high capacity and a long capacity. This is particularly preferable in terms of life.

本発明のリチウムイオン二次電池の負極材用複合炭素材料では、該炭化物層の厚みが、3μm以下であることが、容量劣化が起こり難くなる点で好ましく、0.5〜1.5μmが特に好ましい。   In the composite carbon material for a negative electrode material of the lithium ion secondary battery of the present invention, the thickness of the carbide layer is preferably 3 μm or less from the viewpoint that capacity deterioration hardly occurs, particularly 0.5 to 1.5 μm. preferable.

本発明のリチウムイオン二次電池の負極材用複合炭素材料では、該黒鉛核粒子が、天然黒鉛、又は2500℃以上の熱履歴を持つ人造黒鉛であることが、電池容量が高い点で好ましい。   In the composite carbon material for a negative electrode material of the lithium ion secondary battery of the present invention, the graphite core particles are preferably natural graphite or artificial graphite having a thermal history of 2500 ° C. or higher from the viewpoint of high battery capacity.

本発明のリチウムイオン二次電池の負極材用複合炭素材料では、該炭化物層が、フリーカーボンを除去したピッチ又はキノリン不溶分の含有率が1%未満であるピッチの炭化物からなることが、初回充放電ロスが少なくなる点で好ましい。   In the composite carbon material for a negative electrode material of the lithium ion secondary battery of the present invention, it is the first time that the carbide layer is made of a carbide having a pitch from which free carbon is removed or a pitch having a quinoline insoluble content of less than 1%. This is preferable in that charge / discharge loss is reduced.

本発明のリチウムイオン二次電池の負極材用複合炭素材料では、該リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子の最大粒子径が、2μm以下であることが、導電性が高くなる点で好ましく、0.1〜1μmであることが特に好ましい。複合炭素材料に含有される金属粒子又は金属化合物粒子の量は、複合炭素材料に対して2〜20重量%が好ましい。複合炭素材料に含有される金属粒子又は金属化合物粒子の量が、2重量%未満だと、充放電容量の増加がなく、また、20重量%を超えると、容量劣化が起こり易くなる。   In the composite carbon material for a negative electrode material of the lithium ion secondary battery of the present invention, the maximum particle diameter of the metal particles or metal compound particles that occlude and release lithium is 2 μm or less in that the conductivity is increased. Preferably, it is 0.1-1 micrometer. The amount of the metal particles or metal compound particles contained in the composite carbon material is preferably 2 to 20% by weight with respect to the composite carbon material. When the amount of metal particles or metal compound particles contained in the composite carbon material is less than 2% by weight, there is no increase in charge / discharge capacity, and when it exceeds 20% by weight, capacity deterioration tends to occur.

本発明のリチウムイオン二次電池の負極材用複合炭素材料では、該リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子の最大粒子径に対する該炭化物層の厚みの比(炭化物層の厚み/金属粒子又は金属化合物粒子の最大粒子径)が、1.5〜4であることが、容量劣化が起こり難くなる点で好ましく、1.5〜2であることが特に好ましい。なお、該リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子の最大粒子径に対する該炭化物層の厚みの比の調製は、該第一工程の該炭素質物質の配合量、第一工程で得られる該被覆層を有する黒鉛核粒子の被覆層の厚さ、該第二工程(A)に係る金属粒子又は該第二工程(A)に係る金属化合物粒子の粒径、該第二工程(B)に係る金属内包炭素質粒子に内包されている金属粒子又は金属化合物粒子の粒径を調整すること、あるいは、該第二工程で、粉末を摩擦及び圧縮する際の条件等を調整すること等で可能となる。   In the composite carbon material for a negative electrode material of the lithium ion secondary battery of the present invention, the ratio of the thickness of the carbide layer to the maximum particle diameter of the metal particles or metal compound particles that occlude and release lithium (thickness of the carbide layer / metal particles) Alternatively, the maximum particle diameter of the metal compound particles) is preferably 1.5 to 4 from the viewpoint that capacity deterioration hardly occurs, and particularly preferably 1.5 to 2. The ratio of the thickness of the carbide layer to the maximum particle size of the metal particles or metal compound particles that occlude and release lithium is obtained in the first step, the amount of the carbonaceous material in the first step. The thickness of the coating layer of graphite core particles having the coating layer, the particle size of the metal particles according to the second step (A) or the metal compound particles according to the second step (A), the second step (B) By adjusting the particle size of the metal particles or metal compound particles encapsulated in the metal-encapsulated carbonaceous particles according to the above, or by adjusting the conditions for friction and compression of the powder in the second step, etc. It becomes possible.

本発明のリチウムイオン二次電池の負極材用複合炭素材料では、タッピング密度が1.0〜1.3g/cmであることが好ましい。 In the composite carbon material for a negative electrode material of the lithium ion secondary battery of the present invention, the tapping density is preferably 1.0 to 1.3 g / cm 3 .

本発明のリチウムイオン二次電池の負極材用複合炭素材料のBET比表面積が1.5〜5m/gであることが好ましい。複合炭素材料のBET比表面積が、上記範囲未満だと、リチウムイオンの脱挿入に要する反応面積が小さいため、出力特性を維持することが困難となり易く、また、上記範囲を超えると、反応面積が大きくなり過ぎて、初回充電時に大きなロスを生じ易くなる。比表面積の調節は、該第一工程で被覆する該被覆層の厚み、該第二工程での摩擦又は圧縮の条件、例えば、ハイブリダイザーではその回転速度、該第三工程を行った後に粉砕機を用いて粉砕し、その粉砕条件を調整すること、該第三工程を行った後に分級を行い、その分級条件を調整すること等で可能となる。なお、BET比表面積は、Nガスを用いたBET 10点法により算出した値とする。本発明で、窒素吸着比表面積は、表面積計(島津製作所社製、全自動表面積測定装置)を用い、測定対象に対して窒素流通下、350℃で30分間、予備乾燥を行った後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET 10点法によって測定した値である。 It is preferable that the BET specific surface area of the composite carbon material for negative electrode materials of the lithium ion secondary battery of the present invention is 1.5 to 5 m 2 / g. If the BET specific surface area of the composite carbon material is less than the above range, the reaction area required for desorption / insertion of lithium ions is small, so that it is difficult to maintain the output characteristics. It becomes too large and a large loss is likely to occur during the first charge. The specific surface area is adjusted by adjusting the thickness of the coating layer to be coated in the first step, the friction or compression conditions in the second step, for example, the rotation speed in the hybridizer, and the pulverizer after performing the third step. It is possible to adjust the pulverizing conditions by adjusting the pulverizing conditions, and after the third step, classification is performed and the classification conditions are adjusted. The BET specific surface area is a value calculated by the BET 10-point method using N 2 gas. In the present invention, the nitrogen adsorption specific surface area is large after performing preliminary drying at 350 ° C. for 30 minutes under a nitrogen flow with respect to the measurement object using a surface area meter (manufactured by Shimadzu Corporation, fully automatic surface area measuring device). This is a value measured by a nitrogen adsorption BET 10-point method using a gas flow method using a nitrogen-helium mixed gas accurately adjusted so that the value of the relative pressure of nitrogen with respect to atmospheric pressure is 0.3.

本発明のリチウムイオン二次電池の負極材用複合炭素材料の体積基準メディアン径D50は、好ましくは5〜30μm、特に好ましくは10〜25μm、更に好ましくは10〜20μmである。複合炭素材料の体積基準メディアン径が、5μm未満だと、スラリー調製時における液中への分散が悪くなり易く、また、比表面積が小さくなる。一方、複合炭素材料の体積基準メディアン径が、30μmを超えると、リチウムイオン二次電池として大電流放電する際、リチウムイオンの粒内拡散距離が長くなり、出力特性が低くなり易い。また、活物質塗工時における膜厚が制限され、出力特性に優れる電極構造を設計する際、薄く均一な活物質層を塗工することが困難となり易い。なお、本発明で、体積基準メディアン径は、レーザー回折法により測定されるメディアン径であり、島津製作所社製SALDにて測定されるメディアン径である。該体積基準メディアン径の調節は、該第一工程において、該黒鉛核粒子粉末の粒子径、該炭素質物質の配合量を調整すること、該第三工程を行った後に粉砕機を用いて粉砕し、その粉砕条件を調整すること、該第三工程を行った後に分級を行い、その分級条件を調整すること等で可能となる。   The volume-based median diameter D50 of the composite carbon material for a negative electrode material of the lithium ion secondary battery of the present invention is preferably 5 to 30 μm, particularly preferably 10 to 25 μm, and more preferably 10 to 20 μm. When the volume-based median diameter of the composite carbon material is less than 5 μm, dispersion in the liquid during slurry preparation tends to be poor, and the specific surface area becomes small. On the other hand, when the volume-based median diameter of the composite carbon material exceeds 30 μm, when a large current is discharged as a lithium ion secondary battery, the intragranular diffusion distance of lithium ions becomes long and the output characteristics tend to be low. In addition, the thickness of the active material applied is limited, and when designing an electrode structure with excellent output characteristics, it is difficult to apply a thin and uniform active material layer. In the present invention, the volume-based median diameter is a median diameter measured by a laser diffraction method, and is a median diameter measured by SALD manufactured by Shimadzu Corporation. The volume-based median diameter is adjusted by adjusting the particle diameter of the graphite core particle powder and the blending amount of the carbonaceous material in the first step, and pulverizing using a pulverizer after performing the third step. Then, it is possible to adjust the pulverization conditions, perform classification after performing the third step, and adjust the classification conditions.

本発明のリチウムイオン二次電池の負極材用複合炭素材料の粒子径アスペクト比は、好ましくは1.0〜2.0、特に好ましくは1.0〜1.6、更に好ましくは1.0〜1.3である。複合炭素材料の粒子径アスペクト比が、2.0を超えると、活物質塗工時において黒鉛層方向が基盤と平行に配列し易くなり、活物質層が基盤から剥離し易くなり、サイクル特性が低くなり易くなる。   The particle diameter aspect ratio of the composite carbon material for the negative electrode material of the lithium ion secondary battery of the present invention is preferably 1.0 to 2.0, particularly preferably 1.0 to 1.6, and more preferably 1.0 to 1.3. If the particle diameter aspect ratio of the composite carbon material exceeds 2.0, the graphite layer direction is likely to be aligned parallel to the base during active material coating, and the active material layer is easily peeled off from the base, resulting in cycle characteristics. It tends to be lower.

本発明のリチウムイオン二次電池の負極材用複合炭素材料では、粒子内部の結晶性について、X線回折法により得られる黒鉛結晶子の(002)面の面間隔d(002)面で議論するのが妥当である。本発明のリチウムイオン二次電池の負極材用複合炭素材料の黒鉛結晶子のd(002)面の層間距離は、好ましくは0.3400nm以下、特に好ましくは0.3370nm以下、更に好ましくは0.3354〜0.3365nmである。本発明のリチウムイオン二次電池の負極材用複合炭素材料の黒鉛結晶子のd(002)面の層間距離は、上記範囲を超えると、放電可逆容量が小さくなり易い。天然黒鉛は、理想黒鉛の0.3354nmに近い値を示し、易黒鉛化コークスは2,800℃以上の熱処理を施すことで、0.3365nm以下にすることができる。なお、本発明において、該黒鉛結晶子のd(002)面の層間距離は、CuKα線をX線源、標準物質に高純度シリコンを使用し、(002)面の回折パターンのピーク位置、半値幅から学振法に基づき算出した値である。   In the composite carbon material for the negative electrode material of the lithium ion secondary battery of the present invention, the crystallinity inside the particles will be discussed in terms of the plane spacing d (002) of the (002) plane of the graphite crystallite obtained by the X-ray diffraction method. Is reasonable. The interlayer distance of the d (002) plane of the graphite crystallite of the composite carbon material for the negative electrode material of the lithium ion secondary battery of the present invention is preferably 0.3400 nm or less, particularly preferably 0.3370 nm or less, and more preferably 0.8. 3354-0.3365 nm. When the interlayer distance of the d (002) plane of the graphite crystallite of the composite carbon material for the negative electrode material of the lithium ion secondary battery of the present invention exceeds the above range, the discharge reversible capacity tends to be small. Natural graphite exhibits a value close to 0.3354 nm of ideal graphite, and graphitizable coke can be reduced to 0.3365 nm or less by performing a heat treatment at 2,800 ° C. or higher. In the present invention, the interlayer distance of the d (002) plane of the graphite crystallite is such that CuKα rays are used as an X-ray source, high-purity silicon is used as a standard material, and the peak position of the diffraction pattern on the (002) plane is half It is a value calculated from the price range based on the Gakushin method.

本発明のリチウムイオン二次電池の負極材用複合炭素材料の形態例について、図3〜図5を参照して説明する。図3〜図5中、21は本発明のリチウムイオン二次電池の負極材用複合炭素材料を、22は黒鉛核粒子を、24は炭化物層を、23は該炭化物層24に埋め込まれているSi粒子(リチウム金属を吸蔵及び放出する金属粒子)を示す。該Si粒子23は、図3に示すように該炭化物層24から一部がはみ出ていてもよく、あるいは、図4又は図5に示すように該炭化物層24内に全体が埋め込まれていてもよい。また、該Si粒子は、図3又図4に示すように該黒鉛核粒子22に接触していてもよく、あるいは、図5に示すように該黒鉛核粒子に接触していなくてもよい。また、該炭化物層24の厚みは、図3に示すように該Si粒子23の粒径より小さくても、あるいは、図4に示すように該Si粒子23の粒径と同程度あっても、あるいは、図5に示すように該Si粒子の粒径より大きくてもよい。なお、図3〜図5は、発明のチウムイオン二次電池の負極材用複合炭素材料21の模式的な断面図である。   The example of the composite carbon material for negative electrode materials of the lithium ion secondary battery of this invention is demonstrated with reference to FIGS. 3 to 5, 21 is a composite carbon material for a negative electrode material of the lithium ion secondary battery of the present invention, 22 is a graphite core particle, 24 is a carbide layer, and 23 is embedded in the carbide layer 24. Si particles (metal particles that occlude and release lithium metal) are shown. The Si particles 23 may partially protrude from the carbide layer 24 as shown in FIG. 3, or may be entirely embedded in the carbide layer 24 as shown in FIG. 4 or FIG. Good. Further, the Si particles may be in contact with the graphite core particles 22 as shown in FIG. 3 or FIG. 4, or may not be in contact with the graphite core particles as shown in FIG. Further, even if the thickness of the carbide layer 24 is smaller than the particle size of the Si particles 23 as shown in FIG. 3, or the same as the particle size of the Si particles 23 as shown in FIG. Alternatively, it may be larger than the particle size of the Si particles as shown in FIG. 3 to 5 are schematic cross-sectional views of the composite carbon material 21 for a negative electrode material of the inventive lithium ion secondary battery.

以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。なお、これらの実施例は本発明の一実施態様を示すものであり、本発明はこれらに限定されない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.

実施例1
<リチウムイオン二次電池の負極材用複合炭素材料の製造>
(第一工程)
平均粒子径が13.8μm、黒鉛結晶子のd(002)面の層間距離が0.3358nmの球状天然黒鉛100重量部に対し、溶融性有機物として、空気中で400℃に加熱した場合に70%が揮発し、且つ、不活性雰囲気中で800℃に加熱した際の残炭率が0.6%の溶融機械油5重量部を混合し、混練機にて、150℃、30分間加熱混練後、コールタールピッチ(軟化点:90℃)を球状天然黒鉛100重量部に対して10重量部添加し、更に150℃、30分間加熱混練した後、25℃まで冷却し、粉体Aを得た。
Example 1
<Manufacture of composite carbon material for negative electrode material of lithium ion secondary battery>
(First step)
When 100 parts by weight of spherical natural graphite having an average particle diameter of 13.8 μm and a graphite crystallite d (002) plane distance of 0.3358 nm is heated to 400 ° C. in the air as a fusible organic substance, 70 % Volatilized and 5 parts by weight of molten machine oil with a residual carbon ratio of 0.6% when heated to 800 ° C. in an inert atmosphere is mixed and heated and kneaded in a kneader at 150 ° C. for 30 minutes. Thereafter, 10 parts by weight of coal tar pitch (softening point: 90 ° C.) is added to 100 parts by weight of spherical natural graphite, and further heated and kneaded at 150 ° C. for 30 minutes, and then cooled to 25 ° C. to obtain powder A. It was.

(第二工程)
次に、得られた粉体A 100重量部と平均粒子径0.3μm、最大粒子径0.5μmに調整したSiO(原子比Si/O=1.0)を、25重量部を混合して、混合粉体を得た。
(Second step)
Next, 100 parts by weight of the obtained powder A and SiO (atomic ratio Si / O = 1.0) adjusted to an average particle diameter of 0.3 μm and a maximum particle diameter of 0.5 μm were mixed with 25 parts by weight. A mixed powder was obtained.

次に、ハイブリダイザー装置内に、該混合粉体を投入し、装置内の最高温度を75℃±5℃に保ちながら、回転数8000rpm(回転周速:100m/s)で3分間処理し、粉体を装置より取り出し、25℃に冷却して、粉体Bを得た。   Next, the mixed powder is put into the hybridizer apparatus, and the mixture is treated at a rotational speed of 8000 rpm (rotational peripheral speed: 100 m / s) for 3 minutes while maintaining the maximum temperature in the apparatus at 75 ° C. ± 5 ° C. The powder was taken out from the apparatus and cooled to 25 ° C. to obtain Powder B.

(第三工程)
得られた粉体Bを、黒鉛坩堝に投入し、窒素ガス雰囲気下、1000℃で焼成炭化した。次いで、解砕装置(日清エンジニアリング株式会社製、スーパーローター)で解砕し、分級装置(日清エンジニアリング株式会社製、ターボクラシファイア)で分級して、リチウムイオン二次電池の負極材用複合炭素材料Cを得た。その物性を表1及び表2に示す。
(Third process)
The obtained powder B was put into a graphite crucible and calcined at 1000 ° C. in a nitrogen gas atmosphere. Next, it is crushed by a crushing device (Nisshin Engineering Co., Ltd., Super Rotor), classified by a classification device (Nisshin Engineering Co., Ltd., turbo classifier), and composite carbon for negative electrode material of a lithium ion secondary battery. Material C was obtained. The physical properties are shown in Tables 1 and 2.

各特性の測定方法
(1)平均粒子径
レーザー回折式の粒度分布測定装置(島津製作所製、SALD2000)により測定した体積基準メディアン径
(2)X線回折法よるd(002)(nm)
X線回折法による測定は、ターゲットをCu(Kα線)グラファイトモノクロメーター、スリットを発散スリット=1度、受光スリット=0.1mm、散乱スリット=1度の条件とし、学振法により結晶子格子面間隔d(002)を求める。
(3)タップ密度(g/cm
25mlメスシリンダーに複合炭素材料粒子5gを入れ、振動板との間隙を10mmとして1000回タッピングを繰り返した後の値である。
(4)比表面積(m2/g)
表面積計(島津製全自動表面積測定装置)を用い、測定対象に対して窒素流通下350℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET10点法によって測定した値である。
(5)アスペクト比
走査型電子顕微鏡観察にて、粒子100個を任意に選び出し、粒子の最大径を最小径で除し、その平均値を粒子径アスペクト比とする。
(6)被覆層の厚さ
被覆層の厚さ =(複合粒子の平均粒子径−原料黒鉛核粒子の平均粒子径)/2
(7)Si量およびSiC量の測定
(a)作製した複合炭素材料粒子(約1g)を秤量し粉体aとし、この粉体aと固体の水酸化ナトリウム100gとをガラス製ビーカーに入れて、60℃にて1時間マグネティックスターラにて加熱攪拌し、冷却後、精製水にて水洗して水酸化ナトリウムを除去した濾過残渣(カーボン、SiC、Si)を乾燥して粉体bを得る。乾燥した粉体bを秤量する。
(b)乾燥後の粉体をフッ酸液中で、25℃にて1時間攪拌した後、精製水にて水洗してフッ酸を除去した濾過残渣(カーボン、SiC)を乾燥して粉体cを得る。乾燥した粉体cを秤量する。
((粉体bの重量 − 粉体cの重量)/粉体aの重量)×100
をSi量(重量%)とした。
((粉体aの重量 − 粉体bの重量)/粉体aの重量)×100
をSiOx量(重量%)とした。
(c)SiC量の測定
粉体cを灰化する。
(灰化残分の重量/粉体aの重量)×100をSiC量(重量%)とした。
(8)揮発分の測定
JIS−M8812 石炭類、及びコークス類の工業分析法に従い、磁性坩堝を用いて、900℃で30分間熱処理した後の重量減少率を揮発分とした。
Measuring method of each characteristic (1) Volume-based median diameter measured with an average particle diameter laser diffraction type particle size distribution measuring apparatus (SALD2000, manufactured by Shimadzu Corporation) (2) d (002) (nm) by X-ray diffraction method
The measurement by the X-ray diffraction method is performed using a Cu (Kα ray) graphite monochromator as a target, a slit as a diverging slit = 1 degree, a light receiving slit = 0.1 mm, and a scattering slit = 1 degree. A surface interval d (002) is obtained.
(3) Tap density (g / cm 3 )
This is a value after 5 g of composite carbon material particles are placed in a 25 ml graduated cylinder, and tapping is repeated 1000 times with a gap of 10 mm from the diaphragm.
(4) Specific surface area (m 2 / g)
Using a surface area meter (Shimadzu fully automatic surface area measuring device), after performing preliminary drying at 350 ° C. for 30 minutes under nitrogen flow, the relative pressure value of nitrogen relative to atmospheric pressure becomes 0.3. It is a value measured by a nitrogen adsorption BET 10-point method by a gas flow method using a nitrogen-helium mixed gas adjusted accurately as described above.
(5) Aspect ratio By scanning electron microscope observation, 100 particles are arbitrarily selected, the maximum diameter of the particles is divided by the minimum diameter, and the average value is defined as the particle diameter aspect ratio.
(6) Thickness of coating layer Thickness of coating layer = (average particle size of composite particles−average particle size of raw material graphite core particles) / 2
(7) Measurement of Si amount and SiC amount (a) The produced composite carbon material particles (about 1 g) are weighed to form powder a, and this powder a and 100 g of solid sodium hydroxide are placed in a glass beaker. The mixture is heated and stirred with a magnetic stirrer at 60 ° C. for 1 hour, cooled, washed with purified water, and the filtration residue (carbon, SiC, Si) from which sodium hydroxide has been removed is dried to obtain powder b. Weigh the dried powder b.
(B) The dried powder was stirred in a hydrofluoric acid solution at 25 ° C. for 1 hour, washed with purified water to remove the hydrofluoric acid, and the filtered residue (carbon, SiC) was dried to obtain a powder. c is obtained. Weigh the dried powder c.
((Weight of powder b−weight of powder c) / weight of powder a) × 100
Was the amount of Si (% by weight).
((Weight of powder a−weight of powder b) / weight of powder a) × 100
Was the SiOx amount (% by weight).
(C) Measurement of SiC amount Powder c is incinerated.
(Weight of ashing residue / weight of powder a) × 100 was defined as the SiC amount (% by weight).
(8) Measurement of Volatile Content According to JIS-M8812 industrial analysis method of coals and cokes, a weight loss rate after heat treatment at 900 ° C. for 30 minutes using a magnetic crucible was defined as a volatile content.

<リチウムイオン二次電池の作成>
(スラリーの調製)
上記のようにして得られた該リチウムイオン二次電池の負極材用複合炭素材料Cを100重量部に対し、増粘剤として1wt%のカルボキシメチルセルロース(CMC)水溶液を適量投入して30分間攪拌混合した後、結合剤として40wt%のスチレン−ブタジエンゴム(SBR)水溶液を適量投入して5分間攪拌混合し、負極合材ペーストを調製した。
<Creation of lithium ion secondary battery>
(Preparation of slurry)
An appropriate amount of 1 wt% carboxymethylcellulose (CMC) aqueous solution as a thickener is added to 100 parts by weight of the composite carbon material C for negative electrode material of the lithium ion secondary battery obtained as described above, and stirred for 30 minutes. After mixing, an appropriate amount of 40 wt% styrene-butadiene rubber (SBR) aqueous solution was added as a binder and stirred for 5 minutes to prepare a negative electrode mixture paste.

(作用極の作製)
得られた負極合材ペーストを厚さ18μmの銅箔(集電体)上に塗布し、真空中で130℃に加熱して溶媒を完全に揮発させた。得られたシートを極板密度が1.5g/ccになるようローラープレスで圧延し、ポンチで打ち抜いて作用極を得た。
(Production of working electrode)
The obtained negative electrode mixture paste was applied onto a copper foil (current collector) having a thickness of 18 μm and heated to 130 ° C. in a vacuum to completely evaporate the solvent. The obtained sheet was rolled with a roller press so that the electrode plate density was 1.5 g / cc, and punched with a punch to obtain a working electrode.

(対極の作製)
不活性雰囲気下、リチウム金属箔をポンチで打ち抜いたニッケルメッシュ(集電体)にめり込ませ、対極を得た。
(Preparation of counter electrode)
Under an inert atmosphere, a lithium metal foil was punched into a nickel mesh (current collector) punched out with a punch to obtain a counter electrode.

(可逆放電容量評価用ボタン型電池の作製)
前記の作用極、対極を使用し、評価用電池として図2に示すボタン型電池を不活性雰囲気下で組み立てた。電解液は1mol/dmのリチウム塩LiPFを溶解したエチレンカーボネート(EC)、ジエチルカーボネート(DEC) 1:1混合溶液を使用した。充電は電流密度0.2mA/cm、終止電圧5mVで定電流充電を終えた後、下限電流0.02mA/cmとなるまで定電位保持する。放電は電流密度0.2mA/cmにて終止電圧1.5Vまで定電流放電を行い、5サイクル終了後の放電容量を可逆放電容量とした。図2において、9は負極側ステンレスキャップ、10は負極、11は銅箔、12は絶縁ガスケット、13は電解液含浸セパレータ、14はニッケルメッシュ、15は正極側ステンレスキャップ、16は正極である。
(Preparation of reversible discharge capacity button type battery)
Using the above working electrode and counter electrode, a button type battery shown in FIG. 2 as an evaluation battery was assembled in an inert atmosphere. As the electrolytic solution, a 1: 1 mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in which 1 mol / dm 3 of the lithium salt LiPF 6 was dissolved was used. Charging current density 0.2 mA / cm 2, after finishing the constant current charging at a final voltage 5 mV, holding a constant potential to the lower limit current 0.02 mA / cm 2. The discharge was a constant current discharge to a final voltage of 1.5 V at a current density of 0.2 mA / cm 2 , and the discharge capacity after the end of 5 cycles was defined as a reversible discharge capacity. In FIG. 2, 9 is a negative electrode side stainless steel cap, 10 is a negative electrode, 11 is a copper foil, 12 is an insulating gasket, 13 is an electrolyte-impregnated separator, 14 is a nickel mesh, 15 is a positive electrode side stainless steel cap, and 16 is a positive electrode.

(サイクル耐久性評価用ボタン型電池の作製)
対極をリチウムコバルト酸化物に変え、上記と同様、ボタン型電池を組み立てて、20℃の下、0.2Cの電流密度にて4.1V〜3.0V間を100回、繰り返し充放電を行った後の容量維持率を調べた。測定結果を表3に示す。
(Production of button-type battery for cycle durability evaluation)
Change the counter electrode to lithium cobalt oxide and assemble a button-type battery in the same manner as above, and repeatedly charge and discharge between 4.1 V and 3.0 V at 20 ° C. and a current density of 0.2 C 100 times. After that, the capacity maintenance rate was examined. Table 3 shows the measurement results.

(実施例2)
平均粒子径が13.8μm、黒鉛結晶子のd(002)面の層間距離が0.3358nmの球状天然黒鉛に代えて、平均粒子径が14.1μm、黒鉛結晶子のd(002)面の層間距離が0.3362nmの球状天然黒鉛とし、平均粒子径0.3μm、最大粒子径0.5μmに調整したSiOに代えて、平均粒子径1μm、最大粒子径2μmに調整したSiO(原子比Si/O=1.0)とする以外は、実施例1と同様の方法で行った。その結果を表1〜表3に示す。
(Example 2)
Instead of spherical natural graphite having an average particle size of 13.8 μm and an interlayer distance of the d (002) plane of the graphite crystallite of 0.3358 nm, the average particle size of 14.1 μm and the d (002) plane of the graphite crystallite of Spherical natural graphite having an interlayer distance of 0.3362 nm is used, and SiO (atomic ratio Si) adjusted to an average particle size of 1 μm and a maximum particle size of 2 μm is used instead of SiO adjusted to an average particle size of 0.3 μm and a maximum particle size of 0.5 μm. /O=1.0), except that the same method as in Example 1 was used. The results are shown in Tables 1 to 3.

(実施例3)
平均粒子径が13.8μm、黒鉛結晶子のd(002)面の層間距離が0.3358nmの球状天然黒鉛に代えて、平均粒子径が10.9μm、黒鉛結晶子のd(002)面の層間距離が0.3357nmの鱗片状天然黒鉛とする以外は、実施例1と同様の方法で行った。その結果を表1〜表3に示す。
(Example 3)
Instead of spherical natural graphite having an average particle diameter of 13.8 μm and an interlayer distance of the d (002) plane of the graphite crystallite of 0.3358 nm, the average particle diameter of 10.9 μm and the d (002) plane of the graphite crystallite of The same procedure as in Example 1 was performed except that scaly natural graphite having an interlayer distance of 0.3357 nm was used. The results are shown in Tables 1 to 3.

(実施例4)
窒素ガス雰囲気下、1000℃で焼成炭化することに代えて、窒素ガス雰囲気下、900℃で焼成炭化すること以外は、実施例1と同様の方法で行った。その結果を表1〜表3に示す。
Example 4
Instead of firing and carbonizing at 1000 ° C. in a nitrogen gas atmosphere, the same method as in Example 1 was performed except that firing and carbonizing at 900 ° C. in a nitrogen gas atmosphere. The results are shown in Tables 1 to 3.

(実施例5)
窒素ガス雰囲気下、1000℃で焼成炭化することに代えて、窒素ガス雰囲気下、1,350℃で焼成炭化すること以外は、実施例1と同様の方法で行った。その結果を表1〜表3に示す。
(Example 5)
Instead of firing and carbonizing at 1000 ° C. in a nitrogen gas atmosphere, the same method as in Example 1 was performed except that firing and carbonizing was performed at 1,350 ° C. in a nitrogen gas atmosphere. The results are shown in Tables 1 to 3.

(実施例6)
コールタールピッチ(軟化点:90℃)を球状天然黒鉛100重量部に対して10重量部添加することに代えて、コールタールピッチ(軟化点:90℃)を球状天然黒鉛100重量部に対して5重量部添加すること以外は、実施例1と同様の方法で行った。その結果を表1〜表3に示す。
(Example 6)
Instead of adding 10 parts by weight of coal tar pitch (softening point: 90 ° C.) to 100 parts by weight of spherical natural graphite, coal tar pitch (softening point: 90 ° C.) is added to 100 parts by weight of spherical natural graphite. The procedure was the same as in Example 1 except that 5 parts by weight was added. The results are shown in Tables 1 to 3.

(実施例7)
コールタールピッチ(軟化点:90℃)を球状天然黒鉛100重量部に対して10重量部添加することに代えて、コールタールピッチ(軟化点:90℃)を球状天然黒鉛100重量部に対して25重量部添加すること以外は、実施例1と同様の方法で行った。その結果を表1〜表3に示す。
(Example 7)
Instead of adding 10 parts by weight of coal tar pitch (softening point: 90 ° C.) to 100 parts by weight of spherical natural graphite, coal tar pitch (softening point: 90 ° C.) is added to 100 parts by weight of spherical natural graphite. The same procedure as in Example 1 was performed except that 25 parts by weight was added. The results are shown in Tables 1 to 3.

(実施例8)
平均粒子径0.3μm、最大粒子径0.5μmに調整したSiO(原子比Si/O=1.0)を、25重量部投入することに代えて、以下のようにして得られた金属内包炭素質粒子Aを、40重量部投入すること以外は、実施例1と同様の方法で行った。その結果を表1〜表3に示す。
<金属内包炭素質粒子Aの製造方法>
平均粒子径0.3μm、最大粒子径0.5μmに調整したSiO(原子比Si/O=1.0)を50重量部と、平均粒子径が10μm、黒鉛結晶子のd(002)面の層間距離が0.3354nmの鱗片状天然黒鉛50重量部とを混合し、次いで、30重量部のピッチ(軟化点:70℃)を加えて混練し、1000℃で焼成炭化後に、最大粒子径が1μm以下となるように調整し、金属内包炭素質粒子Aを得た。
(Example 8)
Instead of adding 25 parts by weight of SiO (atomic ratio Si / O = 1.0) adjusted to an average particle size of 0.3 μm and a maximum particle size of 0.5 μm, a metal inclusion obtained as follows The same procedure as in Example 1 was performed except that 40 parts by weight of carbonaceous particles A were added. The results are shown in Tables 1 to 3.
<Method for Producing Metal-Included Carbonaceous Particle A>
50 parts by weight of SiO (atomic ratio Si / O = 1.0) adjusted to an average particle size of 0.3 μm and a maximum particle size of 0.5 μm, an average particle size of 10 μm, and the d (002) plane of the graphite crystallite 50 parts by weight of scaly natural graphite having an interlayer distance of 0.3354 nm is mixed, and then 30 parts by weight of pitch (softening point: 70 ° C.) is added and kneaded. It adjusted so that it might become 1 micrometer or less, and the metal inclusion carbonaceous particle A was obtained.

(実施例9)
平均粒子径が13.8μm、黒鉛結晶子のd(002)面の層間距離が0.3358nmの球状天然黒鉛に代えて、平均粒子径が13.1μm、黒鉛結晶子のd(002)面の層間距離が0.3356nmの球状天然黒鉛とし、平均粒子径0.3μm、最大粒子径0.5μmに調整したSiO(原子比Si/O=1.0)を、25重量部とすることに代えて、平均粒子径0.3μm、最大粒子径0.5μmに調整したSiO(原子比Si/O=1.0)を18重量部とする以外は、実施例1と同様の方法で行った。その結果を表1〜3に示す。
Example 9
Instead of spherical natural graphite having an average particle size of 13.8 μm and an interlayer distance of 0.3358 nm between the d (002) planes of the graphite crystallites, the average particle size of 13.1 μm and the d (002) plane of the graphite crystallites Instead of spherical natural graphite with an interlayer distance of 0.3356 nm, SiO (atomic ratio Si / O = 1.0) adjusted to an average particle size of 0.3 μm and a maximum particle size of 0.5 μm is changed to 25 parts by weight. Then, the same method as in Example 1 was performed except that SiO (atomic ratio Si / O = 1.0) adjusted to an average particle size of 0.3 μm and a maximum particle size of 0.5 μm was 18 parts by weight. The results are shown in Tables 1-3.

(実施例10)
平均粒子径0.3μm、最大粒子径0.5μmに調整したSiO(原子比Si/O=1.0)を、25重量部とすることに代えて、平均粒子径0.3μm、最大粒子径0.5μmに調整したSiO(原子比Si/O=1.0)を40重量部とする以外は、実施例1と同様の方法で行った。その結果を表1〜3に示す。
(Example 10)
Instead of setting SiO (atomic ratio Si / O = 1.0) adjusted to an average particle size of 0.3 μm and a maximum particle size of 0.5 μm to 25 parts by weight, the average particle size is 0.3 μm and the maximum particle size is The process was performed in the same manner as in Example 1 except that 40 parts by weight of SiO (atomic ratio Si / O = 1.0) adjusted to 0.5 μm was used. The results are shown in Tables 1-3.

(実施例11)
平均粒子径が13.8μm、黒鉛結晶子のd(002)面の層間距離が0.3358nmの球状天然黒鉛に代えて、平均粒子径が12.9μm、黒鉛結晶子のd(002)面の層間距離が0.3355nmの球状天然黒鉛とし、平均粒子径0.3μm、最大粒子径0.5μmに調整したSiO(原子比Si/O=1.0)を、25重量部とすることに代えて、平均粒子径0.3μm、最大粒子径0.5μmに調整したSiO(原子比Si/O=1.0)を18重量部とする以外は、実施例1と同様の方法で行った。その結果を表1〜3に示す。
Example 11
Instead of spherical natural graphite having an average particle size of 13.8 μm and an interlayer distance of 0.3358 nm between the d (002) planes of the graphite crystallites, the average particle size of 12.9 μm and the d (002) plane of the graphite crystallites Instead of spherical natural graphite with an interlayer distance of 0.3355 nm, SiO (atomic ratio Si / O = 1.0) adjusted to an average particle size of 0.3 μm and a maximum particle size of 0.5 μm is changed to 25 parts by weight. Then, the same method as in Example 1 was performed except that SiO (atomic ratio Si / O = 1.0) adjusted to an average particle size of 0.3 μm and a maximum particle size of 0.5 μm was 18 parts by weight. The results are shown in Tables 1-3.

(比較例1)
平均粒子径が13.8μm、黒鉛結晶子のd(002)面の層間距離が0.3358nmの球状天然黒鉛に代えて、平均粒子径が12.9μm、黒鉛結晶子のd(002)面の層間距離が0.3364nmの球状天然黒鉛とし、溶融性有機物を混合しない以外は、実施例1と同様の方法で行った。その結果を表1〜表3に示す。
(Comparative Example 1)
Instead of spherical natural graphite having an average particle size of 13.8 μm and an interlayer distance of 0.3358 nm between the d (002) planes of the graphite crystallites, the average particle size of 12.9 μm and the d (002) plane of the graphite crystallites The same procedure as in Example 1 was performed except that spherical natural graphite having an interlayer distance of 0.3364 nm was used and no fusible organic material was mixed. The results are shown in Tables 1 to 3.

(比較例2)
平均粒子径が13.8μm、黒鉛結晶子のd(002)面の層間距離が0.3358nmの球状天然黒鉛に代えて、平均粒子径が14.2μm、黒鉛結晶子のd(002)面の層間距離が0.3361nmの球状天然黒鉛とし、平均粒子径0.3μm、最大粒子径0.5μmに調整したSiOに代えて、平均粒子径2μm、最大粒子径3μmに調整したSiO(原子比Si/O=1.0)とする以外は、実施例1と同様の方法で行った。その結果を表1〜表3に示す。
(Comparative Example 2)
Instead of spherical natural graphite having an average particle diameter of 13.8 μm and an interlayer distance of the d (002) plane of the graphite crystallite of 0.3358 nm, the average particle diameter of 14.2 μm and the d (002) plane of the graphite crystallite of Spherical natural graphite having an interlayer distance of 0.3361 nm was used, and SiO (atomic ratio Si) adjusted to an average particle size of 2 μm and a maximum particle size of 3 μm was used instead of SiO adjusted to an average particle size of 0.3 μm and a maximum particle size of 0.5 μm. /O=1.0), except that the same method as in Example 1 was used. The results are shown in Tables 1 to 3.

(比較例3)
平均粒子径が13.8μm、黒鉛結晶子のd(002)面の層間距離が0.3358nmの球状天然黒鉛に代えて、平均粒子径が13.7μm、黒鉛結晶子のd(002)面の層間距離が0.3360nmの球状天然黒鉛とし、コールタールピッチ(軟化点:90℃)を球状天然黒鉛100重量部に対して10重量部添加することに代えて、コールタールピッチ(軟化点:90℃)を球状天然黒鉛100重量部に対して3重量部添加すること以外は、実施例1と同様の方法で行った。その結果を表1〜表3に示す。
(Comparative Example 3)
Instead of spherical natural graphite having an average particle size of 13.8 μm and an interlayer distance of 0.3358 nm between the d (002) planes of the graphite crystallites, the average particle size of 13.7 μm and the d (002) plane of the graphite crystallites Instead of adding 10 parts by weight of the coal tar pitch (softening point: 90 ° C.) to 100 parts by weight of the spherical natural graphite, the spherical tar graphite (softening point: 90) is used. ℃) was added in the same manner as in Example 1 except that 3 parts by weight of 100 parts by weight of spherical natural graphite was added. The results are shown in Tables 1 to 3.

(比較例4)
平均粒子径が13.8μm、黒鉛結晶子のd(002)面の層間距離が0.3358nmの球状天然黒鉛に代えて、平均粒子径が13.8μm、黒鉛結晶子のd(002)面の層間距離が0.3362nmの球状天然黒鉛とし、コールタールピッチ(軟化点:90℃)を球状天然黒鉛100重量部に対して10重量部添加することに代えて、コールタールピッチ(軟化点:90℃)を球状天然黒鉛100重量部に対して50重量部添加すること以外は、実施例1と同様の方法で行った。その結果を表1〜表3に示す。
(Comparative Example 4)
Instead of spherical natural graphite having an average particle size of 13.8 μm and an interlayer distance of 0.3358 nm between the d (002) planes of the graphite crystallites, the average particle size of 13.8 μm and the d (002) plane of the graphite crystallites Instead of adding 10 parts by weight of the coal tar pitch (softening point: 90 ° C.) to 100 parts by weight of the spherical natural graphite, the spherical tar graphite (softening point: 90) is used. ℃) was added in the same manner as in Example 1 except that 50 parts by weight of 100 parts by weight of spherical natural graphite was added. The results are shown in Tables 1 to 3.

(比較例5)
平均粒子径が13.8μm、黒鉛結晶子のd(002)面の層間距離が0.3358nmの球状天然黒鉛に代えて、平均粒子径が13.8μm、黒鉛結晶子のd(002)面の層間距離が0.3367nmの球状天然黒鉛とし、窒素ガス雰囲気下、1000℃で焼成炭化することに代えて、窒素ガス雰囲気下、800℃で焼成炭化すること以外は、実施例1と同様の方法で行った。その結果を表1〜表3に示す。
(Comparative Example 5)
Instead of spherical natural graphite having an average particle size of 13.8 μm and an interlayer distance of 0.3358 nm between the d (002) planes of the graphite crystallites, the average particle size of 13.8 μm and the d (002) plane of the graphite crystallites The same method as in Example 1 except that spherical natural graphite having an interlayer distance of 0.3367 nm is used and calcined at 800 ° C. in a nitrogen gas atmosphere instead of calcining at 1000 ° C. in a nitrogen gas atmosphere. I went there. The results are shown in Tables 1 to 3.

(比較例6)
窒素ガス雰囲気下、1000℃で焼成炭化することに代えて、窒素ガス雰囲気下、1,500℃で焼成炭化すること以外は、実施例1と同様の方法で行った。その結果を表1〜表3に示す。
(Comparative Example 6)
Instead of firing and carbonizing at 1000 ° C. in a nitrogen gas atmosphere, the same method as in Example 1 was performed except that firing and carbonizing was performed at 1,500 ° C. in a nitrogen gas atmosphere. The results are shown in Tables 1 to 3.

(比較例7)
平均粒子径が13.8μm、黒鉛結晶子のd(002)面の層間距離が0.3358nmの球状天然黒鉛に代えて、平均粒子径が11.5μm、黒鉛結晶子のd(002)面の層間距離が0.3412nmのか焼コークスとする以外は、実施例1と同様の方法で行った。その結果を表1〜表3に示す。
(Comparative Example 7)
Instead of spherical natural graphite having an average particle size of 13.8 μm and an interlayer distance of 0.3358 nm between the d (002) planes of the graphite crystallites, the average particle size of 11.5 μm and the d (002) plane of the graphite crystallites The same method as in Example 1 was performed except that calcined coke having an interlayer distance of 0.3412 nm was used. The results are shown in Tables 1 to 3.

(比較例8)
平均粒子径が13.8μm、黒鉛結晶子のd(002)面の層間距離が0.3358nmの球状天然黒鉛に代えて、平均粒子径が13.4μm、黒鉛結晶子のd(002)面の層間距離が0.3355nmの球状天然黒鉛とし、平均粒子径0.3μm、最大粒子径0.5μmに調整したSiOを混合しないこと以外は、実施例1と同様の方法で行った。その結果を表1〜表3に示す。
(Comparative Example 8)
Instead of spherical natural graphite having an average particle size of 13.8 μm and an interlayer distance of 0.3358 nm between the d (002) planes of the graphite crystallites, the average particle size of 13.4 μm and the d (002) plane of the graphite crystallites The same procedure as in Example 1 was performed, except that spherical natural graphite having an interlayer distance of 0.3355 nm was used, and SiO adjusted to an average particle size of 0.3 μm and a maximum particle size of 0.5 μm was not mixed. The results are shown in Tables 1 to 3.

(比較例9)
平均粒子径が13.8μm、黒鉛結晶子のd(002)面の層間距離が0.3358nmの球状天然黒鉛に代えて、平均粒子径が11.8μm、黒鉛結晶子のd(002)面の層間距離が0.3401nmの球状天然黒鉛とし、平均粒子径0.3μm、最大粒子径0.5μmに調整したSiO(原子比Si/O=1.0)を、25重量部とすることに代えて、平均粒子径0.3μm、最大粒子径0.5μmに調整したSiO(原子比Si/O=1.0)を50重量部とすること以外は、実施例1と同様の方法で行った。その結果を表1〜3に示す。
(Comparative Example 9)
Instead of spherical natural graphite having an average particle diameter of 13.8 μm and an interlayer distance of the d (002) plane of the graphite crystallite of 0.3358 nm, the average particle diameter of 11.8 μm and the d (002) plane of the graphite crystallite of Instead of spherical natural graphite having an interlayer distance of 0.3401 nm, SiO (atomic ratio Si / O = 1.0) adjusted to an average particle size of 0.3 μm and a maximum particle size of 0.5 μm is changed to 25 parts by weight. Then, the same method as in Example 1 was performed except that 50 parts by weight of SiO (atomic ratio Si / O = 1.0) adjusted to an average particle size of 0.3 μm and a maximum particle size of 0.5 μm was used. . The results are shown in Tables 1-3.


Figure 2009181767
Figure 2009181767

Figure 2009181767
Figure 2009181767

Figure 2009181767
Figure 2009181767

表1及び表2より、溶融性有機物を添加しない比較例1では、アスペクト比が2.7と高くなるうえに、黒鉛核粒子の破粒により平均粒子径が小さくなり、タップ密度が低下する。このため、初回不可逆容量の増大、容量維持率の低下をきたす。
また、比較例2のように高容量の担い手となるSiの原料となるSiOの粒子径を大きくすると、アスペクト比が2.3と高くなり容量が低下するうえに、容量維持率も低下する。
また、比較例3では、コールタールピッチの添加量が少な過ぎるため炭化物層の厚みが薄くなり過ぎて、初回不可逆容量が増大し、容量維持率が低下する。一方、比較例4では、コールタールピッチの添加量が多過ぎるため炭化物層の厚みが厚くなり過ぎて、初回不可逆容量の増大を招く。
また、焼成炭化温度が低い比較例5では、初回不可逆容量が増大したり、容量維持率が低下する。焼成炭化温度が低い比較例6では、SiOの不均化反応におけるSiの生成反応も起きないため、初回不可逆容量が増大したり、可逆容量が低下する。
実施例8に示したように、Si内包炭素質粒子を用いることで、初回不可逆容量が低くなり、容量維持率を改善することが可能となる。
更に、SiOを添加しない比較例8では、比較例6と同様に可逆容量が低くなった。SiOを過剰に添加した比較例9では、容量維持率が低くなる。
From Table 1 and Table 2, in Comparative Example 1 in which no fusible organic material is added, the aspect ratio is increased to 2.7, and the average particle diameter is decreased due to the breakage of the graphite core particles, and the tap density is decreased. For this reason, the first irreversible capacity increases and the capacity maintenance rate decreases.
Further, when the particle diameter of SiO, which is a raw material of Si, which is a bearer of high capacity as in Comparative Example 2, is increased, the aspect ratio is increased to 2.3, the capacity is decreased, and the capacity maintenance ratio is also decreased.
In Comparative Example 3, the amount of coal tar pitch added is too small, so the thickness of the carbide layer becomes too thin, the initial irreversible capacity increases, and the capacity retention rate decreases. On the other hand, in Comparative Example 4, since the amount of coal tar pitch added is too large, the thickness of the carbide layer becomes too thick, leading to an increase in the initial irreversible capacity.
Moreover, in the comparative example 5 with a low calcination carbonization temperature, an initial irreversible capacity | capacitance increases or a capacity | capacitance maintenance factor falls. In Comparative Example 6 where the calcination carbonization temperature is low, since the formation reaction of Si in the disproportionation reaction of SiO does not occur, the initial irreversible capacity increases or the reversible capacity decreases.
As shown in Example 8, by using Si-containing carbonaceous particles, the initial irreversible capacity is lowered, and the capacity retention rate can be improved.
Further, in Comparative Example 8 in which no SiO was added, the reversible capacity was low as in Comparative Example 6. In Comparative Example 9 in which SiO is excessively added, the capacity retention rate is low.

ハイブリダイザーの模式図である。It is a schematic diagram of a hybridizer. 実施例及び比較例の評価用電池の断面図である。It is sectional drawing of the battery for evaluation of an Example and a comparative example. 本発明のチウムイオン二次電池の負極材用複合炭素材料21の模式的な断面図である。It is typical sectional drawing of the composite carbon material 21 for negative electrode materials of the lithium ion secondary battery of this invention. 本発明のチウムイオン二次電池の負極材用複合炭素材料21の模式的な断面図である。It is typical sectional drawing of the composite carbon material 21 for negative electrode materials of the lithium ion secondary battery of this invention. 本発明のチウムイオン二次電池の負極材用複合炭素材料21の模式的な断面図である。It is typical sectional drawing of the composite carbon material 21 for negative electrode materials of the lithium ion secondary battery of this invention.

符号の説明Explanation of symbols

1 原料投入口
2 原料循環路
3 ステーター
4 ジャケット
5 原料排出口
6 ドラム
7 ブレード
8 回転部
9 負極側ステンレスキャップ
10 負極
11 銅箔
12 絶縁ガスケット
13 電解液含浸セパレータ
14 ニッケルメッシュ
15 正極側ステンレスキャップ
16 正極
21 本発明のチウムイオン二次電池の負極材用複合炭素材料
22 黒鉛核粒子
23 Si粒子
24 炭化物層
DESCRIPTION OF SYMBOLS 1 Raw material inlet 2 Raw material circulation path 3 Stator 4 Jacket 5 Raw material outlet 6 Drum 7 Blade 8 Rotating part 9 Negative side stainless cap 10 Negative electrode 11 Copper foil 12 Insulating gasket 13 Electrolyte impregnation separator 14 Nickel mesh 15 Positive side stainless cap 16 Positive electrode 21 Composite carbon material 22 for negative electrode material of the lithium ion secondary battery of the present invention 22 Graphite core particle 23 Si particle 24 Carbide layer

Claims (13)

黒鉛核粒子と、該黒鉛核粒子の表面に形成されている炭化物層と、からなり、
該炭化物層には、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子、あるいは、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子と黒鉛微粒子とが、埋め込まれており、
粒子径アスペクト比が1.0〜2.0であること、
を特徴とするリチウムイオン二次電池の負極材用複合炭素材料。
A graphite core particle, and a carbide layer formed on the surface of the graphite core particle,
In the carbide layer, metal particles or metal compound particles that occlude and release lithium, or metal particles or metal compound particles that occlude and release lithium and graphite fine particles are embedded,
The particle diameter aspect ratio is 1.0 to 2.0,
A composite carbon material for a negative electrode material of a lithium ion secondary battery.
前記リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子が、珪素又は合金を含む珪素化合物であることを特徴とする請求項1記載のリチウムイオン二次電池の負極材用複合炭素材料。   2. The composite carbon material for a negative electrode material of a lithium ion secondary battery according to claim 1, wherein the metal particles or metal compound particles that occlude and release lithium are silicon or a silicon compound containing an alloy. 前記炭化物層の厚みが、3μm以下であることを特徴とする請求項1又は2いずれか1項記載のリチウムイオン二次電池の負極材用複合炭素材料。   3. The composite carbon material for a negative electrode material of a lithium ion secondary battery according to claim 1, wherein the carbide layer has a thickness of 3 μm or less. 前記リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子の最大粒子径が、2μm以下であることを特徴とする請求項3記載のリチウムイオン二次電池の負極材用複合炭素材料。   4. The composite carbon material for a negative electrode material for a lithium ion secondary battery according to claim 3, wherein the maximum particle diameter of the metal particles or metal compound particles that occlude and release lithium is 2 μm or less. 前記リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子の最大粒子径に対する前記炭化物層の厚みの比(炭化物層の厚み/金属粒子又は金属化合物粒子の最大粒子径)が、1.5〜4であることを特徴とする請求項3又は4いずれか1項記載のリチウムイオン二次電池の負極材用複合炭素材料。   The ratio of the thickness of the carbide layer to the maximum particle size of the metal particles or metal compound particles that occlude and release lithium (the thickness of the carbide layer / the maximum particle size of the metal particles or metal compound particles) is 1.5 to 4. 5. The composite carbon material for a negative electrode material for a lithium ion secondary battery according to claim 3, wherein the composite carbon material is a lithium ion secondary battery. 前記黒鉛核粒子が、天然黒鉛、又は2500℃以上の熱履歴を持つ人造黒鉛であることを特徴とする請求項1〜5いずれか1項記載のリチウムイオン二次電池の負極材用複合炭素材料。   The composite carbon material for a negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 5, wherein the graphite core particles are natural graphite or artificial graphite having a thermal history of 2500 ° C or higher. . 前記炭化物層が、フリーカーボンを除去したタール又はキノリン不溶分の含有率が1%未満であるピッチの炭化物からなることを特徴とする請求項1〜6いずれか1項記載のリチウムイオン二次電池の負極材用複合炭素材料。   The lithium ion secondary battery according to any one of claims 1 to 6, wherein the carbide layer is made of a carbide of a pitch whose content of tar or quinoline insoluble content from which free carbon is removed is less than 1%. Composite carbon material for negative electrode material. 黒鉛核粒子粉末と、炭素質物質と、溶融性有機物と、を加熱混練して、該黒鉛核粒子の表面に該炭素質物質及び該溶融性有機物からなる被覆層を被覆し、該被覆層を有する黒鉛核粒子の素粒粉末を得る第一工程と、
該被覆層を有する黒鉛核粒子の素粒粉末と、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子の粉末、あるいは、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子を内包している金属内包炭素質粒子の粉末と、を混合し、得られた混合粉末を摩擦及び圧縮することにより、該被覆層を有する黒鉛核粒子の素粒粉末の該被覆層に、該金属粒子又は金属化合物粒子、あるいは、該金属内包粒子を埋め込むと共に整粒し、粒子径アスペクト比が1.0〜2.0の金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子の整粒粉末を得る第二工程と、
該金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子の整粒粉末を、非酸化性雰囲気下、850〜1,400℃で焼成炭化して、リチウムイオン二次電池の負極材用複合炭素材料を得る第三工程と、
を行い得られることを特徴とするリチウムイオン二次電池の負極材用複合炭素材料。
A graphite core particle powder, a carbonaceous material, and a meltable organic material are heated and kneaded to coat the surface of the graphite core particle with a coating layer made of the carbonaceous material and the meltable organic material. A first step of obtaining an elementary powder of graphite core particles having,
A powder of graphite core particles having the coating layer and a metal particle or metal compound particle powder that occludes and releases lithium, or a metal inclusion that encloses metal particles or metal compound particles that occlude and release lithium. A powder of carbonaceous particles, and by friction and compression of the obtained mixed powder, the metal particles or metal compound particles are applied to the coating layer of the graphite core particle elementary powder having the coating layer, Alternatively, the metal-encapsulated particles are embedded and sized to obtain a sized powder of graphite core particles having a coating layer embedded with metal particles or metal compound particles having a particle diameter aspect ratio of 1.0 to 2.0. Two steps,
A sized powder of graphite core particles having a coating layer in which the metal particles or metal compound particles are embedded is calcined and carbonized at 850 to 1,400 ° C. in a non-oxidizing atmosphere to obtain a negative electrode material for a lithium ion secondary battery A third step of obtaining a composite carbon material for use,
A composite carbon material for a negative electrode material of a lithium ion secondary battery.
黒鉛核粒子粉末と、炭素質物質と、溶融性有機物と、を加熱混練して、該黒鉛核粒子の表面に該炭素質物質及び該溶融性有機物からなる被覆層を被覆し、該被覆層を有する黒鉛核粒子の素粒粉末を得る第一工程と、
該被覆層を有する黒鉛核粒子の素粒粉末と、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子の粉末、あるいは、リチウムを吸蔵及び放出する金属粒子又は金属化合物粒子を内包している金属内包炭素質粒子の粉末と、を混合し、得られた混合粉末を摩擦及び圧縮することにより、該被覆層を有する黒鉛核粒子の素粒粉末の該被覆層に、該金属粒子又は金属化合物粒子、あるいは、該金属内包炭素質粒子を埋め込むと共に整粒し、粒子径アスペクト比が1.0〜2.0の金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子の整粒粉末を得る第二工程と、
該金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子の整粒粉末を、非酸化性雰囲気下、850〜1,400℃で焼成炭化して、リチウムイオン二次電池の負極材用複合炭素材料を得る第三工程と、
を有することを特徴とするリチウムイオン二次電池の負極材用複合炭素材料の製造方法。
A graphite core particle powder, a carbonaceous material, and a meltable organic material are heated and kneaded to coat the surface of the graphite core particle with a coating layer made of the carbonaceous material and the meltable organic material. A first step of obtaining an elementary powder of graphite core particles having,
A powder of graphite core particles having the coating layer and a metal particle or metal compound particle powder that occludes and releases lithium, or a metal inclusion that encloses metal particles or metal compound particles that occlude and release lithium. A powder of carbonaceous particles, and by friction and compression of the obtained mixed powder, the metal particles or metal compound particles are applied to the coating layer of the graphite core particle elementary powder having the coating layer, Alternatively, a sized powder of graphite core particles embedded with the metal-encapsulating carbonaceous particles and sized, and having a coating layer embedded with metal particles or metal compound particles having a particle diameter aspect ratio of 1.0 to 2.0. A second step to obtain;
A sized powder of graphite core particles having a coating layer in which the metal particles or metal compound particles are embedded is calcined and carbonized at 850 to 1,400 ° C. in a non-oxidizing atmosphere to obtain a negative electrode material for a lithium ion secondary battery A third step of obtaining a composite carbon material for use,
The manufacturing method of the composite carbon material for negative electrode materials of a lithium ion secondary battery characterized by having.
前記炭素質物質が、フリーカーボンを除去したタール又はキノリン不溶分の含有率が1%未満であるピッチであることを特徴とする請求項9記載のリチウムイオン二次電池の負極材用複合炭素材料の製造方法。   10. The composite carbon material for a negative electrode material for a lithium ion secondary battery according to claim 9, wherein the carbonaceous substance is a pitch having a content of tar or quinoline insolubles from which free carbon has been removed of less than 1%. Manufacturing method. 前記金属粒子又は金属化合物粒子が埋め込まれた被覆層を有する黒鉛核粒子の被覆層の厚みが、0.5〜4μmであることを特徴とする請求項9又は10いずれか1項記載のリチウムイオン二次電池の負極材用複合炭素材料の製造方法。   11. The lithium ion according to claim 9, wherein the graphite core particles having a coating layer in which the metal particles or metal compound particles are embedded have a thickness of 0.5 to 4 μm. The manufacturing method of the composite carbon material for negative electrode materials of a secondary battery. 前記金属粉末又は金属化合物粉末の最大粒子径が、2μm以下であることを特徴とする請求項9〜11いずれか1項記載のリチウムイオン二次電池の負極材用複合炭素材料の製造方法。   The method for producing a composite carbon material for a negative electrode material for a lithium ion secondary battery according to any one of claims 9 to 11, wherein the maximum particle size of the metal powder or metal compound powder is 2 µm or less. 金属粒子又は金属化合物粒子を内包している金属内包炭素質粒子粉末の最大粒子径が、2μm以下であることを特徴とする請求項9〜11いずれか1項記載のリチウムイオン二次電池の負極材用複合炭素材料の製造方法。   12. The negative electrode of a lithium ion secondary battery according to claim 9, wherein the maximum particle diameter of the metal-encapsulated carbonaceous particle powder containing the metal particles or the metal compound particles is 2 μm or less. A method for producing a composite carbon material.
JP2008018818A 2008-01-30 2008-01-30 Composite carbon material for negative electrode material of lithium secondary battery and method for producing the same Active JP5257740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008018818A JP5257740B2 (en) 2008-01-30 2008-01-30 Composite carbon material for negative electrode material of lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008018818A JP5257740B2 (en) 2008-01-30 2008-01-30 Composite carbon material for negative electrode material of lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009181767A true JP2009181767A (en) 2009-08-13
JP5257740B2 JP5257740B2 (en) 2013-08-07

Family

ID=41035580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008018818A Active JP5257740B2 (en) 2008-01-30 2008-01-30 Composite carbon material for negative electrode material of lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP5257740B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129545A (en) * 2008-12-01 2010-06-10 Samsung Sdi Co Ltd Negative electrode active material, negative electrode and lithium secondary battery
JP2011071063A (en) * 2009-09-28 2011-04-07 Kobe Univ Carbon-semimetal oxide composite material, method of manufacturing the same, and negative electrode for lithium ion battery using this
JP2011216241A (en) * 2010-03-31 2011-10-27 Sanyo Electric Co Ltd Negative-electrode active material for nonaqueous electrolytic secondary battery, nonaqueous electrolytic secondary battery using the same, and methods for manufacturing these
WO2012018035A1 (en) * 2010-08-03 2012-02-09 日立マクセルエナジー株式会社 Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2012099452A (en) * 2010-11-04 2012-05-24 Samsung Sdi Co Ltd Negative electrode active material for secondary battery, and lithium secondary battery containing the same
WO2013099267A1 (en) * 2011-12-29 2013-07-04 パナソニック株式会社 Nonaqueous electrolyte secondary cell
JP2013193886A (en) * 2012-03-15 2013-09-30 Mitsubishi Chemicals Corp Composite carbon material, method of producing the same, and negative electrode using the same, and power storage device
JP2013200983A (en) * 2012-03-23 2013-10-03 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013200984A (en) * 2012-03-23 2013-10-03 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013225502A (en) * 2012-03-23 2013-10-31 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
CN103474667A (en) * 2013-08-16 2013-12-25 深圳市贝特瑞新能源材料股份有限公司 Silicon-carbon composite negative electrode material for lithium ion battery and preparation method thereof
WO2014003036A1 (en) * 2012-06-29 2014-01-03 トヨタ自動車株式会社 Composite active material, solid-state battery and method for producing composite active material
WO2014046144A1 (en) * 2012-09-19 2014-03-27 三菱化学株式会社 Composite graphite particles for non-aqueous secondary cell negative electrode, negative electrode for non-aqueous secondary cell, and non-aqueous secondary cell
CN103708437A (en) * 2013-12-27 2014-04-09 深圳市贝特瑞新能源材料股份有限公司 Soft carbon negative material of lithium ion battery, preparation method of soft carbon negative material and lithium ion battery
JP2014143032A (en) * 2013-01-23 2014-08-07 Hitachi Ltd Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2014519135A (en) * 2012-05-02 2014-08-07 昭和電工株式会社 Negative electrode material for lithium ion battery and its use
WO2014192225A1 (en) * 2013-05-27 2014-12-04 信越化学工業株式会社 Negative electrode active material, nonaqueous electrolyte secondary battery, method for producing negative electrode active material and method for manufacturing nonaqueous electrolyte secondary battery
JP2015038862A (en) * 2013-07-18 2015-02-26 三菱化学株式会社 Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery using the same, and nonaqueous secondary battery
WO2015029100A1 (en) * 2013-08-26 2015-03-05 日立オートモティブシステムズ株式会社 Negative-electrode active material for lithium-ion secondary batteries, lithium-ion secondary battery, and method for manufacturing negative-electrode active material for lithium-ion secondary batteries
CN104638252A (en) * 2015-02-13 2015-05-20 深圳市贝特瑞新能源材料股份有限公司 Silicon composited negative electrode material, preparation method of silicon composited negative electrode material and lithium ion battery
WO2015146864A1 (en) * 2014-03-25 2015-10-01 東ソー株式会社 Negative electrode active material for lithium ion secondary battery, and method for producing same
JP2015195171A (en) * 2014-03-25 2015-11-05 東ソー株式会社 Negative electrode active material for lithium ion secondary battery and method of manufacturing the same
WO2015181941A1 (en) * 2014-05-30 2015-12-03 株式会社日立製作所 Negative electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2015181940A1 (en) * 2014-05-30 2015-12-03 株式会社日立製作所 Negative electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
KR20160031782A (en) * 2014-09-15 2016-03-23 (주)포스코켐텍 Negative electrode active material for rechargable lithium battery, method for manufacturing the same, and rechargable lithium battery including the same
US9893351B2 (en) 2011-06-24 2018-02-13 Murata Manufacturing Co., Ltd. Battery, negative electrode active material, and electric tool
WO2019131861A1 (en) * 2017-12-28 2019-07-04 昭和電工株式会社 Negative electrode material for lithium-ion secondary cells
US10418629B2 (en) 2014-03-25 2019-09-17 Tosoh Corporation Composite active material for lithium ion secondary batteries and method for producing same
CN114843460A (en) * 2022-04-14 2022-08-02 中创新航科技股份有限公司 Composite material, preparation method and electrochemical device
CN115739394A (en) * 2022-11-23 2023-03-07 青岛泰达华润新能源科技有限公司 Manufacturing method for reducing content of magnetic substances in natural graphite negative electrode material
CN115832290A (en) * 2021-11-16 2023-03-21 宁德时代新能源科技股份有限公司 Negative electrode active material, preparation method thereof, negative electrode plate, secondary battery, battery module, battery pack and electric device
CN117199249A (en) * 2023-11-08 2023-12-08 深圳海辰储能科技有限公司 Negative plate, energy storage device and electric equipment
JP7500517B2 (en) 2021-09-07 2024-06-17 プライムアースEvエナジー株式会社 Method for manufacturing negative electrode material for secondary batteries

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114730860B (en) * 2020-06-23 2024-02-23 宁德时代新能源科技股份有限公司 Secondary battery and device comprising same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203818A (en) * 1999-01-13 2000-07-25 Hitachi Chem Co Ltd Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2002008652A (en) * 2000-06-16 2002-01-11 Samsung Yokohama Research Institute Co Ltd Negative electrode material for lithium secondary battery and electrode for lithium secondary battery and manufacturing method of lithium secondary battery and negative electrode material for lithium secondary battery
JP2002042887A (en) * 2000-07-21 2002-02-08 Denso Corp Lithium secondary battery
JP2002255529A (en) * 2001-03-02 2002-09-11 Samsung Sdi Co Ltd Carbonaceous material and lithium secondary battery
JP2004185975A (en) * 2002-12-03 2004-07-02 Samsung Yokohama Research Institute Co Ltd Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method
JP2004259475A (en) * 2003-02-24 2004-09-16 Osaka Gas Co Ltd Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
JP2005071938A (en) * 2003-08-27 2005-03-17 Nec Corp Negative electrode activator for secondary battery, negative electrode and secondary battery using the same, and manufacturing method of negative electrode activator for secondary battery and negative electrode for secondary battery using the activator
JP2005108774A (en) * 2003-10-01 2005-04-21 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, lithium secondary battery, and manufacturing method of negative electrode active material for lithium secondary battery
JP2006059690A (en) * 2004-08-20 2006-03-02 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2006228640A (en) * 2005-02-21 2006-08-31 Nippon Carbon Co Ltd Silicon-added graphite cathode material for lithium-ion secondary battery, and manufacturing method
JP2007141573A (en) * 2005-11-16 2007-06-07 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2007069664A1 (en) * 2005-12-14 2007-06-21 Mitsui Mining Co., Ltd. Graphite particle, carbon-graphite composite particle and their production processes
JP2007179879A (en) * 2005-12-28 2007-07-12 Tokai Carbon Co Ltd Manufacturing method of negative electrode material for lithium-ion secondary battery

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203818A (en) * 1999-01-13 2000-07-25 Hitachi Chem Co Ltd Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2002008652A (en) * 2000-06-16 2002-01-11 Samsung Yokohama Research Institute Co Ltd Negative electrode material for lithium secondary battery and electrode for lithium secondary battery and manufacturing method of lithium secondary battery and negative electrode material for lithium secondary battery
JP2002042887A (en) * 2000-07-21 2002-02-08 Denso Corp Lithium secondary battery
JP2002255529A (en) * 2001-03-02 2002-09-11 Samsung Sdi Co Ltd Carbonaceous material and lithium secondary battery
JP2004185975A (en) * 2002-12-03 2004-07-02 Samsung Yokohama Research Institute Co Ltd Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method
JP2004259475A (en) * 2003-02-24 2004-09-16 Osaka Gas Co Ltd Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
JP2005071938A (en) * 2003-08-27 2005-03-17 Nec Corp Negative electrode activator for secondary battery, negative electrode and secondary battery using the same, and manufacturing method of negative electrode activator for secondary battery and negative electrode for secondary battery using the activator
JP2005108774A (en) * 2003-10-01 2005-04-21 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, lithium secondary battery, and manufacturing method of negative electrode active material for lithium secondary battery
JP2006059690A (en) * 2004-08-20 2006-03-02 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2006228640A (en) * 2005-02-21 2006-08-31 Nippon Carbon Co Ltd Silicon-added graphite cathode material for lithium-ion secondary battery, and manufacturing method
JP2007141573A (en) * 2005-11-16 2007-06-07 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2007069664A1 (en) * 2005-12-14 2007-06-21 Mitsui Mining Co., Ltd. Graphite particle, carbon-graphite composite particle and their production processes
JP2007179879A (en) * 2005-12-28 2007-07-12 Tokai Carbon Co Ltd Manufacturing method of negative electrode material for lithium-ion secondary battery

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8808919B2 (en) 2008-12-01 2014-08-19 Samsung Sdi Co., Ltd. Negative electrode active material, negative electrode having the same and lithium secondary battery
JP2010129545A (en) * 2008-12-01 2010-06-10 Samsung Sdi Co Ltd Negative electrode active material, negative electrode and lithium secondary battery
JP2011071063A (en) * 2009-09-28 2011-04-07 Kobe Univ Carbon-semimetal oxide composite material, method of manufacturing the same, and negative electrode for lithium ion battery using this
JP2011216241A (en) * 2010-03-31 2011-10-27 Sanyo Electric Co Ltd Negative-electrode active material for nonaqueous electrolytic secondary battery, nonaqueous electrolytic secondary battery using the same, and methods for manufacturing these
WO2012018035A1 (en) * 2010-08-03 2012-02-09 日立マクセルエナジー株式会社 Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US9537139B2 (en) 2010-08-03 2017-01-03 Hitachi Maxell Ltd. Negative electrode for non-aqueous secondary battery, and a non-aqueous secondary battery
JP5615926B2 (en) * 2010-08-03 2014-10-29 日立マクセル株式会社 Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
JPWO2012018035A1 (en) * 2010-08-03 2013-10-03 日立マクセル株式会社 Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP2012099452A (en) * 2010-11-04 2012-05-24 Samsung Sdi Co Ltd Negative electrode active material for secondary battery, and lithium secondary battery containing the same
US8785049B2 (en) 2010-11-04 2014-07-22 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
US9893351B2 (en) 2011-06-24 2018-02-13 Murata Manufacturing Co., Ltd. Battery, negative electrode active material, and electric tool
WO2013099267A1 (en) * 2011-12-29 2013-07-04 パナソニック株式会社 Nonaqueous electrolyte secondary cell
JP2013193886A (en) * 2012-03-15 2013-09-30 Mitsubishi Chemicals Corp Composite carbon material, method of producing the same, and negative electrode using the same, and power storage device
JP2013200983A (en) * 2012-03-23 2013-10-03 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013225502A (en) * 2012-03-23 2013-10-31 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013200984A (en) * 2012-03-23 2013-10-03 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2014519135A (en) * 2012-05-02 2014-08-07 昭和電工株式会社 Negative electrode material for lithium ion battery and its use
CN104364942A (en) * 2012-06-29 2015-02-18 丰田自动车株式会社 Composite active material, solid-state battery and method for producing composite active material
WO2014003036A1 (en) * 2012-06-29 2014-01-03 トヨタ自動車株式会社 Composite active material, solid-state battery and method for producing composite active material
WO2014046144A1 (en) * 2012-09-19 2014-03-27 三菱化学株式会社 Composite graphite particles for non-aqueous secondary cell negative electrode, negative electrode for non-aqueous secondary cell, and non-aqueous secondary cell
CN104904045A (en) * 2012-09-19 2015-09-09 三菱化学株式会社 Composite graphite particles for non-aqueous secondary cell negative electrode, negative electrode for non-aqueous secondary cell, and non-aqueous secondary cell
EP2899782A4 (en) * 2012-09-19 2015-09-30 Mitsubishi Chem Corp Composite graphite particles for non-aqueous secondary cell negative electrode, negative electrode for non-aqueous secondary cell, and non-aqueous secondary cell
JP2014143032A (en) * 2013-01-23 2014-08-07 Hitachi Ltd Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2014192225A1 (en) * 2013-05-27 2014-12-04 信越化学工業株式会社 Negative electrode active material, nonaqueous electrolyte secondary battery, method for producing negative electrode active material and method for manufacturing nonaqueous electrolyte secondary battery
JP2014229583A (en) * 2013-05-27 2014-12-08 信越化学工業株式会社 Negative electrode active material, non-aqueous electrolyte secondary battery, and method of manufacturing them
JP2015038862A (en) * 2013-07-18 2015-02-26 三菱化学株式会社 Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery using the same, and nonaqueous secondary battery
CN103474667A (en) * 2013-08-16 2013-12-25 深圳市贝特瑞新能源材料股份有限公司 Silicon-carbon composite negative electrode material for lithium ion battery and preparation method thereof
WO2015029100A1 (en) * 2013-08-26 2015-03-05 日立オートモティブシステムズ株式会社 Negative-electrode active material for lithium-ion secondary batteries, lithium-ion secondary battery, and method for manufacturing negative-electrode active material for lithium-ion secondary batteries
JPWO2015029100A1 (en) * 2013-08-26 2017-03-02 日立オートモティブシステムズ株式会社 Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode active material for lithium ion secondary battery
CN103708437A (en) * 2013-12-27 2014-04-09 深圳市贝特瑞新能源材料股份有限公司 Soft carbon negative material of lithium ion battery, preparation method of soft carbon negative material and lithium ion battery
US10418629B2 (en) 2014-03-25 2019-09-17 Tosoh Corporation Composite active material for lithium ion secondary batteries and method for producing same
WO2015146864A1 (en) * 2014-03-25 2015-10-01 東ソー株式会社 Negative electrode active material for lithium ion secondary battery, and method for producing same
JP2015195171A (en) * 2014-03-25 2015-11-05 東ソー株式会社 Negative electrode active material for lithium ion secondary battery and method of manufacturing the same
WO2015181941A1 (en) * 2014-05-30 2015-12-03 株式会社日立製作所 Negative electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2015181940A1 (en) * 2014-05-30 2015-12-03 株式会社日立製作所 Negative electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
KR20160031782A (en) * 2014-09-15 2016-03-23 (주)포스코켐텍 Negative electrode active material for rechargable lithium battery, method for manufacturing the same, and rechargable lithium battery including the same
KR101630419B1 (en) * 2014-09-15 2016-06-14 (주)포스코켐텍 Method for manufacturing negative electrode active material for rechargable lithium battery
CN104638252A (en) * 2015-02-13 2015-05-20 深圳市贝特瑞新能源材料股份有限公司 Silicon composited negative electrode material, preparation method of silicon composited negative electrode material and lithium ion battery
WO2019131861A1 (en) * 2017-12-28 2019-07-04 昭和電工株式会社 Negative electrode material for lithium-ion secondary cells
JPWO2019131861A1 (en) * 2017-12-28 2020-01-16 昭和電工株式会社 Anode material for lithium ion secondary battery
JP7500517B2 (en) 2021-09-07 2024-06-17 プライムアースEvエナジー株式会社 Method for manufacturing negative electrode material for secondary batteries
CN115832290A (en) * 2021-11-16 2023-03-21 宁德时代新能源科技股份有限公司 Negative electrode active material, preparation method thereof, negative electrode plate, secondary battery, battery module, battery pack and electric device
CN114843460A (en) * 2022-04-14 2022-08-02 中创新航科技股份有限公司 Composite material, preparation method and electrochemical device
CN114843460B (en) * 2022-04-14 2024-05-24 中创新航科技股份有限公司 Composite material, preparation method and electrochemical device
CN115739394A (en) * 2022-11-23 2023-03-07 青岛泰达华润新能源科技有限公司 Manufacturing method for reducing content of magnetic substances in natural graphite negative electrode material
CN117199249A (en) * 2023-11-08 2023-12-08 深圳海辰储能科技有限公司 Negative plate, energy storage device and electric equipment
CN117199249B (en) * 2023-11-08 2024-03-08 深圳海辰储能科技有限公司 Negative plate, energy storage device and electric equipment

Also Published As

Publication number Publication date
JP5257740B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5257740B2 (en) Composite carbon material for negative electrode material of lithium secondary battery and method for producing the same
KR101121808B1 (en) Carbon material and process for producing the carbon material
JP5476411B2 (en) Graphite composite particles for non-aqueous secondary battery, negative electrode active material containing the same, negative electrode and non-aqueous secondary battery
KR101484432B1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6003886B2 (en) Non-aqueous secondary battery carbon material, negative electrode using the carbon material, and non-aqueous secondary battery
TW587350B (en) Composite graphite material and production method thereof, negative electrode material using the material, negative electrode and lithium ion rechargeable battery
JP2008305661A (en) Negative electrode material for lithium ion secondary battery, and its manufacturing method
KR20110033134A (en) Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
JP5064728B2 (en) Graphite composite particles for non-aqueous secondary battery, negative electrode active material containing the same, negative electrode and non-aqueous secondary battery
JP3803866B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
TW201547090A (en) Negative electrode active material for lithium ion secondary battery and manufacturing thereof
KR20090094818A (en) Composite graphite particles for non-aqueous secondary batteries, negative electrode material containing the same, negative electrodes, and non-aqueous secondary batteries
JP2008305722A (en) Negative electrode for lithium ion secondary battery material and its manufacturing method
JPH11354122A (en) Lithium secondary battery negative electrode active material and lithium secondary battery
JP2011192453A (en) Negative electrode material for nonaqueous electrolyte secondary battery, method of manufacturing the same, lithium ion secondary battery, and electrochemical capacitor
JP5994319B2 (en) Method for producing composite graphite particles for non-aqueous secondary battery, composite graphite particles obtained by the production method, negative electrode, and non-aqueous secondary battery
JP2008153006A (en) Negative electrode for non-aqueous electrolyte secondary battery and its manufacturing method
JP4403327B2 (en) Graphite powder for negative electrode of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
WO2015041063A1 (en) Composite particles of silicon phase-containing substance and graphite, and method for producing same
JP6409377B2 (en) Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same
JP3945928B2 (en) Method for producing carbon material for negative electrode of lithium ion secondary battery
KR20160010448A (en) Negative electrode material for nonaqueous electrolyte secondary batteries, method for producing same and lithium ion secondary battery
JP2000090924A (en) Non-aqueous secondary battery
JP2009158105A (en) Method of manufacturing composite carbon material for negative electrode material of lithium ion secondary battery
JP4171259B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5257740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250