JP2006228640A - Silicon-added graphite cathode material for lithium-ion secondary battery, and manufacturing method - Google Patents
Silicon-added graphite cathode material for lithium-ion secondary battery, and manufacturing method Download PDFInfo
- Publication number
- JP2006228640A JP2006228640A JP2005043432A JP2005043432A JP2006228640A JP 2006228640 A JP2006228640 A JP 2006228640A JP 2005043432 A JP2005043432 A JP 2005043432A JP 2005043432 A JP2005043432 A JP 2005043432A JP 2006228640 A JP2006228640 A JP 2006228640A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- secondary battery
- electrode material
- silicon fine
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウム二次電池用負極材に関し、黒鉛基材にシリコンを添加することにより得られる高容量でサイクル特性にも優れた負極材および製造法に関する。 The present invention relates to a negative electrode material for a lithium secondary battery, and relates to a negative electrode material excellent in cycle characteristics and a manufacturing method obtained by adding silicon to a graphite substrate.
リチウム二次電池はハイパワ−、高容量の二次電池として携帯電話、パソコン、PDA等の可搬型機器類に多く使用され、今後もその需要がさらに高くなると予想されている。
可搬型機器類の小型化、軽量化への流れを受けて、リチウム二次電池も小型・軽量化の要請が強くなっている。
この要請に応えるため、リチウム二次電池に使用される材料の高性能化が活発に試みられ、中でも電池の性能を左右するものとして、負極材の開発は、重要度を増している。
Lithium secondary batteries are often used in portable devices such as mobile phones, personal computers and PDAs as high-power, high-capacity secondary batteries, and it is expected that the demand will continue to increase in the future.
In response to the trend toward smaller and lighter portable devices, there is an increasing demand for smaller and lighter lithium secondary batteries.
In order to meet this demand, high performance of materials used for lithium secondary batteries has been actively attempted, and the development of negative electrode materials has been increasing in importance as it affects battery performance.
負極材としては、現在は、カ−ボン(黒鉛)系が主流であり、350〜360mAh/g程度と黒鉛の理論容量の372mAh/gとほぼ同等のものまで開発され実用段階にきている。
近年では、さらに放電容量を高めるため、ケイ素と黒鉛粉末を混合させたものや、炭素粉末や黒鉛粉末表面にケイ素粉末を混合させたピッチをコ−テングした負極材が提案されている。
例えば特許第3268770号では炭素材とケイ素粉末を混合、熱処理したものを提案しているが、10サイクルしか評価しておらず、実用には不十分である。(特許文献1)
Currently, carbon (graphite) is mainly used as the negative electrode material, and about 350 to 360 mAh / g, which is about the same as the theoretical capacity of graphite, 372 mAh / g, has been developed and is in practical use.
In recent years, in order to further increase the discharge capacity, a negative electrode material in which silicon and graphite powder are mixed, or a pitch obtained by mixing silicon powder on the surface of carbon powder or graphite powder has been proposed.
For example, Japanese Patent No. 3268770 proposes a carbon material and silicon powder mixed and heat-treated, but only 10 cycles are evaluated, which is insufficient for practical use. (Patent Document 1)
また特許第3285246号では、ケイ素粉末に代えてケイ素金属間化合物などが提案されているが、サイクル特性のみ検討され放電容量や電池効率が考慮されていない。(特許文献2) Japanese Patent No. 3285246 proposes a silicon intermetallic compound in place of the silicon powder, but only the cycle characteristics are examined and the discharge capacity and the battery efficiency are not considered. (Patent Document 2)
あるいは、集電体である銅箔の上に直接ケイ素やケイ素とコバルトを複合メッキした電極材料も盛んに研究されているが、リチウムのド−プ・アンド−プに伴う体積変化を吸収するのが困難なため、サイクル特性で大きな問題がある。 Alternatively, electrode materials in which silicon or silicon-cobalt composite plating is directly applied onto a copper foil as a current collector have been actively studied, but they absorb volume changes associated with lithium doping and doping. However, there is a big problem in cycle characteristics.
さらに特開2002−270170号記載の発明では、ケイ素やその他の金属、もしくはそれらの合金を含有する負極材について言及されているが、20サイクルでの評価であり充分とは言えず、初回充放電効率も80%以下である。(特許文献3) Furthermore, in the invention described in JP-A No. 2002-270170, reference is made to a negative electrode material containing silicon, other metals, or an alloy thereof, but it is an evaluation in 20 cycles and it cannot be said that the initial charge / discharge is sufficient. Efficiency is also 80% or less. (Patent Document 3)
このように、現在の主流である黒鉛を超える高容量の負極材の開発が多数検討されているが、高容量であるとともにサイクル特性や電池効率にすぐれ、実用化できる負極材の開発は困難である。 In this way, many developments of high-capacity negative electrode materials that exceed the current mainstream graphite have been studied, but it is difficult to develop a negative-electrode material that has high capacity and excellent cycle characteristics and battery efficiency and that can be put to practical use. is there.
上記のような状況に鑑み、本発明者は、黒鉛材を超える高容量で、サイクル特性、電池効率にも優れたリチウムイオン二次電池負極材を提供する。
本発明者は黒鉛材にシリコン微粉を添加した高容量の負極材について、特にサイクル特性の改善について鋭意研究をしたところ、サイクルの進行に伴い、シリコン表面が活性化して、電解液と反応することによって放電容量が低下することに気付いた。
また、リチウムのド−プ・アンド−プに伴って黒鉛に混合したシリコン微粉の体積変化が生じるが、電池特性の向上にはこの体積膨張を吸収する必要がある。
本発明は、上記のシリコン表面の活性化の防止、及び体積膨張を抑制しようとするものである。
In view of the above situation, the present inventor provides a lithium ion secondary battery negative electrode material having a high capacity exceeding that of a graphite material and excellent in cycle characteristics and battery efficiency.
The present inventor conducted intensive research on the improvement of cycle characteristics, especially for high capacity negative electrode materials in which silicon fine powder was added to graphite material. As the cycle progressed, the silicon surface was activated and reacted with the electrolyte. I noticed that the discharge capacity was reduced by.
Further, the volume change of the silicon fine powder mixed with graphite occurs with the lithium doping and doping, but it is necessary to absorb this volume expansion in order to improve the battery characteristics.
The present invention is intended to prevent activation of the silicon surface and to suppress volume expansion.
その結果、シリコン粉末を最適度な粒径に微粉化して、黒鉛基材に埋設させた負極材とすることが電解液との反応を抑制すること、また鎖状高分子等の空隙形成剤をシリコン微粉末に被覆して、焼成によってこの空隙形成剤を完全に消失させ、あるいは一部の残渣を残して消失させることによりシリコン微粉の周囲に空隙を形成することが体積変化の吸収に有効であるとの知見を得て、本発明を完成した。
即ち、本発明は、黒鉛質粉末、炭素前駆体、シリコン微粉末、および空隙形成剤を加熱混合し焼成してなるリチウムイオン二次電池負極材の製造法である。またかかる製造法により得られる黒鉛基材内部にシリコン微粉末が埋設されてなるリチウムイオン二次電池負極材である。
本発明のリチウムイオン二次電池負極材と製造法につき以下に詳細に説明する。
As a result, it is possible to reduce the reaction with the electrolytic solution by making the silicon powder into an optimum particle size and making it into a negative electrode material embedded in a graphite base material, and to form a void forming agent such as a chain polymer. It is effective in absorbing the volume change to cover the silicon fine powder and form voids around the silicon fine powder by completely eliminating the void forming agent by firing or leaving some residue to disappear. The present invention was completed with the knowledge that there was.
That is, the present invention is a method for producing a negative electrode material for a lithium ion secondary battery obtained by heating and mixing a graphite powder, a carbon precursor, a silicon fine powder, and a void forming agent. Moreover, it is a lithium ion secondary battery negative electrode material by which silicon fine powder is embed | buried under the graphite base material obtained by this manufacturing method.
The lithium ion secondary battery negative electrode material and the production method of the present invention will be described in detail below.
本発明の負極材は、基材の黒鉛粉末、バインダ−として炭素前駆体、高容量化のための添加材としてシリコン微粉末を使用するが、これらに加えて空隙形成剤を用いることが特徴である。 The negative electrode material of the present invention uses graphite powder as a base material, a carbon precursor as a binder, and silicon fine powder as an additive for increasing the capacity. In addition to these, a void forming agent is used. is there.
まず、基材である黒鉛粉末は、コークスまたは生コ−クスの黒鉛化品、メソフェ−ズピッチ粉末の黒鉛化品、天然黒鉛および天然黒鉛の造粒品などが使用可能で、これらの二種以上の任意の割合の混合物を用いてもよい。
黒鉛粉末の平均粒子径は、市販の黒鉛負極材と同程度であれば問題ないが、1〜50μm程度が適当である。
50μm以上では、この粒子を造粒後に得られる粒子径がその粒度分布上、負極電極シ−トの厚さを超える80μm以上の粒子を多く含むことになり好ましくない。
黒鉛化の程度は、放電容量、電池効率等に優れた負極材を得るために、炭素結晶面同士の間隔d(002)が0.337nm以下であることが好ましい。
また黒鉛粉末はシリコン微粉末を埋設させやすくするため、その表面のエッジ部分に凹凸があるものがより好ましい。
First, graphite powder as a base material can be used as a graphitized product of coke or raw coke, a graphitized product of mesophase pitch powder, natural graphite, and a granulated product of natural graphite. Any mixture of these may be used.
The average particle diameter of the graphite powder is not a problem as long as it is about the same as that of a commercially available graphite negative electrode material, but about 1 to 50 μm is appropriate.
When the particle size is 50 μm or more, the particle diameter obtained after granulation of the particles is unfavorable because the particle size distribution includes many particles of 80 μm or more exceeding the thickness of the negative electrode sheet.
The degree of graphitization is preferably such that the distance d (002) between the carbon crystal faces is 0.337 nm or less in order to obtain a negative electrode material excellent in discharge capacity, battery efficiency, and the like.
Moreover, in order to make it easy to embed silicon fine powder, it is more preferable that the graphite powder has irregularities on the edge portion of the surface.
炭素前駆体は次のようなピッチや樹脂を使用する。
ピッチでは石油系、石炭系の非晶質系(イソフェ−ズピッチ)、晶質系(メソフェ−ズピッチ)のものいずれも使用可能である。
ピッチの融点は360℃以下であることが好ましく、これ以上のものでは、混合やコ−テングの過程で不都合が生じ易い。
樹脂ではフェノ−ル樹脂、フラン樹脂等を使用する。 これらの樹脂は、酸素含有量が 20%以下であることが好ましく、焼成熱処理後に過剰な酸素を含有していると、得られる負極材の放電容量や電池効率を低下させるので好ましくない。
これらの炭素前駆体の使用量は、基材である黒鉛粉末の比表面積や吸油量により若干異なるが、概ね黒鉛粉末100重量部に対して5〜30重量部程度が適当で、黒鉛粉末の粉末特性により調整する必要がある。
5重量部以下では少量で、効果が得られず、30重量部を超えると効率を減少させてしまうため好ましくない。
The carbon precursor uses the following pitch or resin.
As the pitch, any of petroleum-based, coal-based amorphous (isophase pitch) and crystalline (mesophase pitch) can be used.
The melting point of the pitch is preferably 360 ° C. or lower, and if it is higher than this, inconvenience is likely to occur during mixing and coating.
As the resin, phenol resin, furan resin or the like is used. These resins preferably have an oxygen content of 20% or less. If excessive oxygen is contained after the baking heat treatment, the discharge capacity and battery efficiency of the resulting negative electrode material are lowered, which is not preferable.
The amount of these carbon precursors used varies slightly depending on the specific surface area and oil absorption of the graphite powder as the base material, but is generally about 5 to 30 parts by weight with respect to 100 parts by weight of graphite powder. It is necessary to adjust according to the characteristics.
If it is less than 5 parts by weight, the effect is not obtained in a small amount, and if it exceeds 30 parts by weight, the efficiency is decreased, which is not preferable.
高容量化のための添加材であるシリコン微粉末は、基材の黒鉛粉末に埋設させるため、微粒子であることが必要で、平均粒子径が0.1〜0.5μm であることが好ましい。基本的に微粒子であることが望ましいが、0.1μm以下では凝集してしまうので取り扱い上不都合である。
また平均粒子径だけでなく最大粒径についても留意する必要があり、最大粒径が1μm以下であることが好ましい。1μm以上のものが存在するとサイクル特性に悪影響を及ぼしやすい。
シリコン微粉末の添加量は.黒鉛粉末100重量部に対して1〜20重量部が好ましい。1重量部以下では放電容量増加の効果が乏しく、20重量部を超えるとサイクル特性を劣化させるので好ましくない。
The silicon fine powder, which is an additive for increasing the capacity, is required to be fine particles to be embedded in the graphite powder of the base material, and preferably has an average particle diameter of 0.1 to 0.5 μm. Basically, it is desirable to be fine particles, but it is inconvenient in handling because it aggregates below 0.1 μm.
It is necessary to pay attention not only to the average particle size but also the maximum particle size, and the maximum particle size is preferably 1 μm or less. If one having a thickness of 1 μm or more is present, the cycle characteristics are liable to be adversely affected.
The amount of silicon fine powder added is preferably 1 to 20 parts by weight per 100 parts by weight of graphite powder. If it is 1 part by weight or less, the effect of increasing the discharge capacity is poor, and if it exceeds 20 parts by weight, the cycle characteristics are deteriorated.
本発明では、さらに、空隙形成剤として鎖状高分子材料を添加する。この鎖状高分子材料は、焼成後に残炭として残らない材料で、焼成によって殆どが消失するものである。
その結果、シリコン微粉末の周囲または近傍に空隙が形成される。この空隙がシリコン微粉末の体積膨張を吸収することにより、電極の破壊を防止し、サイクル特性の向上に優れた効果を発揮する。
空隙形成剤の具体的なものは、ポリビニルアルコ−ル、ポリエチレングリコ−ル、メチルセルロ−ス、カルボキシメチルセルロ−ス、ポリカルボシラン等が適当である。
In the present invention, a chain polymer material is further added as a void forming agent. This chain polymer material is a material that does not remain as residual charcoal after firing, and almost disappears upon firing.
As a result, voids are formed around or near the silicon fine powder. The void absorbs the volume expansion of the silicon fine powder, thereby preventing the electrode from being broken and exhibiting an excellent effect in improving the cycle characteristics.
Specific examples of the void forming agent include polyvinyl alcohol, polyethylene glycol, methyl cellulose, carboxymethyl cellulose, polycarbosilane and the like.
本発明の製造法は次の通りである。
まず、黒鉛粉末、炭素前駆体、シリコン微粉末、空隙形成剤を100〜200℃で加熱混合する。 混合に使用する装置は、一般には加熱ニ−ダ−が適しているが、これに限定されない。
加熱混合処理後の混合物を、窒素等の非酸化性雰囲気または還元性雰囲気中で800〜1300℃で焼成して、本発明の負極材が得られる。
また加熱混合後に、不融化処理を行ってもよい。これは、焼成中の粒子同士の融着防止に効果がある。
またシリコン微粉末に予め空隙形成剤を被覆させたのち、黒鉛粉末および炭素前駆体と加熱混合することが望ましい。
The production method of the present invention is as follows.
First, graphite powder, carbon precursor, silicon fine powder, and void forming agent are heated and mixed at 100 to 200 ° C. The apparatus used for mixing is generally suitable for a heating kneader, but is not limited thereto.
The mixture after the heating and mixing treatment is fired at 800 to 1300 ° C. in a non-oxidizing atmosphere or reducing atmosphere such as nitrogen to obtain the negative electrode material of the present invention.
Moreover, you may perform an infusibilization process after heat mixing. This is effective in preventing fusion of particles during firing.
Further, it is desirable that the silicon fine powder is previously coated with a void forming agent and then heated and mixed with the graphite powder and the carbon precursor.
上記のような製造法で得られた本発明の負極材は、次のような特徴を有する。
シリコン微粉末は一粒子の中に、1〜20%程度含有されており、これらのシリコン微粉末は黒鉛基材内部に埋設されている。
また、上記のシリコン微粉末の周囲もしくは近傍には、空隙形成剤が焼成熱処理によって消失することにより形成された空隙が存在している。
この空隙の存在が、充放電に伴うシリコンの膨張収縮を吸収するための有効な手段となる。
The negative electrode material of the present invention obtained by the production method as described above has the following characteristics.
The silicon fine powder is contained in about 1 to 20% in one particle, and these silicon fine powders are embedded in the graphite base material.
In addition, there are voids formed by the void forming agent disappearing by baking heat treatment around or in the vicinity of the silicon fine powder.
The presence of this void is an effective means for absorbing the expansion and contraction of silicon accompanying charge / discharge.
本発明のリチウム二次電池負極材によると、微粉化されたシリコン粉末が黒鉛基材の中に埋設された構成とすることにより、シリコンと電解液との反応に起因するサイクル特性の劣化を抑制することができる。
またシリコン粉末の周囲に形成された空隙が、リチウムイオンのド−プ・アンド−プに伴うシリコンの体積膨張を吸収し、電極の破壊防止に優れた効果を発揮する。
これらの作用、効果により従来の黒鉛負極材を超える高容量を発現するとともに、サイクル特性、電池効率にも優れた負極材を提供できる。
According to the negative electrode material of the lithium secondary battery of the present invention, the degradation of cycle characteristics due to the reaction between silicon and the electrolyte is suppressed by adopting a structure in which finely divided silicon powder is embedded in a graphite base material. can do.
The voids formed around the silicon powder absorb the volume expansion of silicon accompanying the lithium ion doping and doping, and exhibit an excellent effect in preventing the destruction of the electrode.
These functions and effects can provide a negative electrode material that exhibits a high capacity exceeding that of a conventional graphite negative electrode material and is excellent in cycle characteristics and battery efficiency.
次に本発明の実施形態について以下の実施例により説明する。 Next, embodiments of the present invention will be described with reference to the following examples.
平均粒子径15.1μmの軟化点340℃、メソフェ−ズ量95%のメソフェ−ズピッチを空気中360℃にて熱処理し、不融化した。解砕後、不活性雰囲気下1000℃にて熱処理焼成し、更に黒鉛化炉に移して、アルゴン雰囲気下3000℃で熱処理し、黒鉛化した。これを整粒し、平均粒子径14.1μmで平均層面間隔d002が0.3357nmの黒鉛粉末を得た。
また、あらかじめ空隙形成剤として5%のポリビニルアルコ−ルを溶解させたアルコ−ル溶液にデッピングした平均粒子径0.2μm、最大粒子径1μm以下のシリコン微粉末を用意した。
上記の黒鉛粉末100重量部とシリコン微粉末15重量部をニ−ダ−にて室温で5時間混合した。
この粉末に軟化点120℃のコールタ−ルピッチ10重量部を投入し、ニーダ−にて150℃で1時間混合熱処理した。得られた粉末をさらに窒素雰囲気下1200℃で熱処理した後、解砕、整粒し、平均粒子径21.8μmのリチウムイオン二次電池用負極材を得た。
A mesophase pitch having an average particle size of 15.1 μm with a softening point of 340 ° C. and a mesophase amount of 95% was heat-treated in air at 360 ° C. to make it infusible. After crushing, it was heat-treated and fired at 1000 ° C. in an inert atmosphere, further transferred to a graphitization furnace, and heat-treated at 3000 ° C. in an argon atmosphere for graphitization. This was granulated, the average layer spacing d 002 in average particle diameter 14.1μm to obtain a graphite powder 0.3357Nm.
Further, silicon fine powder having an average particle diameter of 0.2 μm and a maximum particle diameter of 1 μm or less was prepared by dipping in an alcohol solution in which 5% polyvinyl alcohol was previously dissolved as a void forming agent.
100 parts by weight of the above graphite powder and 15 parts by weight of silicon fine powder were mixed with a kneader at room temperature for 5 hours.
To this powder, 10 parts by weight of coal tar pitch having a softening point of 120 ° C. was added, and mixed and heat-treated at 150 ° C. for 1 hour using a kneader. The obtained powder was further heat-treated at 1200 ° C. in a nitrogen atmosphere, and then pulverized and sized to obtain a negative electrode material for a lithium ion secondary battery having an average particle size of 21.8 μm.
実施例1で使用した黒鉛粉末の粒径を10μmとし、シリコン微粉末を5重量部、コ−ルタ−ルピッチを15重量部にした以外は同一の製造法で、平均粒子径19.1μmのリチウムイオン二次電池負極材を得た。 Lithium ions having an average particle size of 19.1 μm were the same as in Example 1, except that the particle size of the graphite powder was 10 μm, the silicon fine powder was 5 parts by weight, and the coal pitch was 15 parts by weight. A secondary battery negative electrode material was obtained.
平均粒子径14μm、d(002)が0.336nmの鱗片状天然黒鉛100重量部に含浸ピッチをバインダ−として造粒成形を行い、これをアルゴン雰囲気下3000℃で熱処理をし、平均粒径16μm、タップ密度が0.92g/cm3の略球形成形体(長径と短径の比は、1.1〜2.0程度に分布)を調整した。
この黒鉛成形体100重量部に対し、平均粒子径0.25μm、最大粒子径1μm以下のシリコン微粉末8重量部と、ポリビニルアルコ−ル 5重量部を加えて予め200℃にて加熱したニーダーにて1時間混合熱処理を行った。このまま、ニーダーの温度を150℃にした後、実施例1で使用したコ−ルタ−ルピッチ10重量部を投入し、2時間混合熱処理させた。
得られた粉末を窒素雰囲気下1200℃で熱処理した焼成品を、(株)セイシン企業製クイックミルで粉砕し、整粒することによって平均粒子径22μmのリチウムイオン二次電池用負極材を得た。
Granule-molding was performed on 100 parts by weight of scaly natural graphite having an average particle size of 14 μm and d (002) of 0.336 nm using an impregnated pitch as a binder, and this was heat-treated at 3000 ° C. in an argon atmosphere to obtain an average particle size of 16 μm, A substantially spherical formed body having a tap density of 0.92 g / cm 3 (the ratio of the major axis to the minor axis is distributed in the range of about 1.1 to 2.0).
In a kneader heated at 200 ° C. in advance by adding 8 parts by weight of silicon fine powder having an average particle diameter of 0.25 μm and a maximum particle diameter of 1 μm or less and 5 parts by weight of polyvinyl alcohol to 100 parts by weight of the graphite compact. Mixed heat treatment was performed for 1 hour. The kneader temperature was kept at 150 ° C., and 10 parts by weight of the tar tar pitch used in Example 1 was added and mixed and heat-treated for 2 hours.
A fired product obtained by heat-treating the obtained powder at 1200 ° C. in a nitrogen atmosphere was pulverized with a quick mill manufactured by Seishin Enterprise Co., Ltd. and sized to obtain a negative electrode material for a lithium ion secondary battery having an average particle size of 22 μm. .
予め過剰量のキシレンで溶解させた軟化点80℃のコールタ−ルピッチ20重量部と、ポリエチレンクグリコール10重量部、平均粒径0.3μmで最大粒径1μm以下のシリコン微粉末を5重量部混合させて超音波分散させ分散液を得た。
実施例3で使用した天然黒鉛成形体100重量部をニーダーに投入し、混合させながら、室温にて前述の分散液をスプレーにて表面に塗布した後、ニーダー処理温度を150℃にして、分散剤を揮発後、軽く解砕し、この乾燥物を窒素雰囲気下、1200℃で6時間熱処理を行った。この熱処理品を実施例3のクイックミルで解砕し、平均粒子径20.6μmのリチウムイオン二次電池用負極材を得た。
20 parts by weight of coal tar pitch with a softening point of 80 ° C. dissolved in excess of xylene in advance, 10 parts by weight of polyethylene glycol, 5 parts by weight of silicon fine powder having an average particle diameter of 0.3 μm and a maximum particle diameter of 1 μm or less To obtain a dispersion.
After adding 100 parts by weight of the natural graphite molded body used in Example 3 to the kneader and mixing, the above dispersion was applied to the surface by spraying at room temperature, and then the kneader treatment temperature was set to 150 ° C. and dispersed. After volatilizing the agent, it was crushed lightly, and the dried product was heat-treated at 1200 ° C. for 6 hours in a nitrogen atmosphere. This heat-treated product was crushed by the quick mill of Example 3 to obtain a negative electrode material for a lithium ion secondary battery having an average particle size of 20.6 μm.
実施例1で用いた黒鉛粉末100重量部に対し、平均粒子径0.25μm、最大粒子径1μmのシリコン微粉末5重量部とポリエチレングリコ−ル 5重量部をニ−ダ−にて1時間室温で予備混合させた後、200℃で1時間混合熱処理した。さらに軟化点110℃の非晶質ピッチ18重量部をニ−ダ−に投入し1時間混合熱処理した後窒素雰囲気下1000℃にて熱処理して得た焼成品を解砕、整粒し、平均粒子径19.1μmのリチウムイオン二次電池用負極材を得た。 With respect to 100 parts by weight of graphite powder used in Example 1, 5 parts by weight of silicon fine powder having an average particle diameter of 0.25 μm and a maximum particle diameter of 1 μm and 5 parts by weight of polyethylene glycol were agitated at room temperature for 1 hour. After premixing, the mixture was heat-treated at 200 ° C. for 1 hour. Furthermore, 18 parts by weight of an amorphous pitch having a softening point of 110 ° C. was put into a kneader and mixed and heat-treated for 1 hour, and then the fired product obtained by heat treatment at 1000 ° C. in a nitrogen atmosphere was crushed, sized and averaged A negative electrode material for a lithium ion secondary battery having a particle size of 19.1 μm was obtained.
実施例1で使用した黒鉛粉末100重量部に対し、平均粒子径0.25μm、最大粒子径1μmであるシリコン微粉末をエタノ−ルにて分散させ、シリコン濃度が40%である分散液を作成した。この分散液250重量部と、セルロース10重量部をニ−ダ−にて室温で混合攪拌させた後、過剰量のキシレンにて溶解させたコールタ−ルピッチ15重量部を投入し1時間混合させた。混合後、このまま150℃まで昇温させ、キシレン、エタノ−ルを完全に除去させ、得られた粉末を窒素雰囲気下1200℃にて熱処理して得た焼成品を解砕、整粒し、平均粒子径19.2μmのリチウムイオン二次電池用負極材を得た。
(比較例1)
Silicon fine powder having an average particle diameter of 0.25 μm and a maximum particle diameter of 1 μm was dispersed in ethanol with respect to 100 parts by weight of the graphite powder used in Example 1 to prepare a dispersion having a silicon concentration of 40%. . After 250 parts by weight of this dispersion and 10 parts by weight of cellulose were mixed and stirred at room temperature with a kneader, 15 parts by weight of coal tar pitch dissolved in an excess amount of xylene was added and mixed for 1 hour. . After mixing, the temperature was raised to 150 ° C. as it was, xylene and ethanol were completely removed, and the obtained powder was heat-treated at 1200 ° C. under a nitrogen atmosphere. A negative electrode material for a lithium ion secondary battery having a particle size of 19.2 μm was obtained.
(Comparative Example 1)
平均粒子径19.4μmの天然黒鉛粉末100重量部に対して、平均粒子径0.3μm、最大粒子径3μmのシリコン微粉末8重量部と実施例1で使用したコ−ルタ−ルピッチ20重量部をニ−ダ−に投入し、3時間以上攪拌混合させた。
得られた混合粉末を窒素雰囲気下で1000℃にて6時間熱処理し焼成した後、クイックミルにて解砕、整粒し、平均粒子径20.3μmのリチウムイオン二次電池用負極材を得た。
(比較例2)
For 100 parts by weight of natural graphite powder having an average particle diameter of 19.4 μm, 8 parts by weight of silicon fine powder having an average particle diameter of 0.3 μm and a maximum particle diameter of 3 μm and 20 parts by weight of the cold pitch used in Example 1 were added. -The mixture was put into a drier and stirred and mixed for 3 hours or more.
The obtained mixed powder was heat-treated at 1000 ° C. for 6 hours under a nitrogen atmosphere and baked, and then crushed and sized by a quick mill to obtain a negative electrode material for a lithium ion secondary battery having an average particle size of 20.3 μm. .
(Comparative Example 2)
比較例1で使用した天然黒鉛粉末100重量部に対し、平均粒子径0.3μm、最大粒子径3μmのシリコン微粉末8重量部をニ−ダ-に投入し、室温にて3時間以上攪拌混合させ、黒鉛粉末とシリコン粉末が混合しているリチウムイオン二次電池負極材を得た。
(比較例3)
To 100 parts by weight of the natural graphite powder used in Comparative Example 1, 8 parts by weight of silicon fine powder having an average particle size of 0.3 μm and a maximum particle size of 3 μm is put into a kneader, and stirred and mixed at room temperature for 3 hours or more. A negative electrode material for a lithium ion secondary battery in which graphite powder and silicon powder were mixed was obtained.
(Comparative Example 3)
実施例1のバインダ-として使用したコ−ルタ−ルピッチの重量部を40重量部に変更し、平均粒子径0.3μmのシリコン微粉末35重量部とコールタ−ルピッチをニ−ダ−に投入し、室温で1時間混合処理をした。この粉末を窒素雰囲気下1000℃にて熱処理焼成し、平均粒子径23.6μmのリチウムイオン二次電池負極材を得た。
(比較例4)
The weight part of the coal pitch used as the binder in Example 1 was changed to 40 parts by weight, and 35 parts by weight of silicon fine powder having an average particle diameter of 0.3 μm and coal tar pitch were charged into the kneader. The mixture was mixed at room temperature for 1 hour. This powder was heat-treated and fired at 1000 ° C. in a nitrogen atmosphere to obtain a lithium ion secondary battery negative electrode material having an average particle size of 23.6 μm.
(Comparative Example 4)
比較例1と同じ黒鉛粉末を用い、この黒鉛粉末100重量部に対して、実施例5で用いたポリエチレングリコ−ル10重量部と軟化点150℃のメソフェ−ズピッチ15重量部をニ−ダ−にて180℃で1時間混合熱処理した後、窒素雰囲気下1000℃で熱処理焼成し、平均粒子径18.9μmリチウムイオン二次電池負極材を得た。 Using the same graphite powder as in Comparative Example 1, with respect to 100 parts by weight of the graphite powder, 10 parts by weight of the polyethylene glycol used in Example 5 and 15 parts by weight of a mesophase pitch having a softening point of 150 ° C. Then, the mixture was heat-treated at 180 ° C. for 1 hour and then heat-treated and fired at 1000 ° C. in a nitrogen atmosphere to obtain a negative electrode material having an average particle size of 18.9 μm for lithium ion secondary batteries.
上記の実施例1〜6、比較例1〜4によって得られた各々の負極材と導電補助剤を添加したもの100重量部とポリフッ化ビニリデン8重量部にN−メチル-2-ピロリドンを混合後ペ−スト化し、ドクタ−ブレ−ドを用いて銅箔に塗布、これを150℃で1時間乾燥後、2t/cm2でプレスし電極シ−トとした。
対極と参照極にLi金属を用い、電解液として1MLiPF6-EC/MEC(体積比1:1)を用いて、各々のコインセルを作成し、充放電試験を以下に述べる条件で実施した。
充電条件は、電流密度0.5mA/cm2で10mVになるまで充電し、電圧が10mVになった時に定電圧充電に切り替え、電流値が0.001mAになるまで充電した。放電条件は、電流密度0.5mA/cm2で1.5Vまで放電した。測定環境温度は30℃で、測定範囲は0.01〜1.5Vである。
各測定結果を表1に示す。
After mixing N-methyl-2-pyrrolidone with 100 parts by weight of each of the negative electrode materials obtained in Examples 1 to 6 and Comparative Examples 1 to 4 and a conductive auxiliary agent and 8 parts by weight of polyvinylidene fluoride. After pasting and applying to a copper foil using a doctor blade, this was dried at 150 ° C. for 1 hour and then pressed at 2 t / cm 2 to obtain an electrode sheet.
Each coin cell was prepared using Li metal for the counter electrode and the reference electrode, and 1M LiPF 6 -EC / MEC (volume ratio 1: 1) as the electrolyte, and the charge / discharge test was performed under the conditions described below.
The charging conditions were charging at a current density of 0.5 mA / cm 2 until 10 mV, switching to constant voltage charging when the voltage reached 10 mV, and charging until the current value reached 0.001 mA. The discharge conditions were a discharge to 1.5 V at a current density of 0.5 mA / cm 2 . The measurement environment temperature is 30 ° C., and the measurement range is 0.01 to 1.5V.
Table 1 shows the measurement results.
本発明の実施例では、いずれの評価においても放電容量が430mAh/g以上の高容量で、充放電効率が88%以上と高く、50回サイクル後の放電容量の保持率が、84%以上の良好なサイクル特性のリチウム電池が得られた。 In the examples of the present invention, in any evaluation, the discharge capacity was 430 mAh / g or higher, the charge / discharge efficiency was as high as 88%, and the discharge capacity retention after 50 cycles was 84% or more. A lithium battery having good cycle characteristics was obtained.
本発明によれば、黒鉛質基材の内部にシリコン微粉末を埋設させ、空隙形成剤である低残炭率の高分子や鎖状高分子を用いて、シリコン微粉末と黒鉛質基材との間に空隙を作ることにより、充放電時のシリコンの膨張収縮を吸収し、電極の破壊を防止することができる。またピッチ等でコ−テングすることによりシリコン微粉末を覆い、これを熱処理することによって、効率を向上させることが可能である。
本発明により高容量、高効率で且つサイクル特性に優れた負極材を得ることが可能となり、リチウムイオン二次電池の高性能化が期待できる。
According to the present invention, silicon fine powder is embedded in a graphite base material, and a low carbon residue polymer or chain polymer that is a void forming agent is used to form silicon fine powder and a graphite base material. By creating a gap between the electrodes, the expansion and contraction of silicon during charging and discharging can be absorbed, and the electrode can be prevented from being broken. Further, it is possible to improve efficiency by covering the silicon fine powder by coating with a pitch or the like and heat-treating it.
According to the present invention, a negative electrode material having high capacity, high efficiency and excellent cycle characteristics can be obtained, and high performance of a lithium ion secondary battery can be expected.
Claims (8)
8. The negative electrode material for a lithium secondary battery according to claim 7, wherein the silicon fine powder has an average particle size of 0.1 to 0.5 μm and a maximum particle size of 1 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005043432A JP5158460B2 (en) | 2005-02-21 | 2005-02-21 | Silicon-added graphite negative electrode material for lithium ion secondary battery and production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005043432A JP5158460B2 (en) | 2005-02-21 | 2005-02-21 | Silicon-added graphite negative electrode material for lithium ion secondary battery and production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006228640A true JP2006228640A (en) | 2006-08-31 |
JP5158460B2 JP5158460B2 (en) | 2013-03-06 |
Family
ID=36989814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005043432A Active JP5158460B2 (en) | 2005-02-21 | 2005-02-21 | Silicon-added graphite negative electrode material for lithium ion secondary battery and production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5158460B2 (en) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007294196A (en) * | 2006-04-24 | 2007-11-08 | Kansai Coke & Chem Co Ltd | Anode material for lithium ion secondary battery and its manufacturing method |
JP2008186732A (en) * | 2007-01-30 | 2008-08-14 | Nippon Carbon Co Ltd | Negative electrode active material for lithium secondary battery, negative electrode using the same, and manufacturing method |
WO2008102712A1 (en) * | 2007-02-21 | 2008-08-28 | Jfe Chemical Corporation | Negative electrode material for lithium ion secondary battery, method for production thereof, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2008277231A (en) * | 2007-04-06 | 2008-11-13 | Hitachi Chem Co Ltd | Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery |
JP2009054584A (en) * | 2007-08-23 | 2009-03-12 | Samsung Sdi Co Ltd | Anode with surface treatment and lithium cell adopting the same |
JP2009129914A (en) * | 2007-11-27 | 2009-06-11 | Samsung Sdi Co Ltd | Negative electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery containing this |
JP2009181767A (en) * | 2008-01-30 | 2009-08-13 | Tokai Carbon Co Ltd | Composite carbon material for negative electrode material of lithium secondary battery and its manufacturing method |
JP2009205950A (en) * | 2008-02-28 | 2009-09-10 | Shin Etsu Chem Co Ltd | Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same |
WO2010074243A1 (en) * | 2008-12-26 | 2010-07-01 | 積水化学工業株式会社 | Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery |
JP2011057541A (en) * | 2009-08-11 | 2011-03-24 | Sekisui Chem Co Ltd | Carbon material, electrode material, and negative-electrode material for lithium-ion secondary battery |
JP2012043547A (en) * | 2010-08-12 | 2012-03-01 | Hitachi Chem Co Ltd | Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2012124117A (en) * | 2010-12-10 | 2012-06-28 | Hitachi Chem Co Ltd | Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2012124115A (en) * | 2010-12-10 | 2012-06-28 | Hitachi Chem Co Ltd | Negative electrode material for lithium ion secondary battery, method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2012124116A (en) * | 2010-12-10 | 2012-06-28 | Hitachi Chem Co Ltd | Negative electrode material for lithium ion secondary battery, method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
CN102969509A (en) * | 2012-10-15 | 2013-03-13 | 宁德新能源科技有限公司 | Preparation method of lithium ion battery silicon carbon composite material |
JP2013175478A (en) * | 2013-05-09 | 2013-09-05 | Shin Etsu Chem Co Ltd | Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same |
JP2013182706A (en) * | 2012-02-29 | 2013-09-12 | Sumitomo Bakelite Co Ltd | Precursor for negative electrode, manufacturing method of precursor for negative electrode, production method of material for negative electrode, electrode and lithium ion secondary battery |
KR20140114874A (en) * | 2010-12-10 | 2014-09-29 | 히타치가세이가부시끼가이샤 | Negative electrode material for lithium ion secondary battery, method for manufacturing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
WO2014207921A1 (en) * | 2013-06-28 | 2014-12-31 | 株式会社日立製作所 | Negative-electrode active substance, method for manufacturing same, and lithium-ion secondary cell |
JP2015026432A (en) * | 2013-07-24 | 2015-02-05 | 日本ゼオン株式会社 | Composite particle with reduced particle size for electrochemical element electrode and method for producing composite particle with reduced particle size for electrochemical element electrode |
WO2015025381A1 (en) * | 2013-08-21 | 2015-02-26 | 株式会社日立製作所 | Lithium ion secondary battery and method for producing composite material to be used in same |
JP2015160762A (en) * | 2014-02-26 | 2015-09-07 | 東海カーボン株式会社 | Method for manufacturing porous silicon oxycarbide ceramic and method for manufacturing porous silicon oxycarbide ceramic composite material |
US9252428B2 (en) | 2012-04-25 | 2016-02-02 | Samsung Sdi Co., Ltd. | Negative electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same |
JP2016021393A (en) * | 2014-07-11 | 2016-02-04 | オーシーアイ カンパニー リミテッドOCI Company Ltd. | Negative electrode active material for secondary batteries, and method for manufacturing the same |
KR20160133828A (en) * | 2015-05-13 | 2016-11-23 | 주식회사 엘지화학 | Anode electrode, method for preparing thereof and lithium secondary battery comprising the same |
KR101705594B1 (en) * | 2016-06-14 | 2017-02-13 | 한국기초과학지원연구원 | Anode active material, method of fabricating the same and rechargeable battery using the same |
KR20170077845A (en) | 2015-12-28 | 2017-07-06 | 주식회사 엘지화학 | Material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same |
DE102016202459A1 (en) | 2016-02-17 | 2017-08-17 | Wacker Chemie Ag | Core-shell composite particles |
DE102016202458A1 (en) | 2016-02-17 | 2017-08-17 | Wacker Chemie Ag | Process for producing Si / C composite particles |
JP6229245B1 (en) * | 2017-04-27 | 2017-11-15 | テックワン株式会社 | Carbon-silicon composite material, negative electrode, secondary battery |
JP2019125435A (en) * | 2018-01-12 | 2019-07-25 | 株式会社クレハ | Negative electrode material for battery, method for manufacturing the same, negative electrode for secondary battery, and secondary battery |
US10439208B2 (en) | 2013-07-31 | 2019-10-08 | Lg Chem, Ltd. | Negative electrode active material for secondary batteries having improved lifespan characteristics |
US10566605B2 (en) | 2014-08-13 | 2020-02-18 | Samsung Sdi Co., Ltd. | Electrode for rechargeable lithium battery and rechargeable lithium battery including the same |
JP2020506152A (en) * | 2017-02-07 | 2020-02-27 | ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG | Core-shell composite particles for anode material of lithium ion battery |
WO2020050661A1 (en) * | 2018-09-05 | 2020-03-12 | 주식회사 엘지화학 | Negative electrode and secondary battery comprising same |
JP2020053399A (en) * | 2014-12-23 | 2020-04-02 | ユミコア | Powder, and electrode and battery including such powder |
JP2020068191A (en) * | 2017-12-27 | 2020-04-30 | 東ソー株式会社 | Composite active material for lithium secondary battery and manufacturing method thereof |
WO2021193662A1 (en) * | 2020-03-23 | 2021-09-30 | 東ソー株式会社 | Composite active material for lithium secondary battery, electrode composition for lithium secondary battery, lithium secondary battery electrode, and method for manufacturing composite active material for lithium secondary battery |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018088248A1 (en) | 2016-11-11 | 2018-05-17 | 昭和電工株式会社 | Negative electrode material and lithium-ion battery |
EP3557666A4 (en) | 2016-12-15 | 2020-08-05 | Showa Denko K.K. | Granular composite, negative electrode for lithium ion secondary battery, and method for manufacturing same |
KR102248865B1 (en) | 2017-04-06 | 2021-05-06 | 주식회사 엘지화학 | Anode for secondary battery and method for manufacturing the same |
KR102328430B1 (en) | 2017-06-30 | 2021-11-18 | 주식회사 엘지에너지솔루션 | Anode comprising porous cellulose and secondary battery having the same |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0323300A (en) * | 1989-06-17 | 1991-01-31 | Toshiba Ceramics Co Ltd | Production of silicon carbide whisker |
JPH08124557A (en) * | 1994-10-27 | 1996-05-17 | Toshiba Battery Co Ltd | Lithium secondary battery and manufacture thereof |
JPH103920A (en) * | 1996-06-17 | 1998-01-06 | Toshiba Corp | Lithium secondary battery, and manufacture of the same |
JP2000123835A (en) * | 1998-10-19 | 2000-04-28 | Toyota Central Res & Dev Lab Inc | Negative electrode active material for lithium secondary battery and lithium secondary battery using the same as negative electrode active material |
JP2000272911A (en) * | 1999-03-24 | 2000-10-03 | Hitachi Chem Co Ltd | Metal-carbon composite particle, its production, cathode material, cathode for lithium secondary battery and lithium secondary battery |
JP2001000165A (en) * | 1999-06-22 | 2001-01-09 | Tokyo Bio Ceramics Kenkyusho:Kk | Filter-tipped cigarette and filter for cigarette |
JP2002216751A (en) * | 2000-11-14 | 2002-08-02 | Mitsui Mining Co Ltd | Composite material for lithium secondary battery negative electrode and lithium secondary battery |
JP2003223892A (en) * | 2002-01-31 | 2003-08-08 | Osaka Gas Co Ltd | Lithium secondary battery and method for manufacturing negative electrode material therefor |
JP2004185984A (en) * | 2002-12-03 | 2004-07-02 | Osaka Gas Co Ltd | Negative electrode material for lithium secondary battery, and lithium secondary battery using it |
JP2004296269A (en) * | 2003-03-27 | 2004-10-21 | Nippon Carbon Co Ltd | Negative electrode material for lithium ion secondary battery, its manufacturing method, and battery using the same |
-
2005
- 2005-02-21 JP JP2005043432A patent/JP5158460B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0323300A (en) * | 1989-06-17 | 1991-01-31 | Toshiba Ceramics Co Ltd | Production of silicon carbide whisker |
JPH08124557A (en) * | 1994-10-27 | 1996-05-17 | Toshiba Battery Co Ltd | Lithium secondary battery and manufacture thereof |
JPH103920A (en) * | 1996-06-17 | 1998-01-06 | Toshiba Corp | Lithium secondary battery, and manufacture of the same |
JP2000123835A (en) * | 1998-10-19 | 2000-04-28 | Toyota Central Res & Dev Lab Inc | Negative electrode active material for lithium secondary battery and lithium secondary battery using the same as negative electrode active material |
JP2000272911A (en) * | 1999-03-24 | 2000-10-03 | Hitachi Chem Co Ltd | Metal-carbon composite particle, its production, cathode material, cathode for lithium secondary battery and lithium secondary battery |
JP2001000165A (en) * | 1999-06-22 | 2001-01-09 | Tokyo Bio Ceramics Kenkyusho:Kk | Filter-tipped cigarette and filter for cigarette |
JP2002216751A (en) * | 2000-11-14 | 2002-08-02 | Mitsui Mining Co Ltd | Composite material for lithium secondary battery negative electrode and lithium secondary battery |
JP2003223892A (en) * | 2002-01-31 | 2003-08-08 | Osaka Gas Co Ltd | Lithium secondary battery and method for manufacturing negative electrode material therefor |
JP2004185984A (en) * | 2002-12-03 | 2004-07-02 | Osaka Gas Co Ltd | Negative electrode material for lithium secondary battery, and lithium secondary battery using it |
JP2004296269A (en) * | 2003-03-27 | 2004-10-21 | Nippon Carbon Co Ltd | Negative electrode material for lithium ion secondary battery, its manufacturing method, and battery using the same |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007294196A (en) * | 2006-04-24 | 2007-11-08 | Kansai Coke & Chem Co Ltd | Anode material for lithium ion secondary battery and its manufacturing method |
JP2008186732A (en) * | 2007-01-30 | 2008-08-14 | Nippon Carbon Co Ltd | Negative electrode active material for lithium secondary battery, negative electrode using the same, and manufacturing method |
KR101126425B1 (en) * | 2007-02-21 | 2012-03-28 | 제이에프이 케미칼 가부시키가이샤 | Negative electrode material for lithium ion secondary battery, method for production thereof, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
WO2008102712A1 (en) * | 2007-02-21 | 2008-08-28 | Jfe Chemical Corporation | Negative electrode material for lithium ion secondary battery, method for production thereof, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2008235247A (en) * | 2007-02-21 | 2008-10-02 | Jfe Chemical Corp | Negative electrode material for lithium ion secondary battery and its manufacturing method, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery |
JP2008277231A (en) * | 2007-04-06 | 2008-11-13 | Hitachi Chem Co Ltd | Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery |
JP2009054584A (en) * | 2007-08-23 | 2009-03-12 | Samsung Sdi Co Ltd | Anode with surface treatment and lithium cell adopting the same |
JP2009129914A (en) * | 2007-11-27 | 2009-06-11 | Samsung Sdi Co Ltd | Negative electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery containing this |
US9391314B2 (en) | 2007-11-27 | 2016-07-12 | Samsung Sdi Co., Ltd. | Negative active material, method of preparing the same, and rechargeable lithium battery including the same |
JP2009181767A (en) * | 2008-01-30 | 2009-08-13 | Tokai Carbon Co Ltd | Composite carbon material for negative electrode material of lithium secondary battery and its manufacturing method |
JP2009205950A (en) * | 2008-02-28 | 2009-09-10 | Shin Etsu Chem Co Ltd | Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same |
WO2010074243A1 (en) * | 2008-12-26 | 2010-07-01 | 積水化学工業株式会社 | Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery |
US8940192B2 (en) | 2008-12-26 | 2015-01-27 | Sekisui Chemical Co., Ltd. | Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery |
JP2011057541A (en) * | 2009-08-11 | 2011-03-24 | Sekisui Chem Co Ltd | Carbon material, electrode material, and negative-electrode material for lithium-ion secondary battery |
JP2012043547A (en) * | 2010-08-12 | 2012-03-01 | Hitachi Chem Co Ltd | Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2012124115A (en) * | 2010-12-10 | 2012-06-28 | Hitachi Chem Co Ltd | Negative electrode material for lithium ion secondary battery, method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2012124116A (en) * | 2010-12-10 | 2012-06-28 | Hitachi Chem Co Ltd | Negative electrode material for lithium ion secondary battery, method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
US9614216B2 (en) | 2010-12-10 | 2017-04-04 | Hitachi Chemical Company, Ltd. | Negative electrode material for lithium ion secondary battery, method for manufacturing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
KR20140114874A (en) * | 2010-12-10 | 2014-09-29 | 히타치가세이가부시끼가이샤 | Negative electrode material for lithium ion secondary battery, method for manufacturing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
KR102032104B1 (en) * | 2010-12-10 | 2019-10-15 | 히타치가세이가부시끼가이샤 | Negative electrode material for lithium ion secondary battery, method for manufacturing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2012124117A (en) * | 2010-12-10 | 2012-06-28 | Hitachi Chem Co Ltd | Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2013182706A (en) * | 2012-02-29 | 2013-09-12 | Sumitomo Bakelite Co Ltd | Precursor for negative electrode, manufacturing method of precursor for negative electrode, production method of material for negative electrode, electrode and lithium ion secondary battery |
US9252428B2 (en) | 2012-04-25 | 2016-02-02 | Samsung Sdi Co., Ltd. | Negative electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same |
CN102969509A (en) * | 2012-10-15 | 2013-03-13 | 宁德新能源科技有限公司 | Preparation method of lithium ion battery silicon carbon composite material |
JP2013175478A (en) * | 2013-05-09 | 2013-09-05 | Shin Etsu Chem Co Ltd | Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same |
WO2014207921A1 (en) * | 2013-06-28 | 2014-12-31 | 株式会社日立製作所 | Negative-electrode active substance, method for manufacturing same, and lithium-ion secondary cell |
JP2015026432A (en) * | 2013-07-24 | 2015-02-05 | 日本ゼオン株式会社 | Composite particle with reduced particle size for electrochemical element electrode and method for producing composite particle with reduced particle size for electrochemical element electrode |
US10439208B2 (en) | 2013-07-31 | 2019-10-08 | Lg Chem, Ltd. | Negative electrode active material for secondary batteries having improved lifespan characteristics |
WO2015025381A1 (en) * | 2013-08-21 | 2015-02-26 | 株式会社日立製作所 | Lithium ion secondary battery and method for producing composite material to be used in same |
JP2015160762A (en) * | 2014-02-26 | 2015-09-07 | 東海カーボン株式会社 | Method for manufacturing porous silicon oxycarbide ceramic and method for manufacturing porous silicon oxycarbide ceramic composite material |
JP2016021393A (en) * | 2014-07-11 | 2016-02-04 | オーシーアイ カンパニー リミテッドOCI Company Ltd. | Negative electrode active material for secondary batteries, and method for manufacturing the same |
US10566605B2 (en) | 2014-08-13 | 2020-02-18 | Samsung Sdi Co., Ltd. | Electrode for rechargeable lithium battery and rechargeable lithium battery including the same |
JP7451615B2 (en) | 2014-12-23 | 2024-03-18 | ユミコア | powders, electrodes and batteries containing such powders |
JP7118944B2 (en) | 2014-12-23 | 2022-08-16 | ユミコア | Powders, electrodes and batteries containing such powders |
JP2020053399A (en) * | 2014-12-23 | 2020-04-02 | ユミコア | Powder, and electrode and battery including such powder |
KR20160133828A (en) * | 2015-05-13 | 2016-11-23 | 주식회사 엘지화학 | Anode electrode, method for preparing thereof and lithium secondary battery comprising the same |
KR102036665B1 (en) * | 2015-05-13 | 2019-10-28 | 주식회사 엘지화학 | Anode electrode, method for preparing thereof and lithium secondary battery comprising the same |
KR20170077845A (en) | 2015-12-28 | 2017-07-06 | 주식회사 엘지화학 | Material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same |
WO2017140642A1 (en) | 2016-02-17 | 2017-08-24 | Wacker Chemie Ag | Composite core-shell particles |
CN108701809B (en) * | 2016-02-17 | 2021-11-09 | 瓦克化学股份公司 | Method for producing Si/C composite particles |
DE102016202459A1 (en) | 2016-02-17 | 2017-08-17 | Wacker Chemie Ag | Core-shell composite particles |
US11335904B2 (en) | 2016-02-17 | 2022-05-17 | Wacker Chemie Ag | Composite core-shell particles |
CN108701809A (en) * | 2016-02-17 | 2018-10-23 | 瓦克化学股份公司 | The method for preparing Si/C composite particles |
JP2019511444A (en) * | 2016-02-17 | 2019-04-25 | ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG | Method of producing Si / C composite particles |
WO2017140645A1 (en) | 2016-02-17 | 2017-08-24 | Wacker Chemie Ag | Method for producing si/c composite particles |
US11063249B2 (en) | 2016-02-17 | 2021-07-13 | Wacker Chemie Ag | Method for producing Si/C composite particles |
DE102016202458A1 (en) | 2016-02-17 | 2017-08-17 | Wacker Chemie Ag | Process for producing Si / C composite particles |
KR101705594B1 (en) * | 2016-06-14 | 2017-02-13 | 한국기초과학지원연구원 | Anode active material, method of fabricating the same and rechargeable battery using the same |
JP2020506152A (en) * | 2017-02-07 | 2020-02-27 | ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG | Core-shell composite particles for anode material of lithium ion battery |
JP7027436B2 (en) | 2017-02-07 | 2022-03-01 | ワッカー ケミー アクチエンゲゼルシャフト | Core-shell composite particles for anode materials in lithium-ion batteries |
JP6229245B1 (en) * | 2017-04-27 | 2017-11-15 | テックワン株式会社 | Carbon-silicon composite material, negative electrode, secondary battery |
WO2018198282A1 (en) * | 2017-04-27 | 2018-11-01 | テックワン株式会社 | Carbon-silicon composite material, negative electrode and secondary battery |
JP2020068191A (en) * | 2017-12-27 | 2020-04-30 | 東ソー株式会社 | Composite active material for lithium secondary battery and manufacturing method thereof |
JP7293645B2 (en) | 2017-12-27 | 2023-06-20 | 東ソー株式会社 | Composite active material for lithium secondary battery and manufacturing method thereof |
JP7452599B2 (en) | 2017-12-27 | 2024-03-19 | 東ソー株式会社 | Composite active material for lithium secondary batteries |
JP2019125435A (en) * | 2018-01-12 | 2019-07-25 | 株式会社クレハ | Negative electrode material for battery, method for manufacturing the same, negative electrode for secondary battery, and secondary battery |
WO2020050661A1 (en) * | 2018-09-05 | 2020-03-12 | 주식회사 엘지화학 | Negative electrode and secondary battery comprising same |
WO2021193662A1 (en) * | 2020-03-23 | 2021-09-30 | 東ソー株式会社 | Composite active material for lithium secondary battery, electrode composition for lithium secondary battery, lithium secondary battery electrode, and method for manufacturing composite active material for lithium secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP5158460B2 (en) | 2013-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5158460B2 (en) | Silicon-added graphite negative electrode material for lithium ion secondary battery and production method | |
JP5143437B2 (en) | Method for producing negative electrode active material for lithium ion secondary battery, negative electrode active material, and negative electrode | |
KR101085611B1 (en) | A silicon-carbon composite negative material for lithium ion battery and the preparation method of the same | |
JP2020113547A (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP5494344B2 (en) | Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP6256346B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5494343B2 (en) | Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP6451915B1 (en) | Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP6749068B2 (en) | Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery | |
JP5737265B2 (en) | Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor | |
JP6451914B1 (en) | Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2009277485A (en) | METHOD OF MANUFACTURING Si/C COMPLEX TYPE NEGATIVE ELECTRODE ACTIVE MATERIAL | |
JP2015210959A (en) | Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery | |
JP3054379B2 (en) | Graphite powder coated with graphite for negative electrode material of lithium secondary battery and its manufacturing method | |
JP4021652B2 (en) | Positive electrode plate for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode plate | |
JP2019133920A (en) | Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
CN113451575B (en) | Lithium ion battery cathode material, preparation method thereof, cathode and lithium ion battery | |
JP3915072B2 (en) | Negative electrode material for lithium ion secondary battery, method for producing the same, and battery using the same | |
JP2019133919A (en) | Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2009277486A (en) | METHOD OF MANUFACTURING Si/C COMPLEX TYPE NEGATIVE ELECTRODE ACTIVE MATERIAL | |
JP3091943B2 (en) | Method for producing carbon particles for negative electrode of non-aqueous secondary battery and carbon particles obtained by the method | |
JP2009117094A (en) | Carbon particle powder for lithium-ion secondary battery anode material, its manufacturing method, and lithium-ion secondary battery anode material | |
JP6724968B2 (en) | Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery | |
JP2010257982A (en) | Anode active material for lithium secondary battery, and lithium secondary battery including the same | |
KR20100127433A (en) | Anode active material for lithium secondary batteries and method of preparing for the same and lithium secondary batteries comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110404 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121129 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5158460 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151221 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |