JP5143437B2 - Method of manufacturing a negative active material for a lithium ion secondary battery, the negative electrode active material and the negative electrode - Google Patents

Method of manufacturing a negative active material for a lithium ion secondary battery, the negative electrode active material and the negative electrode Download PDF

Info

Publication number
JP5143437B2
JP5143437B2 JP2007019738A JP2007019738A JP5143437B2 JP 5143437 B2 JP5143437 B2 JP 5143437B2 JP 2007019738 A JP2007019738 A JP 2007019738A JP 2007019738 A JP2007019738 A JP 2007019738A JP 5143437 B2 JP5143437 B2 JP 5143437B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
active material
silicon
secondary battery
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007019738A
Other languages
Japanese (ja)
Other versions
JP2008186732A (en )
Inventor
隆伸 河井
健一 本川
隼人 松本
慎哉 安藤
修平 滝野
Original Assignee
日本カーボン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/54Manufacturing of lithium-ion, lead-acid or alkaline secondary batteries

Description

本発明は、リチウム二次電池用負極活物質及びそれを使用した負極に関し、黒鉛基材に珪素・珪素化合物・珪素合金の微粉末、あるいは、珪素・珪素化合物・珪素合金の微粉末とカーボンブラックの混合物等を複合化することにより得られる高容量でサイクル特性に優れたリチウム二次電池用の負極活物質、それを使用した負極及びその製造法に関する。 The present invention relates to a negative electrode using a negative electrode active material and it for a lithium secondary battery, a fine powder of silicon-silicon compounds, silicon alloys in graphite substrate, or fine powder of carbon black, silicon-silicon compounds, silicon alloys negative electrode active material for lithium secondary battery of the mixtures excellent cycle characteristics at high capacity obtained by conjugation of, relating to a negative electrode and a manufacturing method using the same.

リチウム二次電池はハイパワー、高容量の二次電池として携帯電話、パソコン、PDA等の可搬型機器類に多く使用され、今後もその需要が更に高くなると予想されている。 Lithium secondary battery is high-power, mobile phone as a secondary battery of high capacity, a personal computer, are often used in portable devices such as PDA, it is expected that the future is that demand further increases.
可搬型機器類の小型化、軽量化、高性能化への流れを受けて、リチウム二次電池も小型・軽量化あるいは高容量化の要請が強くなっている。 Miniaturization of portable equipment, weight reduction, in response to the flow of the high-performance, lithium secondary battery is also the request of the reduction in size and weight or high capacity has become stronger.
この要請に応えるため、リチウム二次電池の各種のパーツや材料の高性能化も活発に試みられ、中でも電池の性能を左右するものとして、負極活物質の開発は、重要度を増している。 To meet this requirement, the performance of various parts and materials of the lithium secondary battery is also actively attempted, as influences inter alia battery performance, development of the negative electrode active material is increasingly important.

現在、負極活物質としては、カーボン(黒鉛)系が主流であり、放電容量が350〜360mAh/g程度と黒鉛の理論容量の372mAh/gに近い値のものまで実用化されているが、黒鉛の理論容量を超えることは不可能である。 Currently, as the negative electrode active material, carbon (graphite) system is the mainstream, but the discharge capacity is put to practical use as a value close to 372 mAh / g theoretical capacity of 350~360mAh / g approximately and graphite, graphite it is impossible to exceed the theoretical capacity. 一方金属珪素は理論容量が4200mAh/gと桁違いに大きいものの、充放電に伴う膨張収縮により負極材が劣化し電池のサイクル寿命が短い問題があった。 Meanwhile metallic silicon theoretical capacity but orders of magnitude greater and 4200 mAh / g, the negative electrode material by expansion and shrinkage due to charge and discharge had to cycle life is short problem of the battery deterioration.
そこで放電容量を高めながらサイクル特性も改善する目的で、珪素と黒鉛粉末を混合したものや、炭素粉末や黒鉛粉末表面に珪素粉末を混合し、ピッチをコーテングした負極活物質が提案されている。 So the cycle characteristics while improving the discharge capacity even for the purpose of improving, a mixture of silicon and graphite powder and, by mixing silicon powder to carbon powder or graphite powder surface, the negative electrode active substance Kotengu pitch has been proposed.
例えば、特許文献1(特許第3268770号公報)では炭素材と珪素粉末を混合して熱処理したものが提案されているが、10サイクルしか評価しておらず、実用には不十分である。 For example, although those heat treated Patent Document 1 (Japanese Patent No. 3268770) in a mixture of carbon material and silicon powder has been proposed, only 10 cycles not been evaluated, it is insufficient for practical use.

また、特許文献2(特許第3282546号公報)では、珪素粉末に代えてFeSi 2 、NiSi 2 、MoSi 2 、WSi 2 、Mg 2 Si等の珪素金属間化合物粉末を負極として使用することが提案され、サイクル特性が良好であることが開示されている。 In Patent Document 2 (Japanese Patent No. 3282546), it is proposed to use the FeSi 2, NiSi 2, MoSi 2, WSi 2, silicon intermetallic compound powder such as Mg 2 Si in place of the silicon powder as a negative electrode , it is disclosed that the cycle characteristic is excellent.

集電体である銅箔の上に直接珪素や珪素とコバルト等の金属を複合メッキした電極材料等も盛んに研究されているが、リチウムの収蔵・放出に伴う体積変化を吸収するのが困難なため、サイクル特性の点で満足のいくものではない。 Have been studied a metal such as cobalt and direct silicon or silicon on the copper foil as a current collector also actively composite plating electrode material or the like, difficult to absorb the volume change accompanying the collection and release of lithium such order, not satisfactory in terms of the cycle characteristics.

特許文献3(特開2002−270170号)には、珪素やその他の金属、もしくはそれらの合金を含有する負極活物質が開示されているが、初回充放電効率が80%以下であり高性能とはいえないものである。 Patent Document 3 (JP 2002-270170), silicon and other metals, or is a negative electrode active material containing an alloy thereof is disclosed, and high performance are the initial charge and discharge efficiency is 80% or less high-end are those without.

特許第3268770号公報 Patent No. 3268770 Publication 特許第3282546号公報 Patent No. 3282546 Publication 特開2002−270170号公報 JP 2002-270170 JP 特開2006−228640号公報 JP 2006-228640 JP

現在の主流である黒鉛質材を超える高容量の負極活物質の開発が検討されているが、高容量であるとともにサイクル特性や電池効率に優れ、実用化できる負極活物質の開発は未だなされていない。 Although the development of the negative electrode active material with high capacity of more than graphite material, which is the current mainstream is being considered, excellent cycle characteristics and cell efficiency with a high capacity, the development of the negative electrode active material capable of practical application yet been Absent.

本発明者らは、この問題を解決すべく 黒鉛に珪素・珪素化合物・珪素合金の微粉末を添加して高容量とした負極活物質について、特にサイクル特性の改善について研究をした。 The present inventors have for the negative electrode active material was high capacity by adding a fine powder of graphite to silicon-silicon compounds, silicon alloys in order to solve this problem was studied in particular the improvement of the cycle characteristics. そして、サイクルの進行に伴い、珪素表面が活性化して電解液と反応することに起因する放電容量の低下を抑制することについて研究を重ね、また、リチウムイオンの収蔵・放出に伴う珪素微粉の体積変化を吸収するための有効な方法を研究した。 Then, with the progress of the cycle, studying about the silicon surface to suppress the decrease in discharge capacity due to the reaction with the electrolyte and activated, also the volume of the silicon fine powder with the collection and release of lithium ions an effective method for absorbing the change were studied.

その結果、珪素系粉末を最適度な粒径に微粉化して黒鉛基材に埋設させた負極活物質とすることが電解液との反応を抑制すること、また、鎖状高分子等の空隙形成剤を珪素系微粉末に被覆して焼成によって、この空隙形成剤を消失乃至、一部の残渣を残して消失させることにより珪素系微粉末の周囲に空隙を形成することが体積変化の吸収に有効であるとの知見を得て特許文献4(特開2006−228640)の発明を完成した。 As a result, it can be a negative electrode active material and the silicon-based powder with micronized to most appropriate particle size is embedded in the graphite base material is suppressing the reaction with the electrolyte, also, formation of voids chain polymer like agent by firing the coating to a silicon-based fine powder, the absorption of this to loss of void formation agent, to form an air gap around the silicon-based fine powder by disappear leaving a part of the residue volume changes and it completed the invention of Patent Document 4 (JP 2006-228640) to obtain the knowledge that it is effective.
これは、黒鉛質粉末、黒鉛前駆体、珪素系微粉末、およびポリビニルアルコ−ル等の鎖状高分子材料からなる空隙形成剤を混合して焼成したものであり、放電容量が500mAh/g以上でサイクル特性は50サイクルを超えても放電容量が490mAh/g程度のリチウム二次電池負極活物質が得られたのである。 This graphite powder, graphite precursor, silicon-based fine powder, and polyvinyl alcohol - is obtained by calcining a mixture of consisting of chain polymer material such as Le voiding agent, the discharge capacity is 500mAh / g or more in cycle characteristics is of even more than 50 cycles the discharge capacity of lithium secondary battery negative electrode active material of about 490mAh / g was obtained.

しかしながら特許文献4に開示された負極活物質は、負極活物質粒子の表面が、結晶性の低い炭素で被覆されているため、単独では電極の電気伝導度が低く、実際の使用に当たっては、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維、鱗片状天然黒鉛、人造黒鉛粉末等の導電補助材を1種以上混合して欠点を補う必要があった。 However the negative electrode active material disclosed in Patent Document 4, the surface of the anode active material particles, since it is covered with low crystalline carbon alone has low electrical conductivity of the electrode, the actual use, acetylene black, was ketjen black, vapor grown carbon fibers, natural flake graphite, a conductive auxiliary material such as artificial graphite powder were mixed 1 or more is necessary to compensate for the disadvantages.
導電補助材にもリチウムイオンの収蔵・放出に関する容量があるが、最大でも天然黒鉛の360〜370mAh/g程度でしかなく、導電性の向上と容量の向上の両方を達成することができない。 There is capacity regarding collection and release of lithium ions in conductive auxiliary material, but rather only about 360~370mAh / g of natural graphite at most, it is impossible to achieve both improvement of improving the capacity of conductivity.
一般に導電補助材の混合量は負極活物質100重量部に対し、5〜30重量部、サイクル特性を特に重視する場合は、人造黒鉛粉末(一般の黒鉛系負極活物質)を100重量部以上とする場合もあり、導電補助材を多量に混合することによってその分だけ容量を低下させてしまっていた。 Generally the mixing amount of the conductive auxiliary material to the negative electrode active material 100 parts by weight, 5 to 30 parts by weight, especially when emphasized the cycle characteristics, artificial graphite powder (typically graphite-based negative electrode active material) 100 parts by weight or more and It may be located, had gotten so as to reduce the capacity correspondingly by mixing a large amount of conductive auxiliary material.

そこで、珪素・珪素化合物・珪素合金を複合させることによって得られた高容量を維持しつつ、電極としてリチウムイオンの収蔵・放出に伴う体積変化に対しても導電性のネットワークを維持し、更にサイクル特性の向上を達成するために、負極活物質自体の導電性を高めることが重要であると認識するに至った。 Therefore, while maintaining a high capacity obtained by combining silicon-silicon compound-silicon alloy, also maintaining the conductive network to a volume change accompanying the collection and release of lithium ion as an electrode, further cycles to achieve the improved properties, resulting in an increase in conductivity of the anode active material itself came to recognize that it is important.

上記のような状況に鑑み、黒鉛を超える高容量であって、サイクル特性、電池効率に優れたリチウム二次電池負極活物質を提供するものであり、珪素・珪素化合物・珪素合金を複合させることによって高容量化した黒鉛系の負極活物質の導電性を高めるのが本発明の課題である。 In view of the above circumstances, a high capacity exceeding graphite, there is provided a cycle characteristics, a lithium secondary battery negative electrode active material having excellent cell efficiency, be complexed silicon-silicon compound, silicon alloy enhance the conductivity of the higher capacity when negative electrode active material graphite is an object of the present invention by.

黒鉛粉末と珪素・珪素化合物・珪素合金の1種以上の微粉末、焼成時にほぼ消滅する空隙形成剤、及びカーボンブラックを混合し、この混合物を炭素前駆体で被覆して焼成することを複数回おこなうものであり、最外層被覆に使用する炭素前駆体を900〜1100℃で焼成することを特徴するリチウムイオン二次電池用負極活物質の製造方法である。 One or more fine powders of graphite powder and the silicon-silicon compound-silicon alloy, almost vanishing gap formers during baking, and mixing the carbon black, a plurality of times to sintering the mixture was covered with a carbon precursor are those carried out, a method of preparing a negative active material for a lithium ion secondary battery, characterized in that firing the carbon precursor to be used in the outermost layer coating at 900 to 1100 ° C..
また、最外層の被覆層となる炭素前駆体に焼成後に表面に微小突起となるカーボンブラックを混合して900〜1100℃で焼成することを特徴するリチウムイオン二次電池用負極活物質の製造方法である。 A method of manufacturing a negative active material for a lithium ion secondary battery, wherein the firing in a mixed to 900 to 1100 ° C. The carbon black to be microprojections surface after firing the carbon precursor to be the outermost coating layer it is.
製造されたリチウムイオン二次電池用負極活物質は、負極活物質の導電性向上を図るため、珪素・珪素化合物・珪素合金微粉末とこれを固定・被覆する低結晶性炭素の界面、及び/あるいは低結晶性炭素自体の導電性の向上、更には負極活物質粒子表面に導電性を有する微小突起を付することによって負極活物質粒子表面の導電性を向上させ、電極としてリチウムイオンの収蔵・放出に伴う体積変化に対しても導電性のネットワークを維持し、更にサイクル特性を向上させるものである。 Negative active material for a lithium ion secondary battery is manufactured, in order to improve conductivity of the anode active material, the interface of the low crystalline carbon silicon-silicon compound, silicon and alloy powder fixed and encases the and / or improvement of the conductivity of the low crystalline carbon itself, further improves the conductivity of the negative electrode active material particle surface by subjecting the microprojections having conductivity in the anode active material particle surface, collection, lithium ions as electrode even maintaining the conductivity of the network with respect to the volume change associated with the release, in which to further improve the cycle characteristics.

本発明の製造法は次の通りである。 The process of the present invention is as follows.
まず、黒鉛質粉末、炭素前駆体、珪素・珪素化合物・珪素合金、あるいは、これとカーボンブラック及び空隙形成剤の混合物を混合した後、焼成して得た母材に炭素前駆体、あるいは炭素前駆体とカーボンブラックの混合物を被覆して最終的に900℃〜1100℃で焼成して得る。 First, graphite powder, carbon precursor, silicon-silicon compounds, silicon alloys or, after mixing the mixture of this with carbon black and a pore-former, a carbon precursor in the base material obtained by firing, or a carbon precursor coating the mixture of the body and the carbon black may be finally calcined at 900 ° C. C. to 1100 ° C..
あるいは、鱗状乃至鱗片状天然黒鉛、珪素・珪素化合物・珪素合金、あるいはこれとカーボンブラック、必要であればバインダーとしての炭素前駆体、または空隙形成剤を予め混合後、球形に賦形した造粒体に炭素前駆体あるいは炭素前駆体とカーボンブラックの混合物を含浸・被覆して最終的に900℃〜1100℃で焼成して得る。 Alternatively, scaly or flaky natural graphite, silicon-silicon compounds, silicon alloys or this and carbon black, a carbon precursor as the binder, if necessary, or after pre-mixing a pore-former, granulation was shaped into spherical body was impregnated, coated carbon precursor or carbon precursor and a mixture of carbon black obtained by finally calcined at 900 ° C. C. to 1100 ° C..
以下、詳細に記述する。 The following are described in detail.

まず、基材である黒鉛粉末は、コークスまたは生コークスの黒鉛化品、コークス(フィラー)とピッチ(バインダー)を混捏・成形・焼成・黒鉛化して得られる黒鉛ブロックを粉砕した人造黒鉛粉末、メソフェーズピッチ粉末の黒鉛化品やこれを成形・焼成・黒鉛化して得られる黒鉛ブロックを粉砕した人造黒鉛粉末、あるいは、市販の黒鉛ブロックを粉末化したものである。 First, graphite powder as a base material is coke or raw coke graphitized products, coke (filler) and pitch (binder) artificial graphite powder obtained by pulverizing graphite blocks obtained by kneading and molding and firing, graphitizing, mesophase artificial graphite powder was pulverized graphite blocks obtained by graphitized products and molding and firing, graphitization this pitch powder, or one in which a commercially available graphite block and pulverized.
市販品の例では、新日化テクノカーボン株式会社製IGS-603、IGS-644、IGS-743、IGS-744、IGS-844、IGS-895、IGS-652、EGS-743、EGS-763、GS-203、GS-203R、GF-130等が挙げられる。 In the example of a commercially available product, new day of Techno-Carbon Co., Ltd. IGS-603, IGS-644, IGS-743, IGS-744, IGS-844, IGS-895, IGS-652, EGS-743, EGS-763, GS-203, GS-203R, GF-130 and the like. 更には鱗状や鱗片状天然黒鉛およびこれら天然黒鉛の造粒品や球状化品などが使用可能で、これら二種以上を任意の割合で混合した混合物を用いてもよい。 Furthermore such scaly or flaky natural graphite and granulated products and spheroidizing products of these natural graphite is available and may be used a mixture prepared by mixing two or more of them in any proportion.
黒鉛粉末の平均粒子径は、市販の黒鉛負極材と同程度であれば問題なく、5〜50μm程度が適当である。 The average particle diameter of the graphite powder is no problem if the same level as commercial graphite negative electrode material, it is suitably about 5 to 50 [mu] m.

粒径が50μm以上では、この粒子を造粒後に得られる粒子径がその粒度分布上、負極電極シートの厚さを超える80μm以上の粒子を多く含むことになり好ましくない。 In the particle size is 50μm or more, the particle size obtained by the particle granulation later on particle size distribution, unfavorably contain many 80μm or more particles greater than the thickness of the negative electrode sheet. なお鱗状乃至鱗片状天然黒鉛、珪素・珪素化合物・珪素合金の微粉末、あるいはこれとカーボンブラック、必要であればバインダーとしての炭素前駆体、または、空隙形成剤を予め混合後球形に賦形した造粒体を経由する場合は、この造粒体の平均粒子径が、市販の黒鉛負極材と同程度の5〜50μm程度であれば問題ない。 Note scaly or flaky natural graphite, carbon precursor as a fine powder or it and carbon black, a binder, if necessary, the silicon-silicon compounds, silicon alloys, or were shaped into premixed after spherical void-forming agent when going through the granule has an average particle size of the granule is no problem if 5~50μm about the same level as commercial graphite negative electrode material.

炭素前駆体は、次のようなピッチや樹脂を使用する。 Carbon precursor, using a pitch or a resin, such as:.
ピッチでは石油系、石炭系の非晶質系(イソフェーズピッチ)、晶質系(メソフェーズピッチ)のものいずれも使用可能である。 Petroleum is pitch, coal-based amorphous-based (iso-phase pitch), both those crystalline system (mesophase pitch) can be used. ピッチの融点は360℃以下であることが好ましく、これ以上のものでは、混合やコーテングの過程で不都合が生じやすい。 Preferably the melting point of the pitch is 360 ° C. or less, than better than this, disadvantages are likely to occur in the course of mixing or Kotengu.
樹脂の場合、フェノール樹脂、フラン樹脂等を使用する。 For the resin, using a phenol resin, furan resin or the like. これらの樹脂は、酸素含有量が20%以下であることが好ましい。 These resins are preferably oxygen content is 20% or less. 焼成熱処理後に過剰な酸素を含有していると、得られる負極活物質の放電容量や電池効率を低下させるので好ましくない。 When containing excess oxygen after calcination heat treatment, as it reduces the discharge capacity and cell efficiency of the negative electrode active material obtained undesirably. また得率を稼ぐために残炭率の高い樹脂を選定する方が望ましい。 The person to select a high residual carbon ratio resin to make the resulting ratio is desirable.
これらの炭素前駆体の使用量は、基材である黒鉛粉末の比表面積や吸油量により若干異なるが、概ね黒鉛粉末100重量部に対して5〜30重量部程度が適当で、黒鉛粉末の粉末特性により調整する必要がある。 The amount of the carbon precursor, slightly varies depending on the specific surface area and oil absorption of the graphite powder as a base material, generally is suitably about 5 to 30 parts by weight based on the graphite powder 100 parts by weight, of the graphite powder powder it is necessary to adjust the characteristics.
5重量部以下では少量で効果が得られず、30重量部を超えると充放電効率を減少させてしまうため好ましくない。 5 below parts by weight is not effective to obtain a small amount is not preferable because thereby reducing the charge-discharge efficiency exceeds 30 parts by weight.

高容量化のための添加材には金属珪素、一酸化珪素等の珪素化合物、あるいは、珪素合金の1種以上を用いることができる。 Metallic silicon to additives for high capacity, silicon compounds such as silicon monoxide, or may be used one or more silicon alloys. 珪素合金は珪素と合金を形成可能なものであればいずれも使用することができるし、配合する種類も、割合も任意でかまわない。 It silicon alloy can also be used so long as it can form a silicon alloy, the type of mixing also, the ratio also may be arbitrary. 目指す珪素合金のリチウムイオンとの合金化による膨張のコントロールやその安定性、あるいは入手性、コスト、合金化更には微粉調製にかかわるコスト等総合的に考慮して選択するのが好ましい。 Control and its stability expanded by alloying with lithium ions silicon alloy aiming, or availability, cost, preferably further alloying selected in consideration of cost, etc. comprehensively related to fines prepared.
これらの微粉末は、基材の黒鉛粉末に埋設させるため、あるいは、基材の黒鉛粉末と混合造粒するため、及びリチウムイオンの収蔵・放出に伴う体積変化による破壊を防ぐため微粒子であることが必要で、最大粒径が、1μm以下であることが好ましい。 That these fine powder, because is embedded in the graphite powder of the base material, or for mixing granulation graphite powder substrate, and a particulate order to prevent destruction due to volume change associated with collection and release of lithium ions It requires a maximum particle size is preferably at 1μm or less. 1μm以上のものが存在するとサイクル特性に悪影響を及ぼしやすい。 More prone to cycle characteristics when there is 1μm or more.
珪素・珪素化合物・珪素合金の微粉末の使用量は、黒鉛粉末100重量部に対して1〜20重量部が好ましい。 The amount of fine powder of silicon-silicon compounds, silicon alloys, 1-20 parts by weight based on the graphite powder 100 parts by weight is preferred. 1重量部以下では放電容量増加の効果が乏しく、20重量部を超えるとサイクル特性を劣化させるので好ましくない。 Poor effect of discharge capacity increase by less than 1 part by weight, unfavorably deteriorates the cycle characteristic exceeds 20 parts by weight.
また珪素・珪素化合物・珪素合金の微粉末は、前記の粒度を満足するものであれば、その結晶状態を問わない。 Fine powder of silicon-silicon compound, silicon alloy also as long as it satisfies the particle size does not matter the crystalline state.
珪素・珪素化合物・珪素合金の微粉末は、所望の粒度品を得るため、出発原料のサイズにもよるが、通常はボールミル、振動ミル、パルベライザー、ジェットミル等の乾式粉砕機を用いてなるべく細かくしておき、次いでビーズミルによる湿式粉砕により最終的に粒度を合わせることによって調製する。 Fine powder of silicon-silicon compounds, silicon alloys, to obtain the desired particle size products, depending on the size of the starting material, typically a ball mill, vibration mill, a pulverizer, possible finely using a dry pulverizer such as a jet mill and advance and then prepared by combining the final particle size by wet grinding with a bead mill. また湿式粉砕時にカーボンブラックと混合粉砕し、このまま使用することも可能である。 The mixed and ground with the carbon black during wet grinding, it is also possible to use as it is.
湿式粉砕する場合、用いる分散媒は、珪素・珪素化合物・珪素合金と反応性が無いか非常に小さいものを適宜選択するのが望ましい。 If wet milling, the dispersion medium used, it is desirable to appropriately select the one with the silicon-silicon compound-silicon alloy is very small or not reactive. 更に必要があれば分散媒に濡らすため、微量の分散剤(界面活性剤)を添加してもかまわない。 For wetting the dispersion medium, if further necessary, it may be added small amount of dispersant (surfactant). 分散剤も、珪素・珪素化合物・珪素合金の粉末と反応性が無いか非常に小さいものを適宜選択するのが望ましい。 Dispersing agents may also be desirable to appropriately select the one powder reactive silicon-silicon compound-silicon alloy is very small or not.

更に、空隙形成剤として鎖状高分子材料等を添加することもできる。 Furthermore, it is possible to add chain polymer material such as a void former. この鎖状高分子材料は、焼成後に残炭として残らない材料で、焼成によって殆どが消失することによって空隙を形成するものである。 The chain polymer material is a material that does not remain as residual carbon after sintering, thereby forming a gap by almost disappears upon firing. この空隙が金属珪素微粉末の体積膨張を吸収することにより、電極の破壊を防止し、サイクル特性の向上に優れた効果を発揮する。 By this gap to absorb volume expansion of the fine metal silicon fines to prevent destruction of the electrode, it exhibits an excellent effect in improving the cycle characteristics.
鎖状高分子材料等として用いるものは、例えばポリカルボシラン、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸、メチルセルロース、カルボキシメチルセルロース等が適当である。 It shall be used as a chain polymer material such as, for example, polycarbosilane, polyvinyl alcohol, polyethylene glycol, polyacrylic acid, methyl cellulose, carboxymethyl cellulose and the like are suitable.

カーボンブラックは、負極活物質内部の導電性を高め、負極活物質表面に固定化されている珪素・珪素化合物・珪素合金表面の導電性を高めるのに用いられる。 Carbon black, increase the negative electrode active material inside of the conductive, it is used to enhance the conductivity of the silicon-silicon compound, silicon alloy surface being immobilized on the surface of the negative electrode active material. 更には主に負極活物質と有機質の結着剤からなる電極内の導電性向上と維持、及び集電体である銅箔との接触をより強固にするために用いられる。 Furthermore mainly improving conductivity and maintenance of the electrodes made of the binder of the negative electrode active material and organic, and are used to more robust contact with the copper foil as a current collector. ここで用いるカーボンブラックは、従来補助導電材として広く認知されているアセチレンブラックやケッチェンブラックでもかまわないし、それ以外のファーネスブラックやこれら以外の製法によるカーボンブラックを用いてもかまわない。 Carbon black used here, to may be a conventional auxiliary conductive material as widely recognized in which acetylene black and Ketjen black, may be used carbon blacks according to the other furnace black or other than the above method. また負極活物質内部の導電性向上用と負極活物質表面に固定化するカーボンブラックの種類・銘柄は同一でも別々でもかまわないし、二種以上の混合物でもかまわない。 Further to the type and brand of carbon black to be immobilized on the negative electrode active material inside of the conductivity improving for the anode active material surface it may even separate at the same, or may be a mixture of two or more. 更には、予めカーボンブラックを黒鉛化してカーボンブラックの導電性を高めてから用いてもかまわない。 Furthermore, it may be used after increasing the conductivity of the carbon black in advance carbon black to graphitization.
このように用いるカーボンブラックはどのような種類、形態、製法、特性でもかまわないが、それぞれの比表面積、DBP吸油量等の特性を考慮して、カーボンブラック添加量や炭素前駆体の使用量等を調節する必要がある。 Thus using carbon black any kind, form, method, but may be a characteristic, each of the specific surface area, taking into consideration the characteristics such as DBP oil absorption amount, the amount and the like of the carbon black amount and the carbon precursor it is necessary to adjust the.

本発明の負極活物質の製造方法について詳細に述べる。 It described in detail a method for manufacturing the negative active material of the present invention.
まず、黒鉛粉末と所望の粒度に調製された珪素・珪素化合物・珪素合金の微粉末、あるいはこれとカーボンブラック、あるいは珪素・珪素化合物・珪素合金の微粉末とカーボンブラックを湿式混合粉砕して得た混合物を混合する。 First, to obtain fine powders of graphite powder with desired particle size to be prepared a silicon-silicon compounds, silicon alloys, or this carbon black, or fine powder of carbon black, silicon-silicon compound, silicon alloy by wet mixing pulverization the mixture is mixed to. 混合の方法は特に限定しないが、例えばこれらの材料に珪素・珪素化合物・珪素合金等の湿式粉砕時に用いた分散媒を過剰に加え、攪拌更には超音波分散等の手段により均質化した後、エバポレーター等を用いて分散媒を蒸発除去・乾燥させる。 The method of mixing is not particularly limited, for example, the dispersion medium used during wet grinding such as silicon, silicon compounds, silicon alloys of these materials excessively added and after further stirring was homogenized by means such as ultrasonic dispersion, evaporation removed and dried dispersion medium by using an evaporator or the like. または、過剰の分散媒を加えることなく、そのまま高速撹拌機中で加温しながら分散媒を蒸発させながら混合する方法もある。 Or, without adding excess of the dispersion medium, there is a method of mixing while evaporating the dispersion medium while heating it in a high speed stirrer. 空隙形成剤を加える場合は、この段階で加えてもよいし、湿式粉砕時に添加してもよい。 If you make void formation agent may be added at this stage, or may be added during wet grinding.
次にこの処理物にピッチ等の炭素前駆体あるいはカーボンブラックを加え加熱ニーダー等で加熱混合する。 Then heated mixture in a heating kneader or the like added carbon precursor or carbon blacks such as pitch in the treated product. この後は窒素、自己雰囲気等の非酸化性雰囲気または還元性雰囲気中で900〜1100℃で焼成を行い、更に解砕・篩通しする。 After the nitrogen and fired at 900 to 1100 ° C. in a non-oxidizing atmosphere or a reducing atmosphere such as self atmosphere, further crushing and sieving through.
ピッチ等の炭素前駆体を加えての加熱混合処理は、複数回行う。 Heating and mixing process of adding carbon precursor such as pitch is performed a plurality of times. 複数回の混合処理において、その最終焼成を900〜1100℃で行えば良く途中回での焼成はこれより低くてもかまわない。 In the mixing process of the plurality of times, sintering at good middle times be performed the final calcination at 900 to 1100 ° C. it is may be less than this.

または、鱗状乃至鱗片状の天然黒鉛粉末と湿式粉砕された微粉末等を分散媒を含んだまま前述の方法によって均一混合を行い、更にバインダーとしてピッチ等炭素前駆体、あるいはこれにカーボンブラックを添加して機械的に概略球形に造粒する。 Or, scaly or flaky natural graphite powder and fine powder or the like which is wet milled while containing dispersant subjected to homogeneous mixing by the method described above, the addition of carbon black further pitch as carbon precursor as a binder, or to mechanically granulated schematically spherical with.
黒鉛粉末に予め微粉砕した珪素系微粉末及びカーボンブラックを均一に分散させ、これを造粒することで、粉体内部に珪素系微粉末及びカーボンブラックを分散させた造粒物ができあがる(図7参照)。 Graphite powder uniformly dispersed in advance finely divided silicon-based fine powder and carbon black, which by granulation, granules powder internal to disperse the silicon-based fine powder and carbon black is completed (FIG. see 7).
造粒するための装置は、例えばハイブリタイザー(株式会社奈良機械製作所)やメカノフージョン(ホソカワミクロン株式会社)、クリプトロン(株式会社アーステクニカ製)のような一般に粉末の造粒機能乃至球形化機能を有する装置が適宜選択できる。 Apparatus for granulation is, for example Hybridizer (Nara Machinery Co., Ltd.) and mechano Fu John (Hosokawa Micron Corporation), generally granulated function to spherical function of powder such as Criptron (manufactured by Earth Technica) apparatus can be appropriately selected with. 以後は、加熱ニーダー等に移し、前述の方法で加熱混合し、次いで焼成、解砕、篩い通しを行う。 It is subsequently transferred to a heating kneader, heated and mixed in the manner described above, is then carried out firing, crushing, and sieved.

上記の製造方法で得られた負極活物質は、以下の特徴を有する。 Negative electrode active material obtained in the above production method has the following features.
負極活性物質の主体となるコア部分は黒鉛であり、炭素前駆体を焼成して炭化した炭素層がコアを覆っており、珪素、珪素化合物、または、珪素合金の微粉末やカーボンブラックが炭素に埋設した構造になる。 Core composed mainly of the negative electrode active material is graphite, carbon layer carbonized by firing a carbon precursor covers the core, silicon, silicon compounds, or fine powder and carbon black silicon alloy to a carbon become embedded in the structure.
更に、製造工程の最後において、炭素前駆体としてのバインダーピッチとカーボンブラックとを加熱混合した混捏物で黒鉛粒子を被覆して焼成すると、表層に微小突起が形成される。 Furthermore, at the end of the manufacturing process, when firing the coated graphite particles in kneading product was heated mixing the binder pitch and carbon black as a carbon precursor, the minute protrusions are formed on the surface layer. この微小突起はカーボンブラックが炭素で被覆されたものである。 The microprojections are those in which carbon black is coated with carbon.
珪素・珪素化合物・珪素合金の微粉末は負極活物質一粒子の中に、1〜20%程度含有されており、これらは粒子表面に露出しておらず、埋設された状態で存在する。 Fine powder of silicon-silicon compound-silicon alloy in the negative electrode active material single particle are contained about 1-20%, they are not exposed to the particle surface, it is present in a buried state.
また、負極活物質内部には、空隙形成剤が焼成熱処理によって消失することにより形成された空隙が存在する。 Inside the anode active material, there are voids formed by void-forming agent disappears by baking heat treatment. この空隙の存在が、充放電に伴う珪素系微粉末の膨張収縮を吸収するための一つの手段となる。 The presence of this gap, is one of the means for absorbing the expansion and contraction of the silicon-based fine powder due to charge and discharge.

本発明による負極活物質は、リチウムイオン電池の容量を調整するため、また、形成された電極の充填性調節のため、あるいは形成された電極の膨張を抑制するため、任意の割合で天然黒鉛、人造黒鉛、更には低結晶炭素の粉末を単独あるいは混合して加える。 Negative active material according to the present invention, for adjusting the capacity of the lithium ion battery, also in order to suppress the swelling for the filling regulation of formed electrode, or formed electrode, natural graphite in any proportion, artificial graphite, and further adding powder of the low crystalline carbon alone or in combination.

また、本発明による負極活物質は電極にしたときの結晶配向が揃ってしまうことを防ぐために粉体のアスペクト比は1.0〜2.0であることが好ましい。 Further, it is preferable that the negative active material according to the present invention is a powder aspect ratio to prevent crystal orientation resulting in uniform when the electrode is 1.0 to 2.0.

本発明による負極活物質は、有機系結着材と混合し、加圧成形もしくは溶剤を用いてペースト化し、銅箔上に塗布、乾燥、プレスしてリチウム二次電池用負極とする。 Negative active material according to the present invention, mixed with an organic binder, a paste using a pressing or solvent, coated on a copper foil, dried and pressed to a lithium secondary battery negative electrode.
上記有機結着材にはポリフッ化ビニリデン(PVdF)、スチレンブタジエンゴム、ポリアクリル酸、ポリエチレン、ポリプロピレン、ポリアクリロニトリル等が使用することができ、充放電時の膨れを抑制するため、及び充放電のサイクルによる容量劣化を防ぐため、機械的強度の高い結着材を選択することが好ましい。 The above organic binder polyvinylidene fluoride (PVdF), styrene-butadiene rubber, polyacrylic acid, polyethylene, polypropylene, can polyacrylonitrile is used, in order to suppress swelling during charging and discharging, and the charge and discharge to prevent the capacity degradation due to cycles, it is preferable to select a high mechanical strength binder.
小型電池では一般的に集電体を除いた電極厚さが30μm〜100μm、電極密度が1.4g/cm 3 〜1.8/cm 3において使用される。 Is a small battery commonly electrode thickness excluding the current collector is 30 .mu.m to 100 .mu.m, the electrode density is used in 1.4g / cm 3 ~1.8 / cm 3 .

本発明のリチウム二次電池負極活物質によると、微粉化された珪素・珪素化合物・珪素合金が負極活物質の中に埋設された構成とすることにより、珪素・珪素化合物・珪素合金の微粉末と電解液との反応に起因するサイクル特性の劣化を有効に抑制することができる。 According to the lithium secondary battery negative electrode active material of the present invention has the structure in which finely divided silicon-silicon compounds, silicon alloys are embedded in the anode active material, fine powder of silicon-silicon compounds, silicon alloys it is possible to effectively suppress the deterioration of the cycle characteristics due to reaction with the electrolyte solution and.
また、活物質内部に形成された空隙が、リチウムのドープ・アンドープに伴う体積膨張を吸収し、電極の破壊防止に優れた効果を発揮する。 Furthermore, voids are formed inside the active material absorbs volume expansion due to lithium doping-undoping, it exhibits an excellent effect in preventing damage of the electrode.
活物質各所に添加・固定されたカーボンブラックは、それぞれ活物質内部、活物質同士の導電性を高める働きをになう。 Added to the active material various locations and fixed carbon black is responsible respectively the active material, it acts to increase the conductivity between the active materials.
これらの作用、効果により従来の黒鉛負極活物質を超える高容量であるとともに、サイクル特性、電池効率にも優れた負極活物質を提供できるものである。 These effects, along with a high capacity over conventional graphite negative active material due to the effect, but can provide a negative electrode active material excellent in the cycle characteristics, the battery efficiency.

以下、本発明を実施例及び比較例により説明する。 Hereinafter will be described by the present invention examples and comparative examples. なお本発明は、この実施例に限定されるものではない。 The present invention is not limited to this embodiment.

平均粒子径(D50)が12μmの球状天然黒鉛100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)を<1μmに粉砕した金属珪素13.5重量部及び空隙形成剤としてポリビニルアルコール1.0重量部を高速撹拌混合機にて混合する。 The average particle size (D50) of the average particle size (D50) of 0.2 [mu] m spherical natural graphite 100 parts by weight of 12 [mu] m, maximum particle diameter (Dtop) <as metallic silicon 13.5 parts by weight and the pore-former ground to 1μm 1.0 part by weight of polyvinyl alcohol are mixed in a high-speed stirring and mixing machine. この混合物100重量部に対してバインダーピッチ18重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成する。 The mixture binder pitch 18 parts were mixed under heating in a heating kneader to 100 parts by weight of, which is fired at 1000 ° C. under a nitrogen atmosphere. 更に、この焼成物100重量部に対してバインダーピッチ10重量部を加熱ニーダーで加熱混合しながらアセチレンブラック(AB)10重量部を添加し、これを窒素雰囲気下にて1000℃で焼成し、この焼成物を解砕・目開き38μmの篩を通し目的物を得た。 Further, the binder pitch 10 parts by weight while heating mixed with heating kneader added acetylene black (AB) 10 parts by weight, which was fired at 1000 ° C. under nitrogen with respect to this baked product 100 parts by weight, the the fired product of the desired product was obtained through a sieve of crushing and mesh 38 [mu] m.
平均粒子径(D50)=16.82μm、最大粒子径(Dtop)=54.64μm、BET法による比表面積はSSA=2.50m 2 /g、アスペクト比は1.2であった。 The average particle diameter (D50) = 16.82μm, maximum particle diameter (Dtop) = 54.64μm, BET specific surface area SSA = 2.50m 2 / g, the aspect ratio was 1.2.
この負極活物質の構造のモデルを図1に、SEM写真を図2に示す。 The model of the structure of the negative electrode active material in FIG. 1 shows a SEM photograph in FIG.
コアが黒鉛粒子(1)であり、粒子全体の形状は概略球形である。 Core is graphite particles (1), the overall shape of the particles is a schematic spherical. 粒子の表面は炭素前駆体のピッチを焼成した炭素の層(2)が2層形成され、表面にはカーボンブラック(3)が突起となって存在している。 The surface of the particles formed layer (2) two layers of carbon were fired pitch carbon precursor, carbon black (3) is present in a projection on the surface. 金属珪素(4)は、黒鉛粒子(1)の表面に散在しており、粒子(1)の表面を覆う炭素層(2)の内層に存在している。 Metallic silicon (4) is scattered on the surface of the graphite particle (1), are present in the inner layer of the carbon layer covering the surface of the particles (1) (2). そして、コアである黒鉛粒子(1)には比較的大きな空隙(5)が、また、炭素層の内層には比較的小さな空隙(5)がほぼ均一に形成されている。 The relatively large voids in the graphite particles (1) a core (5) is, also, relatively small air gap (5) is substantially uniformly formed on the inner layer of the carbon layer.
この負極活物質100重量部に対しPVdF5重量部を混合してN−メチル−2−ピロリドン(NMP)を分散媒にしたスラリーを調製し、銅箔上にドクターブレードを用いて塗布し、140℃で乾燥し、ロールプレスを掛けた後φ12mmに打ち抜き電極とした。 The relative negative electrode active material 100 parts by weight of a mixture of PVdF5 parts N- methyl-2-pyrrolidone (NMP) slurry was prepared which was a dispersion medium, using a doctor blade onto a copper foil, 140 ° C. in dried and the punched electrode φ12mm after multiplication by a roll press. プレス後の電極厚は41μmであり、電極密度は1.60g/cm 3であった。 Electrode thickness after pressing is 41 .mu.m, the electrode density was 1.60 g / cm 3. これに対極としてLi金属を用い、セパレーターを介し対向させ電極群とした後1M LiPF6/EC:MEC(1:2)の電解液を加えてコインセルを形成し充放電試験に供した。 This using Li metal as a counter electrode, after the electrode group is opposed via a separator 1M LiPF6 / EC: MEC (1: 2) of the electrolyte was added was subjected to form a coin cell charge-discharge test.
0.5mA/cm 3で定電流充電し、電位が10mVとなったときに定電圧充電を電流値が10μAとなるまで充電した。 Constant current charging at 0.5 mA / cm 3, the current value of the constant voltage charging when the potential becomes 10mV was charged until 10 .mu.A. 充電後0.5mA/cm 3で定電流放電したときの初回放電容量は536mAh/gであり、初回放電効率は86.1%であった。 Initial discharge capacity when discharged with a constant current charging after 0.5 mA / cm 3 is 536mAh / g, an initial discharge efficiency was 86.1%.

平均粒子径(D50)が12μmの球状天然黒鉛100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)を<1μmに粉砕した金属珪素とアセチレンブラック(AB)の混合物(Si/AB=100/5)14.2重量部、及び空隙形成剤としてポリアクリル酸1.0重量部を高速撹拌混合機にて混合する。 Mixture of average particle diameter (D50) 12μm spherical natural graphite 100 parts by weight and the average particle size (D50) of 0.2 [mu] m, maximum particle diameter (Dtop) a <metal silicon acetylene black ground to 1μm (AB) (Si /AB=100/5)14.2 parts by weight and 1.0 part by weight of polyacrylic acid as a void-forming agent is mixed in a high-speed stirring and mixing machine. この混合物100重量部に対してバインダーピッチ18重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成する。 The mixture binder pitch 18 parts were mixed under heating in a heating kneader to 100 parts by weight of, which is fired at 1000 ° C. under a nitrogen atmosphere. 更にこの焼成物100重量部に対してバインダーピッチ15重量部を加熱ニーダーで加熱混合しながらアセチレンブラック(AB)10重量部を添加し、これを窒素雰囲気下にて1000℃で焼成し、焼成物を解砕・目開き38μmの篩を通し目的物を得た。 Further added acetylene black (AB) 10 parts by weight while heating a mixture of the binder pitch 15 parts by weight of heated kneader for this calcined product 100 parts by weight, which was fired at 1000 ° C. under a nitrogen atmosphere, the fired product to give the desired product through a sieve of crushing and eyes open 38μm.
平均粒子径(D50)=14.5μm、最大粒子径(Dtop)=46.1μm、BET法による比表面積はSSA=3.18m 2 /g、アスペクト比は1.2であった。 The average particle diameter (D50) = 14.5μm, maximum particle diameter (Dtop) = 46.1μm, BET specific surface area SSA = 3.18m 2 / g, the aspect ratio was 1.2.
この負極活物質の構造モデルを図3に、SEM写真を図4に示す。 The structural model of the negative electrode active material in Figure 3 shows the SEM photograph in FIG.
コアが黒鉛粒子(1)であり、粒子の形状は概略球形である。 Core is graphite particles (1), the shape of the particles is a schematic spherical. 黒鉛粒子の表面は炭素前駆体のピッチを焼成した炭素の層(2)が2層形成され、表面にはカーボンブラック(3)が突起となって存在している。 Surface of the graphite particles formed layer (2) two layers of carbon were fired pitch carbon precursor, the carbon black on the surface (3) is present in a projection. また、カーボンブラック(3)は炭素層(2)の内層に認められた。 Carbon black (3) it was found in the inner layer of the carbon layer (2). 金属珪素(4)は、黒鉛粒子(1)の表面を覆う炭素の内層(2)に存在している。 Metallic silicon (4) is present in an inner layer of carbon covering the surface of graphite particles (1) (2). そして、コアである黒鉛粒子(1)には比較的大きな空隙(5)が、また、炭素層の内層(2)には比較的小さな空隙がほぼ均一に形成されていた。 The relatively large voids in the graphite particles (1) a core (5) is, also, relatively small air gap was substantially uniformly formed on the inner layer of the carbon layer (2).
粒子表面はカーボンブラックによる突起が形成されている。 Particle surfaces are formed projections by the carbon black.
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は37μmであり、電極密度は1.60g/cm 3であった。 The PVdF as a binder to prepare a outer percentage 5% mixed with electrode, electrode thickness after pressing is 37 [mu] m, the electrode density was 1.60 g / cm 3. 対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。 Using Li metal as a counter electrode, the electrolyte 1M LiPF6 / EC: MEC (1: 2) was subjected to the same charge and discharge test as in Example 1 using. 作製したコインセルでの初回放電容量は575mAh/gであり、初回放電効率は88.5%であった。 Initial discharge capacity at to prepare coin cells is 575mAh / g, an initial discharge efficiency was 88.5%.

平均粒子径(D50)が10μmに粉砕されたコークスとバインダーピッチとを加熱混合後成型、焼成、黒鉛化、粉砕して得られる平均粒子径(D50)が15μmの人造黒鉛100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)<1μmに粉砕した金属珪素とアセチレンブラック(AB)の混合物(Si/AB=100/5)14.2重量部及び空隙剤としてポリアクリル酸1.0重量部を高速撹拌混合機にて混合する。 Average particle diameter (D50) heated mixture after molding and the binder pitch coke ground to 10 [mu] m, baked, graphitized, average particle average particle diameter obtained by pulverizing (D50) is the artificial graphite 100 parts by weight of 15μm diameter (D50) 0.2 [mu] m, maximum particle diameter (Dtop) <mixture of metallic silicon and acetylene black ground to 1μm (AB) (Si / AB = 100/5) 14.2 polyacrylic acid as parts and voids agent 1.0 parts by weight mixed by high speed stirring mixer. この混合物100重量部に対してバインダーピッチ18重量部を加熱ニーダーで加熱混合しながらアセチレンブラック(AB)5重量部を添加し、これを窒素雰囲気下にて1000℃で焼成する。 While the binder pitch 18 parts were mixed under heating in a heating kneader to this mixture 100 weight parts were added acetylene black (AB) 5 parts by weight, which is fired at 1000 ° C. under a nitrogen atmosphere. 更にこの焼成物100重量部に対してバインダーピッチ15重量部を加熱ニーダーで加熱混合しながらアセチレンブラック(AB)10重量部を添加し、これを窒素雰囲気下にて1000℃で焼成し、焼成物を解砕・目開き38μmの篩を通し目的物を得た。 Further added acetylene black (AB) 10 parts by weight while heating a mixture of the binder pitch 15 parts by weight of heated kneader for this calcined product 100 parts by weight, which was fired at 1000 ° C. under a nitrogen atmosphere, the fired product to give the desired product through a sieve of crushing and eyes open 38μm.
平均粒子径(D50)=18.3μ、最大粒子径(Dtop)=54.6μm、BET法による比表面積はSSA=4.19m 2 /g、アスペクト比は1.4であった。 The average particle diameter (D50) = 18.3μ, maximum particle diameter (Dtop) = 54.6μm, BET specific surface area SSA = 4.19m 2 / g, the aspect ratio was 1.4.
この負極活物質の構造モデルを図5に、SEM写真を図6に示す。 The structural model of the negative electrode active material in FIG. 5 shows a SEM photograph in FIG.
コアが表面に窪みを有する黒鉛粒子(1)であり、粒子の形状は概略球形である。 Core is graphite particles having a depression in the surface (1), the shape of the particles is a schematic spherical. 黒鉛粒子(1)の表面は炭素前駆体のピッチを焼成した炭素の層(2)が2層形成され、表層にカーボンブラック(4)が突起となって存在している。 The surface of the graphite particle (1) is formed a layer of carbon by firing a pitch carbon precursor (2) 2-layer, carbon black (4) is present in a projection on a surface layer. カーボンブラックは表層の下の層にも認められた。 Carbon black was also observed in the lower layer of the surface layer. 金属珪素(4)は、黒鉛粒子(1)の表面及び一部が黒鉛粒子(1)の窪みに存在している。 Metallic silicon (4), the surface and a part of the graphite particles (1) is present in a recess of the graphite particles (1). そして、コアである黒鉛粒子(1)には比較的大きな空隙(5)が、また、炭素層の内層(2)には比較的小さな空隙が形成されていた。 The relatively large voids in the graphite particles (1) a core (5) is, also, relatively small air gap was formed in the inner layer of the carbon layer (2). また、珪素微粒子(4)の一部が黒鉛粒子(1)の表面の窪みにも入り込んでいる。 A part of the silicon particles (4) are penetrated to the depression of the surface of the graphite particle (1).
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は41μmであり、電極密度は1.61g/cm 3であった。 The PVdF as a binder to prepare a outer percentage 5% mixed with electrode, electrode thickness after pressing is 41 .mu.m, the electrode density was 1.61 g / cm 3. 対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。 Using Li metal as a counter electrode, the electrolyte 1M LiPF6 / EC: MEC (1: 2) was subjected to the same charge and discharge test as in Example 1 using. 作製したコインセルでの初回放電容量は555mAh/gであり、初回放電効率は84.3%であった。 Initial discharge capacity at to prepare coin cells is 555mAh / g, an initial discharge efficiency was 84.3%.

実施例3で用いた人造黒鉛100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)<1μmに粉砕した金属珪素とアセチレンブラック(AB)の混合物(Si/AB=100/5)14.2重量部及び空隙剤としてポリアクリル酸1.0重量部を高速撹拌混合機にて混合する。 The average particle diameter (D50) 0.2 [mu] m and artificial graphite 100 parts by weight used in Example 3, a mixture of the maximum particle size (Dtop) <metal silicon acetylene black ground to 1μm (AB) (Si / AB = 100 / 5) 1.0 part by weight of polyacrylic acid is mixed in a high-speed stirrer mixer as 14.2 parts by weight and voids agent. この混合物100重量部に対してバインダーピッチ18重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成する。 The mixture binder pitch 18 parts were mixed under heating in a heating kneader to 100 parts by weight of, which is fired at 1000 ° C. under a nitrogen atmosphere. 更に、この焼成物100重量部に対してバインダーピッチ15重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成し、焼成物を解砕・目開き38μmの篩を通し目的物を得た。 Further, the binder pitch 15 parts were mixed under heating in a heating kneader to this calcined product 100 parts by weight, which was fired at 1000 ° C. under a nitrogen atmosphere, the fired product was passed through a sieve of crushing and mesh 38μm the desired product was obtained.
平均粒子径(D50)=20.2μ、最大粒子径(Dtop)=54.6μm、BET法による比表面積はSSA=2.26m 2 /g、アスペクト比は1.4であった。 The average particle diameter (D50) = 20.2μ, maximum particle diameter (Dtop) = 54.6μm, BET specific surface area SSA = 2.26m 2 / g, the aspect ratio was 1.4.
この負極活物質の構造モデルを図7に、SEM写真を図8に示す。 The structural model of the negative electrode active material in FIG. 7 shows the SEM photograph in FIG.
コアが表面に窪みを有する黒鉛粒子(1)であり、粒子の形状は概略球形である。 Core is graphite particles having a depression in the surface (1), the shape of the particles is a schematic spherical. 黒鉛粒子(1)の表面は炭素前駆体のピッチを焼成した炭素の層(2)が2層形成されている。 The surface of the graphite particle (1) is formed a layer (2) two layers of carbon were fired pitch carbon precursor. カーボンブラック(3)は、炭素層の下の層に認められた。 Carbon black (3) it was observed in a layer beneath the carbon layer. 金属珪素(4)は、黒鉛粒子(1)の表面及び一部が黒鉛粒子(1)の窪みに存在している。 Metallic silicon (4), the surface and a part of the graphite particles (1) is present in a recess of the graphite particles (1). そして、コアである黒鉛粒子(1)には比較的大きな空隙(5)が、また、炭素層の内層(2)には比較的小さな空隙が形成されていた。 The relatively large voids in the graphite particles (1) a core (5) is, also, relatively small air gap was formed in the inner layer of the carbon layer (2).
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は44μmであり、電極密度は1.61g/cm 3であった。 The PVdF as a binder to prepare a outer percentage 5% mixed with electrode, electrode thickness after pressing is 44 .mu.m, the electrode density was 1.61 g / cm 3. 対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。 Using Li metal as a counter electrode, the electrolyte 1M LiPF6 / EC: MEC (1: 2) was subjected to the same charge and discharge test as in Example 1 using. 作製したコインセルでの初回放電容量は548mAh/gであり、初回放電効率は87.5%であった。 Initial discharge capacity at to prepare coin cells is 548mAh / g, an initial discharge efficiency was 87.5%.

平均粒子径(D50)が16μmの鱗状黒鉛100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)を<1μmに粉砕した金属珪素15重量部、アセチレンブラック(AB)5重量部及び空隙形成剤としてポリアクリル酸1.0重量部を高速撹拌混合機にて均一混合し、これを株式会社奈良機械製作所製ハイブリタイゼーションを用いて造粒、球形化を行った。 The average particle size (D50) of the average particle diameter of the vein graphite 100 parts by weight of 16μm (D50) 0.2μm, maximum particle size (Dtop) a <metallic silicon 15 parts by weight pulverized to 1 [mu] m, acetylene black (AB) 5 wt 1.0 part by weight of polyacrylic acid were uniformly mixed in a high-speed stirrer mixer as parts and void formation agent, was carried out granulation, spheronization using a Nara machinery Co., Ltd. hybridization this. 更に、この造粒物100重量部に対してバインダーピッチ15重量部を加熱ニーダーで加熱混合、これを窒素雰囲気下にて1000℃で焼成し、この焼成物を解砕・目開き38μmの篩を通し目的物を得た。 In addition, the heating and mixing the binder pitch 15 parts by weight of heated kneader respect granules 100 parts by weight, which was fired at 1000 ° C. under a nitrogen atmosphere, a sieve of the fired product open crushing and eyes 38μm through the desired product was obtained.
平均粒子径(D50)=5.0μ、最大粒子径(Dtop)=31.1μm、BET法による比表面積はSSA=2.41m 2 /gであった。 The average particle diameter (D50) = 5.0μ, maximum particle diameter (Dtop) = 31.1μm, BET specific surface area was SSA = 2.41m 2 / g.
この負極活物質粒子の構造モデルを図9に、SEM写真を図10に示す。 The structural model of the negative electrode active material particles 9 shows an SEM photograph in FIG. 10.
粒子は、ほぼ球状であり、鱗状黒鉛(1)が球体の殻となっており、アセチレンブラックを焼成した炭素(3)、金属珪素微粒子(4)、及び空隙(5)は殻の内部に存在している。 Particles are approximately spherical, scaly graphite (1) has a shell of a sphere, carbon obtained by firing acetylene black (3), metal silicon particles (4), and the gap (5) is present inside the shell doing. 粒子の表面は、炭素前駆体のピッチを焼成した炭素の層(2)が形成されている。 Surface of the particles, a layer of carbon by firing a pitch carbon precursor (2) is formed.
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は40μmであり、電極密度は1.59g/cm 3であった。 The PVdF as a binder to prepare a outer percentage 5% mixed with electrode, electrode thickness after pressing is 40 [mu] m, the electrode density was 1.59 g / cm 3. 対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。 Using Li metal as a counter electrode, the electrolyte 1M LiPF6 / EC: MEC (1: 2) was subjected to the same charge and discharge test as in Example 1 using. 作製したコインセルでの初回放電容量は553mAh/gであり、初回放電効率は89.2%であった。 Initial discharge capacity at to prepare coin cells is 553mAh / g, an initial discharge efficiency was 89.2%.

実施例5の負極活物質100重量部に対してバインダーピッチ15重量部を加熱ニーダーで加熱混合しながらアセチレンブラック(AB)10重量部を混合し、これを窒素雰囲気下にて1000℃で焼成し、この焼成物を解砕・目開き38μmの篩を通し目的物を得た。 Mixing a negative electrode active material, acetylene black (AB) 10 parts by weight while heating a mixture of the binder pitch 15 parts by weight of heated kneader with respect to 100 parts by weight of Example 5, which was fired at 1000 ° C. under a nitrogen atmosphere to obtain the desired product through a sieve of crushing and mesh 38μm the calcined product.
平均粒子径(D50)=5.4μ、最大粒子径(Dtop)=31.1μm、BET法による比表面積はSSA=4.17m 2 /gであった。 The average particle diameter (D50) = 5.4μ, maximum particle diameter (Dtop) = 31.1μm, BET specific surface area was SSA = 4.17m 2 / g.
この負極活物質粒子の構造モデルを図11に示す。 It shows the structural model of the negative electrode active material particles in Figure 11.
実施例5の粒子の外側に炭素前駆体のピッチを焼成した炭素の層(2)が形成されており、表面にはカーボンブラック(3)が点在し、表面突起を形成している。 A layer of carbon by firing a pitch carbon precursor outside the particles of Example 5 (2) is formed, carbon black (3) are dotted on the surface, to form surface projections. 金属珪素微粒子(4)は粒子内部に存在し、その周辺には空隙(5)が形成されている。 Metal silicon particles (4) are present inside the particles, voids (5) is formed around it.
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は40μmであり、電極密度は1.59g/cm 3であった。 The PVdF as a binder to prepare a outer percentage 5% mixed with electrode, electrode thickness after pressing is 40 [mu] m, the electrode density was 1.59 g / cm 3. 対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。 Using Li metal as a counter electrode, the electrolyte 1M LiPF6 / EC: MEC (1: 2) was subjected to the same charge and discharge test as in Example 1 using. 作製したコインセルでの初回放電容量は541mAh/gであり、初回放電効率は86.5%であった。 Initial discharge capacity at to prepare coin cells is 541mAh / g, an initial discharge efficiency was 86.5%.

実施例3の負極材75重量部に対して平均粒径が16μmの人造黒鉛25重量部を混合した。 Average particle size was mixed with artificial graphite of 25 parts by weight of 16μm relative negative electrode material 75 parts by weight in Example 3.
平均粒子径(D50)=16.4μ、最大粒子径(Dtop)=64.5μm、BET法による比表面積はSSA=6.44m 2 /g、アスペクト比は1.2であった。 The average particle diameter (D50) = 16.4μ, maximum particle diameter (Dtop) = 64.5μm, BET specific surface area SSA = 6.44m 2 / g, the aspect ratio was 1.2.
この混合物に結着材としてPVdFを外割5%を加え、混合し電極を作製し、プレス後の電極厚は40μmであり、電極密度は1.59g/cm 3であった。 The mixture of PVdF the outer percentage 5% was added as a binder, mixing to prepare an electrode, electrode thickness after pressing is 40 [mu] m, the electrode density was 1.59 g / cm 3. 対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。 Using Li metal as a counter electrode, the electrolyte 1M LiPF6 / EC: MEC (1: 2) was subjected to the same charge and discharge test as in Example 1 using. 作製したコインセルでの初回放電容量は502mAh/gであり、初回放電効率は84.8%であった。 Initial discharge capacity at to prepare coin cells is 502mAh / g, an initial discharge efficiency was 84.8%.

金属珪素の代わりに一酸化珪素を用いたこと以外は実施例3と同様に行った。 Except for the use of silicon monoxide in place of silicon metal were the same as in Example 3.
平均粒子径(D50)=17.9μ、最大粒子径(Dtop)=54.6μm、BET法による比表面積はSSA3.98m 2 /g、アスペクト比は1.4であった。 The average particle diameter (D50) = 17.9μ, maximum particle diameter (Dtop) = 54.6μm, BET specific surface area was SSA3.98m 2 / g, the aspect ratio is 1.4.
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は41μmであり、電極密度は1.61g/cm 3であった。 The PVdF as a binder to prepare a outer percentage 5% mixed with electrode, electrode thickness after pressing is 41 .mu.m, the electrode density was 1.61 g / cm 3. 対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。 Using Li metal as a counter electrode, the electrolyte 1M LiPF6 / EC: MEC (1: 2) was subjected to the same charge and discharge test as in Example 1 using. 作製したコインセルでの初回放電容量は548mAh/gであり、初回放電効率は86.5%であった。 Initial discharge capacity at to prepare coin cells is 548mAh / g, an initial discharge efficiency was 86.5%.

金属珪素の代わりにチタン−珪素合金(TiSi 2 )を用いたこと以外は実施例3と同様に行った。 Titanium instead of metallic silicon - except for the use of silicon alloys (TiSi 2) was carried out in the same manner as in Example 3.
平均粒子径(D50)=18.2μ、最大粒子径(Dtop)=54.6μm、BET法による比表面積はSSA4.17m 2 /g、アスペクト比は1.4であった。 The average particle diameter (D50) = 18.2μ, maximum particle diameter (Dtop) = 54.6μm, BET specific surface area was SSA4.17m 2 / g, the aspect ratio is 1.4.
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は41μmであり、電極密度は1.61g/cm 3であった。 The PVdF as a binder to prepare a outer percentage 5% mixed with electrode, electrode thickness after pressing is 41 .mu.m, the electrode density was 1.61 g / cm 3. 対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。 Using Li metal as a counter electrode, the electrolyte 1M LiPF6 / EC: MEC (1: 2) was subjected to the same charge and discharge test as in Example 1 using. 作製したコインセルでの初回放電容量は545mAh/gであり、初回放電効率は87.5%であった。 Initial discharge capacity at to prepare coin cells is 545mAh / g, an initial discharge efficiency was 87.5%.

比較例1 Comparative Example 1
キノリン不溶(QI)成分が10%の軟化点110℃の石炭系ピッチ(光学的等方性)を窒素ガスバブリング下(2l/min・kg)500℃で熱処理し、偏光顕微鏡下での観察による光学的異方性が30%の炭素前駆体を得た。 Quinoline insoluble (QI) component of 10% softening point 110 ° C. of coal-based pitch (optically isotropic) was heat-treated in a nitrogen gas bubbling (2l / min · kg) 500 ℃, by observation under a polarizing microscope optical anisotropy was obtained 30% of the carbon precursor. これを粉砕・整粒し、平均粒子系16μmとした後、焼成、黒鉛化し黒鉛粉末を得た。 This was pulverized and granulated, after the average particle diameter 16 [mu] m, fired to obtain a graphitized graphite powder. この黒鉛粉末100重量部と平均粒子径(D50)0.2μm、最大粒径(Dtop)<1μmに粉砕した金属珪素13重量部を高速撹拌混合機にて混合する。 The average particle diameter of the graphite powder 100 parts by weight (D50) 0.2 [mu] m, the maximum particle size (Dtop) <metallic silicon 13 parts by weight of ground to 1μm is mixed in a high-speed stirring and mixing machine. この混合物100重量部に対してバインダーピッチ18重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成する。 The mixture binder pitch 18 parts were mixed under heating in a heating kneader to 100 parts by weight of, which is fired at 1000 ° C. under a nitrogen atmosphere. 更にこの焼成物100重量部に対してバインダーピッチ10重量部を加熱ニーダーで加熱混合し、これを窒素雰囲気下にて1000℃で焼成し、その後解砕・目開き38μmの篩を通し目的物を得た。 Further binder pitch 10 parts were mixed under heating in a heating kneader to this calcined product 100 parts by weight, which was fired at 1000 ° C. under a nitrogen atmosphere, then the desired product through a sieve of crushing and mesh 38μm Obtained.
平均粒子径(D50)=21.0μm、最大粒子径(Dtop)=64.79μm、BET法による比表面積はSSA=4.01m 2 /g、アスペクト比は1.8であった。 The average particle diameter (D50) = 21.0μm, maximum particle diameter (Dtop) = 64.79μm, BET specific surface area SSA = 4.01m 2 / g, the aspect ratio was 1.8.
結着材としてPVdFを外割5%と混合し電極を作製し、プレス後の電極厚は34μmであり、電極密度は1.60g/cm 3であった。 The PVdF as a binder to prepare a outer percentage 5% mixed with electrode, electrode thickness after pressing is 34 .mu.m, the electrode density was 1.60 g / cm 3. 対極にLi金属を用い、電解液に1M LiPF6/EC:MEC(1:2)を用いて実施例1と同様に充放電試験を行った。 Using Li metal as a counter electrode, the electrolyte 1M LiPF6 / EC: MEC (1: 2) was subjected to the same charge and discharge test as in Example 1 using. 作製したコインセルでの初回放電容量は519mAh/gであり、初回放電効率は85.7%であった。 Initial discharge capacity at to prepare coin cells is 519mAh / g, an initial discharge efficiency was 85.7%.

実施例1〜9及び比較例1のサイクル特性試験結果を図12に示す。 The cycle characteristics test results of Examples 1 to 9 and Comparative Example 1 shown in FIG. 12. 本発明の黒鉛粒子を使用したリチウム電池はサイクル特性が優れており、向上したことがわかる。 Lithium batteries using graphite particles of the present invention has excellent cycle characteristics, it can be seen that improved.
また、図13及び図14に実施例4(図7のモデル)の黒鉛粒子を樹脂に埋め込み、通常の研磨剤により研磨したのち、更にイオンミリング法によって処理したもののSEM写真を示す。 Further, embedding the graphite particles of Example 13 and 14 4 (model in Fig. 7) to the resin, after polished by conventional polishing agent, further shows a SEM photograph of treated by ion milling. 図13の粒子断面写真から、粒子表層近くの金属珪素周辺に空隙が存在していることが認められた。 From the particle cross section photograph of FIG. 13, were found to be void metallic silicon conveniently near the particle surface layer are present. 図14の粒子断面写真からは、粒子内部にも空隙の存在が確認されており、金属珪素の粒子表層近くだけでなく、空隙が粒子内部にも形成されていることがわかる。 From the particle cross section photograph of FIG. 14, it has been confirmed the presence of voids in the interior particles not only particle surface layer near the metal silicon, the gap it can be seen that there has been formed inside the grain.

なお、本発明の実施例、比較例における各数値の測定法、測定装置は次の通りである。 In Examples of the present invention, the measurement methods of the respective numerical values ​​in Comparative Example, the measurement apparatus is as follows.
本発明の負極活物質の比表面積は、窒素ガスの吸脱着により測定し、測定装置、米国Maicromeritics社製の自動比表面積/細孔分布測定装置ASAP−2405Nを使用した。 The specific surface area of ​​the negative electrode active material of the present invention was measured by adsorption and desorption of nitrogen gas, was used a measuring device, U.S. Maicromeritics manufactured by automatic specific surface area / pore distribution measuring apparatus ASAP-2405N.

比表面積は、吸着等温線から得られた吸着ガス量を、単分子層として評価して表面積を計算するBETの多点法によって求めた The specific surface area, the adsorption gas amount obtained from the adsorption isotherm was determined by multipoint method of BET to calculate the surface area evaluated as monolayer
P/V(P 0 -P)=(1/VmC)+{(C-1)/VmC(P/P 0 )}……………………………(1) P / V (P 0 -P) = (1 / VmC) + {(C-1) / VmC (P / P 0)} ................................. (1)
S=kVm…………………………………………………………………(2) S = kVm ........................................................................... (2)
0 :飽和蒸気圧 P:吸着平衡圧 V:吸着平衡圧Pにおける吸着量 Vm:単分子層吸着量 C:吸着熱などに関するパラメーター S:比表面積 k:窒素単分子占有面積 0.162nm 2 P 0: saturated vapor pressure P: adsorption equilibrium pressure V: adsorption amount Vm in the adsorption equilibrium pressure P: monolayer adsorption C: related parameters like adsorption heat S: specific surface area k: Nitrogen single molecular area 0.162Nm 2

粒子径の測定は、株式会社セイシン企業製レーザー回折・散乱式粒度分布測定器のLMS-30システムを用いて、水を分散媒として微量の界面活性剤を分散剤にして、超音波分散をさせた状態で測定した。 Measurements of particle size, using the LMS-30 system Seishin Enterprise Co. laser diffraction-scattering particle size distribution measuring apparatus, water traces of surfactant in the dispersing agent as a dispersion medium, to the ultrasonic dispersion It was measured in the state.

実施例1の黒鉛粒子のモデル図。 Model diagram of the graphite particles of Example 1. 実施例1の黒鉛粒子のSEM写真。 SEM photographs of the graphite particles of Example 1. 実施例2の黒鉛粒子のモデル図。 Model diagram of the graphite particles of Example 2. 実施例2の黒鉛粒子のSEM写真。 SEM photographs of the graphite particles of Example 2. 実施例3の黒鉛粒子のモデル図。 Model diagram of the graphite particles of Example 3. 実施例3の黒鉛粒子のSEM写真。 SEM photographs of the graphite particles of Example 3. 実施例4の黒鉛粒子のモデル図。 Model diagram of the graphite particles of Example 4. 実施例4の黒鉛粒子のSEM写真。 SEM photographs of the graphite particles of Example 4. 実施例5の黒鉛粒子のモデル図。 Model diagram of the graphite particles of Example 5. 実施例5の黒鉛粒子のSEM写真。 SEM photographs of the graphite particles of Example 5. 実施例6の黒鉛粒子のモデル図。 Model diagram of the graphite particles of Example 6. サイクル特性試験の比較グラフ。 Comparison chart of the cycle characteristics test. 粒子断面写真(金属珪素周辺の空隙の様子) Particle cross-sectional photograph (appearance of voids around the metal silicon) 粒子断面写真(黒鉛母材内部に存在する空隙及び金属珪素の様子) Particle cross-sectional photograph (appearance of voids and metallic silicon existing in the graphite base material)

符号の説明 DESCRIPTION OF SYMBOLS

1 黒鉛2 炭素前駆体を焼成してなる炭素3 カーボンブラック4 珪素、珪素化合物、または珪素合金5 空隙 1 Graphite 2 carbons 3 Carbon black 4 silicon formed by baking the carbon precursor, silicon compound or a silicon alloy 5 voids,

Claims (10)

  1. 黒鉛粉末と珪素・珪素化合物・珪素合金の1種以上の微粉末、及び焼成時にほぼ消滅する空隙形成剤、及びカーボンブラックを混合し、この混合物に炭素前駆体を加えて炭素前駆体で被覆して焼成することを複数回おこなうものであり、最外層の被覆となる炭素前駆体の焼成温度が900〜1100℃であることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。 One or more fine powders of graphite powder and the silicon-silicon compound, silicon alloy, and almost vanishing gap formers during baking, and mixing the carbon black, in addition to carbon precursor is coated with a carbon precursor mixture are those performed multiple times firing Te, method of preparing a negative active material for a lithium ion secondary battery, wherein the firing temperature of the carbon precursor to be the outermost layer of the coating is 900 to 1100 ° C..
  2. 請求項1において、最外層の被覆となる炭素前駆体には、焼成後に表面に微小突起となるカーボンブラックを加えて被覆層とすることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。 In claim 1, the carbon precursor to be the outermost layer of the coating, producing a negative active material for a lithium ion secondary battery, characterized by the addition of carbon black to be microprojections surface after firing the coating layer Method.
  3. 請求項1または2において、黒鉛粉末が鱗状乃至鱗片状黒鉛であり、この黒鉛粉末と珪素・珪素化合物・珪素合金の1種以上の微粉末、及び焼成時にほぼ消滅する空隙形成剤及びカーボンブラックを加えた混合物を球形に造粒することを特徴とするリチウムイオン二次電池用負極活物質の製造方法。 According to claim 1 or 2, graphite powder scaly or flaky graphite, one or more fine powders of graphite powder and the silicon-silicon compound, silicon alloy, and a pore-former to approximately disappear during firing and carbon black mixture method of preparing a negative active material for a lithium ion secondary battery, characterized by granulating the spherical added.
  4. 請求項1〜3のいずれかにおいて、最外層の被覆となる炭素前駆体が石炭・石油系の非晶質ピッチあるいは晶質ピッチであることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。 In any one of claims 1 to 3, the negative electrode active material for a lithium ion secondary battery, characterized by the carbon precursor to be the outermost layer of the coating is amorphous pitch or amorphous pitch of coal and petroleum Production method.
  5. 請求項1〜4のいずれかにおいて、珪素または珪素化合物もしくは珪素合金の平均粒子径が0.5μm以下で、かつ最大粒子径が1μm以下であることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。 In any one of claims 1 to 4, silicon or silicon compound or an average particle diameter of 0.5μm or less, and negative active for a lithium ion secondary battery, wherein the maximum particle diameter of 1μm or less of silicon alloys method of manufacturing the substance.
  6. 請求項1〜5のいずれかにおいて、焼成によってほぼ消滅する空隙形成剤がポリビニルアルコール、ポリエチレングリコール、ポリカルボシラン、ポリアクリル酸、セルロース系高分子等から選ばれたものであり、焼成得率が20%以下であることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。 In any one of claims 1 to 5, almost vanishing gap former polyvinyl alcohol, polyethylene glycol by firing polycarbosilane, polyacrylic acid, has been chosen from cellulose-based polymers such as firing resulting rate method of preparing a negative active material for a lithium ion secondary battery, characterized by 20% or less.
  7. 請求項1〜6のいずれかにおいて、焼成によってほぼ消滅する空隙形成剤を予め金属珪素微粉末に被覆させて用いることを特徴とするリチウムイオン二次電池用負極活物質の製造方法。 In any one of claims 1 to 6, almost vanishing method of preparing a negative active material for a lithium ion secondary battery is coated in advance metallic silicon fine powder with a pore-former is characterized by using in the firing.
  8. 請求項1〜7のいずれかの方法によって製造されたリチウムイオン二次電池用負極活物質。 Negative active material for a lithium ion secondary battery manufactured by the method of any of claims 1-7.
  9. 請求項8のリチウムイオン二次電池用負極活物質に導電性の調節、電極密度の調節、充放電容量の調節を目的として天然黒鉛、人造黒鉛、更には低結晶炭素の粉末を単独あるいは混合したものを加えたことを特徴とするリチウムイオン二次電池用負極活物質。 Regulation of conductive anode active material for a lithium ion secondary battery according to claim 8, adjustment of electrode density, natural graphite for the purpose of adjusting the charge-discharge capacity, artificial graphite, and further were alone or mixed powder of low crystalline carbon negative active material for a lithium ion secondary battery, characterized by the addition of things.
  10. 請求項8または請求項9のリチウムイオン二次電池用負極活物質を有機バインダーと混合し、銅箔上に塗布、乾燥、プレスして得られる銅箔をのぞいた電極厚が30〜100μm及び電極密度が1.4〜1.8g/cm 3であることを特徴とするリチウムイオン二次電池用負極。 The negative active material for a lithium ion secondary battery according to claim 8 or claim 9 is mixed with an organic binder, coated on a copper foil, dried, pressed electrodes thickness excluding the copper foil obtained is 30~100μm and electrode the negative electrode for a lithium ion secondary battery, wherein the density of 1.4~1.8g / cm 3.
JP2007019738A 2007-01-30 2007-01-30 Method of manufacturing a negative active material for a lithium ion secondary battery, the negative electrode active material and the negative electrode Active JP5143437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019738A JP5143437B2 (en) 2007-01-30 2007-01-30 Method of manufacturing a negative active material for a lithium ion secondary battery, the negative electrode active material and the negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007019738A JP5143437B2 (en) 2007-01-30 2007-01-30 Method of manufacturing a negative active material for a lithium ion secondary battery, the negative electrode active material and the negative electrode

Publications (2)

Publication Number Publication Date
JP2008186732A true JP2008186732A (en) 2008-08-14
JP5143437B2 true JP5143437B2 (en) 2013-02-13

Family

ID=39729623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019738A Active JP5143437B2 (en) 2007-01-30 2007-01-30 Method of manufacturing a negative active material for a lithium ion secondary battery, the negative electrode active material and the negative electrode

Country Status (1)

Country Link
JP (1) JP5143437B2 (en)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
KR101002539B1 (en) * 2008-04-29 2010-12-17 삼성에스디아이 주식회사 Negative electrode active material for lithium rechargeable battery and lithium rechargeable battery comprising the same
CA2735248C (en) * 2008-09-03 2014-03-11 Sumitomo Osaka Cement Co., Ltd. Method for producing electrode material, electrode material, electrode and battery
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
KR101057162B1 (en) * 2008-12-01 2011-08-16 삼성에스디아이 주식회사 Negative electrode active material, a negative electrode and a lithium secondary battery having the same
EP2369659B1 (en) * 2008-12-19 2014-12-17 NEC Energy Devices, Ltd. Negative electrode for nonaqueous electrolyte solution secondary cell and nonaqueous electrolyte solution secondary cell using the same, and method for producing negative electrode for nonaqueous electrolyte solution secondary cell
RU2011131045A (en) * 2008-12-26 2013-02-10 Секисуй Кемикал Ко., Лтд. The process for producing the carbon particles to the electrode, carbon particles for an electrode and a negative electrode material for lithium-ion secondary battery
KR101090598B1 (en) * 2009-03-16 2011-12-08 주식회사 엘지화학 Binder of anode for secondary battery and secondary battery using the same
JP5495887B2 (en) * 2009-04-28 2014-05-21 株式会社デンソー Nonaqueous electrolyte negative electrode and nonaqueous electrolyte batteries battery
KR101093705B1 (en) * 2009-04-29 2011-12-19 삼성에스디아이 주식회사 Rechargeable lithium battery
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
JP5369031B2 (en) * 2009-08-11 2013-12-18 積水化学工業株式会社 Carbon material, the electrode material and a lithium ion secondary battery negative electrode material
JP2011048992A (en) * 2009-08-26 2011-03-10 Sekisui Chem Co Ltd Carbon material, electrode material, and lithium ion secondary battery negative electrode material
JP2011071063A (en) * 2009-09-28 2011-04-07 Iwate Univ Carbon-semimetal oxide composite material, method of manufacturing the same, and negative electrode for lithium ion battery using this
CN102630355A (en) * 2009-11-03 2012-08-08 安维亚系统公司 High capacity anode materials for lithium ion batteries
JP5512355B2 (en) * 2010-03-31 2014-06-04 三洋電機株式会社 Negative electrode active material and a non-aqueous electrolyte secondary battery and a process for their production comprising using the non-aqueous electrolyte secondary battery
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
JP5494343B2 (en) * 2010-08-12 2014-05-14 日立化成株式会社 For lithium secondary battery negative electrode material, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery
JP5494344B2 (en) * 2010-08-12 2014-05-14 日立化成株式会社 For lithium secondary battery negative electrode material, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
KR101126202B1 (en) * 2010-11-04 2012-03-22 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery comprising same
JP5885919B2 (en) * 2010-12-10 2016-03-16 日立化成株式会社 Negative electrode, and a lithium ion secondary battery for a lithium ion secondary battery
JP5881943B2 (en) * 2010-12-10 2016-03-09 日立化成株式会社 Lithium secondary battery
JP5799500B2 (en) * 2010-12-10 2015-10-28 日立化成株式会社 Negative electrode, and a lithium ion secondary battery for a lithium ion secondary battery
EP2639866B1 (en) * 2010-12-21 2017-02-22 LG Chem, Ltd. Anode active material and secondary battery using the same
WO2012105009A1 (en) * 2011-02-02 2012-08-09 トヨタ自動車株式会社 Composite active material, method for manufacturing composite active material, and electric cell
KR101422652B1 (en) 2011-02-15 2014-07-24 주식회사 엘지화학 Process for Preparation of Anode Active Material
KR101182433B1 (en) * 2011-05-11 2012-09-12 삼성에스디아이 주식회사 Negative active material, method for preparing the same, and lithium battery comprising the same
GB2492167B (en) 2011-06-24 2013-12-11 Nexeon Ltd Structured particles
JP5639017B2 (en) * 2011-07-29 2014-12-10 住友ベークライト株式会社 Negative active material for a lithium ion secondary battery, the negative electrode mixture for a lithium ion secondary battery, the negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery
JP5516529B2 (en) * 2011-07-29 2014-06-11 住友ベークライト株式会社 Method for producing a lithium ion secondary battery carbon material for a lithium ion secondary battery carbon material for lithium-ion secondary battery negative electrode mixture, the negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
EP2573845B1 (en) * 2011-09-26 2018-10-31 VARTA Micro Innovation GmbH Structural active material for battery electrodes
JP2013073920A (en) * 2011-09-29 2013-04-22 Sumitomo Bakelite Co Ltd Composition, carbon composite material for lithium ion secondary battery negative electrode material, negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
GB2495951B (en) 2011-10-26 2014-07-16 Nexeon Ltd A composition for a secondary battery cell
JP5899442B2 (en) * 2011-12-28 2016-04-06 パナソニックIpマネジメント株式会社 Negative electrode and a nonaqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery
WO2013114094A1 (en) 2012-01-30 2013-08-08 Nexeon Limited Composition of si/c electro active material
GB2499984B (en) * 2012-02-28 2014-08-06 Nexeon Ltd Composite particles comprising a removable filler
KR101660001B1 (en) * 2012-03-22 2016-09-26 신닛테츠스미킨 카부시키카이샤 Silicon-graphite composite particles and method for manufacturing same
JP5921672B2 (en) * 2012-03-26 2016-05-24 株式会社東芝 Negative active material for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery and a battery pack
GB2502625B (en) 2012-06-06 2015-07-29 Nexeon Ltd Method of forming silicon
US20130344391A1 (en) * 2012-06-18 2013-12-26 Sila Nanotechnologies Inc. Multi-shell structures and fabrication methods for battery active materials with expansion properties
JP5993337B2 (en) * 2012-07-03 2016-09-14 Jfeケミカル株式会社 Anode material and its manufacturing method, and a negative electrode and a lithium ion secondary battery for a lithium ion secondary battery using the same for a lithium ion secondary battery
WO2014046144A1 (en) 2012-09-19 2014-03-27 三菱化学株式会社 Composite graphite particles for non-aqueous secondary cell negative electrode, negative electrode for non-aqueous secondary cell, and non-aqueous secondary cell
GB2507535B (en) 2012-11-02 2015-07-15 Nexeon Ltd Multilayer electrode
JP2014154236A (en) * 2013-02-05 2014-08-25 Seiko Epson Corp Method for manufacturing electrode composite body
JP5827977B2 (en) * 2013-07-30 2015-12-02 住友ベークライト株式会社 Negative active material for a lithium ion secondary battery, the negative electrode mixture for a lithium ion secondary battery, the negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery
EP3032616A4 (en) 2013-08-05 2016-12-21 Showa Denko Kk Method for producing composite, and lithium ion battery negative electrode material
WO2015019994A1 (en) 2013-08-05 2015-02-12 昭和電工株式会社 Negative electrode material for lithium ion batteries and use thereof
JP2015037057A (en) * 2013-08-14 2015-02-23 東ソー株式会社 Composite active material for lithium secondary battery and production method therefor
JP2015060640A (en) * 2013-09-17 2015-03-30 中央電気工業株式会社 Alloy-graphite composite particle and method for producing the same
JP2015060641A (en) * 2013-09-17 2015-03-30 中央電気工業株式会社 Silicon oxide-graphite composite particle and method for producing the same
JP2015069762A (en) * 2013-09-27 2015-04-13 三菱化学株式会社 Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery using the same, and nonaqueous secondary battery
JP2015079621A (en) * 2013-10-16 2015-04-23 三菱化学株式会社 Composite graphite particle for nonaqueous secondary battery negative electrodes, negative electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
CN103560247B (en) * 2013-11-08 2017-02-01 深圳市贝特瑞新能源材料股份有限公司 A vehicle-mounted and the storage method of preparing a negative electrode material and a lithium ion battery
JPWO2015080203A1 (en) 2013-11-27 2017-03-16 三菱化学株式会社 Nonaqueous secondary battery negative electrode carbon material, a negative electrode for a nonaqueous secondary battery and the nonaqueous secondary battery
JP6301142B2 (en) * 2014-01-31 2018-03-28 信越化学工業株式会社 Preparation and a non-aqueous electrolyte secondary battery of the nonaqueous electrolyte secondary battery negative electrode material and a non-aqueous electrolyte secondary battery negative electrode material
DE102014202156A1 (en) * 2014-02-06 2015-08-06 Wacker Chemie Ag Si / G / C composites for lithium-ion batteries
CN106133962A (en) 2014-03-26 2016-11-16 三菱化学株式会社 Composite graphite particles for nonaqueous secondary battery negative electrodes, active material for nonaqueous secondary battery negative electrodes and nonaqueous secondary battery
WO2015162848A1 (en) * 2014-04-21 2015-10-29 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, process for producing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20160008041A (en) * 2014-07-11 2016-01-21 오씨아이 주식회사 Anode active material for lithium secondary battery and manufacturing mehtod of the same
JP6020533B2 (en) * 2014-10-29 2016-11-02 日立化成株式会社 Lithium ion secondary battery
JP2018041529A (en) * 2015-01-29 2018-03-15 三洋電機株式会社 Discharge controller of nonaqueous electrolyte secondary battery, and method therefor
JP2015165510A (en) * 2015-05-18 2015-09-17 日立化成株式会社 Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US20180301695A1 (en) * 2016-10-19 2018-10-18 Tec One Co., Ltd. Carbon-silicon composite material, negative electrode, secondary battery, and carbon-silicon composite material producing method
JP6283800B1 (en) * 2017-07-05 2018-02-28 テックワン株式会社 Carbon - silicon composite material, a negative electrode, a secondary battery, a carbon - silicon composite material manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897709B2 (en) * 2002-02-07 2007-03-28 日立マクセル株式会社 Electrode material and a method for producing the same, and a negative electrode for a nonaqueous secondary battery and the nonaqueous secondary battery
JP4040381B2 (en) * 2002-07-30 2008-01-30 Jfeケミカル株式会社 Composite graphite particles and a method for manufacturing the same, and a negative electrode and a lithium ion secondary battery for a lithium ion secondary battery
JP4686974B2 (en) * 2002-12-17 2011-05-25 三菱化学株式会社 Negative electrode and nonaqueous electrolyte secondary battery using the same for a non-aqueous electrolyte secondary battery
JP4623940B2 (en) * 2003-06-02 2011-02-02 Necエナジーデバイス株式会社 Anode material and secondary battery using the same
JP3957692B2 (en) * 2004-02-27 2007-08-15 Jfeケミカル株式会社 A lithium ion secondary battery negative electrode material for a composite graphite particle, a negative electrode and a lithium ion secondary battery
JP5158460B2 (en) * 2005-02-21 2013-03-06 日本カーボン株式会社 Lithium ion secondary batteries for silicon added graphite negative electrode material and production method

Also Published As

Publication number Publication date Type
JP2008186732A (en) 2008-08-14 application

Similar Documents

Publication Publication Date Title
JP2004127913A (en) Lithium secondary battery
JP2010092649A (en) Anode active material for lithium-ion secondary battery and anode
JP2005019399A (en) Negative pole material for lithium ion secondary battery and its producing method, negative pole for lithium ion secondary battery and lithium ion secondary battery
JP2002216751A (en) Composite material for lithium secondary battery negative electrode and lithium secondary battery
JP2000323123A (en) Positive electrode active material and positive electrode for non-aqueous secondary battery
JP2006032241A (en) Positive electrode material for lithium ion secondary cell, its manufacturing method, and lithium ion secondary cell
JP2003168429A (en) Nonaqueous electrolyte secondary battery
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JPH11265716A (en) Negative electrode active material for lithium secondary battery and its manufacture
JP2006228640A (en) Silicon-added graphite cathode material for lithium-ion secondary battery, and manufacturing method
JP2010095432A (en) Multi-element phosphate type lithium compound particle having olivine structure, method for producing the same and lithium secondary battery using the same for positive electrode material
JP2012178344A (en) Compound material and method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2003223892A (en) Lithium secondary battery and method for manufacturing negative electrode material therefor
JP2008112710A (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery
EP1361194A1 (en) Artificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery
JP2001068096A (en) Negative electrode for nonaqueous electrolyte secondary battery, manufacture thereof and nonaqueous electrolyte secondary battery
JP2012043547A (en) Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2010251314A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2008186732A (en) Negative electrode active material for lithium secondary battery, negative electrode using the same, and manufacturing method
JP2006324237A (en) Negative electrode material for lithium-ion secondary battery, its manufacturing method, negative electrode for lithium-ion secondary battery using the material, and lithium-ion secondary battery
JP2011003332A (en) Graphite negative electrode material, its manufacturing method, negative electrode for lithium secondary battery using it, and lithium secondary battery
JP2004185984A (en) Negative electrode material for lithium secondary battery, and lithium secondary battery using it
JP2012033375A (en) Carbon material for nonaqueous secondary battery
JP2009117334A (en) Carbon-covered graphite anode material for lithium-ion secondary battery, its manufacturing method, and anode for lithium-ion secondary battery and lithium-ion secondary battery using the anode
JP2012043546A (en) Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250