JP7293645B2 - Composite active material for lithium secondary battery and manufacturing method thereof - Google Patents

Composite active material for lithium secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP7293645B2
JP7293645B2 JP2018239091A JP2018239091A JP7293645B2 JP 7293645 B2 JP7293645 B2 JP 7293645B2 JP 2018239091 A JP2018239091 A JP 2018239091A JP 2018239091 A JP2018239091 A JP 2018239091A JP 7293645 B2 JP7293645 B2 JP 7293645B2
Authority
JP
Japan
Prior art keywords
lithium secondary
active material
secondary battery
composite active
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018239091A
Other languages
Japanese (ja)
Other versions
JP2020068191A (en
Inventor
昌則 阿部
俊輝 岩嶋
太地 荒川
雄斗 石塚
日出彦 三崎
徹 津吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JP2020068191A publication Critical patent/JP2020068191A/en
Priority to JP2022172152A priority Critical patent/JP7452599B2/en
Application granted granted Critical
Publication of JP7293645B2 publication Critical patent/JP7293645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、リチウム二次電池用複合活物質およびその製造方法に関するものである。 TECHNICAL FIELD The present invention relates to a composite active material for lithium secondary batteries and a method for producing the same.

電子材料の小型軽量化、および、HEVまたはEVの開発の進展に伴い、大容量、高速充放電特性、良好なサイクル特性、かつ安全性に優れた電池の開発に対する要望は益々増大している。なかでも、リチウム二次電池が最も有望な電池として注目されている。しかしながら、優れた性能を示すリチウム二次電池が開発される前提として、各種性能に優れた負極材料、正極材料、電解液、セパレ-タ、または集電体などの材料の開発、且つ、それら材料の特性を十分に生した電池設計がなされなくてはならない。 As electronic materials become smaller and lighter, and development of HEVs or EVs progresses, there is an increasing demand for the development of batteries with large capacity, high-speed charge/discharge characteristics, good cycle characteristics, and excellent safety. Among them, the lithium secondary battery is attracting attention as the most promising battery. However, as a premise for the development of lithium secondary batteries exhibiting excellent performance, the development of materials such as negative electrode materials, positive electrode materials, electrolytic solutions, separators, or current collectors that are excellent in various performances, and those materials A battery design that fully produces these characteristics must be made.

これら材料のなかでも、負極材料は基本的な電池特性を決定するものである。そのため、充放電容量などの特性がより優れる材料の開発が活発に行われている。特許文献1では、大充放電容量、高速充放電特性、および良好なサイクル特性を併せ持ったリチウム二次電池の作製が可能なリチウム二次電池用複合活物質、並びに、その製造方法が開示されている。同様に、金属元素を添加することで、タ-ルピッチやエチレンガス由来の炭素質を含ませたリチウム二次電池用複合活物質が高い充放電容量を有することが開示されている(特許文献2、3参照)。 Among these materials, the negative electrode material determines the basic battery characteristics. Therefore, development of materials with better characteristics such as charge/discharge capacity is being actively carried out. Patent Document 1 discloses a composite active material for a lithium secondary battery capable of producing a lithium secondary battery having a large charge/discharge capacity, high-speed charge/discharge characteristics, and good cycle characteristics, and a method for producing the same. there is Similarly, by adding a metal element, it is disclosed that a composite active material for a lithium secondary battery containing carbonaceous matter derived from tar pitch or ethylene gas has a high charge-discharge capacity (Patent Document 2). , 3).

これらのリチウム二次電池用複合活物質は、充放電容量などの特性が優れる。しかしながら、初回の充電時にリチウム二次電池用複合活物質が大きく膨張してしまい、実際の使用の際に大きな問題がある。また、これらのリチウム二次電池用複合活物質は容量維持率は従来の報告に比べると高いが、昨今求められている特性には及んでいない。 These composite active materials for lithium secondary batteries are excellent in characteristics such as charge/discharge capacity. However, the composite active material for lithium secondary batteries expands greatly during the first charge, which poses a serious problem in actual use. In addition, although these composite active materials for lithium secondary batteries have higher capacity retention rates than those reported in the past, they do not reach the properties that are required these days.

充電時のリチウム二次電池用複合活物質の膨張を抑えるために、一つのカ-ボン/シリコン粒子内に適当な空隙を設けることで、充電時の膨張を抑制しようとする試みがなされている。(非特許文献1参照)。 In order to suppress the expansion of the composite active material for lithium secondary batteries during charging, an attempt has been made to suppress the expansion during charging by providing appropriate voids within each carbon/silicon particle. . (See Non-Patent Document 1).

しかしながら、これらの方法で得られるリチウム二次電池用複合活物質は、空隙周囲に非晶質炭素がネットワ-ク状に分布しているため、初回充放電効率が低下する問題がある。また、これらのリチウム二次電池用複合活物質は初回体積放電容量も低く、近年求められている特性には及んでいない。 However, the composite active material for lithium secondary batteries obtained by these methods has a problem that the initial charge/discharge efficiency is lowered because the amorphous carbon is distributed around the voids in a network-like manner. In addition, these composite active materials for lithium secondary batteries have a low initial volumetric discharge capacity, and do not meet the characteristics required in recent years.

特許第5227483号公報Japanese Patent No. 5227483 特許第3289231号公報Japanese Patent No. 3289231 特許第4281099号公報Japanese Patent No. 4281099

N Liu et al.,Nano Lett.,2012,12,3315-3321N Liu et al. , Nano Lett. , 2012, 12, 3315-3321

一方、近年、電池の使用安全性の点から、初回体積放電容量が高いことや、充放電を繰り返した後においても電極材料の体積が膨張しないことが求められている。電極材料の放電容量が低いとスマ-トフォンや電気自動車で使用する際に、たびたび充電する必要がある。また、電極材料の体積膨張が大きいと、電解液の液漏れの発生や、電池の寿命の低下が起きる。また、近年、電極材料に対する要求特性が非常に高まってきており、サイクル特性に対する要求水準もより一層高まっている。 On the other hand, in recent years, from the viewpoint of safety in use of batteries, it is required that the initial volumetric discharge capacity is high and that the volume of the electrode material does not expand even after repeated charging and discharging. If the discharge capacity of the electrode material is low, it will need to be charged frequently when used in smartphones or electric vehicles. In addition, when the volume expansion of the electrode material is large, leakage of the electrolyte occurs and battery life is shortened. Moreover, in recent years, the required properties of electrode materials have increased significantly, and the required level of cycle properties has also increased.

本発明は、上記実情に鑑みて、初回充電時に体積膨張が抑制された電極材料であり、かつ、優れたサイクル特性を示すリチウム二次電池用複合活物質およびその製造方法を提供することを課題とする。 In view of the above circumstances, an object of the present invention is to provide a composite active material for a lithium secondary battery, which is an electrode material whose volume expansion is suppressed during the initial charge and which exhibits excellent cycle characteristics, and a method for producing the same. and

本発明者らは、従来技術について鋭意検討を行った結果、以下の構成によって上記課題を解決できることを見出した。
(1)
SiまたはSi合金及び結晶性炭素を含むリチウム二次電池用複合活物質であって、該SiまたはSi合金の周囲に空隙を有する構造を有し、該リチウム二次電池の充放電試験における最大放電容量と比較した20回充放電した後の放電容量が70.0%以上であることを特徴とするリチウム二次電池用複合活物質。
(2)
該リチウム二次電池用複合活物質を負極活物質とするリチウム二次電池の充放電試験における初回体積放電容量が640mAh/cc以上である(1)に記載のリチウム二次電池用複合活物質。
(3)
該リチウム二次電池用複合活物質を負極活物質とするリチウム二次電池の充放電試験における初回充放電効率が66.0%以上である(1)又は(2)に記載のリチウム二次電池用複合活物質。
(4)
該リチウム二次電池用複合活物質を負極活物質とするリチウム二次電池の充放電試験における初回充電膨張率が165%以下である(1)~(3)のいずれかに記載のリチウム二次電池用複合活物質。
(5)
前記SiまたはSi合金が結晶性炭素間に存在し、かつSEM像観察により計測された前記リチウム二次電池用複合活物質中の空隙体積が該リチウム二次電池用複合活物質全体の体積の2%~90%である(1)~(4)のいずれかに記載のリチウム二次電池用複合活物質。
(6)
さらに、非晶性炭素を含む(1)~(5)のいずれかに記載のリチウム二次電池用複合活物質。
(7)
リチウム二次電池用複合活物質中のSiまたはSi合金の体積に対する、SEM像観察により計測されたリチウム二次電池用複合活物質中の空隙体積の比が0.5~200である(1)~(6)のいずれかに記載のリチウム二次電池用複合活物質。
(8)
前記SiまたはSi合金の粒径(D50)が0.01~5μmである(1)~(7)のいずれかに記載のリチウム二次電池用複合活物質。
(9)
前記SiまたはSi合金が、0.5μm以下の厚みの結晶性炭素層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、該結晶性炭素層がリチウム二次電池用複合活物質粒子の表面付近で湾曲してリチウム二次電池用複合活物質粒子を覆っている(1)~(8)のいずれかに記載のリチウム二次電池用複合活物質。
(10)
該結晶性炭素は、ICP発光分光分析法による26元素(Al、Ca、Cr、Fe、K、Mg、Mn、Na、Ni、V、Zn、Zr、Ag、As、Ba、Be、Cd、Co、Cu、Mo、Pb、Sb、Se、Th、Tl、U)の不純物半定量値より求めた純度が99重量%以上で、酸素フラスコ燃焼法によるイオンクロマトグラフィ-(IC)測定法によるS量が1重量%以下、及び/又はBET比表面積100m/g以下である(1)~(9)のいずれかに記載のリチウム二次電池用複合活物質。
(11)
前記SiまたはSi合金に、必要に応じて表面修飾剤で修飾後に、高分子モノマ-と開始剤と必要に応じて分散剤を加え、SiまたはSi合金に高分子膜を被覆した後に、黒鉛と必要に応じて炭素化合物を混合する工程と、造粒・圧密化する工程と、混合物を粉砕および球形化処理して略球状の複合粒子を形成する工程と、該複合粒子を不活性雰囲気中で焼成する工程と、必要に応じて炭素化合物と該複合粒子もしくは該焼成粒子とを混合する工程とその混合物を不活性雰囲気中で加熱する工程を含む(1)~(10)のいずれかに記載のリチウム二次電池用複合活物質の製造方法。
(12)
表面修飾剤として酸化剤もしくは分子内に金属アルコキシド基、カルボキシル基、又は水酸基を含む修飾剤を用いる(11)に記載のリチウム二次電池用複合活物質の製造方法。
(13)
高分子モノマ-がスチレン、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸sec-ブチル、メタクリル酸イソブチル、メタクリル酸tert-ブチル、メタクリル酸2-エチルへキシル、メタクリル酸イソボニル、メタクリル酸ベンジル、メタクリル酸2-ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ヒドロキシブチル、メタクリル酸トリエチレングリコ-ルなどのメチルメタクリル酸系、イタコン酸無水物、イタコン酸、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸sec-ブチル、アクリル酸イソブチル、アクリル酸tert-ブチル、アクリル酸2-エチルへキシル、アクリル酸イソボルニル、アクリル酸ベンジル、アクリル酸フェニル、アクリル酸グリシジル、アクリル酸2-ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸ヒドロキシブチルなどのアクリル酸系、メタクリルアミド、N-メチルアクリルアミド、N、N‘-ジメチルアクリルアミド、N-tert-ブチルメタクリルアミド、N-n-ブチルメタクリルアミド、N-メチロ-ルメタクリルアミド、N-エチロ-ルメタクリルアミドなどのメタクリルアミド系、N,N’-メチレンビスアクリルアミド、N-イソプロピルアクリルアミド、N-tert-ブチルアクリルアミド、N-n-ブチルアクリルアミド、N-メチロ-ルアクリルアミド、N-エチロ-ルアクリルアミドなどのアクリルアミド系、安息香酸ビニル、ジエチルアミノスチレン、ジエチルアミノアルファ-メチルスチレン、p-ビニルベンゼンスルホン酸、p-ビニルベンゼンスルホン酸ナトリウム塩、ジビニルベンゼン、酢酸ビニル、酢酸ブチル、塩化ビニル、フッ化ビニル、臭化ビニル、無水マレイン酸、N-フェニルマレイミド、N-ブチルマレイミド、N-ビニルピロリドン、N-ビニルカルバゾ-ル、アクリロニトリル、アニリン、ピロ-ル、ウレタン重合に用いられるポリオ-ル系又はイソシアネ-ト系である(11)又は(12)に記載のリチウム二次電池用複合活物質の製造方法。
As a result of earnestly examining the prior art, the inventors have found that the above problems can be solved by the following configuration.
(1)
A composite active material for a lithium secondary battery containing Si or a Si alloy and crystalline carbon, having a structure having voids around the Si or Si alloy, and having a maximum discharge in a charge/discharge test of the lithium secondary battery. A composite active material for a lithium secondary battery, wherein the discharge capacity after 20 charge/discharge cycles is 70.0% or more of the capacity.
(2)
The composite active material for a lithium secondary battery according to (1), which has an initial volume discharge capacity of 640 mAh/cc or more in a charge/discharge test of a lithium secondary battery using the composite active material for a lithium secondary battery as a negative electrode active material.
(3)
The lithium secondary battery according to (1) or (2), which has an initial charge/discharge efficiency of 66.0% or more in a charge/discharge test of the lithium secondary battery using the composite active material for a lithium secondary battery as a negative electrode active material. for composite active materials.
(4)
The lithium secondary according to any one of (1) to (3), which has an initial charge expansion rate of 165% or less in a charge/discharge test of a lithium secondary battery using the composite active material for lithium secondary batteries as a negative electrode active material. Composite active material for batteries.
(5)
The Si or Si alloy exists between crystalline carbons, and the void volume in the composite active material for lithium secondary batteries measured by SEM image observation is 2 of the volume of the entire composite active material for lithium secondary batteries. % to 90%, the composite active material for a lithium secondary battery according to any one of (1) to (4).
(6)
The composite active material for lithium secondary batteries according to any one of (1) to (5), further comprising amorphous carbon.
(7)
The ratio of the pore volume in the composite active material for lithium secondary batteries measured by SEM image observation to the volume of Si or Si alloy in the composite active material for lithium secondary batteries is 0.5 to 200 (1) The composite active material for a lithium secondary battery according to any one of (6).
(8)
The composite active material for a lithium secondary battery according to any one of (1) to (7), wherein the Si or Si alloy has a particle size (D50) of 0.01 to 5 μm.
(9)
The Si or Si alloy has a structure sandwiched between crystalline carbon layers having a thickness of 0.5 μm or less, the structure spreads in a lamination and/or network shape, and the crystalline carbon layer is a lithium secondary The composite active material for lithium secondary batteries according to any one of (1) to (8), which is curved near the surface of the composite active material particles for batteries to cover the composite active material particles for lithium secondary batteries.
(10)
The crystalline carbon contains 26 elements (Al, Ca, Cr, Fe, K, Mg, Mn, Na, Ni, V, Zn, Zr, Ag, As, Ba, Be, Cd, Co , Cu, Mo, Pb, Sb, Se, Th, Tl, U) has a purity of 99% by weight or more as determined by semi-quantitative values of impurities, and an ion chromatography (IC) measurement method using an oxygen flask combustion method. The composite active material for lithium secondary batteries according to any one of (1) to (9), which has a BET specific surface area of 1% by weight or less and/or a BET specific surface area of 100 m 2 /g or less.
(11)
After modifying the Si or Si alloy with a surface modifier as necessary, a polymer monomer, an initiator and, if necessary, a dispersant are added, and after coating the Si or Si alloy with a polymer film, graphite and A step of mixing a carbon compound as necessary, a step of granulating and consolidating, a step of pulverizing and spheroidizing the mixture to form substantially spherical composite particles, and forming the composite particles in an inert atmosphere. The method according to any one of (1) to (10), which includes a step of firing, a step of mixing the carbon compound and the composite particles or the fired particles as necessary, and a step of heating the mixture in an inert atmosphere. and a method for producing a composite active material for a lithium secondary battery.
(12)
The method for producing a composite active material for lithium secondary batteries according to (11), wherein an oxidizing agent or a modifier containing a metal alkoxide group, a carboxyl group, or a hydroxyl group in the molecule is used as the surface modifier.
(13)
Polymeric monomers include styrene, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, Methyl methacrylates such as 2-ethylhexyl methacrylate, isobornyl methacrylate, benzyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, triethylene glycol methacrylate, itaconic anhydride substance, itaconic acid, acrylic acid, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, sec-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, acrylic acid Acrylic acids such as 2-ethylhexyl, isobornyl acrylate, benzyl acrylate, phenyl acrylate, glycidyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, methacrylamide, N-methyl Methacrylamides such as acrylamide, N,N'-dimethylacrylamide, N-tert-butylmethacrylamide, Nn-butylmethacrylamide, N-methylolmethacrylamide, N-ethylolmethacrylamide, N,N Acrylamides such as '-methylenebisacrylamide, N-isopropylacrylamide, N-tert-butylacrylamide, Nn-butylacrylamide, N-methylolacrylamide, N-ethylolacrylamide, vinyl benzoate, diethylaminostyrene, Diethylamino alpha-methylstyrene, p-vinylbenzenesulfonic acid, p-vinylbenzenesulfonic acid sodium salt, divinylbenzene, vinyl acetate, butyl acetate, vinyl chloride, vinyl fluoride, vinyl bromide, maleic anhydride, N-phenylmaleimide , N-butylmaleimide, N-vinylpyrrolidone, N-vinylcarbazole, acrylonitrile, aniline, pyrrole, polyol or isocyanate used in urethane polymerization (11) or (12) and a method for producing a composite active material for a lithium secondary battery.

本発明によれば、初回の充電後の体積膨張が抑制された電極材料の作製が可能で、かつ、優れたサイクル特性を示すリチウム二次電池の作製が可能なリチウム二次電池用複合活物質およびその製造方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a composite active material for a lithium secondary battery is capable of producing an electrode material with suppressed volume expansion after the first charge, and of producing a lithium secondary battery exhibiting excellent cycle characteristics. and a method for producing the same.

また、本発明によれば、上記リチウム二次電池用複合活物質を含むリチウム二次電池を提供することもできる。 Further, according to the present invention, it is possible to provide a lithium secondary battery containing the composite active material for a lithium secondary battery.

以下に、本発明のリチウム二次電池用複合活物質およびその製造方法について、本発明の一例を示しながら詳述する。 Hereinafter, the composite active material for lithium secondary batteries and the method for producing the same of the present invention will be described in detail while showing an example of the present invention.

本発明のリチウム二次電池用複合活物質は、SiまたはSi合金及び結晶性炭素を含むリチウム二次電池用複合活物質であって、該SiまたはSi合金の周囲に空隙を有する構造を有し、該リチウム二次電池用複合活物質を負極活物質とするリチウム二次電池の充放電試験における最大放電容量と比較した20回充放電した時の放電容量が70.0%以上であることを特徴とするリチウム二次電池用複合活物質である。 A composite active material for a lithium secondary battery of the present invention is a composite active material for a lithium secondary battery containing Si or a Si alloy and crystalline carbon, and has a structure having voids around the Si or Si alloy. and that the discharge capacity after 20 charge/discharge cycles is 70.0% or more compared to the maximum discharge capacity in a charge/discharge test of a lithium secondary battery using the composite active material for lithium secondary batteries as a negative electrode active material. It is a composite active material for lithium secondary batteries characterized by:

本発明のリチウム二次電池用複合活物質は、SiまたはSi合金と結晶性炭素とを含む。図1で示すように、SiまたはSi合金は結晶性炭素間に存在、これによりSiまたはSi合金の周囲に空隙を有する構造を有する。このような構造を有するリチウム二次電池用複合活物質をリチウム二次電池の負極活物質として用いることにより、高い初回体積放電容量、更には高い初回充放電効率と高い初回体積放電容量を有するリチウム二次電池が得られる。加えて、複合活物質の膨張が抑制されることにより、該リチウム二次電池は優れたサイクル特性を有する。 A composite active material for a lithium secondary battery of the present invention contains Si or a Si alloy and crystalline carbon. As shown in FIG. 1, Si or a Si alloy exists between crystalline carbon atoms, thereby having a structure with voids around the Si or Si alloy. By using the composite active material for a lithium secondary battery having such a structure as a negative electrode active material of a lithium secondary battery, lithium having a high initial volumetric discharge capacity, a high initial charge/discharge efficiency, and a high initial volumetric discharge capacity can be obtained. A secondary battery is obtained. In addition, by suppressing the expansion of the composite active material, the lithium secondary battery has excellent cycle characteristics.

本発明のリチウム二次電池用複合活物質は、該リチウム二次電池用複合活物質を負極活物質とするリチウム二次電池の充放電試験における最大放電容量と比較した20回充放電した後の放電容量(以下、「20サイクル後の容量維持率」ともいう。)が70.0%以上であり、好ましくは93.2%以上、さらに好ましくは97.3%以上、特に好ましくは99.0%以上である。 The composite active material for lithium secondary batteries of the present invention is compared with the maximum discharge capacity in a charge-discharge test of a lithium secondary battery using the composite active material for lithium secondary batteries as a negative electrode active material. Discharge capacity (hereinafter also referred to as "capacity retention rate after 20 cycles") is 70.0% or more, preferably 93.2% or more, more preferably 97.3% or more, and particularly preferably 99.0%. % or more.

20サイクル後の容量維持率は以下の式から求めることができる。 The capacity retention rate after 20 cycles can be obtained from the following formula.

20サイクル後の容量維持率(%)=20サイクル後の放電容量(mAh/g)
/最大放電容量(mAh/g)×100
最大放電容量とは、本発明のリチウム二次電池用複合活物質を負極活物質とするリチウム二次電池の充放電試験において、1~20回目の放電時の負極活物質の単位重量当たりの放電容量の最大値である。
Capacity retention rate after 20 cycles (%) = Discharge capacity after 20 cycles (mAh/g)
/ maximum discharge capacity (mAh / g) × 100
The maximum discharge capacity is the discharge per unit weight of the negative electrode active material during the 1st to 20th discharges in a charge/discharge test of a lithium secondary battery using the composite active material for lithium secondary batteries of the present invention as a negative electrode active material. Maximum capacity.

初回体積放電容量は以下の式から求めることができる。 The initial volumetric discharge capacity can be obtained from the following formula.

初回体積放電容量(mAh/cc)=初回充電容量(mAh/g)
×充電前電極密度(g/cc)÷初回充電膨張率(%)×初回充放電効率(%)
初回充電容量は、充放電試験における1回目の充電時の負極活物質の単位重量当たりの放電容量である。
Initial volume discharge capacity (mAh/cc) = Initial charge capacity (mAh/g)
× electrode density before charging (g / cc) ÷ initial charge expansion rate (%) × initial charge / discharge efficiency (%)
The initial charge capacity is the discharge capacity per unit weight of the negative electrode active material during the first charge in the charge/discharge test.

充電前電極密度は、充電前の負極の単位体積当たりの負極活物質の含有量であり、以下の式から求めることができる。 The electrode density before charging is the content of the negative electrode active material per unit volume of the negative electrode before charging, and can be obtained from the following formula.

電極密度(g/cc)=(リチウム二次電池負極の重量-電極基材の重量)
/((リチウム二次電池負極の厚み-電極基材の厚み)×電極面積)
初回充電膨張率は、本発明のリチウム二次電池用複合活物質を負極活物質とするリチウム二次電池の充放電試験における初回充電膨張率、すなわち充電前のリチウム二次電池負極の電極膜厚に対する、充放電試験における1回目の充電後のリチウム二次電池負極の電極膜厚であり、以下の式から求めることができる。
Electrode density (g/cc) = (weight of lithium secondary battery negative electrode - weight of electrode substrate)
/ ((thickness of lithium secondary battery negative electrode - thickness of electrode base material) x electrode area)
The initial charge expansion rate is the initial charge expansion rate in a charge and discharge test of a lithium secondary battery using the composite active material for lithium secondary batteries of the present invention as a negative electrode active material, that is, the electrode film thickness of the lithium secondary battery negative electrode before charging. , is the electrode film thickness of the lithium secondary battery negative electrode after the first charge in the charge-discharge test, and can be obtained from the following formula.

初回充電膨張率(%)=充電後電極膜厚/充電前電極膜厚×100
電極膜厚は、リチウム二次電池用負極の電極厚みであり、これはマイクロメ-タ-を用い測定することができる。充電後電極膜厚及び充電前電極膜厚は、それぞれ、初回充電後及び電極作製時の電極膜厚である。
Initial charging expansion rate (%) = electrode film thickness after charging/electrode film thickness before charging x 100
The electrode film thickness is the electrode thickness of the negative electrode for a lithium secondary battery, and can be measured using a micrometer. The electrode film thickness after charging and the electrode film thickness before charging are the electrode film thicknesses after the initial charging and at the time of electrode preparation, respectively.

初回充放電効率は、本発明のリチウム二次電池用複合活物質を負極活物質とするリチウム二次電池の充放電試験における初回充放電効率、すなわち充放電試験における1回目の充放電した際の、充電時の負極の単位重量当たりの充電容量に対する、放電時の負極の単位重量当たりの放電容量の割合であり、以下の式から求めることができる。 The initial charge/discharge efficiency is the initial charge/discharge efficiency in a charge/discharge test of a lithium secondary battery using the composite active material for lithium secondary batteries of the present invention as a negative electrode active material, that is, the first charge/discharge in the charge/discharge test. , is the ratio of the discharge capacity per unit weight of the negative electrode during discharge to the charge capacity per unit weight of the negative electrode during charge, and can be obtained from the following equation.

初回充放電効率(%)=初回放電容量(mAh/g)
/初回充電容量(mAh/g)×100
初回体積放電容量は640mAh/cc以上であることが好ましく、より好ましくは672mAh/cc以上、さらに好ましくは750mAh/cc以上、特に好ましく800mAh/cc以上、最も好ましくは863mAh/cc以上である。なお、初回体積放電容量の上限は好ましくは1500mAh/cc以下である。
Initial charge/discharge efficiency (%) = Initial discharge capacity (mAh/g)
/ Initial charge capacity (mAh / g) × 100
The initial volume discharge capacity is preferably 640 mAh/cc or more, more preferably 672 mAh/cc or more, still more preferably 750 mAh/cc or more, particularly preferably 800 mAh/cc or more, most preferably 863 mAh/cc or more. The upper limit of the initial volume discharge capacity is preferably 1500 mAh/cc or less.

初回充放電効率は66.0%以上であることが好ましく、より好ましくは71.1%以上、特に好ましく81.0%以上、最も好ましくは82.4%以上である。 The initial charge/discharge efficiency is preferably 66.0% or higher, more preferably 71.1% or higher, particularly preferably 81.0% or higher, and most preferably 82.4% or higher.

初回充電膨張率は165%以下であることが好ましく、より好ましくは150%以下、特に好ましくは140%以下、最も好ましく126%以下である。 The initial charge expansion rate is preferably 165% or less, more preferably 150% or less, particularly preferably 140% or less, and most preferably 126% or less.

ここで、20サイクル後の容量維持率、初回体積放電容量、初回充放電効率及び初回充電時膨張率の評価における充放電試験として、以下の充放電条件を用いた充放電試験が挙げられる。 Here, as a charge/discharge test for evaluating the capacity retention rate after 20 cycles, the initial volumetric discharge capacity, the initial charge/discharge efficiency, and the expansion coefficient during the initial charge, a charge/discharge test using the following charge/discharge conditions can be mentioned.

充電は、測定温度25±2℃で、初期電圧から0.005Vまでは0.5mAで定電流充電した後、電流値が0.03mAになるまで電圧0.005Vで定電圧充電することである。 Charging is performed at a measurement temperature of 25±2° C., constant current charging at 0.5 mA from the initial voltage to 0.005 V, and then constant voltage charging at a voltage of 0.005 V until the current value reaches 0.03 mA. .

放電は、測定温度25±2℃で、0.005Vから1.5Vの電圧範囲で0.5mAで定電流放電することである。 Discharge is constant current discharge at 0.5 mA in a voltage range of 0.005V to 1.5V at a measurement temperature of 25±2°C.

当該充放電試験に供する、本発明のリチウム二次電池用複合活物質を負極活物質とするリチウム二次電池は、以下の構成を有するリチウム二次電池であることが挙げられる。 A lithium secondary battery using the composite active material for a lithium secondary battery of the present invention as a negative electrode active material, which is subjected to the charge/discharge test, may be a lithium secondary battery having the following configuration.

初回充電膨張率及び初回充放電効率の評価におけるリチウム二次電池は、負極、対極、ガラスフィルタ-、ポリプロピレンセパレ-タ及び電解液を備えたスクリュ-セル型のリチウム二次電池(以下、「評価用スクリュ-セル」ともいう。)である。評価スクリュ-セルは、負極、ポリプロピレンセパレ-タ、ガラスフィルタ-及び対極を、それぞれ、電解液で湿潤させた後、負極、ポリプロピレンセパレ-タ、ガラスフィルタ-及び対極の順番で評価用スクリュ-セル中に充填し、これをトルク0.9N/cmでスクリュ-セルの蓋で固定することで作製することが好ましい。対極として、厚み0.6mmtのリチウム箔を用いることが好ましい。 The lithium secondary battery in the evaluation of the initial charge expansion rate and the initial charge / discharge efficiency is a screw-cell type lithium secondary battery equipped with a negative electrode, a counter electrode, a glass filter, a polypropylene separator and an electrolyte (hereinafter referred to as "evaluation It is also called “screw cell for use”). In the evaluation screw cell, the negative electrode, the polypropylene separator, the glass filter and the counter electrode were each moistened with the electrolytic solution, and then the evaluation screw cell was prepared in the order of the negative electrode, the polypropylene separator, the glass filter and the counter electrode. It is preferably prepared by filling the inside and fixing it with a screw-cell lid with a torque of 0.9 N/cm 2 . A lithium foil having a thickness of 0.6 mm is preferably used as the counter electrode.

20サイクル後の容量維持率の評価におけるリチウム二次電池は、負極、対極、セパレ-タ及び電解液を備えたCR2032型コインセル型のリチウム二次電池(以下、「評価用コインセル」ともいう。)である。評価用コインセルは、負極、ガラスフィルタ-及び対極を、それぞれ、電解液で湿潤させた後、負極、ガラスフィルタ-及び対極の順番で評価用コインセル中に充填し、これにコインセルの上蓋を嵌合することで作製することが好ましい。 The lithium secondary battery in the evaluation of the capacity retention rate after 20 cycles was a CR2032 type coin cell type lithium secondary battery equipped with a negative electrode, a counter electrode, a separator and an electrolytic solution (hereinafter also referred to as "evaluation coin cell"). is. In the evaluation coin cell, the negative electrode, the glass filter, and the counter electrode were each moistened with an electrolytic solution, and then the negative electrode, the glass filter, and the counter electrode were filled in the evaluation coin cell in that order, and the coin cell top lid was fitted. It is preferable to prepare by

評価用スクリュ-セル及び評価用コインセルにおいて、負極は本発明のリチウム二次電池用複合活物質を負極活物質とする負極であり、対極はステンレス箔に圧着された金属リチウムである。電解液は溶媒及び電解質塩を含み、溶媒はフルオロエチレンカ-ボネ-トを2体積%含有するエチレンカ-ボネ-ト(EC)とジエチルカ-ボネ-ト(DEC)の混合溶媒(EC/DEC=1/1:体積比)であり、電解質は六フッ化リン酸リチウム(LiPF)である。電解液中のLiPF含有量は1.2モル/リットルであることが好ましい。 In the screw cell for evaluation and the coin cell for evaluation, the negative electrode is a negative electrode using the composite active material for a lithium secondary battery of the present invention as a negative electrode active material, and the counter electrode is metallic lithium crimped to a stainless steel foil. The electrolytic solution contains a solvent and an electrolyte salt, and the solvent is a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) containing 2% by volume of fluoroethylene carbonate (EC/DEC= 1/1: volume ratio), and the electrolyte is lithium hexafluorophosphate (LiPF 6 ). The LiPF 6 content in the electrolyte is preferably 1.2 mol/liter.

評価用スクリュ-セル及び評価用コインセルにおいて、負極は以下の方法で作製された負極であることが好ましい。 In the screw cell for evaluation and the coin cell for evaluation, the negative electrode is preferably a negative electrode produced by the following method.

負極活物質、導電助剤、バインダ及び純水からなる負極合剤スラリ-を得、これを電極基材に塗布した後、真空乾燥して電極基材上に負極合剤を積層する。さらに、負極合剤を電極基材に圧着させ、その後、真空雰囲気下で熱処理することでリチウム二次電池用負極とする。 A negative electrode mixture slurry consisting of a negative electrode active material, a conductive aid, a binder and pure water is obtained, applied to an electrode base material, dried in a vacuum, and the negative electrode mixture is layered on the electrode base material. Further, the negative electrode mixture is pressure-bonded to the electrode base material, and then heat-treated in a vacuum atmosphere to form a negative electrode for a lithium secondary battery.

負極合剤スラリ-はリチウム二次電池用負極活物質が92.5~95.5重量%、導電助剤が0.5重量%及びバインダが4.0~7.0重量%であり、残部が純水であることが好ましい。導電助剤はアセチレンブラックであること、バインダはポリアクリル酸であることが好ましく、さらに、電極基材は銅箔であることが好ましい。 The negative electrode mixture slurry contains 92.5 to 95.5% by weight of the negative electrode active material for lithium secondary batteries, 0.5% by weight of the conductive aid, and 4.0 to 7.0% by weight of the binder, and the balance is is preferably pure water. Preferably, the conductive agent is acetylene black, the binder is polyacrylic acid, and the electrode substrate is copper foil.

負極合剤の電極基材への圧着は、圧力0.6t/cmで一軸プレス又は送り速度1m/min、圧力4.0t/cmのロ-ルプレスであることが好ましい。真空乾燥の条件は、圧力1000Pa以下、110℃及び0.5時間、又は圧力1000Pa以下、90℃及び12時間であることが好ましく、また、真空雰囲気下の熱処理の条件は、圧力1000Pa以下、110℃及び3時間であることが好ましい。 The pressure bonding of the negative electrode mixture to the electrode substrate is preferably carried out by uniaxial pressing at a pressure of 0.6 t/cm 2 or roll pressing at a feed rate of 1 m/min and a pressure of 4.0 t/cm 2 . The vacuum drying conditions are preferably a pressure of 1000 Pa or less, 110° C. and 0.5 hours, or a pressure of 1000 Pa or less, 90° C. and 12 hours. °C and 3 hours are preferred.

本発明のリチウム二次電池用複合活物質は、SiまたはSi合金(以下、併せて「Si化合物」ともいう。)及び結晶性炭素を含むリチウム二次電池用複合活物質であって、該SiまたはSi合金が結晶性炭素間に存在し、かつSEM像観察により計測されたリチウム二次電池用複合活物質中の空隙体積が該リチウム二次電池用複合活物質全体の体積の2%~90%であることが好ましい。本発明のリチウム二次電池用複合活物質における、Si化合物の周囲に空隙を有する構造とは、特に、Si化合物と結晶性炭素の間に、充電時のSi化合物の膨張による膨張応力を緩和するための空間を有する構造であり、特にSEM像観察により計測されたリチウム二次電池用複合活物質中の空隙体積が該リチウム二次電池用複合活物質全体の体積の1%を超えることである。 A composite active material for a lithium secondary battery of the present invention is a composite active material for a lithium secondary battery containing Si or a Si alloy (hereinafter collectively referred to as "Si compound") and crystalline carbon, wherein the Si Alternatively, a Si alloy exists between crystalline carbons, and the void volume in the composite active material for lithium secondary batteries measured by SEM image observation is 2% to 90% of the total volume of the composite active material for lithium secondary batteries. %. In the composite active material for a lithium secondary battery of the present invention, the structure having voids around the Si compound particularly relaxes the expansion stress caused by the expansion of the Si compound during charging between the Si compound and the crystalline carbon. In particular, the void volume in the lithium secondary battery composite active material measured by SEM image observation exceeds 1% of the total volume of the lithium secondary battery composite active material. .

本発明のリチウム二次電池用複合活物質における空隙は、SiまたはSi合金の膨張応力を緩和するために導入される。SEM像観察により計測されたSiまたはSi合金の周囲にある空隙は、該リチウム二次電池用複合活物質全体の体積の2~90%であることが好ましく、さらに好ましくは10~65%であり、特に好ましくは10~50%であり、より好ましくは15~50%である。 The voids in the composite active material for lithium secondary batteries of the present invention are introduced to relax the expansion stress of Si or Si alloys. The voids around Si or Si alloy measured by SEM image observation are preferably 2 to 90%, more preferably 10 to 65%, of the total volume of the composite active material for lithium secondary batteries. , particularly preferably 10 to 50%, more preferably 15 to 50%.

本発明のリチウム二次電池用複合活物質中のSiまたはSi合金体積に対する、SEM像観察により計測されたリチウム二次電池用複合活物質中の空隙体積の比は0.5~200であることが好ましく、特に好ましくは0.5~185であり、より好ましくは0.5~10である。 The ratio of the pore volume in the composite active material for lithium secondary batteries measured by SEM image observation to the Si or Si alloy volume in the composite active material for lithium secondary batteries of the present invention is 0.5 to 200. is preferred, particularly preferably 0.5-185, more preferably 0.5-10.

空隙の算出方法として、以下の方法が挙げられる。 Methods for calculating the void include the following methods.

まず、断面加工装置を用いてリチウム二次電池用負極を電極の垂直方向に切断する。断面加工に用いる装置としては、より明瞭な画像を得るために、クロスセクションポリッシャ-を用いることが好ましい。また、リチウム二次電池用複合活物質粉末、すなわち粉末状の本発明のリチウム二次電池用複合活物質をエポキシ樹脂に包埋した後にこれを切断し、その後、顕微鏡を用いて得られた断面部分を観察する。ここで用いられる顕微鏡は、解像度や観察範囲を十分得る必要があるため、電界放出型走査電子顕微鏡(FE-SEM)である。その後、得られた2次電子像の印刷画像の上に透明シ-トを2枚重ね、1枚のシ-トにはリチウム二次電池用複合活物質の輪郭を描き、もう1枚のシ-トには空隙部分をペンで塗りつぶす。透明シ-トとしては、作業性が良いことから、OHPシ-ト(オ-バ-ヘッドプロジェクタ-用シ-ト)を用いる。次に、それぞれの画像をJPEGやTIFFデ-タに変換し、Nano Hunter NS2K-Pro(ナノシステム株式会社)を用いて2値化し、リチウム二次電池用複合活物質の面積と空隙部分の面積を算出する。最後に、空隙率(%)=空隙部分の面積(μm)/リチウム二次電池用複合活物質の面積(μm)×100の式からリチウム二次電池用複合活物質中の空隙率を算出することができる。 First, the negative electrode for a lithium secondary battery is cut in the vertical direction of the electrode using a cross section processing device. A cross-section polisher is preferably used as an apparatus for cross-section processing in order to obtain a clearer image. In addition, the composite active material powder for a lithium secondary battery, that is, the powdered composite active material for a lithium secondary battery of the present invention is embedded in an epoxy resin and then cut, and then a cross section obtained using a microscope. observe the part. The microscope used here is a field emission scanning electron microscope (FE-SEM) because it is necessary to obtain sufficient resolution and observation range. After that, two transparent sheets were superimposed on the printed image of the secondary electron image obtained. - Fill in the gaps with a pen. As the transparent sheet, an OHP sheet (sheet for overhead projector) is used because of its good workability. Next, each image is converted to JPEG or TIFF data, binarized using Nano Hunter NS2K-Pro (Nano System Co., Ltd.), and the area of the composite active material for lithium secondary batteries and the area of the voids. Calculate Finally, the porosity in the composite active material for lithium secondary batteries is calculated from the formula: porosity (%) = area of voids (μm 2 )/area of composite active material for lithium secondary batteries (μm 2 ) × 100. can be calculated.

本発明のリチウム二次電池用複合活物質の粒径(D50:50%体積粒径)は、本発明の効果がより優れる点で、50μm以下が好ましく、45μm以下がより好ましく、40μm以下がさらに好ましい。 The particle size (D50: 50% volume particle size) of the composite active material for a lithium secondary battery of the present invention is preferably 50 μm or less, more preferably 45 μm or less, and further preferably 40 μm or less, from the viewpoint that the effect of the present invention is more excellent. preferable.

なお、粒径(D90:90%体積粒径)は、本発明の効果がより優れる点で、75μm以下が好ましく、65μm以下がより好ましく、55μm以下がさらに好ましい。 The particle size (D90: 90% volume particle size) is preferably 75 μm or less, more preferably 65 μm or less, and even more preferably 55 μm or less, from the viewpoint that the effects of the present invention are more excellent.

さらに、粒径(D10:10%体積粒径)は、本発明の効果がより優れる点で、30μm以下が好ましく、20μm以下がより好ましい。 Furthermore, the particle size (D10: 10% volume particle size) is preferably 30 µm or less, more preferably 20 µm or less, from the viewpoint that the effects of the present invention are more excellent.

D10、D50およびD90は、レ-ザ-回折散乱法により測定した累積粒度分布において微粒側から累積10%、累積50%および累積90%の粒径にそれぞれ該当する。 D10, D50 and D90 respectively correspond to the cumulative 10%, cumulative 50% and cumulative 90% particle diameters from the fine particle side in the cumulative particle size distribution measured by the laser diffraction scattering method.

なお、粒径の測定に際しては、リチウム二次電池用複合活物質を液体に加えて超音波などを利用しながら激しく混合することで分散液を作製し、作製した分散液を装置に測定サンプルとして導入し、粒径の測定を行えばよい。 In addition, when measuring the particle size, the composite active material for lithium secondary batteries is added to the liquid and mixed vigorously while using ultrasonic waves to prepare a dispersion liquid, and the prepared dispersion liquid is placed in the device as a measurement sample. It may be introduced and the particle size may be measured.

リチウム二次電池用複合活物質と該液体がうまくなじまない時、すなわちリチウム二次電池用複合活物質が液体に均一に分散しにくい場合は、必要に応じて界面活性剤などを添加してもよい。液体としては、作業上、水やアルコ-ル、低揮発性の有機溶媒を用いることが好ましい。 When the composite active material for lithium secondary batteries does not blend well with the liquid, that is, when the composite active material for lithium secondary batteries is difficult to disperse uniformly in the liquid, a surfactant or the like may be added as necessary. good. As the liquid, it is preferable to use water, alcohol, or a low-volatile organic solvent for operational reasons.

本発明のリチウム二次電池用複合活物質は、得られる粒度分布図は正規分布を示すことが好ましい。 The composite active material for a lithium secondary battery of the present invention preferably exhibits a normal distribution in the particle size distribution diagram obtained.

本発明のリチウム二次電池用複合活物質は、BET比表面積が好ましくは0.5~200m/g、さらに好ましくは0.5~150m/g、特に好ましくは0.5~130m/gであり、より好ましくは1~100m/gであり、更に好ましくは1~80m/gである。BET比表面積がこの範囲であることで、リチウム二次電池用複合活物質の内部に空隙を導入される。換言すると、BET比表面積がこの範囲であることによって、本発明のリチウム二次電池用複合活物質の粒子が十分な空隙を有する。これにより、電解液との接触及び充放電によりリチウム二次電池用複合活物質表面に形成される固体電解質層(SEI)の形成が抑制される。その結果、初回体積放電容量、更には初回充放電効率と20サイクル後の容量維持率が改善される。 The composite active material for lithium secondary batteries of the present invention preferably has a BET specific surface area of 0.5 to 200 m 2 /g, more preferably 0.5 to 150 m 2 /g, particularly preferably 0.5 to 130 m 2 /g. g, more preferably 1 to 100 m 2 /g, still more preferably 1 to 80 m 2 /g. When the BET specific surface area is within this range, voids are introduced inside the composite active material for a lithium secondary battery. In other words, when the BET specific surface area is within this range, the particles of the composite active material for lithium secondary batteries of the present invention have sufficient voids. This suppresses the formation of a solid electrolyte layer (SEI) formed on the surface of the composite active material for lithium secondary batteries due to contact with the electrolytic solution and charge/discharge. As a result, the initial volumetric discharge capacity, the initial charge/discharge efficiency, and the capacity retention rate after 20 cycles are improved.

リチウム二次電池用複合活物質のBET比表面積は、試料を200℃で20分真空乾燥した後、窒素吸着多点法で測定される値である。 The BET specific surface area of the composite active material for a lithium secondary battery is a value measured by a nitrogen adsorption multipoint method after vacuum-drying a sample at 200° C. for 20 minutes.

本発明のリチウム二次電池用複合活物質においては、Si化合物が0.2μm以下の厚みの結晶性炭素の間に挟まった構造であることが好ましい。結晶性炭素の間にSi化合物が挟まった構造が、積層および/または網目状に広がっており、結晶性炭素層が形成される。該結晶性炭素層がSi化合物の粒子の表面付近で湾曲してSi化合物の粒子とその近傍に存在する空隙を覆っており、結晶性炭素は3次元ネットワ-クを構築していること、すなわち結晶性炭素により形成された空隙の一部にSi化合物が含まれる構造が繰り返された構造であることが好ましい。 The composite active material for a lithium secondary battery of the present invention preferably has a structure in which the Si compound is sandwiched between crystalline carbon layers having a thickness of 0.2 μm or less. A structure in which a Si compound is sandwiched between crystalline carbons spreads in a lamination and/or mesh pattern to form a crystalline carbon layer. The crystalline carbon layer is curved near the surface of the Si compound particles to cover the Si compound particles and the voids existing in the vicinity thereof, and the crystalline carbon constructs a three-dimensional network, that is, It is preferable to have a structure in which a structure in which the Si compound is partially contained in the voids formed by the crystalline carbon is repeated.

結晶性炭素層の厚みが0.5μm以下であると結晶性炭素層の電子伝達効果が薄まる。結晶性炭素層を断面で見て線状の場合、その長さはリチウム二次電池用複合活物質粒子のサイズの半分以上あることが電子伝達に好ましく、リチウム二次電池用複合物質粒子のサイズと同等程度であることがさらに好ましい。結晶性炭素層が網目状の場合、結晶性炭素層の網がリチウム二次電池用複合活物質の粒子のサイズの半分以上に渡って繋がっていることが電子伝達に好ましく、リチウム二次電池用複合活物質の粒子のサイズと同等程度であることがさらに好ましい。 If the thickness of the crystalline carbon layer is 0.5 μm or less, the electron transfer effect of the crystalline carbon layer is reduced. When the crystalline carbon layer is linear when viewed in cross section, its length is preferably at least half the size of the composite active material particles for lithium secondary batteries for electron transfer, and the size of the composite material particles for lithium secondary batteries. It is more preferable that it is equivalent to . When the crystalline carbon layer has a network shape, it is preferable for electron transfer that the network of the crystalline carbon layer is connected over half or more of the particle size of the composite active material for lithium secondary batteries. More preferably, it is approximately the same size as the particle size of the composite active material.

本発明のリチウム二次電池用複合活物質においては、結晶性炭素層がリチウム二次電池用複合活物質の粒子の表面付近で湾曲してリチウム二次電池用複合活物質の粒子を覆うことが好ましい。そのような形状であることで、結晶性炭素層の端面からの電解液の侵入による、Si化合物や結晶性炭素層端面と電解液との直接接触による充放電時に反応物が形成され、充放電効率が下がる、というリスクが低減する。 In the composite active material for a lithium secondary battery of the present invention, the crystalline carbon layer may curve near the surface of the particles of the composite active material for a lithium secondary battery to cover the particles of the composite active material for a lithium secondary battery. preferable. With such a shape, a reactant is formed during charge/discharge due to direct contact between the Si compound or the end surface of the crystalline carbon layer and the electrolyte due to penetration of the electrolyte solution from the end surface of the crystalline carbon layer. Reduces the risk of inefficiency.

本発明でいうSiは、純度が98重量%程度の汎用グレ-ドの金属シリコン、純度が2~4Nのケミカルグレ-ドの金属シリコン、塩素化して蒸留精製した4Nより高純度のポリシリコン、単結晶成長法による析出工程を経た超高純度の単結晶シリコン、もしくはそれらに周期表13族もしくは15族元素をド-ピングして、p型またはn型としたもの、半導体製造プロセスで発生したウエハの研磨や切断の屑、プロセスで不良となった廃棄ウエハなど、汎用グレ-ドの金属シリコン以上の純度のものであれば特に限定されない。Siは、純度2~4Nの金属シリコンであることが好ましい。 Si in the present invention is general-purpose grade metallic silicon with a purity of about 98% by weight, chemical grade metallic silicon with a purity of 2 to 4N, chlorinated and distilled polysilicon with a purity higher than 4N, Ultra-pure single crystal silicon that has undergone a deposition process by a single crystal growth method, or doped with an element of group 13 or group 15 of the periodic table to make it p-type or n-type, generated in the semiconductor manufacturing process There is no particular limitation as long as the purity is equal to or higher than that of general-purpose grade metal silicon, such as scraps of wafer polishing or cutting, and waste wafers that have become defective in the process. Si is preferably metallic silicon with a purity of 2 to 4N.

本発明でいうSi合金とは、Siが主成分の合金である。該Si合金において、Si以外に含まれる元素としては、周期表2~15族の元素の一つ以上が好ましく、合金に含まれる相の融点が900℃以上となる元素が好ましい。 The Si alloy referred to in the present invention is an alloy containing Si as a main component. In the Si alloy, the element contained in addition to Si is preferably one or more elements of Groups 2 to 15 of the periodic table, and preferably an element whose phase contained in the alloy has a melting point of 900° C. or higher.

本発明のリチウム二次電池用複合活物質において、Si化合物の粒径(D50)は0.01~5μmが好ましく、さらに好ましくは0.01~1μmであり、特に好ましくは0.05~0.6μmであり、より好ましくは0.1~0.5μmである。0.01μm以上であると、Si化合物の表面酸化による充放電容量の低下や初期充放電効率の低下が起きにくくなる。一方、Si化合物の粒径(D50)が5μm以下であると、充放電時のリチウム挿入による膨張に由来する割れが生じにくく、サイクル劣化、すなわちサイクル特性の低下が抑制されやすい。なお、粒径(D50)は前述の方法と同様に求めたものである。 In the composite active material for a lithium secondary battery of the present invention, the Si compound preferably has a particle size (D50) of 0.01 to 5 μm, more preferably 0.01 to 1 μm, and particularly preferably 0.05 to 0.05 μm. 6 μm, more preferably 0.1 to 0.5 μm. If it is 0.01 μm or more, the reduction in charge/discharge capacity and the reduction in initial charge/discharge efficiency due to surface oxidation of the Si compound are less likely to occur. On the other hand, when the particle diameter (D50) of the Si compound is 5 μm or less, cracking due to expansion due to lithium insertion during charge/discharge is less likely to occur, and cycle deterioration, ie, deterioration of cycle characteristics, is likely to be suppressed. The particle size (D50) is determined in the same manner as described above.

本発明のリチウム二次電池用複合活物質において、Si化合物が、0.5μm以下の厚みの結晶性炭素層の間に挟まった構造であり、その構造が積層および/または網目状に広がっており、該結晶性炭素層がリチウム二次電池用複合活物質粒子の表面付近で湾曲してリチウム二次電池用複合活物質粒子を覆っていることが好ましい。 In the composite active material for a lithium secondary battery of the present invention, the Si compound has a structure sandwiched between crystalline carbon layers having a thickness of 0.5 μm or less, and the structure spreads in a laminated and/or network fashion. Preferably, the crystalline carbon layer is curved near the surface of the composite active material particles for lithium secondary batteries to cover the composite active material particles for lithium secondary batteries.

Si化合物の含有量は、10~80質量部が好ましく、15~50質量部が特に好ましく、20~50質量部であることがより好ましい。Si化合物の含有量が10質量部未満の場合、黒鉛を負極活物質とする従来の負極に比べて十分に大きい容量が得られやすく、一方、80質量部を超える場合、サイクル劣化、すなわちサイクル特性の低下が小さくなりやすい。 The content of the Si compound is preferably 10 to 80 parts by mass, particularly preferably 15 to 50 parts by mass, and more preferably 20 to 50 parts by mass. When the content of the Si compound is less than 10 parts by mass, it is easy to obtain a sufficiently large capacity compared to a conventional negative electrode using graphite as a negative electrode active material. decrease tends to be small.

本発明の結晶性炭素として、焼成すると結晶性炭素になるものであれば特に制限はなく、特に黒鉛由来の炭素が好ましい。 The crystalline carbon of the present invention is not particularly limited as long as it becomes crystalline carbon when fired, and graphite-derived carbon is particularly preferred.

本発明でいう焼成すると結晶性炭素となる黒鉛としては、天然黒鉛材、人造黒鉛等が挙げられ、その中でも通常グラファイトと呼ばれる薄片化黒鉛が好ましい。 The graphite that becomes crystalline carbon when fired in the present invention includes natural graphite material, artificial graphite, and the like, and among them, exfoliated graphite, which is usually called graphite, is preferable.

本明細書においては、薄片化黒鉛とは、グラフェンシ-トの積層数が400層以下の黒鉛を意図する。なお、グラフェンシ-トは主にファンデルワ-ルス力によって互いに結合している、すなわちファンデルワ-ルス力によって、グラフェンシ-ト同士が積層している。 In the present specification, exfoliated graphite means graphite having 400 or less layers of graphene sheets. The graphene sheets are mainly bonded to each other by the van der Waals force, that is, the graphene sheets are stacked together by the van der Waals force.

薄片化黒鉛におけるグラフェンシ-トの積層数は、Si化合物と、薄片化黒鉛とがより均一に分散することでリチウム二次電池用複合活物質を用いた電極材料の膨張がより抑制される点、および/または、リチウム二次電池のサイクル特性がより優れる点(以後、単に「本発明の効果がより優れる点」)で、300層以下が好ましく、200層以下がより好ましく、150層以下がさらに好ましい。取り扱い性の点からは、グラフェンシ-トの積層数は5層以上が好ましい。 The number of layers of graphene sheets in exfoliated graphite is such that the Si compound and exfoliated graphite are more uniformly dispersed, so that the expansion of the electrode material using the composite active material for lithium secondary batteries is further suppressed. , and/or in that the cycle characteristics of the lithium secondary battery are more excellent (hereinafter simply referred to as "the point at which the effects of the present invention are more excellent"), preferably 300 layers or less, more preferably 200 layers or less, and 150 layers or less. More preferred. From the standpoint of handleability, the number of laminated graphene sheets is preferably 5 or more.

なお、薄片化黒鉛におけるグラフェンシ-トの積層数は透過型電子顕微鏡(TEM)を用いて測定することができる。 The number of stacked graphene sheets in exfoliated graphite can be measured using a transmission electron microscope (TEM).

薄片化黒鉛の平均厚みは、本発明の効果がより優れる点で、40nm以下が好ましく、22nm以下がより好ましい。薄片化黒鉛の平均厚みの下限は、製造手順が簡易になることから、4nm以上が好ましい。 The average thickness of the exfoliated graphite is preferably 40 nm or less, more preferably 22 nm or less, from the viewpoint that the effects of the present invention are more excellent. The lower limit of the average thickness of exfoliated graphite is preferably 4 nm or more because the production procedure is simplified.

なお、上記薄片化黒鉛の平均厚みの測定方法は、電子顕微鏡観察(TEM)によって薄片化黒鉛を観察し、薄片化黒鉛中の積層したグラフェンシ-トの層の厚みを10個以上測定して、その値を算術平均することによって、薄片化黒鉛の平均厚みが得られる。 In addition, the method for measuring the average thickness of the exfoliated graphite is to observe the exfoliated graphite by electron microscope observation (TEM), and measure the thickness of 10 or more layers of the laminated graphene sheets in the exfoliated graphite. , the average thickness of the exfoliated graphite is obtained by arithmetically averaging the values.

薄片化黒鉛は、黒鉛化合物、具体的には天然黒鉛、に含まれるグラフェンシ-トの層面間において、これを剥離することで薄片化して得られる黒鉛である。 Exfoliated graphite is graphite obtained by flaking by exfoliating between layers of graphene sheets contained in a graphite compound, specifically natural graphite.

薄片化黒鉛としては、例えば、いわゆる膨張黒鉛が挙げられる。 Examples of exfoliated graphite include so-called expanded graphite.

膨張黒鉛中には、黒鉛が含まれており、例えば、鱗片状黒鉛を濃硫酸や硝酸や過酸化水素水等の薬液で処理し、グラフェンシ-トの隙間にこれら薬液をインタ-カレ-トさせた後、さらに加熱してインタ-カレ-トされた薬液が気化する際にグラフェンシ-トの隙間を広げることによって得られる。なお、後述するように、膨張黒鉛を出発原料としてリチウム二次電池用複合活物質を製造することができる。つまり、リチウム二次電池用複合活物質中の黒鉛として、膨張黒鉛を使用することもできる。 Expanded graphite contains graphite. For example, flake graphite is treated with chemicals such as concentrated sulfuric acid, nitric acid, and hydrogen peroxide, and these chemicals are intercalated in the gaps between graphene sheets. After heating, the gaps between the graphene sheets are widened when the intercalated chemical is vaporized by further heating. As will be described later, a composite active material for a lithium secondary battery can be produced using expanded graphite as a starting material. In other words, expanded graphite can also be used as the graphite in the composite active material for lithium secondary batteries.

また、黒鉛として、球形化処理が施された膨張黒鉛も挙げられる。球形化処理の手順は後段で詳述する。なお、後述するように、膨張黒鉛に球形化処理を実施する際には、他の成分(例えば、ハ-ドカ-ボン及びソフトカ-ボンの前駆体、など)と共に、球形化処理をしてもよい。 In addition, expanded graphite that has been subjected to a spheroidizing treatment can also be used as graphite. The procedure of the sphering process will be detailed later. As will be described later, when the expanded graphite is subjected to the spheroidizing treatment, it is possible to perform the spheroidizing treatment together with other components (for example, precursors of hard carbon and soft carbon). good.

結晶性炭素としては純度99重量%以上、若しくは不純物量10000ppm以下であり、S量が1重量%以下、及び/又は、BET比表面積が100m/g以下であることが好ましい。純度が99重量%以上、若しくは不純物量が10000ppm以下であると、不純物由来のSEI形成による不可逆容量が小さくなるため、初回の充電容量に対する放電容量である初回充放電効率が低くなりにくくなる傾向がある。また、S量が1重量%以下になると、同様に、不可逆容量が小さくなるため、初回充放電効率が低くなりにくくなる。さらに好ましくは、S量が0.5重量%以下である。黒鉛のBET比表面積は、好ましくは5~100m/gであり、特に好ましくは20~50m/gである。BET比表面積が100m/g以下であると、電解液との反応する面積が少なくなるため、初回充放電効率が低くなりにくい。 The crystalline carbon preferably has a purity of 99% by weight or more, an impurity amount of 10000 ppm or less, an S amount of 1% by weight or less, and/or a BET specific surface area of 100 m 2 /g or less. When the purity is 99% by weight or more, or the amount of impurities is 10000 ppm or less, the irreversible capacity due to the formation of SEI derived from impurities decreases, so the initial charge-discharge efficiency, which is the discharge capacity relative to the initial charge capacity, tends to be difficult to decrease. be. Also, when the amount of S is 1% by weight or less, the irreversible capacity similarly decreases, so the initial charge/discharge efficiency is less likely to decrease. More preferably, the S content is 0.5% by weight or less. The BET specific surface area of graphite is preferably 5 to 100 m 2 /g, particularly preferably 20 to 50 m 2 /g. When the BET specific surface area is 100 m 2 /g or less, the area that reacts with the electrolytic solution is small, so the initial charge/discharge efficiency is less likely to decrease.

なお、BET比表面積は、窒素吸着によるBET法(JIS Z 8830、一点法)を用いて測定された値である。 The BET specific surface area is a value measured using the BET method (JIS Z 8830, one-point method) by nitrogen adsorption.

不純物の測定は、ICP発光分光分析法により、以下の26元素(Al、Ca、Cr、Fe、K、Mg、Mn、Na、Ni、V、Zn、Zr、Ag、As、Ba、Be、Cd、Co、Cu、Mo、Pb、Sb、Se、Th、Tl、U)の不純物半定量値により測定する。また、S量は、酸素フラスコ燃焼法で燃焼吸収処理した後、フィルタ-濾過してイオンクロマトグラフィ-(IC)測定により行う。 Impurities are measured by ICP emission spectrometry, the following 26 elements (Al, Ca, Cr, Fe, K, Mg, Mn, Na, Ni, V, Zn, Zr, Ag, As, Ba, Be, Cd , Co, Cu, Mo, Pb, Sb, Se, Th, Tl, U). The amount of S is measured by ion chromatography (IC) after combustion and absorption treatment by the oxygen flask combustion method followed by filter filtration.

本発明のリチウム二次電池用複合活物質において、結晶性炭素の含有量は95~10質量部が好ましく、70~10質量部が特に好ましい。結晶性炭素の含有量が10質量部未満の場合、結晶性炭素がSi化合物を覆うことができ、導電パスが十分となる。これによって、初回体積放電容量の劣化が起こりにくい。一方、結晶性炭素の含有量が95質量部を超える場合、初回体積放電容量が高くなりにくい。 In the composite active material for lithium secondary batteries of the present invention, the content of crystalline carbon is preferably 95 to 10 parts by mass, particularly preferably 70 to 10 parts by mass. When the content of crystalline carbon is less than 10 parts by mass, the crystalline carbon can cover the Si compound, providing a sufficient conductive path. As a result, deterioration of the initial volumetric discharge capacity is less likely to occur. On the other hand, when the content of crystalline carbon exceeds 95 parts by mass, the initial volumetric discharge capacity is difficult to increase.

本発明のリチウム二次電池用複合活物質は、非晶性炭素を該リチウム二次電池用複合活物質の内部及び/又は外層部分に含むことがさらに好ましい。 More preferably, the composite active material for lithium secondary batteries of the present invention contains amorphous carbon in the inner and/or outer layer portion of the composite active material for lithium secondary batteries.

該非晶性炭素としては、焼成すると非晶性炭素になるものであれば特に制限はなく、特に黒鉛以外の非晶質もしくは微結晶の炭素質物が好ましい。 The amorphous carbon is not particularly limited as long as it becomes amorphous carbon when fired, and amorphous or microcrystalline carbonaceous materials other than graphite are particularly preferred.

本発明でいう焼成すると非晶性炭素となる黒鉛以外の非晶質もしくは微結晶の炭素質物としては、2000℃を超える熱処理で黒鉛化する易黒鉛化炭素(ソフトカ-ボン)と、黒鉛化しにくい難黒鉛化炭素(ハ-ドカ-ボン)、もしくは黒鉛様の芳香族系化合物が挙げられ、ソフトカ-ボン又はハ-ドカ-ボンの少なくともいずれかであることが好ましく、ソフトカ-ボンが特に好ましい。 The amorphous or microcrystalline carbonaceous materials other than graphite that becomes amorphous carbon when fired in the present invention include easily graphitizable carbon (soft carbon) that graphitizes by heat treatment exceeding 2000 ° C. and hard carbon that graphitizes. Examples include non-graphitizable carbon (hard carbon) and graphite-like aromatic compounds, preferably soft carbon or hard carbon, and particularly preferably soft carbon.

ハ-ドカ-ボンは、樹脂または樹脂組成物などの前駆体を炭化処理して得ることが好ましい。炭化処理することで、樹脂または樹脂組成物が炭化処理され、これにより得られるハ-ドカ-ボンはリチウム二次電池用炭素材として用いることができる。ハ-ドカ-ボンの原材料(前駆体)となる樹脂又は樹脂組成物として、高分子化合物など(例えば、熱硬化性樹脂、熱可塑性樹脂)が挙げられる。熱硬化性樹脂としては、例えば、ノボラック型フェノ-ル樹脂、レゾ-ル型フェノ-ル樹脂などのフェノ-ル樹脂;ビスフェノ-ル型エポキシ樹脂、ノボラック型エポキシ樹脂などのエポキシ樹脂;メラミン樹脂;尿素樹脂;アニリン樹脂;シアネ-ト樹脂;フラン樹脂;ケトン樹脂;不飽和ポリエステル樹脂;ウレタン樹脂などが挙げられる。また、これらが種々の成分で変性された変性物を用いることもできる。 Hard carbon is preferably obtained by carbonizing a precursor such as a resin or resin composition. By carbonizing, the resin or resin composition is carbonized, and the hard carbon obtained thereby can be used as a carbon material for lithium secondary batteries. Examples of resins or resin compositions that serve as raw materials (precursors) for hard carbon include polymer compounds (eg, thermosetting resins and thermoplastic resins). Thermosetting resins include, for example, phenolic resins such as novolac type phenolic resins and resol type phenolic resins; epoxy resins such as bisphenolic epoxy resins and novolac type epoxy resins; melamine resins; urea resin; aniline resin; cyanate resin; furan resin; ketone resin; unsaturated polyester resin; Modified products obtained by modifying these with various components can also be used.

また、熱可塑性樹脂としては、例えば、ポリエチレン、ポリスチレン、アクリロニトリル-スチレン(AS)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリプロピレン、ポリエチレンテレフタレ-ト、ポリカ-ボネ-ト、ポリアセタ-ル、ポリフェニレンエ-テル、ポリブチレンテレフタレ-ト、ポリフェニレンサルファイド、ポリサルホン、ポリエ-テルサルホン又はポリエ-テルエ-テルケトンなどが挙げられる。 Examples of thermoplastic resins include polyethylene, polystyrene, acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene-styrene (ABS) resin, polypropylene, polyethylene terephthalate, polycarbonate, polyacetal, polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, polyether ether ketone, and the like.

これらのうち1種または2種以上を組み合わせて用いることができる。 One or more of these can be used in combination.

これらの中でも特に好ましいハ-ドカ-ボンの原材料(前駆体)は、ノボラック型フェノ-ル樹脂、レゾ-ル型フェノ-ル樹脂などのフェノ-ル樹脂等が挙げられる。 Among these, particularly preferred raw materials (precursors) for hard carbon include phenolic resins such as novolac type phenolic resins and resol type phenolic resins.

ハ-ドカ-ボンの前駆体の形状は、粉状、板状、粒状、繊維状、塊状、球状など、あらゆる形状のものが使用可能である。これらの前駆体は、各種成分を混合する際に使用する溶剤に溶解することが好ましい。 The shape of the hard carbon precursor can be any shape such as powder, plate, granule, fibrous, massive and spherical. These precursors are preferably dissolved in the solvent used when mixing the various components.

使用されるハ-ドカ-ボンの前駆体の重量平均分子量としては、本発明の効果がより優れる点で100以上が好ましく、1,000,000以下がより好ましい。 The weight-average molecular weight of the hard carbon precursor to be used is preferably 100 or more, and more preferably 1,000,000 or less, from the viewpoint that the effect of the present invention is more excellent.

ソフトカ-ボンは、樹脂または樹脂組成物などの前駆体を炭化処理して得ることが好ましい。炭化処理することで、樹脂または樹脂組成物が炭化処理され、これにより得られたソフトカ-ボンはリチウム二次電池用炭素材として用いることができる。ソフトカ-ボンの原材料(前駆体)となる樹脂又は樹脂組成物としては、石炭系ピッチ(例えば、コ-ルタ-ルピッチ)、石油系ピッチ、メソフェ-ズピッチ、コ-クス、低分子重質油、またはそれらの誘導体などが挙げられ、石炭系ピッチ(例えば、コ-ルタ-ルピッチ)、石油系ピッチ、メソフェ-ズピッチ、コ-クス、低分子重質油、またはそれらの誘導体などが好ましい。本発明の効果がより優れる点で、ソフトカ-ボンは、石炭系ピッチなどの前駆体から得られるソフトカ-ボン、更にはコ-ルタ-ルピッチ由来のソフトカ-ボンが好ましい。 Soft carbon is preferably obtained by carbonizing a precursor such as a resin or resin composition. By carbonizing, the resin or resin composition is carbonized, and the soft carbon thus obtained can be used as a carbon material for lithium secondary batteries. Examples of resins or resin compositions that serve as raw materials (precursors) for soft carbon include coal-based pitch (eg, coal tar pitch), petroleum-based pitch, mesophase pitch, coke, low-molecular-weight heavy oil, and derivatives thereof, preferably coal-based pitch (eg, coal tar pitch), petroleum-based pitch, mesophase pitch, coke, low-molecular-weight heavy oil, or derivatives thereof. Soft carbon obtained from precursors such as coal-based pitch, and more preferably soft carbon derived from coal tar pitch, is preferable in that the effect of the present invention is more excellent.

ソフトカ-ボンの前駆体の形状は、粉状、板状、粒状、繊維状、塊状、球状など、あらゆる形状のものが使用可能である。これらの前駆体は、各種成分を混合する際に使用する溶剤に溶解することが好ましい。 Precursors of soft carbon can be of any shape such as powder, plate, granule, fibrous, massive and spherical. These precursors are preferably dissolved in the solvent used when mixing the various components.

使用されるソフトカ-ボンの前駆体の重量平均分子量としては、本発明の効果がより優れる点で1,000以上が好ましく、1,000,000以下がより好ましい。 The weight-average molecular weight of the soft carbon precursor to be used is preferably 1,000 or more, and more preferably 1,000,000 or less, from the viewpoint that the effects of the present invention are more excellent.

黒鉛様の芳香族系化合物としては、例えば、ド-パミン塩酸塩、ジヒドロキシフェニルアラニン、5,6-ジヒドロキヒインド-ルなどのド-パミン誘導体、タンニン酸、カテキン、アントシアニン、ルチン、イソフラボンなどのポリフェノ-ル類、カテコ-ルアミン、没色子酸、ピロガロ-ル又はガラセトフェノンなどが挙げられる。 Examples of graphite-like aromatic compounds include dopamine hydrochloride, dihydroxyphenylalanine, dopamine derivatives such as 5,6-dihydroxyquindole, polyphenols such as tannic acid, catechins, anthocyanins, rutin and isoflavones. catecholamines, gallic acid, pyrogallol, galacetophenone and the like.

これらのうち1種または2種以上を組み合わせて用いることができる。 One or more of these can be used in combination.

これらの中でも特に好ましい黒鉛様の芳香族系化合物としては、ド-パミン塩酸塩、ジヒドロキシフェニルアラニン又は5,6-ジヒドロキヒインド-ルなどのド-パミン誘導体が挙げられる。 Among these, particularly preferred graphite-like aromatic compounds include dopamine derivatives such as dopamine hydrochloride, dihydroxyphenylalanine, and 5,6-dihydroxykihindole.

本発明のリチウム二次電池用複合活物質の製造方法として、SiまたはSi合金に、必要に応じて表面修飾剤を被覆した後に、高分子モノマ-と開始剤と必要に応じて分散剤を加え、SiまたはSi合金に高分子膜を被覆した後に、黒鉛と必要に応じて炭素化合物を混合する工程と、造粒・圧密化する工程と、混合物を粉砕および球形化処理して略球状の複合粒子を形成する工程と、該複合粒子を不活性雰囲気中で焼成する工程と、必要に応じて炭素化合物と該複合粒子もしくは焼成粉とを混合する工程と、必要に応じて炭素化合物耐と該複合粒子もしくは焼成粉とを混合する工程とその混合物を不活性雰囲気中で加熱する工程を含む方法、が挙げられる。 As a method for producing a composite active material for a lithium secondary battery of the present invention, Si or a Si alloy is coated with a surface modifier if necessary, and then a polymer monomer, an initiator and, if necessary, a dispersant are added. , After coating a polymer film on Si or Si alloy, a step of mixing graphite and, if necessary, a carbon compound, a step of granulating and consolidating, and pulverizing and spheroidizing the mixture to form a substantially spherical composite A step of forming particles, a step of firing the composite particles in an inert atmosphere, a step of mixing the carbon compound and the composite particles or the fired powder as necessary, and a step of and a method including a step of mixing composite particles or sintered powder and a step of heating the mixture in an inert atmosphere.

好ましい製造方法として、SiまたはSi合金に表面修飾剤を被覆した後に、高分子モノマ-と開始剤と分散剤を加え、SiまたはSi合金に高分子膜を被覆した後に、黒鉛と炭素化合物を混合する工程と、造粒・圧密化する工程と、混合物を粉砕および球形化処理して略球状の複合粒子を形成する工程と、該複合粒子を不活性雰囲気中で焼成する工程を含む方法、が挙げられる。また、該複合粒子を不活性雰囲気中で焼成する工程の後、さらに、炭素化合物体と該複合粒子もしくは焼成粉とを混合する工程とその混合物を不活性雰囲気中で加熱する工程を含む方法、も用いることができる。 As a preferred production method, after coating Si or Si alloy with a surface modifier, a polymer monomer, an initiator and a dispersant are added, and after coating Si or Si alloy with a polymer film, graphite and a carbon compound are mixed. granulating and consolidating; pulverizing and spheronizing the mixture to form substantially spherical composite particles; and firing the composite particles in an inert atmosphere. mentioned. Further, after the step of firing the composite particles in an inert atmosphere, a method further comprising the steps of mixing the carbon compound body with the composite particles or the fired powder and heating the mixture in an inert atmosphere. can also be used.

Si化合物は、粒径(D50)が0.01~5μmの粉末を使用することが好ましい。所定の粒子径のSi化合物を得るためには、上述のSi化合物の原料(インゴット、ウエハ、粉末などの状態)を粉砕機で粉砕し、場合によっては分級機を用いる。インゴット、ウエハなどの塊の場合、最初はジョ-クラッシャ-等の粗粉砕機を用いて粉末化することができる。その後、例えば、ボ-ル又はビ-ズなどの粉砕媒体を運動させ、その運動エネルギ-による衝撃力、摩擦力、圧縮力を利用して、被砕物を粉砕するボ-ルミル、媒体撹拌ミルや、ロ-ラによる圧縮力を利用して粉砕を行うロ-ラミルや、被砕物を高速で内張材に衝突もしくは粒子相互に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミルや、ハンマ-、ブレ-ド、ピンなどを固設したロ-タ-の回転による衝撃力を利用して被砕物を粉砕するハンマ-ミル、ピンミル、ディスクミルや、剪断力を利用するコロイドミルや高圧湿式対向衝突式分散機「アルティマイザ-」などを用いて微粉砕することができる。 It is preferable to use a powder having a particle size (D50) of 0.01 to 5 μm as the Si compound. In order to obtain a Si compound having a predetermined particle size, the Si compound raw material (ingot, wafer, powder, etc.) is pulverized by a pulverizer, and a classifier is used in some cases. In the case of lumps such as ingots and wafers, they can be first pulverized using a coarse pulverizer such as a jaw crusher. After that, for example, by moving grinding media such as balls or beads, using the impact force, friction force, and compression force due to the kinetic energy, a ball mill, a medium agitating mill, or a , a roller mill that pulverizes using the compressive force of rollers, a jet mill that pulverizes the material by colliding it with the lining material at high speed or colliding with each other, and pulverizing by the impact force caused by the impact, and a hammer Hammer mill, pin mill, disk mill that crushes crushed materials using the impact force generated by the rotation of a rotor with fixed blades, pins, etc., colloid mill that uses shear force, and high-pressure wet type It can be finely pulverized using a counter-collision type disperser "Ultimizer" or the like.

粉砕は、湿式、乾式共に用いることができる。さらに微粉砕するには、例えば、湿式のビ-ズミルを用い、ビ-ズの径を段階的に小さくすること等により非常に細かい粒子を得ることができる。また、粉砕後に粒度分布を整えるため、乾式分級や湿式分級もしくはふるい分け分級を用いることができる。乾式分級は、主として気流を用い、分散、分離(細粒子と粗粒子の分離)、捕集(固体と気体の分離)、排出のプロセスが逐次もしくは同時に行われ、粒子相互間の干渉、粒子の形状、気流の乱れ、速度分布、静電気の影響などで分級効率を低下させないように、分級をする前に前処理(水分、分散性、湿度などの調整)を行うか、又は、使用される気流の水分や酸素濃度を調整して行う。乾式で分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。 Both wet and dry pulverization can be used. For further fine pulverization, very fine particles can be obtained by, for example, using a wet bead mill to gradually reduce the diameter of the beads. In addition, dry classification, wet classification, or sieving classification can be used in order to adjust the particle size distribution after pulverization. Dry classification mainly uses air flow, and the processes of dispersion, separation (separation of fine and coarse particles), collection (separation of solid and gas), and discharge are performed sequentially or simultaneously, and interference between particles, particle In order not to reduce the classification efficiency due to the shape, airflow turbulence, velocity distribution, static electricity, etc., pretreatment (adjustment of moisture, dispersibility, humidity, etc.) is performed before classification, or the airflow used Adjust the moisture and oxygen concentration of the water. In the dry type with an integrated classifier, pulverization and classification are performed at once, and a desired particle size distribution can be obtained.

別の所定の粒子径のSi化合物を得る方法としては、プラズマやレ-ザ-等でSi化合物を加熱して蒸発させ、不活性雰囲気中で凝固させて得る方法、又は、ガス原料を用いてCVDやプラズマCVD等で得る方法があり、これらの方法は0.1μm以下の超微粒子を得るのに適している。 Another method for obtaining a Si compound having a predetermined particle size is to evaporate the Si compound by heating it with plasma, laser, etc., and solidify it in an inert atmosphere, or to use a gas raw material. There are methods such as CVD and plasma CVD, and these methods are suitable for obtaining ultrafine particles of 0.1 μm or less.

Si化合物と高分子モノマ-の反応を促進させるために、必要に応じてあらかじめSi化合物粒子表面をシランカップリング剤等の表面修飾剤で修飾することが好ましい。表面修飾剤としては、酸化剤もしくは分子内に金属アルコキシド基、カルボキシル基、又は水酸基を含むことが好ましく、具体的な表面修飾剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシランなどのビニル系、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシランなどのエポキシ系、p-スチリルトリメトキシシランなどのスチリル系、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどのメタクリル系、3-アクリロキシプロピルトリメトキシシランなどのアクリル系、トリス-(トリメトキシシリルプロピル)イソシアヌレ-トなどのイソシアヌレ-ト系又は3-イソシアネ-トプロピルトリエトキシシランなどのイソシアネ-ト系、テトラエトキシシラン、過酸化水素、硝酸、硫酸、過マンガン酸カリウム、二クロム酸カリウム、次亜塩素酸ナトリウム、三酸化クロム、過硫酸アンモニウム、過硫酸カリウム、等の酸化剤が挙げられ、好ましくは3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン及びテトラエトキシシランの群から選ばれる1種以上、特に好ましくは3-メタクリロキシプロピルトリメトキシシラン、テトラエトキシシランから選ばれる1種または2種である。 In order to promote the reaction between the Si compound and the polymer monomer, it is preferable to previously modify the surface of the Si compound particles with a surface modifier such as a silane coupling agent, if necessary. The surface modifier preferably contains an oxidizing agent or a metal alkoxide group, a carboxyl group, or a hydroxyl group in the molecule. Epoxy systems such as 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryl styryl-based such as trimethoxysilane; methacrylic-based such as 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane; - acrylics such as acryloxypropyltrimethoxysilane, isocyanurates such as tris-(trimethoxysilylpropyl)isocyanurate or isocyanates such as 3-isocyanate-propyltriethoxysilane, tetraethoxysilanes, Oxidizing agents such as hydrogen peroxide, nitric acid, sulfuric acid, potassium permanganate, potassium dichromate, sodium hypochlorite, chromium trioxide, ammonium persulfate, potassium persulfate, etc., preferably 3-methacryloxypropyl. One or more selected from the group consisting of methyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane and tetraethoxysilane, particularly preferably 3-methacryloxysilane. One or two selected from roxypropyltrimethoxysilane and tetraethoxysilane.

表面修飾剤を用いる際には、Si化合物100質量部に対して表面修飾剤を0.1~100質量部添加することが好ましい。修飾反応中の粒子の凝集を防ぐため、必要に応じてポリカルボン酸系の安定化剤を添加してもよい。修飾反応を促進するため、必要に応じてアンモニア、水酸化ナトリウム、水酸化カリウム又は炭酸水素ナトリウムなどの水に溶けてアルカリ性を示す化合物や、塩酸、硝酸、酢酸又は硫酸などの水に溶けて酸性を示す化合物等の残存反応促進剤を添加してもよい。反応性が高く、金属化合物が残存しないことから、アンモニアまたは塩酸であることが好ましい。残存反応促進剤を用いる場合、Si化合物100質量部に対して残存反応促進剤を0.005~54質量部添加することが好ましい。反応に用いる溶媒としては表面修飾剤が溶解する溶媒であればよく、水、エタノ-ル、メタノ-ル、アセトン、ジメチルホルムアミド、テトラヒドロフラン、トルエン、ヘキサン又は、クロロホルムなどが挙げられ、必要に応じて混合溶媒を用いても良い。表面修飾剤として3-メタクリロキシプロピルトリメトキシシラン又はテトラエトキシシランを用いてSi化合物粒子表面を修飾する際には、水とエタノ-ルの混合溶媒を用いることが好ましい。該混合溶媒における各溶媒の比率は、エタノ-ル100質量部に対して、水が10~100質量部であることが好ましい。該混合溶媒中のエタノ-ルの比率がこの範囲内であることで、溶媒中のSi化合物が安定しやすく、なおかつ、修飾反応が十分に進みやすくなる。 When using a surface modifier, it is preferable to add 0.1 to 100 parts by mass of the surface modifier to 100 parts by mass of the Si compound. In order to prevent aggregation of particles during the modification reaction, a polycarboxylic acid-based stabilizer may be added as necessary. In order to promote the modification reaction, if necessary, a water-soluble alkaline compound such as ammonia, sodium hydroxide, potassium hydroxide or sodium hydrogen carbonate, or a water-soluble acidic compound such as hydrochloric acid, nitric acid, acetic acid or sulfuric acid is used. A residual reaction accelerator such as a compound having Ammonia or hydrochloric acid is preferred because it has high reactivity and leaves no metal compound. When using the residual reaction accelerator, it is preferable to add 0.005 to 54 parts by mass of the residual reaction accelerator to 100 parts by mass of the Si compound. The solvent used for the reaction may be any solvent as long as it dissolves the surface modifier, and examples thereof include water, ethanol, methanol, acetone, dimethylformamide, tetrahydrofuran, toluene, hexane, chloroform, and the like, if necessary. A mixed solvent may be used. When using 3-methacryloxypropyltrimethoxysilane or tetraethoxysilane as a surface modifier to modify the Si compound particle surface, it is preferable to use a mixed solvent of water and ethanol. The ratio of each solvent in the mixed solvent is preferably 10 to 100 parts by mass of water per 100 parts by mass of ethanol. When the ratio of ethanol in the mixed solvent is within this range, the Si compound in the solvent is easily stabilized, and the modification reaction proceeds sufficiently.

Si化合物に表面修飾剤を被覆した後に、必要に応じて、ボ-ルミルやビ-ズミルを用いて上記Si化合物粒子を粉砕・微粒化しても良い。解砕に用いるボ-ルはジルコニア又はアルミナが好ましい。解砕時間は1~24時間が好ましく、より好ましくは1~12時間である。 After coating the Si compound with the surface modifier, if necessary, the Si compound particles may be pulverized and finely divided using a ball mill or a bead mill. Balls used for pulverization are preferably made of zirconia or alumina. The crushing time is preferably 1 to 24 hours, more preferably 1 to 12 hours.

また、Si化合物粒子を粉砕・微粒化した後、必要に応じて遠心分離によりSi化合物粒子表面を修飾する際に用いた溶媒を水に置換することが好ましい。 Further, after pulverizing and atomizing the Si compound particles, it is preferable to replace the solvent used in modifying the surface of the Si compound particles by centrifugal separation with water, if necessary.

Si化合物と高分子モノマ-の反応中は、マグネチックスタ-ラ-、スリ-ワンモ-タ-、ホモミキサ-、インラインミキサ-、ビ-ズミル、ボ-ルミルなどの一般的な混合機や攪拌機を用い、各原料を均一に混合することが好ましい。反応温度は室温が好ましい。また、反応時間は0.5~72時間が好ましく、より好ましくは0.5~24時間である。反応時間がこの範囲であることで、修飾反応が十分に進行し、なおかつ、生産性が低下しにくくなる。 During the reaction of Si compound and polymer monomer, general mixers and stirrers such as magnetic stirrer, three-one motor, homomixer, in-line mixer, bead mill and ball mill are used. It is preferable to uniformly mix each raw material. The reaction temperature is preferably room temperature. Also, the reaction time is preferably 0.5 to 72 hours, more preferably 0.5 to 24 hours. When the reaction time is within this range, the modification reaction proceeds sufficiently and the productivity is less likely to decrease.

Si化合物に高分子モノマ-と開始剤を加えることにより、得られる高分子モノマ-のスラリ-を重合することにより、高分子となり、Si化合物の周囲に高分子膜の被覆体が得られるものである。 By adding a polymer monomer and an initiator to a Si compound, the obtained polymer monomer slurry is polymerized to form a polymer, and a polymer film covering is obtained around the Si compound. be.

Si化合物に反応させる高分子モノマ-としては、例えば、スチレン、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸sec-ブチル、メタクリル酸イソブチル、メタクリル酸tert-ブチル、メタクリル酸2-エチルへキシル、メタクリル酸イソボニル、メタクリル酸ベンジル、メタクリル酸2-ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ヒドロキシブチル、メタクリル酸トリエチレングリコ-ルなどのメチルメタクリル酸系、イタコン酸無水物、イタコン酸、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸sec-ブチル、アクリル酸イソブチル、アクリル酸tert-ブチル、アクリル酸2-エチルへキシル、アクリル酸イソボルニル、アクリル酸ベンジル、アクリル酸フェニル、アクリル酸グリシジル、アクリル酸2-ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸ヒドロキシブチルなどのアクリル酸系、メタクリルアミド、N-メチルアクリルアミド、N、N‘-ジメチルアクリルアミド、N-tert-ブチルメタクリルアミド、N-n-ブチルメタクリルアミド、N-メチロ-ルメタクリルアミド、N-エチロ-ルメタクリルアミドなどのメタクリルアミド系、N,N’-メチレンビスアクリルアミド、N-イソプロピルアクリルアミド、N-tert-ブチルアクリルアミド、N-n-ブチルアクリルアミド、N-メチロ-ルアクリルアミド、N-エチロ-ルアクリルアミドなどのアクリルアミド系、安息香酸ビニル、ジエチルアミノスチレン、ジエチルアミノアルファ-メチルスチレン、p-ビニルベンゼンスルホン酸、p-ビニルベンゼンスルホン酸ナトリウム塩、ジビニルベンゼン、酢酸ビニル、酢酸ブチル、塩化ビニル、フッ化ビニル、臭化ビニル、無水マレイン酸、N-フェニルマレイミド、N-ブチルマレイミド、N-ビニルピロリドン、N-ビニルカルバゾ-ル、アクリロニトリル、アニリン、ピロ-ル、ウレタン重合に用いられるポリオ-ル系又はイソシアネ-ト系挙げられ、好ましくはスチレン、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸sec-ブチル、メタクリル酸イソブチル、メタクリル酸tert-ブチル、メタクリル酸2-エチルへキシル、メタクリル酸イソボニル、メタクリル酸ベンジル、メタクリル酸2-ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ヒドロキシブチル、メタクリル酸トリエチレングリコ-ルなどのメチルメタクリル酸系、イタコン酸無水物、イタコン酸、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸sec-ブチル、アクリル酸イソブチル、アクリル酸tert-ブチル、アクリル酸2-エチルへキシル、アクリル酸イソボルニル、アクリル酸ベンジル、アクリル酸フェニル、アクリル酸グリシジル、アクリル酸2-ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸ヒドロキシブチルなどのアクリル酸系、アクリロニトリルであり、さらに好ましくは、スチレン、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸n-ブチル、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸n-ブチル、アクリロニトリル、特に好ましくはスチレン、メタクリル酸メチル又はアクリル酸メチルである。 Polymeric monomers to be reacted with Si compounds include, for example, styrene, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, and methacrylate. isobutyl methacrylate, tert-butyl methacrylate, 2-ethylhexyl methacrylate, isobornyl methacrylate, benzyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, triethylene glycol methacrylate, etc. methyl methacrylate, itaconic anhydride, itaconic acid, acrylic acid, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, sec-butyl acrylate, isobutyl acrylate , tert-butyl acrylate, 2-ethylhexyl acrylate, isobornyl acrylate, benzyl acrylate, phenyl acrylate, glycidyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, etc. Acid-based, methacrylamide, N-methylacrylamide, N,N'-dimethylacrylamide, N-tert-butylmethacrylamide, Nn-butylmethacrylamide, N-methylolmethacrylamide, N-ethylolmethacrylamide Acrylamides such as methacrylamides such as N,N'-methylenebisacrylamide, N-isopropylacrylamide, N-tert-butylacrylamide, Nn-butylacrylamide, N-methylol-acrylamide, and N-ethylol-acrylamide vinyl benzoate, diethylaminostyrene, diethylamino alpha-methylstyrene, p-vinylbenzenesulfonic acid, sodium p-vinylbenzenesulfonate, divinylbenzene, vinyl acetate, butyl acetate, vinyl chloride, vinyl fluoride, vinyl bromide , maleic anhydride, N-phenylmaleimide, N-butylmaleimide, N-vinylpyrrolidone, N-vinylcarbazole, acrylonitrile, aniline, pyrrole, polyol or isocyanate used in urethane polymerization. , preferably styrene, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, methacrylic acid 2-ethylhexyl, isobornyl methacrylate, benzyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, triethyleneglycol methacrylate, methyl methacrylates, itaconic anhydride, Itaconic acid, acrylic acid, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, sec-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, 2-acrylate acrylic acids such as ethylhexyl, isobornyl acrylate, benzyl acrylate, phenyl acrylate, glycidyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, and hydroxybutyl acrylate; acrylonitrile; Styrene, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, acrylonitrile, particularly preferably styrene, methacryl methyl acid or methyl acrylate.

用いる開始剤としては、例えば、アゾビスイソブチロニトリル等のアゾ系化合物、過硫酸カリウム、過硫酸アンモニウム、過酸化ベンゾイル、ジイソブチリルパ-オキシド、ジ-n-プロピルパ-オキシジカ-ボネ-ト、ジイソプロピルパ-オキシジカ-ボネ-ト、ジラウロイルパ-オキシド、ジベンゾイルパ-オキシド、1,1-ジ(tert-へキシルペルオキシ)シクロヘキサン、1,1-ジ(tert-ブチルペルオキシ)シクロヘキサン、tert-ブチルヒドロパ-オキシドやジイソブチリルパ-オキシド、tert-ヘキシルペルオキシイソプロピルモノカルボネ-ト、tert-ブチルペルオキシイソプロピルモノカルボネ-ト、2,5-ジ-メチル-2,5-ジ(ベンゾイルペルオキシ)ヘキサン、tert-ブチルペルオキシアセテ-ト、ジ-tert-ヘキシルペルオキシド、ジ-tert-ブチルペルオキシド、ジイソプロピルベンゼンヒドロペルオキシド、tert-ブチルヒドロペルオキシド等の有機過酸化物が挙げられる。 Examples of initiators to be used include azo compounds such as azobisisobutyronitrile, potassium persulfate, ammonium persulfate, benzoyl peroxide, diisobutyryl peroxide, di-n-propyl peroxydicarbonate, diisopropyl per- Oxydicarbonate, dilauroyl peroxide, dibenzoyl peroxide, 1,1-di(tert-hexylperoxy)cyclohexane, 1,1-di(tert-butylperoxy)cyclohexane, tert-butylhydroperoxide and diisobutyrylperoxide , tert-hexylperoxyisopropyl monocarbonate, tert-butylperoxyisopropyl monocarbonate, 2,5-di-methyl-2,5-di(benzoylperoxy)hexane, tert-butylperoxyacetate, Organic peroxides such as di-tert-hexyl peroxide, di-tert-butyl peroxide, diisopropylbenzene hydroperoxide and tert-butyl hydroperoxide can be mentioned.

高分子モノマ-のスラリ-とする際に用いる溶媒としては、例えば、水、エタノ-ル、メタノ-ル、イソプロピルアルコ-ル、プロパノ-ル又はトルエン等が挙げられ、好ましくは水、エタノ-ル又はメタノ-ル、特に好ましくは水又はエタノ-ルである。これらは1種又は2種以上用いることができる。 Examples of the solvent used for preparing the polymer monomer slurry include water, ethanol, methanol, isopropyl alcohol, propanol and toluene, preferably water and ethanol. or methanol, particularly preferably water or ethanol. These can be used alone or in combination of two or more.

高分子モノマ-のスラリ-における高分子モノマ-の含有量は、0.5~20重量%が好ましく、特に好ましくは1.5~10重量%である。高分子モノマ-の含有量がこの範囲であることで、Si化合物周囲の被覆体が十分な厚みとなり、結果としてSi化合物周囲の空隙量が十分となる。これにより、Li充電時のSi化合物の膨張が十分に緩和される、なおかつ、Si化合物同士の凝集が進行しにくくなる。 The content of the polymer monomer in the polymer monomer slurry is preferably 0.5 to 20% by weight, particularly preferably 1.5 to 10% by weight. When the content of the polymer monomer is within this range, the coating around the Si compound has a sufficient thickness, and as a result, the void volume around the Si compound becomes sufficient. As a result, the expansion of the Si compound during Li charging is sufficiently alleviated, and the aggregation of the Si compounds is less likely to proceed.

高分子モノマ-のスラリ-における開始剤の含有量は、0.01~3重量%が好ましく、特に好ましくは0.01~1重量%である。 The content of the initiator in the polymeric monomer slurry is preferably 0.01 to 3% by weight, particularly preferably 0.01 to 1% by weight.

高分子モノマ-のスラリ-においては、Si化合物の分散性を向上させるため、または重合を促進させるため、分散剤を含有することが好ましく、該分散剤としては、例えば、ポリビニルピロリドン、スチレンスルホン酸ナトリウム、スチレンスルホン酸リチウム、スチレンスルホン酸アンモニウム、スチレンスルホン酸エチルエステル等のスチレンスルホン酸系、カルボキシスチレン、ポリアクリル酸、ポリメタクリル酸等のポリカルボン酸系、ナフタレンスルホン酸ホルマリン縮合系、ポリエチレングリコ-ル、ポリカルボン酸部分アルキルエステル系、ポリエ-テル系、ポリアルキレンポリアミン系、アルキルスルホン酸系、四級アンモニウム系、高級アルコ-ルアルキレンオキサイド系、多価アルコ-ルエステル系、アルキルポリアミン系又はポリリン酸塩系が挙げられ、好ましくはポリアクリル酸系添加剤、スチレンスルホン酸系、ポリビニルピロリドン、特に好ましくはスチレンスルホン酸系及びポリビニルピロリドンである。 The polymer monomer slurry preferably contains a dispersant in order to improve the dispersibility of the Si compound or promote polymerization. Examples of the dispersant include polyvinylpyrrolidone and styrenesulfonic acid. Sodium, styrenesulfonic acids such as lithium styrenesulfonate, ammonium styrenesulfonate, styrenesulfonic acid ethyl ester, etc., polycarboxylic acids such as carboxystyrene, polyacrylic acid, polymethacrylic acid, naphthalenesulfonic acid formalin condensation, polyethylene glycol -, polycarboxylic acid partial alkyl ester system, polyether system, polyalkylene polyamine system, alkyl sulfonic acid system, quaternary ammonium system, higher alcohol alkylene oxide system, polyhydric alcohol ester system, alkyl polyamine system, or Examples include polyphosphate-based additives, preferably polyacrylic acid-based additives, styrenesulfonic acid-based additives and polyvinylpyrrolidone, particularly preferably styrenesulfonic acid-based additives and polyvinylpyrrolidone.

高分子モノマ-スラリ-における分散剤の含有量は、3重量%以下が好ましく、特に好ましくは0.001~2重量%である。分散剤の量がこの範囲内にあることで、Si化合物同士の凝集が進行しにくくなる。もしくは、Si化合物周囲のポリマ-膜厚が薄くなりにくくなる。 The content of the dispersant in the polymer monomer slurry is preferably 3% by weight or less, particularly preferably 0.001 to 2% by weight. When the amount of the dispersant is within this range, aggregation between Si compounds is less likely to proceed. Alternatively, the film thickness of the polymer around the Si compound becomes less likely to become thin.

高分子モノマ-スラリ-においては、重合を促進するために、重合促進剤を含有することが好ましく、該重合を促進剤としては、例えば、炭酸水素ナトリウム又は水酸化カリウム等のpH調整剤が挙げられ、好ましくは炭酸水素ナトリウムである。 The polymer monomer slurry preferably contains a polymerization accelerator in order to accelerate polymerization. Examples of the polymerization accelerator include pH adjusters such as sodium hydrogen carbonate and potassium hydroxide. is preferably sodium bicarbonate.

なお、得られたSi化合物に被覆された高分子膜は、後述する焼成により除去され空隙となるものである。 The polymer film coated with the obtained Si compound is removed by firing, which will be described later, to form voids.

黒鉛は、天然黒鉛、石油や石炭のピッチを黒鉛化した人造黒鉛等が利用でき、鱗片状、小判状、球状、円柱状又はファイバ-状が用いられる。また、それらの黒鉛を酸処理、酸化処理した後、熱処理することにより膨張させて黒鉛層間の一部が剥離してアコ-ディオン状となった膨張黒鉛もしくは膨張黒鉛の粉砕物、または超音波等により層間剥離させたグラフェン等も用いることができる。膨張黒鉛又はその粉砕物はその他の黒鉛に比べて可とう性に優れており、後述する複合粒子を形成する工程において、粉砕された粒子が再結着して略球状の複合粒子を容易に形成することができる。上記の点で、黒鉛として膨張黒鉛又はその粉砕物を用いることが好ましい。原料の黒鉛は予め混合工程で使用可能な大きさに整えて使用し、混合前の粒子サイズとしては天然黒鉛や人造黒鉛では1~100μm、膨張黒鉛もしくは膨張黒鉛の粉砕物、グラフェンでは5μm~5mm程度である。 Natural graphite, artificial graphite obtained by graphitizing petroleum or coal pitch, and the like can be used as graphite, and the graphite is used in the form of flakes, ovals, spheres, cylinders, or fibers. In addition, expanded graphite obtained by subjecting the graphite to an acid treatment, oxidation treatment, and then heat treatment to expand the graphite so that a portion of the graphite layers are exfoliated to form an accordion, pulverized expanded graphite, or ultrasonic waves, etc. Graphene or the like, which is delaminated by a method, can also be used. Expanded graphite or its pulverized product has superior flexibility compared to other graphites, and in the step of forming composite particles described later, the pulverized particles are re-bonded to easily form substantially spherical composite particles. can do. In view of the above, it is preferable to use expanded graphite or its pulverized material as the graphite. The raw material graphite is adjusted in advance to a size that can be used in the mixing process. degree.

Si化合物に高分子膜を被覆した後に、黒鉛と混合する際に、よりSi化合物と黒鉛を結着させることができることから、炭素化合物を加えることが好ましい。炭素化合物としては、Si化合物と黒鉛から得られる結晶性炭素を結合させることができ、かつ、焼成後に残炭成分が無いことが好ましく、例えば、グリセリン、ジグリセリン、トリグリセリン、ポリグリセリン、ジグリセリン脂肪酸エステル、トリグリセリン脂肪酸エステルなどのグリセリン系、メント-ル、ペンタエリトリト-ル、ジペンタエリトリト-ル、トリペンタエリトリト-ル、エチレングリコ-ル、プロピレングリコ-ル、ジエチレングリコ-ル、ポリエチレングリコ-ル、ポリエチレンオキシド、トリメチロ-ルプロパンなどのグリコ-ル系又はポリビニルピロリドン等が挙げられ、好ましくはポリビニルピロリドン、メント-ル又はグリセリンであり、特に好ましくはグリセリンである。 After coating the Si compound with the polymer film, it is preferable to add a carbon compound because the Si compound and graphite can be further bound when mixed with graphite. As the carbon compound, it is preferable that the crystalline carbon obtained from the Si compound and graphite can be combined and that there is no residual carbon component after firing. Glycerols such as fatty acid esters, triglycerin fatty acid esters, menthol, pentaerythritol, dipentaerythritol, tripentaerythritol, ethylene glycol, propylene glycol, diethylene glycol, Glycols such as polyethylene glycol, polyethylene oxide and trimethylolpropane, polyvinylpyrrolidone and the like, preferably polyvinylpyrrolidone, menthol or glycerin, particularly preferably glycerin.

Si化合物に高分子膜を被覆した後に、黒鉛と必要に応じて炭素化合物を混合する際には、溶媒を用いることが好ましく、該溶媒としては、例えば、キノリン、ピリジン、トルエン、ベンゼン、テトラヒドロフラン、クレオソ-ト油、テトラヒドロフラン、シクロヘキサノン、ニトロベンゼン、グリセリン、メント-ル、ポリビニルアルコ-ル、水、エタノ-ル又はメタノ-ルを使用することができる。 After the Si compound is coated with the polymer film, it is preferable to use a solvent when mixing graphite and, if necessary, the carbon compound. Examples of the solvent include quinoline, pyridine, toluene, benzene, tetrahydrofuran, Creosote oil, tetrahydrofuran, cyclohexanone, nitrobenzene, glycerin, menthol, polyvinyl alcohol, water, ethanol or methanol can be used.

混合方法としては、スラリ-濃度が高い場合には、混練機(ニ-ダ-)やレ-ディゲミキサ-を用いることができる。溶媒を用いる場合は、上述の混練機の他、スリ-ワンモ-タ-、スタ-ラ-、ナウタ-ミキサ-、レ-ディゲミキサ-、ヘンシェルミキサ、ハイスピ-ドミキサ-、ホモミキサ-、インラインミキサ-等を用いることができる。 As a mixing method, when the slurry concentration is high, a kneader (kneader) or a Loedige mixer can be used. When using a solvent, in addition to the above-mentioned kneader, three-one motor, stirrer, Nauta mixer, Redige mixer, Henschel mixer, high speed mixer, homomixer, in-line mixer, etc. can be used.

混合に溶媒を用い、該溶媒を除去する場合、そのままこれらの装置でジャケット加熱したり、振動乾燥機やパドルドライヤ-などで溶媒を除去したりすることができる。乾燥作業の前に、遠心分離機、フィルタ-プレス、吸引濾過器、加圧濾過機などの装置で固液分離することができる。過剰な炭素化合物を除去することで、焼成後にリチウム二次電池用複合活物質同士の連結、及び、その粉砕・解砕工程が不要になる。さらに、負極の容量低下の原因が除去されるため、これらの固液分離作業を行うことが好ましい。 When a solvent is used for mixing and the solvent is to be removed, the solvent can be removed by jacket heating with these apparatuses, or by using a vibration dryer, a paddle dryer, or the like. Prior to the drying operation, solid-liquid separation can be carried out with devices such as centrifuges, filter presses, suction filters, pressure filters and the like. By removing the excess carbon compound, it becomes unnecessary to connect the composite active materials for a lithium secondary battery after firing, and to pulverize and pulverize them. Furthermore, it is preferable to perform a solid-liquid separation operation because the cause of the decrease in the capacity of the negative electrode is eliminated.

これらの装置で、溶媒除去の過程における撹拌をある程度の時間続けることで、Si化合物、黒鉛と必要に応じて炭素化合物との混合物は造粒・圧密化される。また、溶媒除去後の混合物をロ-ラ-コンパクタ等の圧縮機によって圧縮し、解砕機で粗粉砕することにより、造粒・圧密化することができる。これらの造粒・圧密化物の大きさは、その後の粉砕工程での取り扱いの容易さから0.1~5mmが好ましい。 By continuing stirring in the process of removing the solvent in these apparatuses for a certain period of time, the mixture of the Si compound, graphite and, if necessary, the carbon compound is granulated and compacted. Further, the mixture after removing the solvent can be compressed with a compressor such as a roller compactor and coarsely pulverized with a crusher to granulate and consolidate. The size of these granulated/consolidated products is preferably 0.1 to 5 mm for ease of handling in the subsequent pulverization step.

造粒・圧密化の方法は、圧縮力を利用して被砕物を粉砕するボ-ルミル、媒体撹拌ミルや、ロ-ラによる圧縮力を利用して粉砕を行うロ-ラミル、被砕物を高速で内張材に衝突もしくは粒子相互に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミルや、ハンマ-、ブレ-ド、ピンなどを固設したロ-タ-の回転による衝撃力を利用して被砕物を粉砕するハンマ-ミル、ピンミル又はディスクミル等の乾式の粉砕方法が好ましく、中でもロ-ラミルが特に好ましい。また、粉砕後に粒度分布を整えるため、風力分級、ふるい分け等の乾式分級が用いられる。粉砕機と分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。 The methods of granulation and consolidation include ball mills that use compressive force to pulverize the material, medium agitation mills, roller mills that use the compression force of rollers to pulverize the material, and high-speed crushing. A jet mill that crushes by the impact force caused by the collision with the lining material or by colliding the particles with each other, and the impact force by the rotation of the rotor with fixed hammers, blades, pins, etc. is used. A dry pulverization method such as a hammer mill, pin mill or disc mill is preferred, and a roller mill is particularly preferred. In addition, dry classification such as wind classification and sieving is used in order to adjust the particle size distribution after pulverization. In a type in which a pulverizer and a classifier are integrated, pulverization and classification are performed at once, and a desired particle size distribution can be obtained.

また、造粒・圧密化回数を増やすことで、黒鉛中のSi化合物の分散性を向上させることができる。造粒・圧密化回数は1~10回が好ましく、2~10回がさらに好ましく、2~7回が特に好ましい。造粒・圧密化回数が10回以下である場合、黒鉛の結晶性が悪化しにくく、初回充放電効率が低下しにくくなる傾向がある。 Further, by increasing the number of times of granulation and compaction, it is possible to improve the dispersibility of the Si compound in the graphite. The number of times of granulation/consolidation is preferably 1 to 10 times, more preferably 2 to 10 times, and particularly preferably 2 to 7 times. When the number of times of granulation and compaction is 10 or less, the crystallinity of graphite is less likely to deteriorate, and the initial charge/discharge efficiency tends to be less likely to decrease.

造粒・圧密化した混合物を粉砕及び球形化処理を施す方法としては、上述の粉砕方法により粉砕して粒度を整えた後、専用の球形化装置を通す方法と、上述のジェットミルやロ-タ-の回転による衝撃力を利用して被砕物を粉砕する方法を繰り返す、もしくは処理時間を延長することで球形化する方法が挙げられる。専用の球形化装置としては、ホソカワミクロン社のファカルティ(商品名)、ノビルタ(商品名)、メカノフュ-ジョン(商品名)、日本コ-クス工業社のCOMPOSI、奈良機械製作所社のハイブリダイゼ-ションシステム、ア-ステクニカ社のクリプトロンオ-ブ、クリプトロンエディ等が挙げられる。 As a method of pulverizing and spheroidizing the granulated and compacted mixture, there is a method of pulverizing by the above-mentioned pulverization method to adjust the particle size and passing it through a dedicated spheronization device, and a method of passing it through a dedicated spheronization device. A method of repeating the method of pulverizing the crushed object using the impact force due to the rotation of the rotor, or a method of prolonging the treatment time to make the crushed object spherical. Dedicated sphering devices include Faculty (trade name), Nobilta (trade name), and Mechanofusion (trade name) from Hosokawa Micron Corporation, COMPOSI from Nippon Coke Kogyo Co., Ltd., Hybridization System from Nara Machinery Works, Ltd. Cryptoron Orb and Cryptoron Eddy manufactured by Earth Technica Co., Ltd., and the like.

上記粉砕および球形化処理を行うことにより、略球状の複合粒子を得ることができる。 Composite particles having a substantially spherical shape can be obtained by performing the pulverization and spheronization treatment.

得られた複合粒子は、アルゴンガスや窒素ガス等の不活性雰囲気で焼成する。 The obtained composite particles are fired in an inert atmosphere such as argon gas or nitrogen gas.

焼成温度は300~1200℃が好ましく、特に好ましくは600~1200℃であり、より好ましくは800~1000℃である。焼成温度が300℃以上であると、Si化合物に被覆した高分子膜が残存しにくくなり、初回体積放電容量の低下、更には初回充放電効率の低下や初回電極膨張率の上昇が生じにくい。一方、焼成温度が1200℃以下である場合、Si化合物と黒鉛との反応が起こりにくく、放電容量の低下が発生しにくくなる傾向にある。 The firing temperature is preferably 300 to 1200°C, particularly preferably 600 to 1200°C, more preferably 800 to 1000°C. When the firing temperature is 300° C. or higher, the polymer film coated with the Si compound is less likely to remain, resulting in a decrease in the initial volumetric discharge capacity, a decrease in the initial charge/discharge efficiency, and an increase in the initial electrode expansion coefficient. On the other hand, when the firing temperature is 1200° C. or lower, the reaction between the Si compound and graphite is less likely to occur, and the decrease in discharge capacity tends to be less likely to occur.

本発明のリチウム二次電池用複合活物質は、リチウム二次電池で使用される電極材料に使用される負極活物質として有用である。 The composite active material for lithium secondary batteries of the present invention is useful as a negative electrode active material used as an electrode material for lithium secondary batteries.

本発明のリチウム二次電池用複合活物質を使用してリチウム二次電池用負極を製造する方法は、公知の方法を使用することができる。 A known method can be used to manufacture a negative electrode for a lithium secondary battery using the composite active material for a lithium secondary battery of the present invention.

例えば、本発明のリチウム二次電池用複合活物質と結着剤とを混合し、溶剤を用いてペ-スト化し、負極合剤含有スラリ-とする。当該負極合剤含有スラリ-を、集電体上、例えば銅箔上、に塗布することで、リチウム二次電池用負極とすることができる。 For example, the composite active material for a lithium secondary battery of the present invention and a binder are mixed and made into a paste using a solvent to obtain a slurry containing a negative electrode mixture. A negative electrode for a lithium secondary battery can be obtained by applying the negative electrode mixture-containing slurry onto a current collector, such as a copper foil.

なお、集電体としては銅箔以外に、電池のサイクルがより優れる点で、三次元構造を有する集電体が好ましい。三次元構造を有する集電体の材料としては、例えば、炭素繊維、スポンジ状カ-ボン(スポンジ状樹脂にカ-ボンを塗工したもの)、銅以外の金属などが挙げられる。 In addition to the copper foil, the current collector is preferably a current collector having a three-dimensional structure because the cycle of the battery is superior. Materials for the current collector having a three-dimensional structure include, for example, carbon fiber, sponge-like carbon (sponge-like resin coated with carbon), and metals other than copper.

三次元構造を有する集電体(多孔質集電体)としては、金属や炭素の導電体の多孔質体として、平織り金網、エキスパンドメタル、ラス網、金属発泡体、金属織布、金属不織布、炭素繊維織布、または炭素繊維不織布などが挙げられる。 Current collectors having a three-dimensional structure (porous current collectors) include, as porous bodies of metal or carbon conductors, plain weave wire mesh, expanded metal, lath mesh, metal foam, metal woven fabric, metal non-woven fabric, Examples thereof include carbon fiber woven fabric and carbon fiber non-woven fabric.

使用される結着剤としては、公知の材料を使用でき、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素系樹脂、スチレンブタジエンゴム(SBR)、ポリエチレン、ポリビニルアルコ-ル、カルボキシメチルセルロ-ス、ポリアクリル酸又は膠などが用いられる。 As the binder to be used, known materials can be used, for example, fluorine-based resins such as polyvinylidene fluoride and polytetrafluoroethylene, styrene-butadiene rubber (SBR), polyethylene, polyvinyl alcohol, and carboxymethyl cellulose. , polyacrylic acid, glue, or the like is used.

また、溶剤としては、例えば、水、イソプロピルアルコ-ル、N-メチルピロリドン又はジメチルホルムアミドなどが挙げられる。なお、ペ-スト化する際には、必要に応じて、公知の攪拌機、混合機、混練機、ニ-ダ-などを用い、リチウム二次電池用複合活物質、結着剤及び溶剤を攪拌混合してもよい。 Examples of solvents include water, isopropyl alcohol, N-methylpyrrolidone and dimethylformamide. In addition, when making a paste, if necessary, a known stirrer, mixer, kneader, kneader, etc. are used to stir the composite active material for lithium secondary batteries, the binder and the solvent. May be mixed.

リチウム二次電池用複合活物質を用いて負極合剤スラリ-を調製する場合、導電材として導電性カ-ボンブラック、カ-ボンナノチュ-ブまたはその混合物を添加することが好ましい。上記工程により得られたリチウム二次電池用複合活物質の形状は、比較的、粒状化(特に、略球形化)している場合が多く、該リチウム二次電池用複合活物質の粒子同士の接触は点接触となりやすい。この弊害を避けるために、該負極合剤スラリ-にカ-ボンブラック、カ-ボンナノチュ-ブまたはその混合物を配合する方法が挙げられる。カ-ボンブラック、カ-ボンナノチュ-ブまたはその混合物はスラリ-溶剤の乾燥時に該リチウム二次電池用複合活物質が接触して形成する毛細管部分に集中的に凝集することが出来るので、サイクルに伴う接点切れ(抵抗増大)を防止することが出来る。 When preparing a negative electrode mixture slurry using a composite active material for a lithium secondary battery, it is preferable to add conductive carbon black, carbon nanotubes, or a mixture thereof as a conductive material. The shape of the composite active material for a lithium secondary battery obtained by the above process is often relatively granular (particularly approximately spherical), and the particles of the composite active material for a lithium secondary battery are separated from each other. Contact tends to be point contact. In order to avoid this adverse effect, there is a method of adding carbon black, carbon nanotubes or a mixture thereof to the negative electrode mixture slurry. Carbon black, carbon nanotubes, or a mixture thereof can be intensively aggregated in the capillary portion formed by contact with the composite active material for a lithium secondary battery when the slurry solvent is dried. It is possible to prevent disconnection of contacts (increased resistance).

カ-ボンブラック、カ-ボンナノチュ-ブまたはその混合物の配合量は、リチウム二次電池用複合活物質100質量部に対して、0.2~4質量部が好ましく、0.5~2質量部より好ましい。カ-ボンナノチュ-ブとしては、シングルウォ-ルカ-ボンナノチュ-ブ、マルチウォ-ルカ-ボンナノチュ-ブが挙げられる。
(正極)
本発明のリチウム二次電池用複合活物質を使用して得られる負極を有するリチウム二次電池に使用される正極としては、公知の正極材料を使用した正極を使用することができる。
The amount of carbon black, carbon nanotubes, or a mixture thereof is preferably 0.2 to 4 parts by mass, preferably 0.5 to 2 parts by mass, with respect to 100 parts by mass of the composite active material for lithium secondary batteries. more preferred. Carbon nanotubes include single-wall carbon nanotubes and multi-wall carbon nanotubes.
(positive electrode)
As a positive electrode used in a lithium secondary battery having a negative electrode obtained by using the composite active material for lithium secondary batteries of the present invention, a positive electrode using a known positive electrode material can be used.

正極の製造方法としては公知の方法が挙げられ、正極材料と結合剤および導電剤よりなる正極合剤を集電体の表面に塗布する方法などが挙げられる。正極材料(正極活物質)としては、酸化クロム、酸化チタン、酸化コバルト、五酸化バナジウムなどの金属酸化物や、LiCoO、LiNiO、LiNi1-yCo、LiNi1-x-yCoAl、LiMnO、LiMn、LiFeOなどのリチウム金属酸化物、硫化チタン、硫化モリブデンなどの遷移金属のカルコゲン化合物、または、ポリアセチレン、ポリパラフェニレン、ポリピロ-ルなどの導電性を有する共役系高分子物質などが挙げられる。
(電解液)
本発明のリチウム二次電池用複合活物質を使用して得られる負極を有するリチウム二次電池に使用される電解液としては、公知の電解液を使用することができる。
Examples of the method for manufacturing the positive electrode include known methods, such as a method of applying a positive electrode mixture comprising a positive electrode material, a binder and a conductive agent to the surface of a current collector. Examples of positive electrode materials (positive electrode active materials) include metal oxides such as chromium oxide, titanium oxide, cobalt oxide, vanadium pentoxide, LiCoO 2 , LiNiO 2 , LiNi 1-y Co y O 2 , and LiNi 1-xy. Lithium metal oxides such as Co x Al y O 2 , LiMnO 2 , LiMn 2 O 4 and LiFeO 2 ; transition metal chalcogen compounds such as titanium sulfide and molybdenum sulfide; A conductive conjugated polymer substance and the like can be mentioned.
(Electrolyte)
Known electrolytes can be used as electrolytes used in lithium secondary batteries having a negative electrode obtained by using the composite active material for lithium secondary batteries of the present invention.

例えば、電解液中に含まれる電解質塩として、LiPF、LiBF、LiAsF、LiClO、LiB(C)、LiCl、LiBr、LiCFSO、LiCHSO、LiN(CFSO、LiC(CFSO、LiN(CFCHOSO、LiN(CFCFOSO、LiN(HCFCFCHOSO、LiN{(CFCHOSO、LiB{C(CF、LiN(SOCF、LiC(SOCF、LiAlCl又はLiSiFなどのリチウム塩を用いることができる。特にLiPFおよびLiBFが酸化安定性の点から好ましい。 For example, electrolyte salts contained in the electrolytic solution include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB(C 6 H 5 ), LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN(CF 3 SO2 ) 2 , LiC ( CF3SO2 ) 3 , LiN( CF3CH2OSO2 ) 2 , LiN( CF3CF3OSO2 ) 2 , LiN ( HCF2CF2CH2OSO2 ) 2 , LiN {( CF3 ) 2CHOSO2 } 2 , LiB{ C6H3 ( CF3 ) 2 } 4 , LiN( SO2CF3 ) 2 , LiC( SO2CF3 ) 3 , LiAlCl4 or LiSiF6 Lithium salts can be used. LiPF 6 and LiBF 4 are particularly preferred from the viewpoint of oxidation stability.

電解質溶液中、の電解質塩濃度は0.1~5モル/リットルが好ましく、0.5~3モル/リットルがより好ましい。 The electrolyte salt concentration in the electrolyte solution is preferably 0.1 to 5 mol/liter, more preferably 0.5 to 3 mol/liter.

電解液で使用される溶媒としては、例えば、エチレンカ-ボネ-ト、プロピレンカ-ボネ-ト、ジメチルカ-ボネ-ト、ジエチルカ-ボネ-トなどのカ-ボネ-ト、1,1-または1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、γ-ブチロラクトン、1,3-ジオキソフラン、4-メチル-1,3-ジオキソラン、アニソ-ル、ジエチルエ-テルなどのエ-テル、スルホラン、メチルスルホランなどのチオエ-テル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N-メチルピロリドン、酢酸エチル、トリメチルオルトホルメ-ト、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3-メチル-2-オキサゾリン、エチレングリコ-ル又はジメチルサルファイトなどの非プロトン性有機溶媒を用いることができる。 Solvents used in the electrolytic solution include, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and other carbonates, 1, 1- or 1 , 2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxofuran, 4-methyl-1,3-dioxolane, anisole, diethyl ether, etc. Ether, sulfolane, thioether such as methylsulfolane, nitrile such as acetonitrile, chloronitrile, propionitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl ortho Aprotic organic solvents such as formate, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethylsulfoxide, 3-methyl-2-oxazoline, ethylene glycol or dimethylsulfite can be used.

なお、電解液の代わりに、高分子固体電解質、高分子ゲル電解質などの高分子電解質を使用してもよい。高分子固体電解質または高分子ゲル電解質のマトリクスを構成する高分子化合物としては、ポリエチレンオキサイドやその架橋体などのエ-テル系高分子化合物、ポリメタクリレ-トなどのメタクリレ-ト系高分子化合物、ポリアクリレ-トなどのアクリレ-ト系高分子化合物、ポリビニリデンフルオライド(PVDF)又はビニリデンフルオライド-ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物が好ましい。これらを混合して使用することもできる。酸化還元安定性などの観点から、PVDF又はビニリデンフルオライド-ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物が特に好ましい。
(セパレ-タ)
本発明のリチウム二次電池用複合活物質を使用して得られる負極を有するリチウム二次電池に使用されるセパレ-タとしては、公知の材料を使用できる。例えば、織布、不織布、合成樹脂製微多孔膜などが例示される。合成樹脂製微多孔膜が好適であり、なかでもポリオレフィン系微多孔膜が、膜厚、膜強度、膜抵抗などの点から好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜などである。
A polymer electrolyte such as a solid polymer electrolyte or a polymer gel electrolyte may be used instead of the electrolytic solution. Polymer compounds constituting the matrix of the polymer solid electrolyte or polymer gel electrolyte include ether-based polymer compounds such as polyethylene oxide and its crosslinked products, methacrylate-based polymer compounds such as polymethacrylate, and polyacrylate. Acrylate-based high molecular compounds such as hexafluoropropylene, polyvinylidene fluoride (PVDF), and fluorine-based high molecular compounds such as vinylidene fluoride-hexafluoropropylene copolymer are preferred. A mixture of these can also be used. From the viewpoint of oxidation-reduction stability, fluorine-based polymer compounds such as PVDF and vinylidene fluoride-hexafluoropropylene copolymer are particularly preferable.
(separator)
Known materials can be used as a separator for a lithium secondary battery having a negative electrode obtained by using the composite active material for lithium secondary batteries of the present invention. For example, woven fabrics, non-woven fabrics, synthetic resin microporous membranes, and the like are exemplified. Synthetic resin microporous membranes are preferred, and polyolefin microporous membranes are particularly preferred in terms of film thickness, membrane strength, membrane resistance, and the like. Specifically, it is a microporous membrane made of polyethylene and polypropylene, or a microporous membrane combining these.

リチウム二次電池は、上述した負極、正極、セパレ-タ、電解液、その他電池構成要素(例えば、集電体、ガスケット、封口板、ケ-スなど)を用いて、常法にしたがって円筒型、角型あるいはボタン型などの形態を有することができる。 The lithium secondary battery uses the above-described negative electrode, positive electrode, separator, electrolyte solution, and other battery components (for example, current collector, gasket, sealing plate, case, etc.), and is formed into a cylindrical shape according to a conventional method. , rectangular or button-shaped.

本発明のリチウム二次電池は、各種携帯電子機器に用いられ、特にノ-ト型パソコン、ノ-ト型ワ-プロ、パ-ムトップ(ポケット)パソコン、携帯電話、携帯ファックス、携帯プリンタ-、ヘッドフォンステレオ、ビデオカメラ、携帯テレビ、ポ-タブルCD、ポ-タブルMD、電動髭剃り機、電子手帳、トランシ-バ-、電動工具、ラジオ、テ-プレコ-ダ-、デジタルカメラ、携帯コピ-機、携帯ゲ-ム機などに用いることができる。また、さらに、電気自動車、ハイブリッド自動車、自動販売機、電動カ-ト、ロ-ドレベリング用蓄電システム、家庭用蓄電器、分散型電力貯蔵機システム(据置型電化製品に内蔵)、非常時電力供給システムなどの二次電池として用いることもできる。 The lithium secondary battery of the present invention is used in various portable electronic devices, especially notebook computers, notebook word processors, palmtop (pocket) computers, mobile phones, mobile facsimiles, mobile printers, Headphone stereo, video camera, portable TV, portable CD, portable MD, electric shaver, electronic notebook, transceiver, electric tools, radio, tape recorder, digital camera, portable copier It can be used for machines, portable game machines, and the like. In addition, electric vehicles, hybrid vehicles, vending machines, electric carts, power storage systems for road leveling, household power storage devices, distributed power storage systems (built into stationary electrical appliances), emergency power supply It can also be used as a secondary battery for a system or the like.

本発明の実施例3で製造したリチウム二次電池用複合活物質の断面SEM像である。3 is a cross-sectional SEM image of a composite active material for a lithium secondary battery produced in Example 3 of the present invention; 本発明の実施例1で製造したリチウム二次電池用複合活物質のSEM像である。1 is an SEM image of a composite active material for a lithium secondary battery produced in Example 1 of the present invention; 本発明の実施例1で製造したリチウム二次電池用複合活物質の断面SEM像(樹脂包埋)である。1 is a cross-sectional SEM image (resin-embedded) of a composite active material for a lithium secondary battery produced in Example 1 of the present invention; 本発明の実施例4で製造したリチウム二次電池用複合活物質の断面SEM像である。4 is a cross-sectional SEM image of the composite active material for lithium secondary batteries produced in Example 4 of the present invention.

以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these.

<実施例1>
(膨張黒鉛の調製)
平均粒子径1mmの鱗片状天然黒鉛を硫酸9質量部、硝酸1質量部の混酸に室温で1時間浸漬後、No3ガラスフィルタ-で混酸を除去して酸処理黒鉛を得た。さらに酸処理黒鉛を水洗後、乾燥した。乾燥した酸処理黒鉛5gを蒸留水100g中で攪拌し、1時間後にpHを測定したところ、pHは6.7であった。乾燥した酸処理黒鉛を850℃に設定した窒素雰囲気下の横型電気炉に投入し、膨張黒鉛を得た。膨張黒鉛の嵩密度は0.015g/cm、BET比表面積は24m/gであった。
<Example 1>
(Preparation of expanded graphite)
After immersing scale-like natural graphite having an average particle size of 1 mm in a mixed acid of 9 parts by mass of sulfuric acid and 1 part by mass of nitric acid at room temperature for 1 hour, the mixed acid was removed with a No. 3 glass filter to obtain acid-treated graphite. Further, the acid-treated graphite was washed with water and then dried. 5 g of dried acid-treated graphite was stirred in 100 g of distilled water, and after 1 hour the pH was measured and found to be 6.7. The dried acid-treated graphite was placed in a horizontal electric furnace set at 850° C. under a nitrogen atmosphere to obtain expanded graphite. The expanded graphite had a bulk density of 0.015 g/cm 3 and a BET specific surface area of 24 m 2 /g.

(Si粉砕工程)
粒径(D50)が7μmのケミカルグレ-ドの金属Si(純度3N)をエタノ-ルに21重量%混合し、直径0.3mmのジルコニアビ-ズを用いた微粉砕湿式ビ-ズミルを6時間行い、粒径(D50)0.2μm、乾燥時のBET比表面積が100m/gの超微粒子Siスラリ-を得た。
(Si pulverization step)
Chemical grade metal Si (purity 3N) with a particle size (D50) of 7 μm was mixed with ethanol at 21% by weight, and finely pulverized using zirconia beads with a diameter of 0.3 mm. An ultrafine Si slurry having a particle size (D50) of 0.2 μm and a BET specific surface area when dried of 100 m 2 /g was obtained.

(Si表面修飾工程)
上記粉砕Siスラリ-を197gビ-カ-に投入し、15分間超音波照射を行い、その後、追加エタノ-ルを412gを追加し、Siスラリ-を得た。その後、アンモニウムヒドロキシド45gと水200gを混合し、上記Siスラリ-に添加し、撹拌羽を用いて回転数250rpmの条件で1時間撹拌を行った。その後、3-メタクリロキシプロピルトリメトキシシラン(MPS)25gを上記Siスラリ-に添加した。室温で24時間撹拌を行い、その後、得られたSiスラリ-を回転数6000rpm、回転時間30分の条件で遠心分離処理し、エタノ-ルで再分散した。
(Si surface modification step)
197 g of the pulverized Si slurry was placed in a beaker, subjected to ultrasonic irradiation for 15 minutes, and then 412 g of additional ethanol was added to obtain a Si slurry. Thereafter, 45 g of ammonium hydroxide and 200 g of water were mixed, added to the above Si slurry, and stirred for 1 hour at a rotation speed of 250 rpm using a stirring blade. After that, 25 g of 3-methacryloxypropyltrimethoxysilane (MPS) was added to the above Si slurry. After stirring at room temperature for 24 hours, the obtained Si slurry was centrifuged at 6000 rpm for 30 minutes and re-dispersed with ethanol.

この遠心分離処理とエタノ-ル再分散の操作を3回繰り返した後に、再度同じ条件で遠心分離処理し、上澄み除去後にエタノ-ルで再分散させることで、粒径(D50)が0.2μmの3-メタクリロキシプロピルトリメトキシシランコ-トSi粒子(以下、MPS-Siと略す。)を得た。 After repeating this centrifugal separation treatment and ethanol redispersion operation three times, it is again centrifuged under the same conditions, and after removing the supernatant, it is redispersed with ethanol, resulting in a particle size (D50) of 0.2 μm. 3-methacryloxypropyltrimethoxysilane-coated Si particles (hereinafter abbreviated as MPS-Si) were obtained.

(Si被覆工程)
上記MPS-Siスラリ-を固形分量が8gとなるように秤量し、その後、超音波照射を15分間行い、合計のエタノ-ル量が504gとなるように追加でエタノ-ルを添加した。ポリビニルピロリドン(東京化成工業製、グレ-ド名:ポリビニルピロリドンK30)を10.67g採取し、29.33gの水に添加し、超音波照射しながら溶解させた。1Lの丸底フラスコを窒素パ-ジした後に、上記MPS-Siスラリ-とポリビニルピロリドン水溶液を注ぎ、蒸留したスチレンモノマ-を32g、アゾイソビスブチロニトリル0.53gを添加し、オイルバスを60℃に昇温させた。その後、還流下で6時間加熱を続け、ポリスチレンコ-トSiスラリ-を得た。
(Si coating step)
The above MPS-Si slurry was weighed so that the solid content was 8 g, then ultrasonic irradiation was performed for 15 minutes, and ethanol was added so that the total amount of ethanol was 504 g. 10.67 g of polyvinylpyrrolidone (manufactured by Tokyo Chemical Industry Co., Ltd., grade name: polyvinylpyrrolidone K30) was sampled, added to 29.33 g of water, and dissolved while being irradiated with ultrasonic waves. After purging a 1 L round-bottomed flask with nitrogen, the above MPS-Si slurry and polyvinylpyrrolidone aqueous solution were poured, 32 g of distilled styrene monomer and 0.53 g of azoisobisbutyronitrile were added, and an oil bath was removed. The temperature was raised to 60°C. Thereafter, heating was continued for 6 hours under reflux to obtain a polystyrene-coated Si slurry.

上記ポリスチレンコ-トSiスラリ-を66g(Siとして13.5g)、上記膨張黒鉛を31.5g、グリセリンを4.5g、及び、エタノ-ル0.5Lを撹拌容器に入れ、ホモミキサ-で15分混合撹拌し混合液を得た。その後、該混合液をロ-タリ-エバポレ-タ-に移し、回転しながら温浴で50℃に加熱し、アスピレ-タで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、110gの混合乾燥物(軽装かさ密度164g/L)を得た。 66 g of the polystyrene-coated Si slurry (13.5 g as Si), 31.5 g of the expanded graphite, 4.5 g of glycerin, and 0.5 L of ethanol were placed in a stirring vessel and mixed with a homogenizer for 15 minutes. A liquid mixture was obtained by mixing and stirring. The mixture was then transferred to a rotary evaporator, heated to 50° C. with a hot bath while rotating, and vacuumed with an aspirator to remove the solvent. After that, it was spread on a vat in a fume hood, dried for 2 hours while exhausting air, passed through a mesh with an opening of 2 mm, and further dried for 1 day to obtain 110 g of a mixed dried product (light-packed bulk density of 164 g/L).

(プレス工程)
この混合乾燥物を3本ロ-ルミルに2回通し、目開き1mmの篩を通し、軽装かさ密度299g/Lに造粒・圧密化した。
(Pressing process)
This dried mixed product was passed through a three-roll mill twice, passed through a sieve with an opening of 1 mm, and granulated and compacted to a light bulk density of 299 g/L.

(球形化工程)
次に、この造粒・圧密化物をニュ-パワ-ミルに入れて水冷しながら、21000rpmで360秒粉砕し、同時に球形化し、軽装かさ密度371g/Lの略球状複合粉末を得た。
(Spheroidization process)
Next, the granulated and compacted product was placed in a new power mill, water-cooled, pulverized at 21000 rpm for 360 seconds, and simultaneously spheroidized to obtain a substantially spherical composite powder having a light bulk density of 371 g/L.

(分級工程)
上記略球状複合粉末を風力分級装置(ホソカワミクロン製 ATP-50)に投入し、分級機回転速度15,000rpmにて分級し、軽装かさ密度197g/Lの略球状複合微粉末を得た。
(Classification process)
The substantially spherical composite powder was placed in an air classifier (ATP-50 manufactured by Hosokawa Micron) and classified at a classifier rotation speed of 15,000 rpm to obtain a substantially spherical composite fine powder having a light bulk density of 197 g/L.

(焼成工程)
得られた粉末を石英ボ-トに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成した。これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部からなる焼成粉を得た。
(Baking process)
The obtained powder was placed in a quartz boat and fired in a tubular furnace at a maximum temperature of 900° C. for 1 hour while flowing nitrogen gas. As a result, a sintered powder composed of 70 parts by mass of crystalline carbon (derived from graphite) and 30 parts by mass of Si was obtained.

その後、目開き45μmのメッシュを通し、軽装かさ密度115g/L、粒径(D50)が10μmの焼成粉を得た(リチウム二次電池用複合活物質)。 After that, it was passed through a mesh with an opening of 45 μm to obtain a fired powder having a light bulk density of 115 g/L and a particle size (D50) of 10 μm (composite active material for lithium secondary battery).

SEM(走査型電子顕微鏡)による、リチウム二次電池用複合活物質の粒子断面の二次電子像を図2、3に示す。これにより、本実施例のリチウム二次電池用複合活物質においては、シリコン粒子の周囲に空隙構造が存在し、SiまたはSi合金が結晶性炭素間に存在している構造であることが分かる。 SEM (Scanning Electron Microscope) secondary electron images of particle cross sections of the composite active material for lithium secondary batteries are shown in FIGS. From this, it can be seen that the composite active material for a lithium secondary battery of this example has a structure in which void structures exist around the silicon particles and Si or Si alloy exists between the crystalline carbons.

(リチウム二次電池用負極の作製)
得られたリチウム二次電池用複合活物質95.5重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%、バインダとしてポリカルボン酸系バインダ4.0重量%、及び、水とを混合して負極合剤含有スラリ-を調製した。
(Preparation of negative electrode for lithium secondary battery)
With respect to 95.5% by weight of the obtained composite active material for lithium secondary batteries (content in the total solid content; the same applies hereinafter), 0.5% by weight of acetylene black as a conductive agent and polycarboxylic acid as a binder 4.0% by weight of the system binder and water were mixed to prepare a negative electrode mixture-containing slurry.

得られた負極合剤含有スラリ-を、アプリケ-タを用いて固形分塗布量が2.5mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で真空乾燥機にて0.5時間乾燥した。乾燥後、14mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、さらに真空下、110℃で3時間熱処理して、厚みが32μmの負極合剤層を形成したリチウム二次電池用負極を得た。 The resulting negative electrode mixture-containing slurry was applied to a copper foil having a thickness of 18 μm using an applicator so that the solid content coating amount was 2.5 mg/cm 2 , and dried at 110° C. in a vacuum dryer. Dried for 0.5 hours. After drying, the lithium secondary was punched into a circle of 14 mmφ, uniaxially pressed at a pressure of 0.6 t/cm 2 , and heat-treated at 110° C. for 3 hours under vacuum to form a negative electrode mixture layer having a thickness of 32 μm. A battery negative electrode was obtained.

(初回充電膨張率評価用セルの作製と評価)
評価用スクリュ-セルは、グロ-ブボックス中でスクリュ-セルに上記負極、24mmφのポリプロピレン製セパレ-タ、21mmφのガラスフィルタ-、18mmφで厚み0.2mmの金属リチウムおよびその基材のステンレス箔を、各々、電解液にディップしたのち、この順に積層し、最後に蓋をねじ込み作製した。電解液はエチレンカ-ボネ-トとジエチルカ-ボネ-トを体積比1対1の混合溶媒とし、これにFEC(フルオロエチレンカ-ボネ-ト)を2体積%添加し、LiPFを1.2モル/リットルの濃度になるように溶解させたものを使用した。
(Preparation and evaluation of cells for evaluating expansion rate of initial charge)
The screw cell for evaluation was prepared by inserting the above negative electrode, a polypropylene separator of 24 mmφ, a glass filter of 21 mmφ, metallic lithium of 18 mmφ and a thickness of 0.2 mm into the screw cell in a glove box, and stainless steel foil as the base material. were dipped in an electrolytic solution, laminated in this order, and finally a lid was screwed. The electrolytic solution is a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1:1, to which 2% by volume of FEC (fluoroethylene carbonate) is added, and 1.2% of LiPF 6 is added. Those dissolved so as to have a concentration of mol/liter were used.

評価用セルは、さらにシリカゲルを入れた密閉ガラス容器に入れて、シリコンゴムの蓋を通した電極を充放電装置に接続した。 The evaluation cell was placed in a sealed glass container containing silica gel, and the electrodes were connected to a charging/discharging device through a silicon rubber lid.

評価用セルは25℃の恒温室にて、充放電試験をした。充電は定電流-定電圧充電で行い、0.5mAの定電流で0.005Vまで0.1Cで充電後、0.005Vの定電圧で電流値が0.03mA(=0.5/20)になるまで0.05Cで行った。初回充電容量は1307mAh/gであった。その後、アルゴン雰囲気中のグロ-ブボックス内で評価用スクリュ-セルを解体し、電極膜厚をマイクロメ-タ-で測定した。その結果、初回充電膨張率((充電後電極膜厚/充電前電極膜厚×100))は129%であった。 The evaluation cell was subjected to a charge/discharge test in a constant temperature room at 25°C. Charging is performed by constant current-constant voltage charging. After charging at 0.1 C to 0.005 V at a constant current of 0.5 mA, the current value is 0.03 mA (= 0.5/20) at a constant voltage of 0.005 V. It was performed at 0.05 C until the The initial charge capacity was 1307 mAh/g. After that, the screw cell for evaluation was dismantled in a glove box in an argon atmosphere, and the electrode film thickness was measured with a micrometer. As a result, the initial charging expansion rate ((electrode film thickness after charging/electrode film thickness before charging×100)) was 129%.

(20サイクル後の容量維持率評価用セルの作製と評価)
評価用コインセルは、グロ-ブボックス中でコインセルに上記負極、21mmφのガラスフィルタ-、18mmφで厚み0.2mmの金属リチウムおよびその基材のステンレス箔を、各々、電解液にディップしたのち、この順、に積層し、最後に蓋をねじ込み作製した。電解液はエチレンカ-ボネ-トとジエチルカ-ボネ-トを体積比1対1の混合溶媒とし、これにFEC(フルオロエチレンカ-ボネ-ト)を2体積%添加し、LiPFを1.2モル/リットルの濃度になるように溶解させたものを使用した。評価用コインセルは、さらにシリカゲルを入れた密閉ガラス容器に入れて、シリコンゴムの蓋を通した電極を充放電装置に接続した。
(Preparation and evaluation of capacity retention rate evaluation cell after 20 cycles)
The coin cell for evaluation was prepared by dipping the negative electrode, a glass filter of 21 mmφ, a metal lithium of 18 mmφ and a thickness of 0.2 mm, and a stainless steel foil as a base material in the electrolytic solution in a glove box. They were laminated in order, and finally a lid was screwed on. The electrolytic solution is a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1:1, to which 2% by volume of FEC (fluoroethylene carbonate) is added, and 1.2% of LiPF 6 is added. Those dissolved so as to have a concentration of mol/liter were used. The coin cell for evaluation was placed in a sealed glass container containing silica gel, and the electrodes were connected to a charging/discharging device through a silicon rubber cover.

評価用コインセルは25℃の恒温室にて、サイクル試験した。充電は、0.5mAの定電流で0.005Vまで0.1Cで充電後、0.005Vの定電圧で電流値が0.03mA(=0.5/20)になるまで0.05Cで行った。 The coin cell for evaluation was cycle-tested in a temperature-controlled room at 25°C. After charging at a constant current of 0.5 mA to 0.005 V at 0.1 C, the battery was charged at a constant voltage of 0.005 V at 0.05 C until the current value reached 0.03 mA (=0.5/20). rice field.

また放電は、0.5mAの定電流で1.5Vの電圧値まで行った。初回放電容量と初回充放電効率は、初回充放電試験の結果とした。また、サイクル特性は、前記充放電条件にて20回充放電試験した時の放電容量を最大放電容量と比較し、その20サイクル後の容量維持率として評価したところ、初回充放電効率は66.3%、初回体積放電容量は644mAh/cc、20サイクル後の容量維持率は96.7%であった。ここで、初回体積放電容量は、初回充電容量(mAh/g)×充電前電極密度(g/cc)÷初回充電膨張率(%)×初回充放電効率(%)で計算される。 Discharge was performed to a voltage value of 1.5 V at a constant current of 0.5 mA. The initial discharge capacity and the initial charge/discharge efficiency were the results of the initial charge/discharge test. In addition, the cycle characteristics were evaluated as the capacity retention rate after 20 cycles by comparing the discharge capacity when the charge/discharge test was performed 20 times under the above charge/discharge conditions with the maximum discharge capacity, and the initial charge/discharge efficiency was 66. 3%, the initial volume discharge capacity was 644 mAh/cc, and the capacity retention rate after 20 cycles was 96.7%. Here, the initial volume discharge capacity is calculated by initial charge capacity (mAh/g)×electrode density before charge (g/cc)/initial charge expansion rate (%)×initial charge/discharge efficiency (%).

<実施例2>
実施例1のSi粉砕工程とSi被覆工程と同様の手法でポリスチレンコ-トSiスラリ-を作製した後に、得られたスラリ-を1時間程度静置し、上澄み溶液をスポイトで除去後、エタノ-ル溶液を添加した。この作業を2回繰り返し、遊離のポリスチレン粒子を除去した。
<Example 2>
After preparing a polystyrene-coated Si slurry in the same manner as the Si pulverization step and the Si coating step in Example 1, the obtained slurry was allowed to stand for about 1 hour, and after removing the supernatant solution with a dropper, ethanol was added. - solution was added. This operation was repeated twice to remove free polystyrene particles.

その後、上記ポリスチレンコ-トSiをSiとして13.4g、上記膨張黒鉛を58.3g、グリセリン8.3g、エタノ-ル3.9Lを撹拌容器に入れ、ホモミキサ-で15分混合撹拌した。その後、混合液をロ-タリ-エバポレ-タ-に移し、回転しながら温浴で50℃に加熱し、アスピレ-タで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、119gの混合乾燥物(軽装かさ密度137g/L)を得た。 Then, 13.4 g of the polystyrene-coated Si (Si), 58.3 g of the expanded graphite, 8.3 g of glycerin, and 3.9 L of ethanol were placed in a stirring vessel and mixed and stirred with a homomixer for 15 minutes. The mixture was then transferred to a rotary evaporator, heated to 50° C. with a hot bath while rotating, and evacuated with an aspirator to remove the solvent. Then, it was spread on a vat in a fume hood, dried for 2 hours while exhausting air, passed through a mesh with an opening of 2 mm, and further dried for 1 day to obtain 119 g of a mixed dried product (light-packed bulk density of 137 g/L).

(プレス工程)
この混合乾燥物を3本ロ-ルミルに2回通し、目開き1mmの篩を通し、軽装かさ密度229g/Lに造粒・圧密化した。
(Pressing process)
This dried mixed product was passed through a three-roll mill twice, passed through a sieve with an opening of 1 mm, and granulated and compacted to a light bulk density of 229 g/L.

(球形化工程)
次に、この造粒・圧密化物を粒子設計/表面改質装置(奈良機械製作所製 ハイブリダイゼ-ションシステム NHS-1L)に投入し、100m/secで30分間粉砕し、同時に球形化し、軽装かさ密度316g/Lの略球状複合粉末を得た。
(Spheroidization process)
Next, this granulated/consolidated product is put into a particle design/surface modification device (Hybridization system NHS-1L manufactured by Nara Machinery Co., Ltd.), pulverized at 100 m/sec for 30 minutes, and simultaneously spheroidized to obtain a light bulk density. 316 g/L of approximately spherical composite powder was obtained.

(焼成工程)
得られた粉末を石英ボ-トに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成した。これにより、結晶性炭素(黒鉛由来)84質量部、Si16質量部からなる焼成粉を得た。
(Baking process)
The obtained powder was placed in a quartz boat and fired in a tubular furnace at a maximum temperature of 900° C. for 1 hour while flowing nitrogen gas. As a result, a sintered powder composed of 84 parts by mass of crystalline carbon (derived from graphite) and 16 parts by mass of Si was obtained.

その後、目開き45μmのメッシュを通し、粒径(D50)が11μmの焼成粉を得た。 After that, it was passed through a mesh with an opening of 45 μm to obtain a fired powder having a particle size (D50) of 11 μm.

実施例1と同様の方法でリチウム二次電池用複合活物質、負極、初回充電膨張率評価用セル、20サイクル後の容量維持率評価用スクリュ-セルを作製し、充放電試験を行ったところ、初回充電容量は1032mAh/g、初回充電膨張率は143%、初回充放電効率は71.1%、初回放電体積容量は672mAh/cc、20サイクル後の容量維持率は99.7%であった。 A composite active material for a lithium secondary battery, a negative electrode, a cell for evaluating the initial charge expansion rate, and a screw cell for evaluating the capacity retention rate after 20 cycles were prepared in the same manner as in Example 1, and a charge-discharge test was performed. The initial charge capacity was 1032 mAh/g, the initial charge expansion rate was 143%, the initial charge/discharge efficiency was 71.1%, the initial discharge volume capacity was 672 mAh/cc, and the capacity retention rate after 20 cycles was 99.7%. rice field.

これによりリチウム二次電池用複合活物質においては、シリコン粒子の周囲に空隙構造が存在し、SiまたはSi合金が結晶性炭素間に存在している構造であることが分かる。 From this, it can be seen that the composite active material for a lithium secondary battery has a structure in which void structures exist around silicon particles and Si or Si alloy exists between crystalline carbons.

<実施例3>
実施例1のSi粉砕工程と同様の手法で粉砕Siを得た後に、Si表面被覆工程を行わずに、実施例1のSi表面被覆工程と同様の手順に従いポリスチレンコ-トSiスラリ-を得た。
<Example 3>
After obtaining pulverized Si by the same method as the Si pulverization step of Example 1, a polystyrene-coated Si slurry was obtained in the same manner as the Si surface coating step of Example 1 without performing the Si surface coating step. rice field.

その後、上記ポリスチレンコ-トSiをSiとして32g、上記膨張黒鉛を74.7g、グリセリン10.7g、エタノ-ル1.2Lを撹拌容器に入れ、ホモミキサ-で20分混合撹拌した。その後、混合液をロ-タリ-エバポレ-タ-に移し、回転しながら温浴で50℃に加熱し、アスピレ-タで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、210gの混合乾燥物(軽装かさ密度198g/L)を得た。 Thereafter, 32 g of the polystyrene-coated Si (Si), 74.7 g of the expanded graphite, 10.7 g of glycerin and 1.2 L of ethanol were placed in a stirring vessel and mixed and stirred for 20 minutes with a homogenizer. The mixture was then transferred to a rotary evaporator, heated to 50° C. with a hot bath while rotating, and evacuated with an aspirator to remove the solvent. Then, it was spread on a vat in a fume hood, dried for 2 hours while exhausting air, passed through a mesh with an opening of 2 mm, and further dried for 1 day to obtain 210 g of a mixed dried product (light-packed bulk density of 198 g/L).

(プレス工程)
この混合乾燥物を3本ロ-ルミルに2回通し、目開き1mmの篩を通し、軽装かさ密度442g/Lに造粒・圧密化した。
(Pressing process)
This dried mixed product was passed twice through a three-roll mill, passed through a sieve with an opening of 1 mm, and granulated and compacted to a light bulk density of 442 g/L.

次に、この造粒・圧密化物56.1gを粒子設計/表面改質装置(奈良機械製作所製 ハイブリダイゼ-ションシステム NHS-1L)に投入し、100m/secで15分間粉砕し、同時に球形化し、軽装かさ密度323g/Lの略球状複合粉末を得た。 Next, 56.1 g of this granulated/consolidated product is put into a particle design/surface modification device (Hybridization system NHS-1L manufactured by Nara Machinery Co., Ltd.), pulverized at 100 m/sec for 15 minutes, and simultaneously spheroidized. A substantially spherical composite powder having a light bulk density of 323 g/L was obtained.

(焼成工程)
得られた粉末を石英ボ-トに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成した。これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部からなる焼成粉を得た。
(Baking process)
The obtained powder was placed in a quartz boat and fired in a tubular furnace at a maximum temperature of 900° C. for 1 hour while flowing nitrogen gas. As a result, a sintered powder composed of 70 parts by mass of crystalline carbon (derived from graphite) and 30 parts by mass of Si was obtained.

その後、目開き45μmのメッシュを通し、軽装かさ密度217g/L、粒径(D50)が12μmの焼成粉を得た。 After that, it was passed through a mesh with an opening of 45 μm to obtain a fired powder having a light bulk density of 217 g/L and a particle size (D50) of 12 μm.

SEM(走査型電子顕微鏡)によるリチウム二次電池用複合活物質の粒子断面の二次電子像を図1に示す。 FIG. 1 shows a secondary electron image of a particle cross section of the composite active material for a lithium secondary battery obtained by SEM (scanning electron microscope).

実施例1と同様の方法でリチウム二次電池用複合活物質、負極、初回充電膨張率評価用セル、20サイクル後の容量維持率評価用スクリュ-セルを作製し、充放電試験を行ったところ、初回充電容量は1604mAh/g、初回充電膨張率は132%、初回充放電効率は78.7%、初回放電体積容量は822mAh/cc、20サイクル後の容量維持率は93.2%であった。 A composite active material for a lithium secondary battery, a negative electrode, a cell for evaluating the initial charge expansion rate, and a screw cell for evaluating the capacity retention rate after 20 cycles were prepared in the same manner as in Example 1, and a charge-discharge test was performed. The initial charge capacity was 1604 mAh/g, the initial charge expansion rate was 132%, the initial charge/discharge efficiency was 78.7%, the initial discharge volume capacity was 822 mAh/cc, and the capacity retention rate after 20 cycles was 93.2%. rice field.

<実施例4>
実施例1のSi粉砕工程と同様の手法で得た粉砕Siを固形分量が8gとなるように秤量し、その後、超音波照射を15分間行い、合計のエタノ-ル量が504gとなるように追加でエタノ-ルを添加した。ポリビニルピロリドンK30を10.67g採取し、29.33gの水に添加し、超音波照射しながら溶解させた。1Lの丸底フラスコを窒素パ-ジした後に、上記粉砕Siスラリ-とポリビニルピロリドン水溶液を注ぎ、蒸留したスチレンモノマ-を53.35g、アゾビスイソブチロニトリル0.53gを添加し、オイルバスを60℃に昇温させた。その後、還流下で10時間加熱を続け、ポリスチレンコ-トSiスラリ-を得た。
<Example 4>
The pulverized Si obtained by the same method as the Si pulverizing step of Example 1 was weighed so that the solid content was 8 g, and then ultrasonic irradiation was performed for 15 minutes, so that the total amount of ethanol was 504 g. Additional ethanol was added. 10.67 g of polyvinylpyrrolidone K30 was sampled, added to 29.33 g of water, and dissolved while being irradiated with ultrasonic waves. After purging a 1 L round-bottomed flask with nitrogen, the pulverized Si slurry and polyvinylpyrrolidone aqueous solution were poured, 53.35 g of distilled styrene monomer and 0.53 g of azobisisobutyronitrile were added, and the mixture was placed in an oil bath. was raised to 60°C. Thereafter, heating was continued for 10 hours under reflux to obtain a polystyrene-coated Si slurry.

その後、上記ポリスチレンコ-トSiをSiとして32g、上記膨張黒鉛を74.7g、グリセリン10.7g、エタノ-ル1.2Lを撹拌容器に入れ、ホモミキサ-で20分混合撹拌した。その後、混合液をロ-タリ-エバポレ-タ-に移し、回転しながら温浴で50℃に加熱し、アスピレ-タで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、287gの混合乾燥物(軽装かさ密度175g/L)を得た。 Thereafter, 32 g of the polystyrene-coated Si (Si), 74.7 g of the expanded graphite, 10.7 g of glycerin and 1.2 L of ethanol were placed in a stirring vessel and mixed and stirred for 20 minutes with a homogenizer. The mixture was then transferred to a rotary evaporator, heated to 50° C. with a hot bath while rotating, and evacuated with an aspirator to remove the solvent. After that, it was spread on a vat in a fume hood, dried for 2 hours while exhausting air, passed through a mesh with an opening of 2 mm, and further dried for 1 day to obtain 287 g of a mixed dried product (light-packed bulk density: 175 g/L).

(プレス工程)
この混合乾燥物を3本ロ-ルミルに2回通し、目開き1mmの篩を通し、軽装かさ密度377g/Lに造粒・圧密化した。
(Pressing process)
This dried mixed product was passed twice through a three-roll mill, passed through a sieve with an opening of 1 mm, and granulated and compacted to a light bulk density of 377 g/L.

(球形化工程)
次に、この造粒・圧密化物40.9gを粒子設計/表面改質装置(奈良機械製作所製 ハイブリダイゼ-ションシステム NHS-1L)に投入し、100m/secで15分間粉砕し、同時に球形化し、軽装かさ密度307g/Lの略球状複合粉末を得た。
(Spheroidization process)
Next, 40.9 g of this granulated/consolidated product is put into a particle design/surface modification device (Hybridization system NHS-1L manufactured by Nara Machinery Co., Ltd.), pulverized at 100 m/sec for 15 minutes, and simultaneously spheroidized. A substantially spherical composite powder having a light bulk density of 307 g/L was obtained.

(焼成工程)
得られた粉末を石英ボ-トに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成した。これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部からなる焼成粉を得た。
(Baking process)
The obtained powder was placed in a quartz boat and fired in a tubular furnace at a maximum temperature of 900° C. for 1 hour while flowing nitrogen gas. As a result, a sintered powder composed of 70 parts by mass of crystalline carbon (derived from graphite) and 30 parts by mass of Si was obtained.

その後、目開き45μmのメッシュを通し、軽装かさ密度178g/L、粒径(D50)が13μmの焼成粉を得た。実施例1と同様の方法でリチウム二次電池用複合活物質、負極、初回充電膨張率評価用セル、20サイクル後の容量維持率評価用スクリュ-セルを作製し、充放電試験を行ったところ、初回充電容量は1453mAh/g、初回充電膨張率は126%、初回充放電効率は78.9%、初回放電体積容量は827mAh/cc、20サイクル後の容量維持率は95.0%であった。 After that, it was passed through a mesh with an opening of 45 μm to obtain a sintered powder having a light bulk density of 178 g/L and a particle size (D50) of 13 μm. A composite active material for a lithium secondary battery, a negative electrode, a cell for evaluating the initial charge expansion rate, and a screw cell for evaluating the capacity retention rate after 20 cycles were prepared in the same manner as in Example 1, and a charge-discharge test was performed. The initial charge capacity was 1453 mAh/g, the initial charge expansion rate was 126%, the initial charge/discharge efficiency was 78.9%, the initial discharge volume capacity was 827 mAh/cc, and the capacity retention rate after 20 cycles was 95.0%. rice field.

<実施例5>
実施例1のSi粉砕工程と同様の手法で得た粉砕Siを固形分量が4.9gとなるように秤量し、その後、超音波照射を15分間行い、水を700g添加した。1Lの丸底フラスコを窒素パ-ジした後に、上記粉砕Siスラリ-を注ぎ、オイルバスを80℃に昇温させた。その後、還流下で蒸留したメタクリル酸メチルモノマ-を11.3g、水20gに溶解させた過硫酸カリウム0.07gを30分かけて滴下し、3時間加熱を続け、ポリメタクリル酸メチルコ-トSiスラリ-を得た。
<Example 5>
The pulverized Si obtained by the same method as the Si pulverizing step of Example 1 was weighed so that the solid content was 4.9 g, followed by ultrasonic irradiation for 15 minutes, and 700 g of water was added. After purging the 1 L round-bottomed flask with nitrogen, the pulverized Si slurry was poured thereinto and the oil bath was heated to 80.degree. Thereafter, 11.3 g of methyl methacrylate monomer distilled under reflux and 0.07 g of potassium persulfate dissolved in 20 g of water were added dropwise over 30 minutes, and heating was continued for 3 hours to form a polymethyl methacrylate Si slurry. - got.

その後、上記ポリメタクリル酸メチルコ-トSiを19.6g、上記膨張黒鉛を45.7g、グリセリン6.5gを撹拌容器に入れ、ホモミキサ-で40分混合撹拌した。その後、混合液をロ-タリ-エバポレ-タ-に移し、回転しながら温浴で80℃に加熱し、アスピレ-タで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、93gの混合乾燥物(軽装かさ密度131g/L)を得た。 After that, 19.6 g of polymethyl methacrylate Si, 45.7 g of expanded graphite and 6.5 g of glycerin were placed in a stirring vessel and mixed and stirred for 40 minutes with a homogenizer. The mixture was then transferred to a rotary evaporator, heated to 80° C. with a hot bath while rotating, and evacuated with an aspirator to remove the solvent. Then, it was spread on a vat in a fume hood, dried for 2 hours while exhausting air, passed through a mesh with an opening of 2 mm, and further dried for 1 day to obtain 93 g of a mixed dried product (light-packed bulk density: 131 g/L).

(プレス工程)
この混合乾燥物を3本ロ-ルミルに2回通し、目開き1mmの篩を通し、軽装かさ密度160g/Lに造粒・圧密化した。
(Pressing process)
This dried mixed product was passed through a three-roll mill twice, passed through a sieve with an opening of 1 mm, and granulated and compacted to a light bulk density of 160 g/L.

(球形化工程)
次に、この造粒・圧密化物68gを粒子設計/表面改質装置(奈良機械製作所製 ハイブリダイゼ-ションシステム NHS-1L)に投入し、40m/secで15分間粉砕し、同時に球形化し、軽装かさ密度314g/Lの略球状複合粉末を得た。
(Spheroidization process)
Next, 68 g of this granulated/consolidated product is put into a particle design/surface modification device (Hybridization system NHS-1L manufactured by Nara Machinery Co., Ltd.), pulverized at 40 m / sec for 15 minutes, and simultaneously spheroidized. A substantially spherical composite powder with a density of 314 g/L was obtained.

(焼成工程)
得られた粉末を石英ボ-トに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成した。これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部からなる焼成粉を得た。
(Baking process)
The obtained powder was placed in a quartz boat and fired in a tubular furnace at a maximum temperature of 900° C. for 1 hour while flowing nitrogen gas. As a result, a sintered powder composed of 70 parts by mass of crystalline carbon (derived from graphite) and 30 parts by mass of Si was obtained.

その後、目開き45μmのメッシュを通し、軽装かさ密度256g/L、粒径(D50)が15μmの焼成粉を得た。実施例1と同様の方法でリチウム二次電池用複合活物質、負極、初回充電膨張率評価用セル、20サイクル後の容量維持率評価用スクリュ-セルを作製し、充放電試験を行ったところ、初回充電容量は1659mAh/g、初回充電膨張率は163%、初回充放電効率は82.5%、初回放電体積容量は832mAh/cc、20サイクル後の容量維持率は75.0%であった。 After that, it was passed through a mesh with an opening of 45 μm to obtain a sintered powder having a light bulk density of 256 g/L and a particle size (D50) of 15 μm. A composite active material for a lithium secondary battery, a negative electrode, a cell for evaluating the initial charge expansion rate, and a screw cell for evaluating the capacity retention rate after 20 cycles were prepared in the same manner as in Example 1, and a charge-discharge test was performed. The initial charge capacity was 1659 mAh/g, the initial charge expansion rate was 163%, the initial charge/discharge efficiency was 82.5%, the initial discharge volume capacity was 832 mAh/cc, and the capacity retention rate after 20 cycles was 75.0%. rice field.

<実施例6>
実施例1のSi粉砕工程と同様の手法で得た粉砕Siを固形分量が8gとなるように秤量し、その後、超音波照射を15分間行い、合計のエタノ-ル量が504gとなるように追加でエタノ-ルを添加した。ポリビニルピロリドンK30を10.67g採取し、29.33gの水に添加し、超音波照射しながら溶解させた。1Lの丸底フラスコを窒素パ-ジした後に、上記粉砕Siスラリ-とポリビニルピロリドン水溶液を注ぎ、蒸留したスチレンモノマ-を53.35g、アゾイソブチロニトリル0.53gを添加し、オイルバスを60℃に昇温させた。その後、還流下で10時間加熱を続け、ポリスチレンコ-トSiスラリ-を得た。
<Example 6>
The pulverized Si obtained by the same method as the Si pulverizing step of Example 1 was weighed so that the solid content was 8 g, and then ultrasonic irradiation was performed for 15 minutes, so that the total amount of ethanol was 504 g. Additional ethanol was added. 10.67 g of polyvinylpyrrolidone K30 was sampled, added to 29.33 g of water, and dissolved while being irradiated with ultrasonic waves. After purging a 1 L round-bottomed flask with nitrogen, the pulverized Si slurry and polyvinylpyrrolidone aqueous solution were poured, 53.35 g of distilled styrene monomer and 0.53 g of azoisobutyronitrile were added, and an oil bath was added. The temperature was raised to 60°C. Thereafter, heating was continued for 10 hours under reflux to obtain a polystyrene-coated Si slurry.

その後、上記ポリスチレンコ-トSiをSiとして32g、上記膨張黒鉛を74.7g、グリセリン10.7g、エタノ-ル1.2Lを撹拌容器に入れ、ホモミキサ-で20分混合撹拌した。その後、混合液をロ-タリ-エバポレ-タ-に移し、回転しながら温浴で50℃に加熱し、アスピレ-タで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、287gの混合乾燥物(軽装かさ密度175g/L)を得た。 Thereafter, 32 g of the polystyrene-coated Si (Si), 74.7 g of the expanded graphite, 10.7 g of glycerin and 1.2 L of ethanol were placed in a stirring vessel and mixed and stirred for 20 minutes with a homogenizer. The mixture was then transferred to a rotary evaporator, heated to 50° C. with a hot bath while rotating, and evacuated with an aspirator to remove the solvent. After that, it was spread on a vat in a fume hood, dried for 2 hours while exhausting air, passed through a mesh with an opening of 2 mm, and further dried for 1 day to obtain 287 g of a mixed dried product (light-packed bulk density: 175 g/L).

(プレス工程)
この混合乾燥物を3本ロ-ルミルに2回通し、目開き1mmの篩を通し、軽装かさ密度377g/Lに造粒・圧密化した。
(Pressing process)
This dried mixed product was passed twice through a three-roll mill, passed through a sieve with an opening of 1 mm, and granulated and compacted to a light bulk density of 377 g/L.

(球形化工程)
次に、この造粒・圧密化物80gを粒子設計/表面改質装置(奈良機械製作所製 ハイブリダイゼ-ションシステム NHS-1L)に投入し、40m/secで15分間粉砕し、同時に球形化し、軽装かさ密度382g/Lの略球状複合粉末を得た。
(焼成工程)
得られた粉末を石英ボ-トに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成した。これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部からなる焼成粉を得た。
(Spheroidization process)
Next, 80 g of this granulated/consolidated product is put into a particle design/surface modification device (Hybridization system NHS-1L manufactured by Nara Machinery Co., Ltd.), pulverized at 40 m / sec for 15 minutes, and simultaneously spheroidized. A substantially spherical composite powder with a density of 382 g/L was obtained.
(Baking process)
The obtained powder was placed in a quartz boat and fired in a tubular furnace at a maximum temperature of 900° C. for 1 hour while flowing nitrogen gas. As a result, a sintered powder composed of 70 parts by mass of crystalline carbon (derived from graphite) and 30 parts by mass of Si was obtained.

その後、目開き45μmのメッシュを通し、軽装かさ密度195g/L、粒径(D50)が31μmの焼成粉を得た。 After that, it was passed through a mesh with an opening of 45 μm to obtain a fired powder having a light bulk density of 195 g/L and a particle size (D50) of 31 μm.

得られた焼成粉(100質量部)を、コ-ルタ-ルピッチ(炭化度60%、8.35質量部)を30分間撹拌した後、以下の方法を用い焼成を行い、被覆を行った。 The obtained calcined powder (100 parts by mass) was stirred with coal tar pitch (carbonization degree 60%, 8.35 parts by mass) for 30 minutes, and then calcined and coated by the following method.

(焼成工程)
回転焼成炉を使用し、窒素を流しながら(0.3L/min)、昇温度速度を30℃/minとし、2rpmにて回転させながら混合物を600℃で2時間加熱することで、コ-ルタ-ルピッチをソフトカ-ボンへ変性させた。これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部、非晶性炭素5質量部(コ-ルタ-ルピッチ由来のソフトカ-ボン)からなる焼成粉を得た。
(Baking process)
Using a rotary firing furnace, while flowing nitrogen (0.3 L/min), the temperature increase rate is 30 ° C./min, and the mixture is heated at 600 ° C. for 2 hours while rotating at 2 rpm. - Modification of lupit into soft carbon. As a result, a fired powder containing 70 parts by mass of crystalline carbon (derived from graphite), 30 parts by mass of Si, and 5 parts by mass of amorphous carbon (soft carbon derived from coal tar pitch) was obtained.

(気相コ-トによる炭素被覆工程)
得られた粉体を回転焼成炉にセットし、ロ-タリ-ポンプにより管内を真空引きした後に管内に200SCCMの流量の窒素ガス及び、100SCCMの流量のエチレンガスを流し、2rpmにて回転させながら電気ヒ-タ-で920℃まで加熱し、その状態を3分間保持する事で炭素被覆を行った。炭素被覆による重量増は5重量%であり、これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部、非晶性炭素10質量部(コ-ルタ-ルピッチ由来のソフトカ-ボン5質量部、気相コ-ト由来のソフトカ-ボン5質量部)からなるリチウム二次電池用複合活物質を得た。
(Carbon coating process by vapor phase coating)
The obtained powder was set in a rotary sintering furnace, and after the inside of the tube was evacuated by a rotary pump, nitrogen gas at a flow rate of 200 SCCM and ethylene gas at a flow rate of 100 SCCM were flowed into the tube, and the tube was rotated at 2 rpm. Carbon coating was performed by heating to 920° C. with an electric heater and maintaining that state for 3 minutes. The weight increase due to the carbon coating is 5% by weight, resulting in 70 parts by mass of crystalline carbon (derived from graphite), 30 parts by mass of Si, 10 parts by mass of amorphous carbon (5 parts by mass of soft carbon derived from coal tar pitch parts, and 5 parts by mass of soft carbon derived from the gas phase coat).

その後、目開き45μmのメッシュを通し、粒径(D50)が33μmの焼成粉を得た。実施例1と同様の方法でリチウム二次電池用複合活物質、負極、初回充電膨張率評価用セル、20サイクル後の容量維持率評価用スクリュ-セルを作製し、充放電試験を行ったところ、初回充電容量は1264mAh/g、初回充電膨張率は140%、初回充放電効率は82.4%、初回放電体積容量は863mAh/cc、20サイクル後の容量維持率は97.3%であった。 After that, it was passed through a mesh with an opening of 45 μm to obtain a fired powder having a particle size (D50) of 33 μm. A composite active material for a lithium secondary battery, a negative electrode, a cell for evaluating the initial charge expansion rate, and a screw cell for evaluating the capacity retention rate after 20 cycles were prepared in the same manner as in Example 1, and a charge-discharge test was performed. The initial charge capacity was 1264 mAh/g, the initial charge expansion rate was 140%, the initial charge/discharge efficiency was 82.4%, the initial discharge volume capacity was 863 mAh/cc, and the capacity retention rate after 20 cycles was 97.3%. rice field.

<実施例7>
(Si表面修飾工程)
実施例1のSi粉砕工程と同様の手法で得た粉砕Siを固形分量が40gとなるように秤量し、その後、超音波照射を15分間行い、合計のエタノ-ル量が1018gとなるように追加でエタノ-ルを添加してSiスラリ-を得た。その後、ポリカルボン酸系分散剤88g、アンモニウムヒドロキシド36gと水320gを上記Siスラリ-に添加し、撹拌羽を用いて回転数400rpmの条件で1時間撹拌を行った。その後、テトラエトキシシラン(TEOS)80gを上記Siスラリ-に添加した。室温で1.5時間撹拌を行い、その後、得られたSiスラリ-を回転数4800rpm、回転時間25分の条件で遠心分離処理し、エタノ-ルで再分散した。得られたスラリ-に対して、直径1.0mmのジルコニアボ-ルを用いたボ-ルミルを8時間行い、粒径(D50)0.25μmのSiスラリ-を得た。これを回転数4800rpm、回転時間60分の条件で遠心分離処理し、水で再分散した。
<Example 7>
(Si surface modification step)
The pulverized Si obtained by the same method as the Si pulverization step of Example 1 was weighed so that the solid content was 40 g, and then ultrasonic irradiation was performed for 15 minutes, so that the total amount of ethanol was 1018 g. Additional ethanol was added to obtain a Si slurry. Then, 88 g of a polycarboxylic acid-based dispersant, 36 g of ammonium hydroxide and 320 g of water were added to the Si slurry, and the mixture was stirred for 1 hour with a stirring blade at a rotation speed of 400 rpm. After that, 80 g of tetraethoxysilane (TEOS) was added to the above Si slurry. After stirring at room temperature for 1.5 hours, the obtained Si slurry was centrifuged at 4800 rpm for 25 minutes and re-dispersed with ethanol. The obtained slurry was subjected to ball milling using zirconia balls with a diameter of 1.0 mm for 8 hours to obtain Si slurry with a particle size (D50) of 0.25 μm. This was subjected to centrifugal separation under the conditions of a rotation speed of 4800 rpm and a rotation time of 60 minutes, and redispersed with water.

(Si被覆工程)
上記スラリ-をSi固形分量が13.85gとなるように秤量して丸底フラスコに移し、合計の水量が3386gとなるように追加で水を添加した。フラスコ系内を窒素パ-ジした後、液温を35℃に昇温した。その後、3-メタクリロキシプロピルトリメトキシシラン(MPS)0.465gをフラスコ内に加え、30分間攪拌した。蒸留したスチレンモノマ-77.7gと40gの水に溶解させたp-スチレンスルホン酸ナトリウム0.39gを添加し、2時間攪拌した。その後、液温を62℃に昇温させ、40gの水に溶解させた過硫酸アンモニウム1.7gを添加した。その後、還流下で10時間加熱撹拌を続けた。得られた反応液を回転数4800rpm、回転時間45分の条件で遠心分離処理することで遊離のポリスチレンを除去し、沈殿をエタノ-ルで再分散することでポリスチレンコ-トSiスラリ-を得た。
(Si coating step)
The above slurry was weighed so that the Si solid content was 13.85 g, transferred to a round-bottomed flask, and additional water was added to bring the total amount of water to 3386 g. After purging the inside of the flask system with nitrogen, the liquid temperature was raised to 35°C. After that, 0.465 g of 3-methacryloxypropyltrimethoxysilane (MPS) was added into the flask and stirred for 30 minutes. 77.7 g of distilled styrene monomer and 0.39 g of sodium p-styrenesulfonate dissolved in 40 g of water were added and stirred for 2 hours. After that, the liquid temperature was raised to 62° C., and 1.7 g of ammonium persulfate dissolved in 40 g of water was added. Thereafter, heating and stirring were continued for 10 hours under reflux. The resulting reaction solution was centrifuged at a rotation speed of 4800 rpm for a rotation time of 45 minutes to remove free polystyrene, and the precipitate was redispersed in ethanol to obtain a polystyrene-coated Si slurry. rice field.

その後、上記ポリスチレンコ-トSiをSiとして9.95g、上記膨張黒鉛を23.2g、グリセリン3.32g、エタノ-ル450mLを撹拌容器に入れ、ホモミキサ-で20分混合撹拌した。その後、混合液をロ-タリ-エバポレ-タ-に移し、回転しながら温浴で50℃に加熱し、アスピレ-タで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、85gの混合乾燥物(軽装かさ密度183g/L)を得た。 Thereafter, 9.95 g of the polystyrene-coated Si as Si, 23.2 g of the expanded graphite, 3.32 g of glycerin, and 450 mL of ethanol were placed in a stirring vessel and mixed and stirred for 20 minutes with a homogenizer. The mixture was then transferred to a rotary evaporator, heated to 50° C. with a hot bath while rotating, and evacuated with an aspirator to remove the solvent. Then, it was spread on a vat in a fume hood, dried for 2 hours while exhausting air, passed through a mesh with an opening of 2 mm, and further dried for 1 day to obtain 85 g of a mixed dried product (light-packed bulk density of 183 g/L).

(プレス工程)
この混合乾燥物を3本ロ-ルミルに6回通し、目開き1mmの篩を通し、軽装かさ密度205g/Lに造粒・圧密化した。
(Pressing process)
This dried mixture was passed through a three-roll mill six times, passed through a sieve with an opening of 1 mm, and granulated and compacted to a light bulk density of 205 g/L.

(球形化工程)
次に、この造粒・圧密化物27gを粒子設計/表面改質装置(奈良機械製作所製 ハイブリダイゼ-ションシステム NHS-1L)に投入し、40m/secで15分間粉砕し、同時に球形化し、軽装かさ密度264g/Lの略球状複合粉末を得た。
(Spheroidization process)
Next, 27 g of this granulated/consolidated product is put into a particle design/surface modification device (Hybridization system NHS-1L manufactured by Nara Machinery Co., Ltd.), pulverized at 40 m / sec for 15 minutes, simultaneously spheroidized, and lightly packed. A substantially spherical composite powder with a density of 264 g/L was obtained.

(焼成工程)
得られた粉末を石英ボ-トに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成した。これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部からなる焼成粉を得た。
(Baking process)
The obtained powder was placed in a quartz boat and fired in a tubular furnace at a maximum temperature of 900° C. for 1 hour while flowing nitrogen gas. As a result, a sintered powder composed of 70 parts by mass of crystalline carbon (derived from graphite) and 30 parts by mass of Si was obtained.

その後、目開き45μmのメッシュを通し、軽装かさ密度207g/L、粒径(D50)が13μmの焼成粉を得た。 After that, it was passed through a mesh with an opening of 45 μm to obtain a sintered powder having a light bulk density of 207 g/L and a particle size (D50) of 13 μm.

得られた焼成粉(100質量部)を、コ-ルタ-ルピッチ(炭化度60%、50質量部)を30分間撹拌した後、以下の方法を用い焼成を行い、被覆を行った。 The obtained calcined powder (100 parts by mass) was stirred with coal tar pitch (carbonization degree 60%, 50 parts by mass) for 30 minutes, and then calcined and coated by the following method.

回転焼成炉を使用し、窒素を流しながら(0.3L/min)、昇温度速度を30℃/minとし、2rpmにて回転させながら混合物を600℃で2時間加熱することで、コ-ルタ-ルピッチをソフトカ-ボンへ変性させた。これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部、非晶性炭素30質量部(コ-ルタ-ルピッチ由来のソフトカ-ボン)からなる焼成粉を得た。 Using a rotary firing furnace, while flowing nitrogen (0.3 L/min), the temperature increase rate is 30 ° C./min, and the mixture is heated at 600 ° C. for 2 hours while rotating at 2 rpm. - Modification of lupit into soft carbon. As a result, a fired powder composed of 70 parts by mass of crystalline carbon (derived from graphite), 30 parts by mass of Si, and 30 parts by mass of amorphous carbon (soft carbon derived from coal tar pitch) was obtained.

(気相コ-トによる炭素被覆工程)
得られた粉体を回転焼成炉にセットし、ロ-タリ-ポンプにより管内を真空引きした後に管内に200SCCMの流量の窒素ガス及び、100SCCMの流量のエチレンガスを流し、2rpmにて回転させながら電気ヒ-タ-で920℃まで加熱し、その状態を25分間保持する事で炭素被覆を行った。炭素被覆による重量増は17重量%であり、これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部、非晶性炭素47質量部(コ-ルタ-ルピッチ由来のソフトカ-ボン30質量部、気相コ-ト由来のソフトカ-ボン17質量部)からなるリチウム二次電池用複合活物質を得た。その後、目開き45μmのメッシュを通し、粒径(D50)が27μmの焼成粉を得た。
(Carbon coating process by vapor phase coating)
The obtained powder was set in a rotary sintering furnace, and after the inside of the tube was evacuated by a rotary pump, nitrogen gas at a flow rate of 200 SCCM and ethylene gas at a flow rate of 100 SCCM were flowed into the tube, and the tube was rotated at 2 rpm. Carbon coating was performed by heating to 920° C. with an electric heater and maintaining this state for 25 minutes. The weight increase due to the carbon coating is 17% by weight, resulting in 70 parts by weight of crystalline carbon (derived from graphite), 30 parts by weight of Si, 47 parts by weight of amorphous carbon (30 parts by weight of soft carbon derived from coal tar pitch parts, and 17 parts by mass of soft carbon derived from the gas phase coat). After that, it was passed through a mesh with an opening of 45 μm to obtain a fired powder having a particle size (D50) of 27 μm.

(リチウム二次電池用負極の作製と電池評価)
得られたリチウム二次電池用複合活物質92.5重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%、バインダとしてポリカルボン酸系バインダ7.0重量%、及び、水を混合して負極合剤含有スラリ-を調製した。
(Preparation of negative electrode for lithium secondary battery and battery evaluation)
With respect to 92.5% by weight of the obtained composite active material for lithium secondary batteries (content in the total solid content; the same applies hereinafter), 0.5% by weight of acetylene black as a conductive agent and polycarboxylic acid as a binder 7.0% by weight of the system binder and water were mixed to prepare a negative electrode mixture-containing slurry.

得られた負極合剤含有スラリ-を、アプリケ-タを用いて固形分塗布量が2.5mg/cmになるように厚みが18μmの銅箔に塗布し、90℃で真空乾燥機にて12時間乾燥した。乾燥後、14mmφの円形に打ち抜き、100℃下、送り速度1m/min、圧力4.0t/cmの条件でロ-ルプレスし、さらに真空下、110℃で3時間熱処理して、厚みが32μmの負極合剤層を形成したリチウム二次電池用負極を得た。 The resulting negative electrode mixture-containing slurry was applied to a copper foil having a thickness of 18 μm using an applicator so that the solid content coating amount was 2.5 mg/cm 2 , and dried at 90° C. in a vacuum dryer. Dried for 12 hours. After drying, it is punched into a circle of 14 mmφ, roll-pressed at 100° C., a feed rate of 1 m/min, and a pressure of 4.0 t/cm 2 , and further heat-treated at 110° C. for 3 hours under vacuum to obtain a thickness of 32 μm. Thus, a negative electrode for a lithium secondary battery was obtained in which a negative electrode mixture layer of No.

その後、実施例1と同様の方法で初回充電膨張率評価用セル、20サイクル後の容量維持率評価用スクリュ-セルを作製し、充放電試験を行ったところ、初回充電容量は1046mAh/g、初回充電膨張率は115%、初回充放電効率は73.1%、初回放電体積容量は718mAh/cc、20サイクル後の容量維持率は99.7%であった。 Thereafter, a cell for evaluating the expansion rate of the initial charge and a screw cell for evaluating the capacity retention rate after 20 cycles were prepared in the same manner as in Example 1, and a charge-discharge test was performed. The initial charge expansion rate was 115%, the initial charge/discharge efficiency was 73.1%, the initial discharge volume capacity was 718 mAh/cc, and the capacity retention rate after 20 cycles was 99.7%.

<実施例8>
(Si表面修飾工程)
実施例1のSi粉砕工程と同様の手法で得た粉砕Siを固形分量が52.5gとなるように秤量し、その後、超音波照射を15分間行い、合計のエタノ-ル量が1327gとなるように追加でエタノ-ルを添加してSiスラリ-を得た。その後、ポリカルボン酸系分散剤116g、10mol/Lの塩酸3.5gと水420gを上記Siスラリ-に添加し、撹拌羽を用いて回転数250rpmの条件で30分間撹拌を行った。その後、テトラエトキシシラン(TEOS)105gを上記Siスラリ-に添加し、液温を70℃に昇温した。70℃で12時間撹拌を行い、その後、得られたSiスラリ-を回転数4800rpm、回転時間25分の条件で遠心分離処理し、エタノ-ルで再分散した。得られたスラリ-に対して、直径1.0mmのジルコニアボ-ルを用いたボ-ルミルを8時間行い、粒径(D50)0.24μmのSiスラリ-を得た。これを回転数4800rpm、回転時間60分の条件で遠心分離処理し、水で再分散した。
<Example 8>
(Si surface modification step)
The pulverized Si obtained by the same method as the Si pulverizing step of Example 1 was weighed so that the solid content was 52.5 g, and then ultrasonic irradiation was performed for 15 minutes, and the total amount of ethanol was 1327 g. Ethanol was additionally added to obtain a Si slurry. After that, 116 g of a polycarboxylic acid-based dispersant, 3.5 g of 10 mol/L hydrochloric acid and 420 g of water were added to the Si slurry, and the mixture was stirred for 30 minutes with a stirring blade at a rotation speed of 250 rpm. After that, 105 g of tetraethoxysilane (TEOS) was added to the Si slurry, and the liquid temperature was raised to 70.degree. After stirring at 70° C. for 12 hours, the obtained Si slurry was centrifuged at 4800 rpm for 25 minutes and re-dispersed with ethanol. The obtained slurry was subjected to ball milling using zirconia balls with a diameter of 1.0 mm for 8 hours to obtain a Si slurry with a particle size (D50) of 0.24 μm. This was subjected to centrifugal separation under the conditions of a rotation speed of 4800 rpm and a rotation time of 60 minutes, and redispersed with water.

(Si被覆工程)
上記スラリ-をSi固形分量が13.85gとなるように秤量して丸底フラスコに移し、合計の水量が3823gとなるように追加で水を添加した。フラスコ系内を窒素パ-ジした後、液温を35℃に昇温した。その後、3-メタクリロキシプロピルトリメトキシシラン(MPS)0.53gをフラスコ内に加え、30分間攪拌した。蒸留したスチレンモノマ-87.8gと40gの水に溶解させたp-スチレンスルホン酸リチウム0.41gを添加し、2時間攪拌した。その後、液温を62℃に昇温させ、40gの水に溶解させた過硫酸アンモニウム0.56gを添加した。その後、還流下で10時間加熱撹拌を続けた。得られた反応液を回転数4800rpm、回転時間45分の条件で遠心分離処理することで遊離のポリスチレンを除去し、沈殿をエタノ-ルで再分散することでポリスチレンコ-トSiスラリ-を得た。
(Si coating step)
The above slurry was weighed so that the Si solid content was 13.85 g, transferred to a round-bottomed flask, and additional water was added to bring the total amount of water to 3823 g. After purging the inside of the flask system with nitrogen, the liquid temperature was raised to 35°C. After that, 0.53 g of 3-methacryloxypropyltrimethoxysilane (MPS) was added into the flask and stirred for 30 minutes. 87.8 g of distilled styrene monomer and 0.41 g of lithium p-styrenesulfonate dissolved in 40 g of water were added and stirred for 2 hours. After that, the liquid temperature was raised to 62° C., and 0.56 g of ammonium persulfate dissolved in 40 g of water was added. Thereafter, heating and stirring were continued for 10 hours under reflux. The resulting reaction solution was centrifuged at a rotation speed of 4800 rpm for a rotation time of 45 minutes to remove free polystyrene, and the precipitate was redispersed in ethanol to obtain a polystyrene-coated Si slurry. rice field.

その後、上記ポリスチレンコ-トSiをSiとして10.37g、上記膨張黒鉛を24.20g、グリセリン3.46g、エタノ-ル500mLを撹拌容器に入れ、ホモミキサ-で20分混合撹拌した。その後、混合液をロ-タリ-エバポレ-タ-に移し、回転しながら温浴で50℃に加熱し、アスピレ-タで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら1時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、78gの混合乾燥物(軽装かさ密度162g/L)を得た。 Thereafter, 10.37 g of the polystyrene-coated Si (Si), 24.20 g of the expanded graphite, 3.46 g of glycerin and 500 mL of ethanol were placed in a stirring vessel and mixed and stirred for 20 minutes with a homogenizer. The mixture was then transferred to a rotary evaporator, heated to 50° C. with a hot bath while rotating, and evacuated with an aspirator to remove the solvent. Then, it was spread on a vat in a fume hood, dried for 1 hour while exhausting air, passed through a mesh with an opening of 2 mm, and further dried for 1 day to obtain 78 g of a mixed dried product (light-packed bulk density: 162 g/L).

(プレス工程)
この混合乾燥物を3本ロ-ルミルに6回通し、目開き1mmの篩を通し、軽装かさ密度185g/Lに造粒・圧密化した。
(Pressing process)
This dried mixture was passed through a three-roll mill six times, passed through a sieve with an opening of 1 mm, and granulated and compacted to a light bulk density of 185 g/L.

(球形化工程)
次に、この造粒・圧密化物59gを粒子設計/表面改質装置(奈良機械製作所製 ハイブリダイゼ-ションシステム NHS-1L)に投入し、40m/secで15分間粉砕し、同時に球形化し、軽装かさ密度247g/Lの略球状複合粉末を得た。
(Spheroidization process)
Next, 59 g of this granulated/consolidated product was put into a particle design/surface modification device (Hybridization system NHS-1L manufactured by Nara Machinery Co., Ltd.), pulverized at 40 m / sec for 15 minutes, and simultaneously spheroidized and lightly packed. A substantially spherical composite powder with a density of 247 g/L was obtained.

(焼成工程)
得られた粉末を石英ボ-トに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成した。これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部からなる焼成粉を得た。
(Baking process)
The obtained powder was placed in a quartz boat and fired in a tubular furnace at a maximum temperature of 900° C. for 1 hour while flowing nitrogen gas. As a result, a sintered powder composed of 70 parts by mass of crystalline carbon (derived from graphite) and 30 parts by mass of Si was obtained.

その後、目開き45μmのメッシュを通し、軽装かさ密度177g/L、粒径(D50)が14μmの焼成粉を得た。 After that, it was passed through a mesh with an opening of 45 μm to obtain a fired powder having a light bulk density of 177 g/L and a particle size (D50) of 14 μm.

得られた焼成粉(100質量部)を、コ-ルタ-ルピッチ(炭化度60%、50質量部)を30分間撹拌した後、以下の方法を用い焼成を行い、被覆を行った。 The obtained calcined powder (100 parts by mass) was stirred with coal tar pitch (carbonization degree 60%, 50 parts by mass) for 30 minutes, and then calcined and coated by the following method.

回転焼成炉を使用し、窒素を流しながら(0.4L/min)、昇温度速度を30℃/minとし、1rpmにて回転させながら混合物を300℃で2時間、600℃で1時間加熱することで、コ-ルタ-ルピッチをソフトカ-ボンへ変性させた。これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部、非晶性炭素30質量部(コ-ルタ-ルピッチ由来のソフトカ-ボン)からなる焼成粉を得た。 Using a rotary kiln, the mixture is heated at 300° C. for 2 hours and at 600° C. for 1 hour while flowing nitrogen (0.4 L/min) at a temperature increase rate of 30° C./min and rotating at 1 rpm. Thus, the coal tar pitch was modified into soft carbon. As a result, a fired powder composed of 70 parts by mass of crystalline carbon (derived from graphite), 30 parts by mass of Si, and 30 parts by mass of amorphous carbon (soft carbon derived from coal tar pitch) was obtained.

(気相コ-トによる炭素被覆工程)
得られた粉体を回転焼成炉にセットし、ロ-タリ-ポンプにより管内を真空引きした後に管内に266SCCMの流量の窒素ガス及び、133SCCMの流量のエチレンガスを流し、1rpmにて回転させながら電気ヒ-タ-で1000℃まで加熱し、その状態を1時間保持する事で炭素被覆を行った。炭素被覆による重量増は5重量%であり、これにより、結晶性炭素(黒鉛由来)70質量部、Si30質量部、非晶性炭素35質量部(コ-ルタ-ルピッチ由来のソフトカ-ボン30質量部、気相コ-ト由来のソフトカ-ボン5質量部)からなるリチウム二次電池用複合活物質を得た。その後、目開き45μmのメッシュを通し、粒径(D50)が25μmの焼成粉を得た。
(Carbon coating process by vapor phase coating)
The obtained powder was set in a rotary sintering furnace, and after the inside of the tube was evacuated by a rotary pump, nitrogen gas at a flow rate of 266 SCCM and ethylene gas at a flow rate of 133 SCCM were flowed into the tube, and the tube was rotated at 1 rpm. Carbon coating was performed by heating to 1000° C. with an electric heater and maintaining the state for 1 hour. The weight increase due to the carbon coating is 5% by weight, resulting in 70 parts by weight of crystalline carbon (derived from graphite), 30 parts by weight of Si, 35 parts by weight of amorphous carbon (30 parts by weight of soft carbon derived from coal tar pitch parts, and 5 parts by mass of soft carbon derived from the gas phase coat). After that, it was passed through a mesh with an opening of 45 μm to obtain a fired powder having a particle size (D50) of 25 μm.

(リチウム二次電池用負極の作製と電池評価)
得られたリチウム二次電池用複合活物質92.5重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%、バインダとしてポリカルボン酸系バインダ7.0重量%、及び、水を混合して負極合剤含有スラリ-を調製した。
(Preparation of negative electrode for lithium secondary battery and battery evaluation)
With respect to 92.5% by weight of the obtained composite active material for lithium secondary batteries (content in the total solid content; the same applies hereinafter), 0.5% by weight of acetylene black as a conductive agent and polycarboxylic acid as a binder 7.0% by weight of the system binder and water were mixed to prepare a negative electrode mixture-containing slurry.

得られた負極合剤含有スラリ-を、アプリケ-タを用いて固形分塗布量が2.5mg/cmになるように厚みが11μmの銅箔に塗布し、90℃で真空乾燥機にて12時間乾燥した。乾燥後、14mmφの円形に打ち抜き、圧力1.0t/cmの条件で一軸プレスし、さらに真空下、110℃で2時間熱処理して、厚みが24μmの負極合剤層を形成したリチウム二次電池用負極を得た。 The resulting negative electrode mixture-containing slurry was applied to a copper foil having a thickness of 11 μm using an applicator so that the solid content coating amount was 2.5 mg/cm 2 , and dried at 90° C. in a vacuum dryer. Dried for 12 hours. After drying, the lithium secondary was punched into a circle of 14 mmφ, uniaxially pressed under the condition of a pressure of 1.0 t/cm 2 , and further heat-treated under vacuum at 110°C for 2 hours to form a negative electrode mixture layer having a thickness of 24 µm. A battery negative electrode was obtained.

その後、実施例1と同様の方法で初回充電膨張率評価用セル、20サイクル後の容量維持率評価用スクリュ-セルを作製し、充放電試験を行ったところ、初回充電容量は1044mAh/g、初回充電膨張率は142%、初回充放電効率は83.7%、初回放電体積容量は651mAh/cc、20サイクル後の容量維持率は98.4%であった。 After that, a cell for evaluating the expansion rate of the initial charge and a screw cell for evaluating the capacity retention rate after 20 cycles were prepared in the same manner as in Example 1, and a charge-discharge test was performed. The initial charge expansion rate was 142%, the initial charge/discharge efficiency was 83.7%, the initial discharge volume capacity was 651 mAh/cc, and the capacity retention rate after 20 cycles was 98.4%.

<比較例1>
(膨張黒鉛の調製)
膨張黒鉛の調製および混合工程は<実施例1>と同様である。
<Comparative Example 1>
(Preparation of expanded graphite)
The steps of preparing and mixing expanded graphite were the same as <Example 1>.

上記超微粒子Siスラリ-を945g、上記膨張黒鉛を240g、レゾ-ル型のフェノ-ル樹脂(重量平均分子量(Mw)=230)を100g、エタノ-ル4Lを撹拌容器に入れ、インラインミキサ-で22分混合撹拌した。その後、混合液をロ-タリ-エバポレ-タ-に移し、回転しながら温浴で40℃に加熱し、真空ポンプで減圧し、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、さらに1日間乾燥して、471gの混合乾燥物(軽装かさ密度201g/L)を得た。 945 g of the ultrafine Si slurry, 240 g of the expanded graphite, 100 g of resol-type phenolic resin (weight average molecular weight (Mw) = 230), and 4 L of ethanol were placed in a stirring vessel, and an in-line mixer was used. was mixed and stirred for 22 minutes. The mixture was then transferred to a rotary evaporator, heated to 40° C. with a hot bath while rotating, and depressurized with a vacuum pump to remove the solvent. Then, it was spread on a vat in a fume hood, dried for 2 hours while exhausting air, passed through a mesh with an opening of 2 mm, and further dried for 1 day to obtain 471 g of a mixed dried product (light-packed bulk density: 201 g/L).

(プレス工程)
この混合乾燥物を3本ロ-ルミルに2回通し、目開き1mmの篩を通し、軽装かさ密度419g/Lに造粒・圧密化した。
(Pressing process)
This dried mixture was passed through a three-roll mill twice, passed through a sieve with an opening of 1 mm, and granulated and compacted to a light bulk density of 419 g/L.

(球形化工程)
次に、この造粒・圧密化物をニュ-パワ-ミルに入れて水冷しながら、21000rpmで360秒粉砕し、同時に球形化し、軽装かさ密度439g/Lの略球状複合粉末を得た。
(Spheroidization process)
Next, the granulated and compacted product was placed in a new power mill and ground at 21000 rpm for 360 seconds while cooling with water, and at the same time spheroidized to obtain a substantially spherical composite powder having a light bulk density of 439 g/L.

(焼成工程)
得られた粉末を石英ボ-トに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成する事でフェノ-ル樹脂の炭化を同時に行った。これにより、結晶性炭素(黒鉛由来)60質量部、Si30質量部、非晶性炭素10質量部(フェノ-ル樹脂由来のハ-ドカ-ボン)からなる略球状焼成粉を得た。
(Baking process)
The obtained powder was placed in a quartz boat and fired in a tubular furnace at a maximum temperature of 900° C. for 1 hour while flowing nitrogen gas to carbonize the phenolic resin at the same time. As a result, a substantially spherical sintered powder composed of 60 parts by mass of crystalline carbon (derived from graphite), 30 parts by mass of Si, and 10 parts by mass of amorphous carbon (hard carbon derived from phenolic resin) was obtained.

その後、目開き45μmのメッシュを通し、軽装かさ密度505g/の略球状焼成粉を得た。 After that, it was passed through a mesh with an opening of 45 μm to obtain a substantially spherical sintered powder having a light bulk density of 505 g/.

(コ-ルタ-ルピッチによる炭素被覆工程)
得らえた略球状焼成粉50gとコ-ルタ-ルピッチ40gを混合した後、キノリン40gを加え、10分間撹拌した後、以下の方法を用い焼成を行い、被覆を行った。
(Carbon coating process with coal tar pitch)
After 50 g of the obtained substantially spherical sintered powder and 40 g of coal tar pitch were mixed, 40 g of quinoline was added, and after stirring for 10 minutes, the mixture was sintered and coated by the following method.

(焼成工程)
窒素を流しながら(13.4L/min)、混合物を600℃で2時間加熱することで、コ-ルタ-ルピッチをソフトカ-ボンへ変性させた。これにより、結晶性炭素(黒鉛由来)60質量部、Si30質量部、非晶性炭素40質量部(フェノ-ル樹脂由来のハ-ドカ-ボン10質量部、コ-ルタ-ルピッチ由来のソフトカ-ボン30質量部)からなるリチウム二次電池用複合活物質を得た。
(Baking process)
The coal tar pitch was transformed into soft carbon by heating the mixture at 600° C. for 2 hours under nitrogen flow (13.4 L/min). As a result, 60 parts by mass of crystalline carbon (derived from graphite), 30 parts by mass of Si, 40 parts by mass of amorphous carbon (10 parts by mass of hard carbon derived from phenolic resin, soft carbon derived from coal tar pitch) A composite active material for a lithium secondary battery consisting of 30 parts by mass of carbon) was obtained.

(解砕・篩工程)
得られたリチウム二次電池用複合活物質をスタンプミルにて解砕した後にボ-ルミルによって粉砕し、目開き45μmのメッシュを通し、軽装かさ密度453g/L、粒径(D50)が12.5μmの粉砕粉を得た。
(Crushing/sieving process)
The obtained composite active material for lithium secondary batteries was pulverized in a stamp mill, pulverized in a ball mill, passed through a mesh with an opening of 45 μm, and passed through a mesh having a light bulk density of 453 g/L and a particle diameter (D50) of 12.5 g/L. A ground powder of 5 μm was obtained.

(気相コ-トによる炭素被覆工程)
得られた粉体を石英管内にセットし、ロ-タリ-ポンプにより管内を真空引きした後に管内に200SCCMの流量の窒素ガス及び、100SCCMの流量のエチレンガスを流し、電気ヒ-タ-で1000℃まで加熱し、その状態を時間保持する事で炭素被覆を行った。炭素被覆による重量増は8.2重量%であり、これにより、結晶性炭素(黒鉛由来)60質量部、Si30質量部、非晶性炭素48質量部(フェノ-ル由来のハ-ドカ-ボン10質量部、気相コ-ト由来のソフトカ-ボン38質量部)からなるリチウム二次電池用複合活物質を得た。
(Carbon coating process by vapor phase coating)
The obtained powder was set in a quartz tube, and after the inside of the tube was evacuated by a rotary pump, nitrogen gas at a flow rate of 200 SCCM and ethylene gas at a flow rate of 100 SCCM were flowed into the tube and heated to 1000 by an electric heater. It was heated up to °C and maintained in that state for a period of time to form a carbon coating. The weight increase due to the carbon coating was 8.2% by weight, resulting in 60 parts by mass of crystalline carbon (derived from graphite), 30 parts by mass of Si, and 48 parts by mass of amorphous carbon (hard carbon derived from phenol A composite active material for a lithium secondary battery consisting of 10 parts by mass and 38 parts by mass of soft carbon derived from the gas phase coat) was obtained.

その物性は以下の通りである。粒径D50:24μm、D90:45μm、BET比表面積:6m/g、平均細孔径:15.6nm、開気孔体積:0.028cm/g、形状:略球状。 Its physical properties are as follows. Particle diameter D50: 24 μm, D90: 45 μm, BET specific surface area: 6 m 2 /g, average pore diameter: 15.6 nm, open pore volume: 0.028 cm 3 /g, shape: substantially spherical.

得られたリチウム二次電池用複合活物質の断面SEM観察を行ない、SEM画像から空隙率を求めたところ、1%であり、Si周辺には空隙がなかった。 A cross-sectional SEM observation of the obtained composite active material for a lithium secondary battery was performed, and the porosity was found from the SEM image to be 1%, with no voids around Si.

(リチウム二次電池用負極の作製と電池評価)
得られたリチウム二次電池用複合活物質95.5重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック0.5重量%と、バインダとしてゲル化ポリアクリル酸4重量%と水とを混合して負極合剤含有スラリ-を調製した。
(Preparation of negative electrode for lithium secondary battery and battery evaluation)
With respect to 95.5% by weight of the obtained composite active material for lithium secondary batteries (content in the total solid content; the same applies hereinafter), 0.5% by weight of acetylene black as a conductive aid and gelling as a binder A negative electrode mixture-containing slurry was prepared by mixing 4% by weight of polyacrylic acid and water.

得られたスラリ-を、アプリケ-タを用いて固形分塗布量が2.6mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で真空乾燥機にて0.5時間乾燥した。乾燥後、14mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、さらに真空下、110℃で2時間熱処理して、厚みが20μmの負極合剤層を形成したリチウム二次電池用負極を得た。 The obtained slurry was applied to a copper foil having a thickness of 18 μm using an applicator so that the solid content coating amount was 2.6 mg/cm 2 , and dried in a vacuum dryer at 110° C. for 0.5 hours. Dried. After drying, the lithium secondary was punched into a circle of 14 mmφ, uniaxially pressed under the condition of a pressure of 0.6 t/cm 2 , and further heat-treated at 110°C for 2 hours under vacuum to form a negative electrode mixture layer having a thickness of 20 µm. A battery negative electrode was obtained.

評価用セルは25℃の恒温室にて、0.44mAの定電流で0.005Vまで0.1Cで充電後、0.005Vの定電圧で電流値が0.02mAになるまで0.05Cで行ったところ、初回充電容量は1075mAh/gとなった。その後、グロ-ブボックス内アルゴン雰囲気内で評価用セルを解体し、電極膜厚をマイクロメ-タ-で測定し、初回充電膨張率((充電後電極膜厚/充電前電極膜厚x100))は200%であった。 The cell for evaluation was charged in a constant temperature room at 25° C. at a constant current of 0.44 mA to 0.005 V at 0.1 C, then at a constant voltage of 0.005 V at 0.05 C until the current value reached 0.02 mA. As a result, the initial charge capacity was 1075 mAh/g. After that, the evaluation cell was dismantled in an argon atmosphere in the glove box, and the electrode film thickness was measured with a micrometer. was 200%.

Figure 0007293645000001
Figure 0007293645000001

比較例1は、Si化合物に高分子膜を被覆しなかったことから、リチウム二次電池用複
合活物質中の空隙体積が小さく膨張率が高く、なおかつ、初回充電時膨張率いものであっ
た、
In Comparative Example 1, since the Si compound was not coated with a polymer film, the void volume in the composite active material for a lithium secondary battery was small and the expansion rate was high.

1 結晶性炭素
2 Si化合物
3 空隙
1 crystalline carbon 2 Si compound 3 void

Claims (3)

SiまたはSi合金に、必要に応じて表面修飾剤で修飾後に、高分子モノマ-と開始剤と分散剤を加え、SiまたはSi合金に高分子膜を被覆した後に、黒鉛と必要に応じて炭素化合物を混合する工程と、造粒・圧密化する工程と、混合物を粉砕および球形化処理して略球状の複合粒子を形成する工程と、該複合粒子を不活性雰囲気中で焼成する工程と、必要に応じて炭素化合物と該複合粒子もしくは該焼成粒子とを混合する工程とその混合物を不活性雰囲気中で加熱する工程を含むSiまたはSi合金及び結晶性炭素を含むリチウム二次電池用複合活物質の製造方法であって、該SiまたはSi合金の周囲に空隙を有する構造を有し、該リチウム二次電池用複合活物質を負極活物質とし、該負極活物質を95.5重量%に対して、導電助剤としてアセチレンブラック0.5重量%、バインダとしてポリカルボン酸系バインダ4.0重量%含有する負極、ステンレス箔に圧着された金属リチウムからなる対極、セパレ-タ及び、フルオロエチレンカ-ボネ-トを2体積%含有するエチレンカ-ボネ-ト(EC)とジエチルカ-ボネ-ト(DEC)の混合溶媒(EC/DEC=1/1:体積比)であり、電解質は六フッ化リン酸リチウム(LiPF6)である電解液、を備えたCR2032型コインセル型のリチウム二次電池を使用し、測定温度25±2℃で、初期電圧から0.005Vまでは0.5mAで定電流充電した後、電流値が0.03mAになるまで電圧0.005Vで定電圧充電の充電、及び、測定温度25±2℃で、0.005Vから1.5Vの電圧範囲で0.5mAで定電流放電の放電による充放電試験における最大放電容量と比較した20回充放電した後の放電容量が70.0%以上であることを特徴とするリチウム二次電池用複合活物質の製造方法。 After modifying Si or Si alloy with a surface modifier as necessary, a polymer monomer, an initiator and a dispersant are added, Si or Si alloy is coated with a polymer film, graphite and optionally carbon a step of mixing the compound, a step of granulating and compacting, a step of pulverizing and spheronizing the mixture to form substantially spherical composite particles, and a step of firing the composite particles in an inert atmosphere; A composite active material for a lithium secondary battery containing Si or a Si alloy and crystalline carbon, comprising the step of mixing the carbon compound with the composite particles or the sintered particles, and heating the mixture in an inert atmosphere, if necessary. A method for producing a material, which has a structure having voids around the Si or Si alloy, the composite active material for a lithium secondary battery is used as a negative electrode active material, and the negative electrode active material is 95.5% by weight. On the other hand, a negative electrode containing 0.5% by weight of acetylene black as a conductive aid and 4.0% by weight of a polycarboxylic acid binder as a binder, a counter electrode made of metallic lithium crimped to a stainless steel foil, a separator, and fluoroethylene It is a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) containing 2% by volume of carbonate (EC/DEC = 1/1: volume ratio), and the electrolyte is hexafluoride. Using a CR2032 type coin cell type lithium secondary battery with an electrolyte that is lithium phosphate (LiPF6), at a measurement temperature of 25 ± 2 ° C, a constant current of 0.5 mA from the initial voltage to 0.005 V After charging, constant voltage charging at a voltage of 0.005 V until the current value reaches 0.03 mA, and a constant voltage of 0.5 mA in a voltage range of 0.005 V to 1.5 V at a measurement temperature of 25 ± 2 ° C. A method for producing a composite active material for a lithium secondary battery, wherein the discharge capacity after 20 charge/discharge cycles is 70.0% or more of the maximum discharge capacity in a charge/discharge test by current discharge. 表面修飾剤として酸化剤もしくは分子内に金属アルコキシド基、カルボキシル基、又は水酸基を含む修飾剤を用いる請求項1に記載のリチウム二次電池用複合活物質の製造方法。 2. The method for producing a composite active material for a lithium secondary battery according to claim 1, wherein an oxidizing agent or a modifier containing a metal alkoxide group, a carboxyl group or a hydroxyl group in the molecule is used as the surface modifier. 高分子モノマ-がスチレン、メチルメタクリル酸系、アクリル酸系、メタクリルアミド系、アクリルアミド系、安息香酸ビニル、ジエチルアミノスチレン、ジエチルアミノアルファ-メチルスチレン、p-ビニルベンゼンスルホン酸、p-ビニルベンゼンスルホン酸ナトリウム塩、ジビニルベンゼン、酢酸ビニル、酢酸ブチル、塩化ビニル、フッ化ビニル、臭化ビニル、無水マレイン酸、N-フェニルマレイミド、N-ブチルマレイミド、N-ビニルピロリドン、N-ビニルカルバゾ-ル、アクリロニトリル、アニリン、ピロ-ル、ウレタン重合に用いられるポリオ-ル系又はイソシアネ-ト系である請求項1又は2に記載のリチウム二次電池用複合活物質の製造方法。 Polymer monomers are styrene, methyl methacrylic acid, acrylic acid, methacrylamide, acrylamide, vinyl benzoate, diethylaminostyrene, diethylamino alpha-methylstyrene, p-vinylbenzenesulfonic acid, sodium p-vinylbenzenesulfonate. Salt, divinylbenzene, vinyl acetate, butyl acetate, vinyl chloride, vinyl fluoride, vinyl bromide, maleic anhydride, N-phenylmaleimide, N-butylmaleimide, N-vinylpyrrolidone, N-vinylcarbazole, acrylonitrile, aniline , pyrrole, polyol used in urethane polymerization, or isocyanate.
JP2018239091A 2017-12-27 2018-12-21 Composite active material for lithium secondary battery and manufacturing method thereof Active JP7293645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022172152A JP7452599B2 (en) 2017-12-27 2022-10-27 Composite active material for lithium secondary batteries

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2017251111 2017-12-27
JP2017251111 2017-12-27
JP2018033812 2018-02-27
JP2018033812 2018-02-27
JP2018064904 2018-03-29
JP2018064904 2018-03-29
JP2018151241 2018-08-10
JP2018151241 2018-08-10
JP2018197079 2018-10-19
JP2018197079 2018-10-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022172152A Division JP7452599B2 (en) 2017-12-27 2022-10-27 Composite active material for lithium secondary batteries

Publications (2)

Publication Number Publication Date
JP2020068191A JP2020068191A (en) 2020-04-30
JP7293645B2 true JP7293645B2 (en) 2023-06-20

Family

ID=67063690

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018239091A Active JP7293645B2 (en) 2017-12-27 2018-12-21 Composite active material for lithium secondary battery and manufacturing method thereof
JP2022172152A Active JP7452599B2 (en) 2017-12-27 2022-10-27 Composite active material for lithium secondary batteries

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022172152A Active JP7452599B2 (en) 2017-12-27 2022-10-27 Composite active material for lithium secondary batteries

Country Status (3)

Country Link
JP (2) JP7293645B2 (en)
TW (1) TW201935748A (en)
WO (1) WO2019131519A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI709272B (en) * 2019-11-13 2020-11-01 光宇材料股份有限公司 Method for manufacturing negative electrode material for secondary battery
JP7156263B2 (en) 2019-12-25 2022-10-19 トヨタ自動車株式会社 ALL-SOLID BATTERY AND METHOD FOR MANUFACTURING ALL-SOLID BATTERY
JP7503407B2 (en) 2020-03-27 2024-06-20 東ソー株式会社 Binder for lithium ion secondary battery negative electrode and lithium ion secondary battery negative electrode material containing same
JP7516848B2 (en) 2020-05-14 2024-07-17 東ソー株式会社 Silicon or silicon alloy, composite active material for lithium secondary battery containing same, and method for producing same
CN112838194B (en) * 2021-01-25 2022-08-09 清华大学 Method for optimizing solid-liquid interface layer of metal lithium negative electrode based on interaction of three-dimensional framework material in composite negative electrode and electrolyte
CN114373908A (en) * 2021-12-21 2022-04-19 中国科学院宁波材料技术与工程研究所 Soft-hard carbon composite material and preparation method and application thereof
CN116598440A (en) * 2023-03-20 2023-08-15 江苏智泰新能源科技有限公司 Carbon-based composite material for sodium ion battery and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178917A (en) 2002-11-26 2004-06-24 Shin Etsu Chem Co Ltd Nonaqueous electrolyte secondary battery negative electrode material, manufacturing method of the same, and lithium ion secondary battery
JP2005123175A (en) 2003-09-26 2005-05-12 Jfe Chemical Corp Composite particle, manufacturing method of the same, negative electrode material and negative electrode for lithium-ion secondary battery, and the lithium-ion secondary battery
JP2006228640A (en) 2005-02-21 2006-08-31 Nippon Carbon Co Ltd Silicon-added graphite cathode material for lithium-ion secondary battery, and manufacturing method
JP2008186732A (en) 2007-01-30 2008-08-14 Nippon Carbon Co Ltd Negative electrode active material for lithium secondary battery, negative electrode using the same, and manufacturing method
JP2008235247A (en) 2007-02-21 2008-10-02 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery and its manufacturing method, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery
JP2010003695A (en) 2008-06-20 2010-01-07 Toyota Motor Engineering & Manufacturing North America Inc Lithium alloying material/carbon composite
JP2012501951A (en) 2008-09-12 2012-01-26 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Process for preparing a silicon / carbon composite material, the material thus prepared and an electrode comprising this material, in particular a negative electrode
JP2014060124A (en) 2012-09-19 2014-04-03 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2014136609A1 (en) 2013-03-04 2014-09-12 積水化学工業株式会社 Fine grain-flaked graphite composite body, lithium-ion secondary battery negative electrode material, manufacturing method for same, and lithium-ion secondary battery
JP2016054145A (en) 2014-09-03 2016-04-14 オーシーアイ カンパニー リミテッドOCI Company Ltd. Carbon-silicon complex and method for producing the same
JP2017134937A (en) 2016-01-26 2017-08-03 東ソー株式会社 Composite active material for lithium secondary battery and method of producing the same
WO2017199606A1 (en) 2016-05-17 2017-11-23 Jfeケミカル株式会社 NEGATIVE ELECTRODE MATERIAL FOR Li ION SECONDARY BATTERIES, NEGATIVE ELECTRODE FOR Li ION SECONDARY BATTERIES, AND Li ION SECONDARY BATTERY

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178917A (en) 2002-11-26 2004-06-24 Shin Etsu Chem Co Ltd Nonaqueous electrolyte secondary battery negative electrode material, manufacturing method of the same, and lithium ion secondary battery
JP2005123175A (en) 2003-09-26 2005-05-12 Jfe Chemical Corp Composite particle, manufacturing method of the same, negative electrode material and negative electrode for lithium-ion secondary battery, and the lithium-ion secondary battery
JP2006228640A (en) 2005-02-21 2006-08-31 Nippon Carbon Co Ltd Silicon-added graphite cathode material for lithium-ion secondary battery, and manufacturing method
JP2008186732A (en) 2007-01-30 2008-08-14 Nippon Carbon Co Ltd Negative electrode active material for lithium secondary battery, negative electrode using the same, and manufacturing method
JP2008235247A (en) 2007-02-21 2008-10-02 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery and its manufacturing method, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery
JP2010003695A (en) 2008-06-20 2010-01-07 Toyota Motor Engineering & Manufacturing North America Inc Lithium alloying material/carbon composite
JP2012501951A (en) 2008-09-12 2012-01-26 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Process for preparing a silicon / carbon composite material, the material thus prepared and an electrode comprising this material, in particular a negative electrode
JP2014060124A (en) 2012-09-19 2014-04-03 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2014136609A1 (en) 2013-03-04 2014-09-12 積水化学工業株式会社 Fine grain-flaked graphite composite body, lithium-ion secondary battery negative electrode material, manufacturing method for same, and lithium-ion secondary battery
JP2016054145A (en) 2014-09-03 2016-04-14 オーシーアイ カンパニー リミテッドOCI Company Ltd. Carbon-silicon complex and method for producing the same
JP2017134937A (en) 2016-01-26 2017-08-03 東ソー株式会社 Composite active material for lithium secondary battery and method of producing the same
WO2017199606A1 (en) 2016-05-17 2017-11-23 Jfeケミカル株式会社 NEGATIVE ELECTRODE MATERIAL FOR Li ION SECONDARY BATTERIES, NEGATIVE ELECTRODE FOR Li ION SECONDARY BATTERIES, AND Li ION SECONDARY BATTERY

Also Published As

Publication number Publication date
JP2023011743A (en) 2023-01-24
JP2020068191A (en) 2020-04-30
WO2019131519A1 (en) 2019-07-04
TW201935748A (en) 2019-09-01
JP7452599B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
JP7293645B2 (en) Composite active material for lithium secondary battery and manufacturing method thereof
JP6334195B2 (en) Composite active material for lithium secondary battery and method for producing the same
JP6508870B2 (en) Composite active material for lithium secondary battery and method of manufacturing the same
WO2015080203A1 (en) Carbon material for negative electrode of nonaqueous rechargeable battery, negative electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery
WO2015125784A1 (en) Negative electrode active material for lithium ion secondary battery, and method for producing said negative electrode active material
JP6617403B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP2017130274A (en) Negative electrode material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
WO2016125819A1 (en) Composite active material for lithium secondary cell and method for manufacturing same
JP6961948B2 (en) Composite active material for silicon-based lithium secondary batteries and its manufacturing method
JP6961980B2 (en) Composite active material for lithium secondary battery and its manufacturing method
WO2015146864A1 (en) Negative electrode active material for lithium ion secondary battery, and method for producing same
JP7009255B2 (en) Binder and negative electrode material for negative electrode of lithium ion secondary battery
JP2017134937A (en) Composite active material for lithium secondary battery and method of producing the same
JP6451071B2 (en) Carbon silicon negative electrode active material for lithium ion secondary battery and method for producing the same
KR102176590B1 (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
JP6808959B2 (en) Composite active material for lithium-ion secondary battery and its manufacturing method
JP6961981B2 (en) Composite active material for lithium secondary battery and its manufacturing method
TW201640726A (en) Composite active material for lithium secondary cell and method for manufacturing same
JP2017112057A (en) Silicon-based particle, lithium ion secondary battery negative electrode active material including the same, and manufacturing methods thereof
KR101445019B1 (en) Anode active material, method for preparing the same, and secondary battery using the anode active material
WO2021193662A1 (en) Composite active material for lithium secondary battery, electrode composition for lithium secondary battery, lithium secondary battery electrode, and method for manufacturing composite active material for lithium secondary battery
JP6739142B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP7516848B2 (en) Silicon or silicon alloy, composite active material for lithium secondary battery containing same, and method for producing same
JP2022190387A (en) Composite active material for lithium secondary battery and manufacturing method for the same
JP2017168376A (en) Composite active material for lithium secondary battery and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R151 Written notification of patent or utility model registration

Ref document number: 7293645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151