JP2010257982A - Anode active material for lithium secondary battery, and lithium secondary battery including the same - Google Patents

Anode active material for lithium secondary battery, and lithium secondary battery including the same Download PDF

Info

Publication number
JP2010257982A
JP2010257982A JP2010101929A JP2010101929A JP2010257982A JP 2010257982 A JP2010257982 A JP 2010257982A JP 2010101929 A JP2010101929 A JP 2010101929A JP 2010101929 A JP2010101929 A JP 2010101929A JP 2010257982 A JP2010257982 A JP 2010257982A
Authority
JP
Japan
Prior art keywords
active material
anode active
secondary battery
lithium secondary
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010101929A
Other languages
Japanese (ja)
Inventor
Byun-Chun Park
ビュン−チュン パク
Jeong Hun Oh
ジョン−ハン オー,
Chul Youm
チュル ユム,
Kyung Hee Han
キュン−ヒー ハン,
Jeong Min Han
ジョン−ミン ハン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Mtron Ltd
Original Assignee
LS Mtron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LS Mtron Ltd filed Critical LS Mtron Ltd
Publication of JP2010257982A publication Critical patent/JP2010257982A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/10Compounds containing silicon, fluorine, and other elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anode active material for a lithium secondary battery and a lithium secondary battery including the same, improving charge/discharge efficiency and cycle characteristics. <P>SOLUTION: The invention relates to the anode active material for a lithium secondary battery and the lithium secondary battery including the same. The anode active material for a lithium secondary battery including carbon anode active material further includes Li<SB>2</SB>SiF<SB>6</SB>. The anode active material for a lithium secondary battery containing Li<SB>2</SB>SiF<SB>6</SB>is used in manufacturing the lithium secondary battery to exhibit the improved charge/discharge efficiency and cycle characteristics. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウム二次電池用アノード活物質とこれを含むリチウム二次電池に関するものであって、より詳しくは、電池の充・放電効率及びサイクル特性を向上させることができるリチウム二次電池用アノード活物質とこれを含むリチウム二次電池に関する。   The present invention relates to an anode active material for a lithium secondary battery and a lithium secondary battery including the anode active material. More specifically, the present invention relates to a lithium secondary battery capable of improving the charge / discharge efficiency and cycle characteristics of the battery. The present invention relates to an anode active material and a lithium secondary battery including the anode active material.

最近、携帯電話、ノートPC、電気自動車など電池を用いる電子機器の急速な普及に伴って、小型・軽量でありながらも相対的に高容量である二次電池の需要が急速に増大している。特に、リチウム二次電池は、軽量で高エネルギー密度を持っており携帯機器の駆動電源として脚光を浴びている。これによって、リチウム二次電池の性能向上のための研究開発努力が活発に行われている。   Recently, with the rapid spread of electronic devices using batteries, such as mobile phones, notebook PCs, and electric vehicles, the demand for secondary batteries that are small and light but have a relatively high capacity is rapidly increasing. . In particular, lithium secondary batteries are light and have a high energy density, and are attracting attention as driving power sources for portable devices. As a result, research and development efforts for improving the performance of lithium secondary batteries have been actively conducted.

リチウム二次電池は、リチウムイオンの挿入(intercalation)及び脱離(deintercalation)が可能な活物質からなるアノードとカソードの間に有機電解液またはポリマー電解液を充填させた状態で、リチウムイオンがカソード及びアノードで挿入/脱離されるときの酸化、還元反応によって電気エネルギーを生産する。   In the lithium secondary battery, an organic electrolyte or a polymer electrolyte is filled between an anode and a cathode made of an active material capable of intercalation and deintercalation of lithium ions. And electric energy is produced by oxidation and reduction reaction when inserted / desorbed at the anode.

リチウム二次電池のカソード活物質としては、リチウムコバルトオキサイド(LiCoO)、リチウムニッケルオキサイド(LiNiO)、リチウムマンガンオキサイド(LiMnO)などのような遷移金属化合物が主に用いられる。 As the cathode active material of the lithium secondary battery, transition metal compounds such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium manganese oxide (LiMnO 2 ) are mainly used.

そして、アノード活物質としては、一般的に軟化程度が大きい天然黒鉛や人造黒鉛のような結晶質系炭素材料、または1000〜1500℃の低い温度で炭化水素や高分子などを炭化させて得られた擬グラファイト(pseudo‐graphite)構造または乱層構造(turbostratic structure)を持つ非晶質系(low crystalline)炭素材料が用いられる。   The anode active material is generally obtained by carbonizing a crystalline carbon material such as natural graphite or artificial graphite having a large degree of softening, or a hydrocarbon or polymer at a low temperature of 1000 to 1500 ° C. In addition, a low-crystalline carbon material having a pseudo-graphite structure or a turbostratic structure is used.

しかし、このような黒鉛のような炭素系アノード活物質を用いる場合には、電解液の成分が黒鉛の表面で分解されて黒鉛の表面にLiFの被膜が形成されるので、電池の充・放電効率を低下させる原因になる。また、表面に厚い被膜が形成されることで、インピーダンスが上昇して率別(c‐rate)特性も低下することになる。   However, when such a carbon-based anode active material such as graphite is used, the components of the electrolytic solution are decomposed on the surface of the graphite and a LiF film is formed on the surface of the graphite. It causes the efficiency to decrease. Further, since a thick film is formed on the surface, the impedance is increased and the c-rate characteristic is also decreased.

このような問題を解決するために、特許文献1(韓国特許公開第2006‐0074808号公報)は、ケイ素を含むアノード活物質を開示している。すなわち、特許文献1においては、ケイ素が約30質量%ないし70質量%で含有されるアノード活物質を開示しているが、このようにケイ素の含有量が高い場合、ケイ素そのものへのアノード反応が行われるので、炭素材に比べて充・放電効率が急減する短所がある。   In order to solve such a problem, Patent Document 1 (Korea Patent Publication No. 2006-0074808) discloses an anode active material containing silicon. That is, Patent Document 1 discloses an anode active material containing silicon in an amount of about 30% by mass to 70% by mass. When the silicon content is high as described above, an anode reaction to silicon itself is performed. Since it is carried out, there is a disadvantage that the charge / discharge efficiency decreases sharply compared with the carbon material.

したがって、炭素材の短所を克服することができる新しいアノード活物質が相変らず要求されている。   Accordingly, there is a continuing need for new anode active materials that can overcome the disadvantages of carbon materials.

韓国特許公開第2006‐0074808号公報Korean Patent Publication No. 2006-0074808

よって、本発明は、LiFの生成を抑制して優れた電池性能を発揮することができる新しいアノード活物質を提供することにその目的がある。   Therefore, an object of the present invention is to provide a new anode active material capable of suppressing the generation of LiF and exhibiting excellent battery performance.

また、本発明の他の目的は、前記アノード活物質を用いて製造されたリチウム二次電池用アノード及びこれを含むリチウム二次電池を提供することにある。   Another object of the present invention is to provide an anode for a lithium secondary battery manufactured using the anode active material and a lithium secondary battery including the anode.

前記課題を解決するために、本発明によって炭素系アノード活物質を含むリチウム二次電池用アノード活物質は、LiSiFをさらに含むことを特徴とする。 In order to solve the above-described problems, the anode active material for a lithium secondary battery including the carbon-based anode active material according to the present invention further includes Li 2 SiF 6 .

本発明のアノード活物質において、LiSiFは炭素系アノード活物質100重量部に対して0.1ないし10重量部で含まれることができるが、これに限定されるのではない。 In the anode active material of the present invention, Li 2 SiF 6 may be included in an amount of 0.1 to 10 parts by weight with respect to 100 parts by weight of the carbon-based anode active material, but is not limited thereto.

また、本発明のアノード活物質において、前述の炭素系アノード活物質は、芯材炭素材のエッジの一部または全部に炭化物層がコートされて形成され得、前記芯材炭素材は、高結晶性の球状天然黒鉛であるか、楕円形状、鱗状、ウィスカー状または破砕状を持つ天然黒鉛、人造黒鉛、メソカーボンマイクロビーズ、メソフェーズピッチ微粉、等方性ピッチ微粉、樹脂炭、及び擬グラファイト構造または乱層構造を有する非晶質系炭素微粉からなる群より選択された何れか一つまたはこれらの混合物であり得るが、これに限定されるのではない。   Further, in the anode active material of the present invention, the carbon-based anode active material described above can be formed by coating a carbide layer on a part or all of the edge of the core carbon material, and the core carbon material is a highly crystalline material. Natural spherical graphite, oval, scale, whisker, or crushed natural graphite, artificial graphite, mesocarbon microbeads, mesophase pitch fines, isotropic pitch fines, resin charcoal, and pseudo-graphite structures or It may be any one selected from the group consisting of amorphous carbon fine powder having a turbulent structure or a mixture thereof, but is not limited thereto.

そして、前記炭化物層は、前記芯材炭素材に、石炭系または石油系から由来するピッチ、タールまたはこれらの混合物をコートした後炭化焼成して形成した低結晶性炭化物層であってよい。   The carbide layer may be a low crystalline carbide layer formed by coating the core carbon material with pitch, tar or a mixture thereof derived from coal or petroleum and then carbonizing and firing.

また選択的に、本発明のアノード活物質において、前述の炭素系アノード活物質は、人造黒鉛であり得る。   Also, optionally, in the anode active material of the present invention, the carbon-based anode active material may be artificial graphite.

本発明によるアノード活物質の製造方法は、例えば炭素系アノード活物質とLiSiFとを混合し不活性雰囲気で焼成させる段階を含む。 The method for producing an anode active material according to the present invention includes, for example, a step of mixing a carbon-based anode active material and Li 2 SiF 6 and firing in an inert atmosphere.

前述の本発明のアノード活物質は、リチウム二次電池用アノード及びリチウム二次電池に用いることができる。   The anode active material of the present invention described above can be used for an anode for a lithium secondary battery and a lithium secondary battery.

本発明のリチウム二次電池用アノード活物質は、炭素系アノード活物質とLiSiFとが混合されて形成されることで、アノード活物質の表面と構造を安定化させて非可逆容量の主要原因である有機電解液の分解反応を抑制することができ、充・放電中に電解質が酸化されて生成される酸の影響力を減少させて電池の効率及びサイクル特性を改善することができる。 The anode active material for a lithium secondary battery according to the present invention is formed by mixing a carbon-based anode active material and Li 2 SiF 6 , thereby stabilizing the surface and structure of the anode active material and having an irreversible capacity. It is possible to suppress the decomposition reaction of the organic electrolyte, which is the main cause, and to reduce the influence of the acid generated by oxidation of the electrolyte during charge / discharge, thereby improving the efficiency and cycle characteristics of the battery. .

以下、本発明を詳しく説明する。本明細書及び請求範囲に使われた用語や単語は通常的や辞書的な意味に限定して解釈されてはいけず、発明者は自らの発明を最善の方法で説明するために用語の概念を適切に定義することができるという原則に則して、本発明の技術的思想に符合する意味と概念とに解釈されなければならない。   The present invention will be described in detail below. Terms and words used in this specification and claims should not be construed to be limited to ordinary or lexicographic meanings, and the inventor should use the terminology concept to best explain his invention. In accordance with the principle that can be appropriately defined, it should be interpreted as a meaning and concept consistent with the technical idea of the present invention.

前述のように、本発明のアノード活物質は、従来の炭素系アノード活物質にLiSiFがさらに含まれたことを特徴とする。通常用いられる炭素系アノード活物質として代表的なのは、初期容量に優れた天然黒鉛である。しかし、天然黒鉛は効率とサイクル容量とが低下する短所があるので、これを克服するために天然黒鉛に低結晶性炭素を被覆して用いたりもする。 As described above, the anode active material of the present invention is characterized in that Li 2 SiF 6 is further included in the conventional carbon-based anode active material. A typical carbon-based anode active material is natural graphite having an excellent initial capacity. However, since natural graphite has a disadvantage that efficiency and cycle capacity are reduced, in order to overcome this, natural graphite is sometimes coated with low crystalline carbon.

しかし、炭素材そのものが持つ問題点を克服するには限界があるため、本発明のアノード活物質はLiSiFをさらに含む。本発明のアノード活物質に含まれるLiSiFは、充・放電がなされるときリチウムイオンの移動を円滑にし、電解液の分解反応によるLiFが形成される前にLiSiFの形態を維持してLiFの形成によるセル抵抗の増加を抑制する。 However, since there is a limit to overcome the problems of the carbon material itself, the anode active material of the present invention further contains Li 2 SiF 6 . The Li 2 SiF 6 contained in the anode active material of the present invention facilitates the movement of lithium ions when charging and discharging are performed, and the Li x SiF y form is formed before LiF is formed by the decomposition reaction of the electrolytic solution. Maintaining and suppressing an increase in cell resistance due to the formation of LiF.

本発明によってアノード活物質に含まれるLiSiFの含量は共に用いられる炭素材アノード活物質の具体的な種類やリチウム二次電池の用途などに応じて多様に採択できる。例えば、炭素系アノード活物質100重量部に対して0.1ないし10重量部で混合できるが、これに限定されるのではない。LiSiFの含量が0.1重量部未満であればLiSiFの使用による性能の向上が僅かであり、10重量部を超えれば電池製造時に抵抗の増加を誘発する恐れがある。 According to the present invention, the content of Li 2 SiF 6 contained in the anode active material can be variously selected according to the specific type of the carbon material anode active material used together and the use of the lithium secondary battery. For example, 0.1 to 10 parts by weight can be mixed with 100 parts by weight of the carbon-based anode active material, but the present invention is not limited thereto. If the content of Li 2 SiF 6 is less than 0.1 parts by weight, the performance improvement due to the use of Li 2 SiF 6 is slight, and if it exceeds 10 parts by weight, an increase in resistance may be induced during battery production.

本発明のアノード活物質において、LiSiFとともに用いられることができる炭素材アノード活物質は、当分野においてアノード活物質として通常用いられる炭素材であれば特に制限はない。前記炭素材アノード活物質は、例えばエッジの一部または全部に炭化物層がコートされた芯材炭素材;または人造黒鉛などが用いられることができるが、これに限定されるのではない。 In the anode active material of the present invention, the carbon material anode active material that can be used together with Li 2 SiF 6 is not particularly limited as long as it is a carbon material usually used as an anode active material in this field. Examples of the carbon material anode active material include, but are not limited to, a core material carbon material in which a carbide layer is coated on part or all of an edge; or artificial graphite.

前記本発明による炭素材アノード活物質において、前記芯材炭素材は、球状の高結晶性天然黒鉛であり得る。選択的に、前記芯材炭素材は、楕円形状、破砕状、鱗状、ウィスカー状などを持つ天然黒鉛、メソカーボンマイクロビーズ、メソフェーズピッチ微粉、等方性ピッチ微粉、樹脂炭、及び擬グラファイト構造または乱層構造を有する非晶質系炭素微粉からなる群より選択された何れか一つまたはこれらの混合物であり得る。   In the carbon material anode active material according to the present invention, the core carbon material may be spherical highly crystalline natural graphite. Optionally, the core carbon material has an elliptical shape, crushed shape, scale shape, whisker shape, etc., natural graphite, mesocarbon microbeads, mesophase pitch fine powder, isotropic pitch fine powder, resin charcoal, and pseudographite structure or It may be any one selected from the group consisting of amorphous carbon fine powder having a turbulent structure or a mixture thereof.

望ましくは、前記炭化物層は、芯材炭素材に石炭系または石油系から由来するピッチ、タールまたはこれらの混合物をコートした後、炭化焼成して形成した低結晶性炭化物層である。ここで、低結晶性というのは、芯材炭素材に比べて炭化物層の結晶化度が低いということを意味する。炭化物層が芯材炭素材より結晶性が低いと、芯材炭素材のエッジ部分で電解液の分解反応が誘発されることを有効に防止することができる。また、電極製造工程時に、圧着性などの工程性を向上させることができる。   Preferably, the carbide layer is a low crystalline carbide layer formed by coating the core carbon material with pitch, tar, or a mixture thereof derived from coal or petroleum, and then carbonizing and firing. Here, low crystallinity means that the crystallinity of the carbide layer is lower than that of the core carbon material. If the carbide layer has lower crystallinity than the core carbon material, it is possible to effectively prevent the decomposition reaction of the electrolytic solution from being induced at the edge portion of the core carbon material. Moreover, processability, such as crimping | bonding property, can be improved at the time of an electrode manufacturing process.

本発明のリチウム二次電池用アノード活物質は、前述の炭素材アノード活物質にLiSiFを混合し、酸化性雰囲気、還元性雰囲気または不活性雰囲気で焼成する段階を通じて製造できる。 The anode active material for a lithium secondary battery of the present invention can be manufactured through a step of mixing Li 2 SiF 6 with the above-described carbon material anode active material and firing in an oxidizing atmosphere, a reducing atmosphere or an inert atmosphere.

本発明のリチウム二次電池用アノード活物質の製造方法において、炭素材アノード活物質とLiSiFとの混合は、乾式あるいは湿式など通常の方法により行うことができる。 In the method for producing an anode active material for a lithium secondary battery of the present invention, the carbon material anode active material and Li 2 SiF 6 can be mixed by a usual method such as dry or wet.

また、前記焼成温度は、400ないし700 ℃であり得る。焼成温度が400℃未満であれば不純物を除去することが難しく、700℃を超えればLiSiFの結晶構造が崩壊される恐れがある。 The firing temperature may be 400 to 700 ° C. If the firing temperature is less than 400 ° C., it is difficult to remove impurities, and if it exceeds 700 ° C., the crystal structure of Li 2 SiF 6 may be destroyed.

このように製造された本発明のアノード活物質は通常のアノード製造方法に従って、導電材、バインダー及び有機溶媒と混合して活物質ペーストに製造した後、銅箔のような通常用いられるアノード集電体に塗布した後、乾燥、熱処理及び圧着して、リチウム二次電池用アノードを製造するのに用いることができる。   The anode active material of the present invention thus manufactured is mixed with a conductive material, a binder and an organic solvent to produce an active material paste according to a normal anode manufacturing method, and then used as a commonly used anode current collector such as a copper foil. After being applied to the body, it can be dried, heat-treated and pressure-bonded to be used for producing an anode for a lithium secondary battery.

また、前述のように、本発明に従って製造されたアノード及びリチウム系遷移金属化合物が所定厚さでカソード集電体にコートされて製造されたカソードをセパレーターを挿んで対向させた後、セパレーターにリチウム二次電池用電解液を含浸させれば、繰り返して充・放電が可能なリチウム二次電池の製造も可能である。このようなリチウム二次電池の製造方法は、本発明が属する技術分野において通常の知識を持つ者に広く知られているので詳細な説明は省略する。   In addition, as described above, the anode manufactured according to the present invention and the cathode manufactured by coating the cathode current collector with a predetermined thickness on the cathode current collector are made to face each other by inserting the separator, and then the lithium is applied to the separator. If the secondary battery electrolyte is impregnated, it is possible to manufacture a lithium secondary battery that can be repeatedly charged and discharged. Such a method of manufacturing a lithium secondary battery is widely known to those having ordinary knowledge in the technical field to which the present invention belongs, and thus detailed description thereof is omitted.

以下、本発明を具体的に説明するために実施例を挙げて詳しく説明する。しかし、本発明による実施例は多くの形態に変形でき、本発明の範囲が後述する実施例に限定されると解釈されてはいけない。本発明の実施例は、当業界において通常の知識を持つ者に本発明をより完全に説明するために提供されるものである。
実施例1
球状の天然黒鉛に、天然黒鉛100重量部に対して10重量部のピッチを高速で約10分間乾式混合して混合物を製造し、この混合物を1000℃と2200℃でそれぞれ1時間ずつ1・2次焼成し、分級工程を通じて微粉を除去して炭化物層でコートされた天然黒鉛からなるリチウム二次電池用アノード活物質を製造した。このように製造された炭素材アノード活物質100重量部に対して2重量部のLiSiFを前記炭素材アノード活物質に混合した後、窒素ガスの不活性雰囲気で600℃の温度で5時間か焼(calcination)して本発明のリチウム二次電池用アノード活物質を製造した。
Hereinafter, the present invention will be described in detail with reference to examples. However, the embodiments according to the present invention can be modified in many forms, and the scope of the present invention should not be construed to be limited to the embodiments described later. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.
Example 1
A spherical natural graphite is dry-mixed at a high speed for about 10 minutes with a pitch of 10 parts by weight with respect to 100 parts by weight of natural graphite to produce a mixture. Subsequent firing, fine powder was removed through a classification step, and an anode active material for a lithium secondary battery made of natural graphite coated with a carbide layer was manufactured. After mixing 2 parts by weight of Li 2 SiF 6 with respect to 100 parts by weight of the carbon material anode active material thus produced, the carbon material anode active material was mixed with 5 parts at a temperature of 600 ° C. in an inert atmosphere of nitrogen gas. The anode active material for a lithium secondary battery of the present invention was manufactured by time calcination.

このように製造されたアノード活物質100gを500mlの反応器に入れ、少量のN‐メチルピロリドン(NMP)と、PVDF(バインダー)とを投入した後、ミキサーを用いて混合してスラリーを製造した。前記スラリーを12μm厚さの銅箔に均一に塗布し、120℃で真空乾燥してリチウム二次電池用アノードを製造した。前記製造されたアノード、カソード活物質としてLiCoOを用いて製造されたカソード、セパレーターとしてCelgard 2400(Celgard社製)、及び非水電解液として1M LiPF溶液(EC:DEC=3:7で混合された溶媒使用)を用いてコイン型電池(coin cell)を製造した。
実施例2
LiSiFを炭素材アノード活物質100重量部に対して4重量部にしたことを除いては、実施例1と同一の方法でアノード活物質、アノード及びコイン型電池を製造した。
実施例3
LiSiFを炭素材アノード活物質100重量部に対して6重量部にしたことを除いては、実施例1と同一の方法でアノード活物質、アノード及びコイン型電池を製造した。
実施例4
LiSiFを炭素材アノード活物質100重量部に対して8重量部にしたことを除いては、実施例1と同一の方法でアノード活物質、アノード及びコイン型電池を製造した。
実施例5
LiSiFを炭素材アノード活物質100重量部に対して10重量部にしたことを除いては、実施例1と同一の方法でアノード活物質、アノード及びコイン型電池を製造した。
実施例6
コークスを3000℃で24時間焼成し、分級して微粉を除去してリチウム二次電池用アノード活物質である人造黒鉛を製造した。このように製造された人造黒鉛100重量部に対して2重量部のLiSiFを前記炭素材アノード活物質に混合した後、窒素ガスの不活性雰囲気で600℃の温度で5時間か焼して本発明のリチウム二次電池用アノード活物質を製造した。
100 g of the anode active material thus produced was put into a 500 ml reactor, and a small amount of N-methylpyrrolidone (NMP) and PVDF (binder) were added, and then mixed using a mixer to produce a slurry. . The slurry was uniformly applied to a 12 μm thick copper foil and vacuum dried at 120 ° C. to produce an anode for a lithium secondary battery. The prepared anode, a cathode manufactured using LiCoO 2 as a cathode active material, Celgard 2400 (manufactured by Celgard) as a separator, and 1M LiPF 6 solution (EC: DEC = 3: 7) as a non-aqueous electrolyte. A coin cell was manufactured using the solvent used.
Example 2
An anode active material, an anode, and a coin-type battery were manufactured in the same manner as in Example 1 except that Li 2 SiF 6 was changed to 4 parts by weight with respect to 100 parts by weight of the carbon material anode active material.
Example 3
An anode active material, an anode, and a coin-type battery were manufactured in the same manner as in Example 1 except that Li 2 SiF 6 was changed to 6 parts by weight with respect to 100 parts by weight of the carbon material anode active material.
Example 4
An anode active material, an anode, and a coin-type battery were manufactured in the same manner as in Example 1 except that Li 2 SiF 6 was changed to 8 parts by weight with respect to 100 parts by weight of the carbon material anode active material.
Example 5
An anode active material, an anode, and a coin-type battery were manufactured in the same manner as in Example 1 except that Li 2 SiF 6 was changed to 10 parts by weight with respect to 100 parts by weight of the carbon material anode active material.
Example 6
Coke was baked at 3000 ° C. for 24 hours, classified to remove fine powder, and artificial graphite as an anode active material for a lithium secondary battery was produced. After mixing 2 parts by weight of Li 2 SiF 6 with the carbon material anode active material with respect to 100 parts by weight of the artificial graphite thus produced, the mixture was calcined at 600 ° C. for 5 hours in an inert atmosphere of nitrogen gas. Thus, an anode active material for a lithium secondary battery of the present invention was produced.

アノード及びコイン型電池の製造は、実施例1と同一である。
実施例7
LiSiFを炭素材アノード活物質100重量部に対して4重量部を用いたことを除いては、実施例6と同一の方法でアノード活物質、アノード及びコイン型電池を製造した。
比較例1
球状の天然黒鉛に、天然黒鉛100重量部に対して10重量部のピッチを高速で約10分間乾式混合して混合物を製造し、この混合物を1000℃と2200℃でそれぞれ1時間ずつ1・2次焼成し、分級工程を通じて微粉を除去して炭化物層でコートされた天然黒鉛からなるリチウム二次電池用アノード活物質を製造した。
The manufacture of the anode and coin-type battery is the same as in Example 1.
Example 7
An anode active material, an anode, and a coin-type battery were manufactured in the same manner as in Example 6 except that 4 parts by weight of Li 2 SiF 6 was used with respect to 100 parts by weight of the carbon material anode active material.
Comparative Example 1
A spherical natural graphite is dry-mixed at a high speed for about 10 minutes with a pitch of 10 parts by weight with respect to 100 parts by weight of natural graphite to produce a mixture. Subsequent firing, fine powder was removed through a classification step, and an anode active material for a lithium secondary battery made of natural graphite coated with a carbide layer was manufactured.

このように製造されたアノード活物質100gを500mlの反応器に入れ、少量のN‐メチルピロリドン(NMP)と、PVDF(バインダー)とを投入した後、ミキサーを用いて混合してスラリーを製造した。前記スラリーを12μm厚さの銅箔に均一に塗布し、120℃で真空乾燥してリチウム二次電池用アノードを製造した。前記製造されたアノード、カソード活物質としてLiCoOを用いて製造されたカソード、セパレーターとしてCelgard 2400(Celgard社製)、及び非水電解液として1M LiPF溶液(EC:DEC=3:7で混合された溶媒使用)を用いてコイン型電池を製造した。
比較例2
コークスを3000℃で24時間焼成した後、分級して微粉を除去してリチウム二次電池用アノード活物質として人造黒鉛を製造したことを除いては、比較例1と同一の方法でリチウム二次電池用アノード及びコイン型電池を製造した。
実験例
前記実施例及び比較例に対して以下のような実験を実施して特性を評価した。その評価結果は、下記表1のようである。
(1)電池特性
充・放電試験は、電位を0.01〜1.5Vの範囲に規制しながら充電電流0.5mA/cm2で0.01Vになるまで充電し、また0.01Vの電圧を維持しながら充電電流が0.02mA/cm2になるまで充電し続けた。そして、放電電流は0.5mA/cm2で1.5Vまでの放電を行った。
100 g of the anode active material thus prepared was put into a 500 ml reactor, a small amount of N-methylpyrrolidone (NMP) and PVDF (binder) were added, and then mixed using a mixer to prepare a slurry. . The slurry was uniformly applied to a 12 μm thick copper foil and vacuum dried at 120 ° C. to produce an anode for a lithium secondary battery. The prepared anode, a cathode manufactured using LiCoO 2 as a cathode active material, Celgard 2400 (manufactured by Celgard) as a separator, and 1M LiPF 6 solution (EC: DEC = 3: 7) as a non-aqueous electrolyte. A coin-type battery was manufactured using the above-mentioned solvent use).
Comparative Example 2
The coke was baked at 3000 ° C. for 24 hours, and then classified to remove fine powder to produce artificial graphite as an anode active material for a lithium secondary battery. A battery anode and a coin-type battery were produced.
Experimental Example The following experiment was carried out on the examples and comparative examples to evaluate the characteristics. The evaluation results are as shown in Table 1 below.
(1) Battery characteristics In the charge / discharge test, the battery is charged to 0.01 V at a charging current of 0.5 mA / cm 2 while regulating the potential within a range of 0.01 to 1.5 V, and a voltage of 0.01 V is used. The charging was continued until the charging current reached 0.02 mA / cm 2 . A discharge current of 0.5 mA / cm 2 was discharged up to 1.5 V.

下記表において、充・放電効率とは、充電した電気容量に対して放電した電気容量の比率を示したものである。   In the table below, the charge / discharge efficiency indicates the ratio of the discharged electric capacity to the charged electric capacity.

Figure 2010257982
Figure 2010257982

前記表1に示すように、本発明による実施例1ないし実施例7は全般的な電池特性が比較例の電池より優れていることが分かる。実施例6の場合には放電容量が比較例2より多少低いが、サイクル効率及び容量維持率が比較例2より優れているので、全体的には比較例2より改善した電池特性を現わすことが分かる。   As shown in Table 1, it can be seen that Examples 1 to 7 according to the present invention have better overall battery characteristics than the comparative battery. In the case of Example 6, the discharge capacity is somewhat lower than that of Comparative Example 2, but the cycle efficiency and capacity retention rate are superior to that of Comparative Example 2, so that the battery characteristics improved as compared with Comparative Example 2 as a whole are exhibited. I understand.

Claims (13)

炭素系アノード活物質を含むリチウム二次電池用アノード活物質において、
前記アノード活物質は、LiSiFをさらに含むことを特徴とするリチウム二次電池用アノード活物質。
In an anode active material for a lithium secondary battery including a carbon-based anode active material,
The anode active material for a lithium secondary battery, wherein the anode active material further includes Li 2 SiF 6 .
前記LiSiFは、前記炭素系アノード活物質100重量部に対して0.1ないし10重量部で含まれることを特徴とする請求項1に記載のリチウム二次電池用アノード活物質。 The anode active material for a lithium secondary battery according to claim 1, wherein the Li 2 SiF 6 is included in an amount of 0.1 to 10 parts by weight with respect to 100 parts by weight of the carbon-based anode active material. 前記炭素系アノード活物質は、芯材炭素材のエッジ一部または全部に炭化物層がコートされて形成されたことを特徴とする請求項1に記載のリチウム二次電池用アノード活物質。 2. The anode active material for a lithium secondary battery according to claim 1, wherein the carbon-based anode active material is formed by coating a carbide layer on a part or all of an edge of a core carbon material. 前記芯材炭素材は、高結晶性の球状天然黒鉛であることを特徴とする請求項3に記載のリチウム二次電池用アノード活物質。 The anode active material for a lithium secondary battery according to claim 3, wherein the core carbon material is highly crystalline spherical natural graphite. 前記芯材炭素材は、楕円形状、鱗状、ウィスカー状または破砕状を持つ天然黒鉛、メソカーボンマイクロビーズ 、メソフェーズピッチ微粉、等方性ピッチ微粉、樹脂炭、及び擬グラファイト(pseudo‐graphite)構造または乱層構造を有する非晶質系(low crystalline)炭素微粉からなる群より選択された何れか一つまたはこれらの混合物であることを特徴とする請求項3に記載のリチウム二次電池用アノード活物質。 The core carbon material is composed of oval, scale, whisker, or crushed natural graphite, mesocarbon microbeads, mesophase pitch fine powder, isotropic pitch fine powder, resin charcoal, and pseudo-graphite structure or 4. The anode active for a lithium secondary battery according to claim 3, wherein the anode active material is any one selected from the group consisting of amorphous carbon fine powder having a disordered layer structure or a mixture thereof. material. 前記炭化物層の結晶化度が芯材炭素材の結晶化度より低いことを特徴とする請求項3に記載のリチウム二次電池用アノード活物質。 The anode active material for a lithium secondary battery according to claim 3, wherein the crystallinity of the carbide layer is lower than the crystallinity of the core carbon material. 前記炭化物層は、石炭系または石油系から由来するピッチ、タールまたはこれらの混合物をコートした後炭化焼成して形成した低結晶性炭化物層であることを特徴とする請求項3に記載のリチウム二次電池用アノード活物質。 The lithium carbide layer according to claim 3, wherein the carbide layer is a low crystalline carbide layer formed by coating a pitch, tar, or a mixture thereof derived from a coal-based or petroleum-based material and then carbonizing and firing. Anode active material for secondary batteries. 前記炭素系アノード活物質は、人造黒鉛であることを特徴とする請求項1に記載のリチウム二次電池用アノード活物質。 The anode active material for a lithium secondary battery according to claim 1, wherein the carbon-based anode active material is artificial graphite. 炭素系アノード活物質とLiSiFとを混合し、酸化性雰囲気、還元性雰囲気または不活性雰囲気で焼成させることを特徴とするリチウム二次電池用アノード活物質の製造方法。 A method for producing an anode active material for a lithium secondary battery, comprising mixing a carbon-based anode active material and Li 2 SiF 6 and firing the mixture in an oxidizing atmosphere, a reducing atmosphere, or an inert atmosphere. 前記LiSiFは、前記炭素系アノード活物質100重量部に対して0.1ないし10重量部で混合されることを特徴とする請求項9に記載のリチウム二次電池用アノード活物質の製造方法。 The anode active material for a lithium secondary battery according to claim 9, wherein the Li 2 SiF 6 is mixed in an amount of 0.1 to 10 parts by weight with respect to 100 parts by weight of the carbon-based anode active material. Production method. 前記焼成温度は、400〜700℃であることを特徴とする請求項9に記載のリチウム二次電池用アノード活物質の製造方法。 The method for producing an anode active material for a lithium secondary battery according to claim 9, wherein the firing temperature is 400 to 700 ° C. アノード活物質及びバインダーがアノード集電体上にコートされて形成されたリチウム二次電池用アノードにおいて、
前記アノード活物質は、請求項1ないし請求項8のうち何れか一項に記載のアノード活物質であることを特徴とするリチウム二次電池用アノード。
In an anode for a lithium secondary battery formed by coating an anode active material and a binder on an anode current collector,
The anode for a lithium secondary battery, wherein the anode active material is the anode active material according to any one of claims 1 to 8.
アノード、カソード、前記アノードとカソードの間に介されたセパレーター、及び電解液を備えるリチウム二次電池において、
前記アノードは、請求項12に記載のアノードであることを特徴とするリチウム二次電池。
In a lithium secondary battery comprising an anode, a cathode, a separator interposed between the anode and the cathode, and an electrolyte solution,
The lithium secondary battery according to claim 12, wherein the anode is an anode according to claim 12.
JP2010101929A 2009-04-27 2010-04-27 Anode active material for lithium secondary battery, and lithium secondary battery including the same Pending JP2010257982A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090036349A KR101091546B1 (en) 2009-04-27 2009-04-27 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same

Publications (1)

Publication Number Publication Date
JP2010257982A true JP2010257982A (en) 2010-11-11

Family

ID=42997612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010101929A Pending JP2010257982A (en) 2009-04-27 2010-04-27 Anode active material for lithium secondary battery, and lithium secondary battery including the same

Country Status (3)

Country Link
JP (1) JP2010257982A (en)
KR (1) KR101091546B1 (en)
CN (1) CN101872861A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253762A (en) * 2010-06-03 2011-12-15 Sony Corp Negative electrode for lithium ion secondary battery, lithium ion secondary battery, electric tool, electric vehicle, and power storage system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6035054B2 (en) * 2011-06-24 2016-11-30 株式会社半導体エネルギー研究所 Method for manufacturing electrode of power storage device
KR101459729B1 (en) * 2012-12-27 2014-11-10 주식회사 포스코 Carbon composite materials and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831404A (en) * 1994-07-18 1996-02-02 Toray Ind Inc Electrode and secondary battery using this electrode
JP2000251895A (en) * 1999-02-24 2000-09-14 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery and its manufacture
JP2002033128A (en) * 2000-07-17 2002-01-31 Matsushita Electric Ind Co Ltd Lithium polymer secondary battery
JP2008234988A (en) * 2007-03-20 2008-10-02 Sony Corp Anode and its manufacturing method as well as battery and its manufacturing method
JP2008258030A (en) * 2007-04-05 2008-10-23 Denso Corp Negative active material for nonaqueous electrolyte secondary battery, its manufacturing method, and manufacturing method of nonaqueous electrolyte secondary battery
JP2009158335A (en) * 2007-12-27 2009-07-16 Sanyo Electric Co Ltd Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036206A1 (en) * 1999-11-12 2001-05-25 Fargo Electronics, Inc. Thermal printhead compensation
US7247408B2 (en) * 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
EP1543571A1 (en) * 2002-09-27 2005-06-22 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Rechargeable lithium battery
KR100686783B1 (en) * 2006-01-16 2007-02-26 엘에스전선 주식회사 Anode material for secondary battery, method for producing of itself and secondary batteries using the same
KR100853327B1 (en) 2007-02-16 2008-08-21 엘에스엠트론 주식회사 Anode active material for rechargeable lithium ion battery and method for preparing thereof and lithium ion battery manufactured using the same
KR100868135B1 (en) 2007-04-16 2008-11-10 엘에스엠트론 주식회사 Anode active material for secondary battery and method for preparing thereof and secondary battery containing the same for anode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831404A (en) * 1994-07-18 1996-02-02 Toray Ind Inc Electrode and secondary battery using this electrode
JP2000251895A (en) * 1999-02-24 2000-09-14 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery and its manufacture
JP2002033128A (en) * 2000-07-17 2002-01-31 Matsushita Electric Ind Co Ltd Lithium polymer secondary battery
JP2008234988A (en) * 2007-03-20 2008-10-02 Sony Corp Anode and its manufacturing method as well as battery and its manufacturing method
JP2008258030A (en) * 2007-04-05 2008-10-23 Denso Corp Negative active material for nonaqueous electrolyte secondary battery, its manufacturing method, and manufacturing method of nonaqueous electrolyte secondary battery
JP2009158335A (en) * 2007-12-27 2009-07-16 Sanyo Electric Co Ltd Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253762A (en) * 2010-06-03 2011-12-15 Sony Corp Negative electrode for lithium ion secondary battery, lithium ion secondary battery, electric tool, electric vehicle, and power storage system

Also Published As

Publication number Publication date
KR101091546B1 (en) 2011-12-13
KR20100117731A (en) 2010-11-04
CN101872861A (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP6068655B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery containing the same, and method for producing negative electrode active material
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
KR101626026B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR101105877B1 (en) Anode active material for lithium secondary batteries and Method of preparing for the same and Lithium secondary batteries using the same
KR101631735B1 (en) Anode active material for lithium secondary battery and preparation method of thereof
JP5186409B2 (en) Negative electrode active material for secondary battery, secondary battery including the same, and manufacturing method thereof
JP2011519143A (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same as a negative electrode
JPWO2016136226A1 (en) Method for producing non-aqueous electrolyte secondary battery
JPH10294111A (en) Graphite carbon material coated with graphite for lithium secondary battery negative electrode material and its manufacture
KR100978422B1 (en) Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same
JP2010522969A (en) Negative electrode active material for secondary battery, electrode for secondary battery including the same, and secondary battery
KR101226107B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR101140866B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
JP4150087B2 (en) Non-aqueous electrolyte secondary battery
KR101091546B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR101065248B1 (en) Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom
JP5318921B2 (en) Graphite particles for lithium ion secondary batteries
KR100991358B1 (en) Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode
KR101790398B1 (en) Anode active material and lithium secondary battery comprising the same
JP6396040B2 (en) Negative electrode material for lithium secondary battery, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode material
JP2009266816A (en) Negative electrode active material for secondary battery, electrode for secondary battery containing the same, secondary battery and method of manufacturing them
JP5197938B2 (en) Method for producing negative electrode active material for lithium ion secondary battery and negative electrode active material for lithium ion secondary battery
KR20150142735A (en) Method for preparing of carbon-coated nbo_2 as negative electrode material for lithium-ion secondary battery
JP2004095203A (en) Negative electrode and nonaqueous secondary battery using the same
JP2004095204A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120914

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113