KR100853327B1 - Anode active material for rechargeable lithium ion battery and method for preparing thereof and lithium ion battery manufactured using the same - Google Patents

Anode active material for rechargeable lithium ion battery and method for preparing thereof and lithium ion battery manufactured using the same Download PDF

Info

Publication number
KR100853327B1
KR100853327B1 KR1020070016575A KR20070016575A KR100853327B1 KR 100853327 B1 KR100853327 B1 KR 100853327B1 KR 1020070016575 A KR1020070016575 A KR 1020070016575A KR 20070016575 A KR20070016575 A KR 20070016575A KR 100853327 B1 KR100853327 B1 KR 100853327B1
Authority
KR
South Korea
Prior art keywords
active material
negative electrode
electrode active
fluorine
lithium secondary
Prior art date
Application number
KR1020070016575A
Other languages
Korean (ko)
Other versions
KR20080076527A (en
Inventor
한정민
오정훈
김종성
염철
한경희
Original Assignee
엘에스엠트론 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스엠트론 주식회사 filed Critical 엘에스엠트론 주식회사
Priority to KR1020070016575A priority Critical patent/KR100853327B1/en
Priority to JP2009549507A priority patent/JP2010519682A/en
Priority to PCT/KR2007/005273 priority patent/WO2008100002A1/en
Publication of KR20080076527A publication Critical patent/KR20080076527A/en
Application granted granted Critical
Publication of KR100853327B1 publication Critical patent/KR100853327B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D8/00Hair-holding devices; Accessories therefor
    • A45D8/02Hair pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D8/00Hair-holding devices; Accessories therefor
    • A45D8/20Hair clamps, i.e. elastic multi-part clamps, the parts of which are pivotally connected between their ends
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D8/00Hair-holding devices; Accessories therefor
    • A45D8/20Hair clamps, i.e. elastic multi-part clamps, the parts of which are pivotally connected between their ends
    • A45D8/22Hair clamps, i.e. elastic multi-part clamps, the parts of which are pivotally connected between their ends with additional fastener
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D8/00Hair-holding devices; Accessories therefor
    • A45D8/24Hair clasps, i.e. multi-part clasps with pivotal connection of parts at their ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 전지용 음극 활물질과 그 제조방법 및 이를 이용한 리튬 이차 전지에 관한 것이다. 본 발명의 리튬 전지용 음극 활물질은 음극 활물질 표면이 불소계 화합물로 코팅되어 있는 것을 특징으로 한다. 본 발명에 따르면, 음극 활물질의 표면을 안정화시켜 비가역 용량의 주요 원인인 유기전해액 분해반응의 영향을 줄이는 동시에 충방전 중에 전해질이 산화되어 생성되는 산에 대한 영향력을 감소시켜 충방전시 우수한 사이클 특성 및 고율 특성을 나타낼 수 있는 장점이 있다.The present invention relates to a negative electrode active material for a lithium battery, a method of manufacturing the same, and a lithium secondary battery using the same. The negative electrode active material for a lithium battery of the present invention is characterized in that the surface of the negative electrode active material is coated with a fluorine compound. According to the present invention, by stabilizing the surface of the negative electrode active material to reduce the effect of the decomposition reaction of the organic electrolyte, which is the main cause of irreversible capacity and at the same time to reduce the impact on the acid generated by the oxidation of the electrolyte during charge and discharge, excellent cycle characteristics and There is an advantage that can exhibit high rate characteristics.

음극 활물질, 불소 화합물, 음극, 리튬 이차 전지, 충방전 효율 Negative electrode active material, fluorine compound, negative electrode, lithium secondary battery, charge and discharge efficiency

Description

리튬 전지용 음극 활물질과 그 제조방법 및 이를 이용한 리튬 이차 전지 {Anode active material for rechargeable lithium ion battery and method for preparing thereof and lithium ion battery manufactured using the same}Anode active material for rechargeable lithium ion battery and method for preparing pretty and lithium ion battery manufactured using the same}

본 발명은 리튬 전지용 음극 활물질과 그 제조방법 및 이를 이용한 리튬 이차 전지에 관한 것으로, 더욱 상세하게는 음극 활물질의 표면을 안정화시켜 비가역 용량의 주요 원인인 유기전해액 분해반응의 영향을 줄이는 동시에 충방전 중에 전해질이 산화되어 생성되는 산에 대한 영향력을 감소시켜 충방전시 우수한 사이클 특성 및 고율 특성을 나타낼 수 있는 리튬 전지용 음극 활물질과 그 제조방법 및 이를 이용한 리튬 이차 전지에 관한 것이다.The present invention relates to a negative electrode active material for a lithium battery, a method of manufacturing the same, and a lithium secondary battery using the same. More particularly, the surface of the negative electrode active material is stabilized to reduce the effects of the organic electrolyte solution decomposition reaction, which is the main cause of irreversible capacity, and at the same time during charge and discharge. The present invention relates to a negative electrode active material for a lithium battery, a method for manufacturing the same, and a lithium secondary battery using the same, which may reduce the influence on an acid generated by oxidizing an electrolyte and thus exhibit excellent cycle characteristics and high rate characteristics during charge and discharge.

최근 휴대용 소형 전자기기의 전원으로서 각광받고 있는 리튬 이차 전지는 유기 전해액을 사용하여 기존의 알칼리 수용액을 사용한 전지보다 2 배 이상의 높은 방전 전압을 보임으로써 높은 에너지 밀도를 나타내는 전지이다.Lithium secondary batteries, which are in the spotlight as a power source for portable small electronic devices, show high energy density by showing a discharge voltage that is two times higher than that of a battery using an aqueous alkali solution using an organic electrolyte solution.

리튬 이차 전지의 양극 활물질로는 LiCoO2, LiMn2O4, LiNi1-xCoxO2(0<x<1) 등과 같이 리튬이 인터칼레이션이 가능한 구조를 가진 리튬과 전이 금속으로 이루어진 산화물을 주로 사용하였다.As a cathode active material of a lithium secondary battery, an oxide made of lithium and a transition metal having a structure capable of intercalating lithium, such as LiCoO 2 , LiMn 2 O 4 , and LiNi 1-x Co x O 2 (0 <x <1) Was mainly used.

음극 활물질로는 리튬의 삽입/탈리가 가능한 이조, 천연 흑연, 하드 카본을 포함한 다양한 형태의 탄소계 재료가 적용되어 왔다. 상기 탄소 계열의 음극 재료는 저전위에서 전압 평탄성이 우수하고 양호한 수명 특성을 가지고 있으나, 유기 전해액과의 높은 반응성, 물질내 리튬의 낮은 확산 속도 등으로 인해 전력(power) 특성, 초기 비가역 제어, 충방전 중의 전극 부풀림 현상(swelling) 등은 개선이 요구되고 있다.As the negative electrode active material, various types of carbon-based materials including lyozyme, natural graphite, and hard carbon capable of lithium insertion / desorption have been applied. The carbon-based negative electrode material has excellent voltage flatness and good life characteristics at low potentials, but due to high reactivity with the organic electrolyte and low diffusion rate of lithium in the material, power characteristics, initial irreversible control, and charge and discharge Improvement of electrode swelling or the like is required.

이 경우 종래 기술에서는 음극에서 사용되는 흑연(혹은 여타 탄소계 재료)의 전지 특성의 향상을 위해 흑연 분말의 형상, 입도와 그 분포, 밀도, 비정질 탄소(핏치)의 피복, 온도에 의한 결정화도 조절 등의 방법을 사용해왔다.In this case, in the prior art, in order to improve battery characteristics of graphite (or other carbonaceous material) used in the negative electrode, the shape, particle size and distribution of graphite powder, density, coating of amorphous carbon (pitch), crystallinity control by temperature, etc. Has been using the method.

구체적인 예로, 대한민국 공개특허 제2005-0020186호에서는 리튬 이온의 삽입 및 탈 리가 가능한 탄소계 화합물 및 상기 탄소계 화합물 표면에 형성된 Al, Ag, B, Cu, Mg, Si, Ti, Zn, 및 Zr로 이루어진 군에서 선택되는 하나 이상의 원소의 산화물 막 또는 수산화물 막을 포함하여 수명 특성 및 고율 특성을 향상시킬 수 있는 음극 활물질에 대하여 기재하고 있다. As a specific example, Korean Patent Laid-Open Publication No. 2005-0020186 discloses a carbon-based compound capable of inserting and detaching lithium ions and Al, Ag, B, Cu, Mg, Si, Ti, Zn, and Zr formed on a surface of the carbon-based compound. It describes a negative electrode active material that can improve the life characteristics and high rate characteristics, including an oxide film or a hydroxide film of one or more elements selected from the group consisting of.

그러나, 상기 종래기술은 비가역 용량의 주 원인인 유기전해액과의 반응성이 높고, 충방전 중 전해질이 산화되어 생성된 산에 대한 영향력이 여전히 크다는 문제점이 있었다.However, the prior art has a problem that the reactivity with the organic electrolyte, which is the main cause of the irreversible capacity, is high, and the influence on the acid produced by oxidation of the electrolyte during charge and discharge is still large.

따라서, 전술한 종래기술의 문제점을 해결하기 위한 노력이 관련 업계에서 지속되어 왔으며, 이러한 기술적 배경하에서 본 발명이 안출되었다.Accordingly, efforts to solve the above-mentioned problems of the prior art have been continued in the related art, and the present invention has been devised under such a technical background.

본 발명이 이루고자 하는 기술적 과제는, 비가역 용량의 주요 원인인 유기전해액 분해반응의 영향성과 충방전 중에 전해질이 산화되어 생성되는 산에 대한 영향력을 감소시켜 충방전시 우수한 사이클 특성 및 고율 특성을 나타내는데 있으며, 이러한 기술적 과제를 달성할 수 있는 리튬 전지용 음극 활물질 및 그 제조방법과 이를 음극으로 구비하는 리튬 이차 전지를 제공함에 본 발명의 목적이 있다.The technical problem to be achieved by the present invention is to exhibit excellent cycle characteristics and high rate characteristics during charge and discharge by reducing the influence of the organic electrolyte solution decomposition reaction which is the main cause of irreversible capacity and the influence on the acid produced by oxidation of the electrolyte during charge and discharge. Another object of the present invention is to provide a negative electrode active material for a lithium battery and a method of manufacturing the same, and a lithium secondary battery including the same as a negative electrode capable of achieving the technical problem.

본 발명이 이루고자 하는 기술적 과제를 달성하기 위한 리튬 이차 전지용 음극 활물질은, 그 표면이 불소계 화합물로 코팅되어 있는 것을 특징으로 하되, 상기 불소계 화합물은, 불소(F) 함유 화합물과 원소전구체 함유 화합물을 상호 반응시켜 생성된 CsF, KF, LiF, NaF, RbF, TiF, AgF, AgF2, BaF2, CaF2, CuF2, CdF2, FeF2, HgF2, Hg2F2, MnF2, MgF2, NiF2, PbF2, SnF2, SrF2, XeF2, ZnF2, AlF3, BF3, BiF3, CeF3, CrF3, DyF3, EuF3, GaF3, GdF3, FeF3, HoF3, InF3, LaF3, LuF3, MnF3, NdF3, VOF3, PrF3, SbF3, ScF3, SmF3, TbF3, TiF3, TmF3, YF3, YbF3, TlF3, CeF4, GeF4, HfF4, SiF4, SnF4, TiF4, VF4, ZrF4, NbF5, SbF5, TaF5, BiF5, MoF6, ReF6, SF6, 및 WF6로 이루어지는 물질군으로부터 선택된 단일물 또는 이들 중 임의로 선택된 둘 이상의 혼합물인 것을 특징으로 한다.The negative electrode active material for a lithium secondary battery for achieving the technical problem to be achieved by the present invention is characterized in that the surface is coated with a fluorine compound, the fluorine compound, the fluorine (F) containing compound and the element precursor containing compound the reaction to produce CsF, KF, LiF, NaF, RbF, TiF, AgF, AgF 2, BaF 2, CaF 2, CuF 2, CdF 2, FeF 2, HgF 2, Hg 2 F 2, MnF 2, MgF 2, NiF 2 , PbF 2 , SnF 2 , SrF 2 , XeF 2 , ZnF 2 , AlF 3 , BF 3 , BiF 3 , CeF 3 , CrF 3 , DyF 3 , EuF 3 , GaF 3 , GdF 3 , FeF 3 , HoF 3 , InF 3, LaF 3, LuF 3, MnF 3, NdF 3, VOF 3, PrF 3, SbF 3, ScF 3, SmF 3, TbF 3, TiF 3, TmF 3, YF 3, YbF 3, TlF 3, CeF material consisting of a 4, GeF 4, HfF 4, SiF 4, SnF 4, TiF 4, VF 4, ZrF 4, NbF 5, SbF 5, TaF 5, BiF 5, MoF 6, ReF 6, SF 6, and WF 6 It is characterized in that it is a single selected from the group or a mixture of two or more selected arbitrarily thereof.

또한 본 발명이 이루고자 하는 기술적 과제를 달성하기 위한 리튬 이차 전지용 음극 활물질의 제조방법은, (S1)불소계 화합물에 음극 활물질을 첨가, 반응시키는 단계; 및 (S2)상기 반응결과로서, 그 표면이 불소계 화합물로 코팅된 음극 활물질을 형성하는 단계;를 포함하여 진행하되, 상기 (S1)단계의 불소계 화합물은, 불소(F) 함유 화합물과 원소전구체 함유 화합물을 상호 반응시켜 생성된 CsF, KF, LiF, NaF, RbF, TiF, AgF, AgF2, BaF2, CaF2, CuF2, CdF2, FeF2, HgF2, Hg2F2, MnF2, MgF2, NiF2, PbF2, SnF2, SrF2, XeF2, ZnF2, AlF3, BF3, BiF3, CeF3, CrF3, DyF3, EuF3, GaF3, GdF3, FeF3, HoF3, InF3, LaF3, LuF3, MnF3, NdF3, VOF3, PrF3, SbF3, ScF3, SmF3, TbF3, TiF3, TmF3, YF3, YbF3, TlF3, CeF4, GeF4, HfF4, SiF4, SnF4, TiF4, VF4, ZrF4, NbF5, SbF5, TaF5, BiF5, MoF6, ReF6, SF6, 및 WF6로 이루어지는 물질군으로부터 선택된 단일물 또는 이들 중 임의로 선택된 둘 이상의 혼합물이 이용되는 것을 특징으로 한다.
불소계 화합물에 음극 활물질을 첨가, 반응시키는 단계; 및 상기 반응결과로서, 그 표면이 불소계 화합물로 코팅된 음극 활물질을 형성하는 단계;를 포함하여 진행되는 것을 특징으로 한다.
In addition, the method for producing a negative active material for a lithium secondary battery for achieving the technical problem to be achieved by the present invention, the step of adding and reacting the negative electrode active material to (S1) fluorine-based compound; And (S2) forming a negative electrode active material whose surface is coated with a fluorine compound as a result of the reaction, wherein the fluorine compound of step (S1) contains a fluorine (F) -containing compound and an elemental precursor. generated by the interaction of the compound CsF, KF, LiF, NaF, RbF, TiF, AgF, AgF 2, BaF 2, CaF 2, CuF 2, CdF 2, FeF 2, HgF 2, Hg 2 F 2, MnF 2, MgF 2 , NiF 2 , PbF 2 , SnF 2 , SrF 2 , XeF 2 , ZnF 2 , AlF 3 , BF 3 , BiF 3 , CeF 3 , CrF 3 , DyF 3 , EuF 3 , GaF 3 , GdF 3 , FeF 3 , HoF 3, InF 3, LaF 3, LuF 3, MnF 3, NdF 3, VOF 3, PrF 3, SbF 3, ScF 3, SmF 3, TbF 3, TiF 3, TmF 3, YF 3, YbF 3, TlF 3, CeF 4, GeF 4, HfF 4, SiF 4, SnF 4, TiF 4, VF 4, ZrF 4, NbF 5, SbF 5, TaF 5, BiF 5, MoF 6, ReF 6, SF 6, and WF 6 It is characterized in that a single material selected from the group consisting of substances or a mixture of two or more selected from these.
Adding and reacting a negative electrode active material to the fluorine compound; And forming a negative electrode active material whose surface is coated with a fluorine-based compound as a result of the reaction.

또한 본 발명이 이루고자 하는 기술적 과제를 달성하기 위한 리튬 이차 전지는, 전술한 제조방법에 의하여 준비된 음극 활물질이 적용된 음극을 구비하는 것을 특징으로 한다.In addition, the lithium secondary battery for achieving the technical problem to be achieved by the present invention is characterized in that it comprises a negative electrode to which the negative electrode active material prepared by the above-described manufacturing method is applied.

이하 본 발명의 바람직한 실시예를 상세히 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위 해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, preferred embodiments of the present invention will be described in detail. Prior to this, the terms or words used in this specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors will appropriately introduce the concept of terms in order to best explain their invention. It should be interpreted as meanings and concepts in accordance with the technical spirit of the present invention based on the principle that it can be defined. Therefore, the configurations shown in the embodiments described herein are only one of the most preferred embodiments of the present invention and do not represent all of the technical idea of the present invention, and various equivalents may be substituted for them at the time of the present application. It should be understood that there may be variations and variations.

본 발명의 음극 활물질은 불소계 화합물에 음극 활물질을 첨가, 반응시킴으로써 그 표면을 불소 화합물로 코팅하면 바람직하다. 상기 음극 활물질 표면을 코팅시키기 위해 사용되는 불소계 화합물은 불소(F) 함유 화합물과 원소전구체 함유 화합물을 상호 반응시켜 생성된 것으로서, 착염 형태이면 더욱 바람직하다.It is preferable for the negative electrode active material of the present invention to coat the surface with a fluorine compound by adding and reacting a negative electrode active material to the fluorine compound. The fluorine-based compound used to coat the surface of the negative electrode active material is produced by mutually reacting a fluorine (F) -containing compound with an element precursor-containing compound, and more preferably in a complex salt form.

상기 불소계 화합물은 CsF, KF, LiF, NaF, RbF, TiF, AgF, AgF2, BaF2, CaF2, CuF2, CdF2, FeF2, HgF2, Hg2F2, MnF2, MgF2, NiF2, PbF2, SnF2, SrF2, XeF2, ZnF2, AlF3, BF3, BiF3, CeF3, CrF3, DyF3, EuF3, GaF3, GdF3, FeF3, HoF3, InF3, LaF3, LuF3, MnF3, NdF3, VOF3, PrF3, SbF3, ScF3, SmF3, TbF3, TiF3, TmF3, YF3, YbF3, TlF3, CeF4, GeF4, HfF4, SiF4, SnF4, TiF4, VF4, ZrF4, NbF5, SbF5, TaF5, BiF5, MoF6, ReF6, SF6, 또는 WF6 등이 사용될 수 있다.The fluoride compound is CsF, KF, LiF, NaF, RbF, TiF, AgF, AgF 2, BaF 2, CaF 2, CuF 2, CdF 2, FeF 2, HgF 2, Hg 2 F 2, MnF 2, MgF 2, NiF 2 , PbF 2 , SnF 2 , SrF 2 , XeF 2 , ZnF 2 , AlF 3 , BF 3 , BiF 3 , CeF 3 , CrF 3 , DyF 3 , EuF 3 , GaF 3 , GdF 3 , FeF 3 , HoF 3 , InF 3, LaF 3, LuF 3, MnF 3, NdF 3, VOF 3, PrF 3, SbF 3, ScF 3, SmF 3, TbF 3, TiF 3, TmF 3, YF 3, YbF 3, TlF 3, CeF 4, GeF 4, HfF 4, SiF 4, SnF 4, TiF 4, the VF 4, ZrF 4, etc. NbF 5, SbF 5, TaF 5 , BiF 5, MoF 6, ReF 6, SF 6, or WF 6 is used Can be.

또한 상기 원소전구체는 Cs, K, Li, Na, Rb, Ti, Ag(Ⅰ), Ag(Ⅱ), Ba, Ca, Cu, Cd, Fe, Hg(Ⅱ), Hg(Ⅰ), Mn(Ⅱ), Mg, Ni, Pb, Sn, Sr, Xe, Zn, Al, B, Bi(Ⅲ ), Ce(Ⅲ), Cr, Dy, Du, Ga, Fe, Ho, In, La, Lu, Mn(Ⅲ), Nd, VO, Pr, Sb(Ⅲ), Sc, Sm, Tb, Ti(Ⅲ), Tm, Y, Yb, Tl, Ce(Ⅳ), Ge, Hf, Si, Sn, Ti(Ⅳ), V, Zr, Nb, Sb(Ⅴ), Ta, Bi(Ⅴ), Mo, Re, S, 또는 W 등이 사용될 수 있다.In addition, the element precursor is Cs, K, Li, Na, Rb, Ti, Ag (I), Ag (II), Ba, Ca, Cu, Cd, Fe, Hg (II), Hg (I), Mn (II ), Mg, Ni, Pb, Sn, Sr, Xe, Zn, Al, B, Bi (III), Ce (III), Cr, Dy, Du, Ga, Fe, Ho, In, La, Lu, Mn ( III), Nd, VO, Pr, Sb (III), Sc, Sm, Tb, Ti (III), Tm, Y, Yb, Tl, Ce (IV), Ge, Hf, Si, Sn, Ti (IV) , V, Zr, Nb, Sb (V), Ta, Bi (V), Mo, Re, S, W, or the like may be used.

상기와 같이 불소 함유 화합물과 원소전구체 함유 화합물이 혼합하여 형성된 불소계 화합물에 음극 활물질을 첨가, 반응시킨 후(S1), 반응결과 그 표면이 불소계 화합물로 코팅된 음극 활물질을 형성(S2)함으로써 리튬 이차 전지용 음극 활물질을 제조할 수 있다. 구체적으로, 상기 (S1)단계는 원소전구체 함유 용액에 음극 활물질을 담지, 교반하여 함침시킨 후(S1a), 상기 함침된 결과물에 불소 함유 용액을 혼합하여 공침반응시키고 교반(S1b)하여 이루어질 수 있다.After adding and reacting the negative electrode active material to the fluorine compound formed by mixing the fluorine-containing compound and the element precursor-containing compound as described above (S1), the result of the reaction forms a negative electrode active material coated with the fluorine compound (S2) to form a lithium secondary. A negative electrode active material for a battery can be manufactured. Specifically, the step (S1) may be carried out by impregnating the negative electrode active material in the solution containing the element precursor, stirring and impregnating (S1a), mixing the fluorine-containing solution in the resultant impregnated coprecipitation reaction and stirring (S1b). .

상기 (S1a)단계에서, 원소전구체 함유 용액은 음극 활물질 대비 0.1 내지 10 몰%가 되도록 사용되는 것이 바람직하다. 상기 원소전구체 함유 용액의 농도에 관한 수치범위에 있어서, 상기 하한치 미만일 경우에는 코팅 효과가 나타나지 않아 산에 대한 영향력을 감소시키지 못하여 바람직하지 못하며, 상기 상한치를 초과할 경우에는 그 자체 중량으로 인해 용량이나 에너지 밀도가 감소하여 바람직하지 못하다.In the step (S1a), the element precursor-containing solution is preferably used to be 0.1 to 10 mol% relative to the negative electrode active material. In the numerical range regarding the concentration of the element precursor-containing solution, it is not preferable that the coating effect does not appear when the concentration is less than the lower limit, so that the effect on the acid is not reduced. Reduced energy density is undesirable.

또한 상기 (S1b)단계에서, 불소 함유 용액은 원소전구체 함유 용액에 따라 그 양이 결정되며, 구체적으로 원소전구체 함유 용액에 대하여 0.1 내지 60 몰%로 사용되는 것이 바람직하다. 상기 불소 함유 용액의 농도에 관한 수치범위에 있어서, 상기 하한치 미만일 경우에는 코팅하고자 하는 원소전구체에서 불소와 결합하지 못하는 원소가 있어 원하는 코팅 양을 코팅하지 못하고 이로 인해 원하는 특성 을 얻지 못하여 바람직하지 못하며, 상기 상한치를 초과할 경우에는 과량의 불소가 첨가되어 음극 활물질의 성능에 영향을 미칠 수 있어 바람직하지 못하다.In addition, in the step (S1b), the amount of the fluorine-containing solution is determined according to the element precursor-containing solution, specifically, it is preferably used in 0.1 to 60 mol% with respect to the element precursor-containing solution. In the numerical range of the concentration of the fluorine-containing solution, if less than the lower limit, there is an element that does not bond with fluorine in the element precursor to be coated, it is not desirable to coat the desired coating amount and thereby do not obtain the desired characteristics, When the upper limit is exceeded, an excessive amount of fluorine may be added to affect the performance of the negative electrode active material, which is not preferable.

상기 (S1b)단계에서, 상기 불소 함유 용액은 50 내지 100 ℃의 온도에서 1 내지 100 ㎖/min의 유량으로 3 내지 48 시간 동안 혼합하여 공침반응시킨 후 교반하여 음극 활물질 표면에 불소계 화합물을 코팅할 수 있다. In the step (S1b), the fluorine-containing solution is mixed for 3 to 48 hours at a flow rate of 1 to 100 ml / min at a temperature of 50 to 100 ℃ co-precipitation reaction and stirred to coat the fluorine-based compound on the surface of the negative electrode active material Can be.

상기 불소 화합물 함유 유액의 유량속도의 수치범위에 있어서, 상기 하한치 미만일 경우에는 음극 활물질 표면에 천천히 불소화합물을 형성할 수 있는 장점이 있지만, 반응시간이 오래 결려 바람직하지 못하며, 상기 상한치를 초과할 경우에는 원소전구체와 결합하는 불소의 빠른 결합속도로 인해 음극 활물질 표면에 고르게 형성되어 코팅되지 못하고, 형성되는 불소화합물의 입자 크기가 커지게 되어 활물질 표면에 균일한 두께의 층을 형성하지 못하며, 이로인해 전기화학적 성능이 저하될 수 있어 바람직하지 못하다. In the numerical range of the flow rate of the fluorine compound-containing emulsion, if it is less than the lower limit, there is an advantage that the fluorine compound can be slowly formed on the surface of the negative electrode active material, but the reaction time is long, which is not desirable, and when the upper limit is exceeded. Due to the fast bonding speed of fluorine to bond with the element precursor, it is not evenly formed and coated on the surface of the negative electrode active material, and the particle size of the formed fluorine compound becomes large, thereby preventing the formation of a uniform thickness layer on the surface of the active material. Electrochemical performance can be degraded, which is undesirable.

상기 반응시간의 수치범위에 있어서, 상기 하한치 미만일 경우에는 원소전구체와 불소가 결합하여 불소화합물을 형성하고, 이 불소화합물이 음극 활물질 표면에 균일하게 코팅되는데 충분한 시간이 없어 원하는 형태의 불소화합물을 형성하지 못하여 바람직하지 못하며, 상기 상한치를 초과할 경우에는 음극 활물질 표면이 용매에 의해 산화되는 등 변질될 수 있고, 이는 음극 활물질의 성능에 영향을 미칠 수 있어 바람직하지 못하다. In the numerical range of the reaction time, when less than the lower limit, the element precursor and fluorine are combined to form a fluorine compound, and there is not enough time for the fluorine compound to be uniformly coated on the surface of the anode active material to form a fluorine compound of a desired form. If the upper limit is exceeded, the surface of the negative electrode active material may be oxidized by a solvent, and the like may be deteriorated, which may affect the performance of the negative electrode active material.

본 발명에서는 음극 활물질을 불소화합물로 코팅하기 위하여 원하는 형태의 불소화합물을 얻어야하는데, 상기 공침반응의 온도가 상기 범위내일 경우에는 높은 온도에서 공침이 이루어짐으로써 착염 형태의 고분산도의 불소계 화합물을 얻을 수 있고, 이와 같은 착염 형태의 고분산도의 불소계 화합물은 음극 활물질 코팅에 있어 더욱 좋다.In the present invention, in order to coat the negative electrode active material with a fluorine compound, a desired type of fluorine compound should be obtained. When the temperature of the coprecipitation reaction is within the above range, coprecipitation is performed at a high temperature to obtain a highly dispersed fluorine compound having a complex salt form. In addition, such a highly salted fluorine-based compound in the form of a complex salt is better for coating a negative electrode active material.

상기와 같이 수득한 불소계 화합물이 코팅된 음극 활물질은 이후 세척하는 단계(S3); 상기 세척된 결과물을 건조하는 단계(S4); 및 상기 건조된 결과물을 열처리하는 단계(S5)를 거쳐 최종 불소계 화합물이 코팅된 음극 활물질을 제조할 수 있다.The negative electrode active material coated with the fluorine compound obtained as described above is then washed (S3); Drying the washed resultant (S4); And a negative electrode active material coated with the final fluorine-based compound may be prepared through the step (S5) of the dried resultant.

이때, 상기 (S3)단계에서, 상기 세척은 통상의 방법에 따라 증류수를 이용하여 실시할 수 있으며, 상기 (S4)단계에서, 상기 건조 단계는 용매의 종류에 따라 그 온도범위를 달리할 수 있으나, 본 발명에서는 물 또는 메탄올, 에탄올 등의 알코올계 용매를 사용하여 50 내지 150 ℃의 온도에서 실시한다. 상기 건조 온도에 관한 수치범위에 있어서, 상기 하한치 미만일 경우에는 코팅 공정 후 용매를 제거하는 시간이 오래 걸려 전체적인 공정시간이 길어져 바람직하지 않으며, 상기 상한치를 초과할 경우에는 음극 활물질 표면이 산화되는 등 변질 될 가능성이 있으며, 변질되면 음극 활물질 성능에도 영향을 미칠 수 있어 바람직하지 않다. 또한, 상기 건조는 코팅 공정 후 용매를 제거하는 공정이기 때문에 음극 활물질이 충분히 건조될 수 있는 시간이면 그 범위가 제한되지 않는다.At this time, in the step (S3), the washing may be carried out using distilled water according to a conventional method, in the step (S4), the drying step may vary the temperature range depending on the type of solvent, In the present invention, it is carried out at a temperature of 50 to 150 ℃ using water or alcohol solvents such as methanol and ethanol. In the numerical range regarding the drying temperature, when the solvent is less than the lower limit, the removal of the solvent after the coating process takes a long time, and thus, the overall process time is not preferable. When the upper limit is exceeded, the surface of the negative electrode active material is oxidized. It is not preferable because it may affect the performance of the negative electrode active material. In addition, since the drying is a process of removing the solvent after the coating process, the range is not limited as long as the negative electrode active material can be sufficiently dried.

또한 상기 (S5)단계에서, 상기 열처리 단계는 불소화합물을 형성하기 위해 사용되는 원소전구체의 종류에 따라 각각 열처리 온도를 다르게 조절할 수 있으며, 구체적으로 산화성 분위기, 환원성 분위기, 및 진공상태 중 선택되는 어느 하나의 조건하에서 150 내지 900 ℃에서 1 내지 20 시간 동안 실시하는 것이 좋다. 상기 열처리 온도에 관한 수치범위에 있어서, 상기 하한치 미만일 경우에는 원하는 형태의 불소화합물을 형성하지 못하여 바람직하지 않으며, 상기 상한치를 초과할 경우에는 원하는 형태의 불소화합물을 형성하지 못하거나, 탄화가 진행되어 음극 활물질의 물성이나 성능에 영향을 미칠 수 있어 바람직하지 않다. 또한, 상기 열처리 시간에 관한 수치범위에 있어서, 상기 하한치 미만일 경우에는 열처리 시간이 짧아 원하는 형태의 불소화합물을 형성할 수 없거나, 불순물이 잔존할 수 있어 바람직하지 않으며, 상기 상한치를 초과할 경우에는 음극 활물질 물성이나 성능에 영향을 미칠 수 있어 바람직하지 않다.In addition, in the step (S5), the heat treatment step may control the heat treatment temperature differently according to the type of element precursor used to form the fluorine compound, and specifically selected from the oxidizing atmosphere, reducing atmosphere, and vacuum state It is preferable to carry out for 1 to 20 hours at 150 to 900 ℃ under one condition. In the numerical range with respect to the heat treatment temperature, the lower than the lower limit value is not preferable because it does not form a fluorine compound of the desired form, and when the upper limit is exceeded, the fluorine compound of the desired form may not be formed, or carbonization may proceed. It is not preferable because it may affect the physical properties and performance of the negative electrode active material. In addition, in the numerical range related to the heat treatment time, when the temperature is less than the lower limit, the heat treatment time is short, so that a fluorine compound of a desired form cannot be formed or impurities may remain, which is undesirable. It is not preferable because it may affect the active material properties and performance.

본 발명에 사용되는 상기 음극 활물질은 당업계에서 제조되는 통상의 방법에 따라 제조한 음극 활물질이면 그 종류가 제한되지 않으며, 구체적으로 심재 탄소재료에 저결정성 탄소를 피복하여 제조한 음극 활물질을 사용할 수 있다.The negative electrode active material used in the present invention is not limited as long as it is a negative electrode active material prepared according to a conventional method manufactured in the art, specifically, a negative electrode active material prepared by coating low crystalline carbon on a core carbon material. Can be.

상기 심재 탄소재료로는 천연흑연, 인조흑연, 또는 이들의 혼합물을 사용할 수 있으며, 특히 구상의 천연흑연을 사용하는 것이 좋다.As the core carbon material, natural graphite, artificial graphite, or a mixture thereof may be used, and spherical natural graphite may be particularly used.

상기 저결정성 탄소로는 피치(pitch), 타르(tar), 페놀수지, 퓨란 수지, 또는 풀푸릴알콜 등을 사용할 수 있다.As the low crystalline carbon, pitch, tar, phenol resin, furan resin, or furfuryl alcohol may be used.

즉, 본 발명은 심재 탄소재료에 저결정성 탄소를 피복하여 음극 활물질을 준비한 후, 상기 음극 활물질 표면을 상기 기재한 바와 같은 불소계 화합물로 코팅하는 것을 특징으로 하는 것이다.That is, the present invention is characterized by coating a low crystalline carbon on the core carbon material to prepare a negative electrode active material, and then coating the surface of the negative electrode active material with a fluorine-based compound as described above.

또한 본 발명의 리튬 이차 전지는 상기 방법으로 제조된 음극 활물질을 포함 하여 제조되는 것을 특징으로 한다. 본 발명의 리튬 이차 전지는 다음과 같이 제조할 수 있다.In addition, the lithium secondary battery of the present invention is characterized in that it is prepared including a negative electrode active material prepared by the above method. The lithium secondary battery of the present invention can be produced as follows.

먼저, 양극 활물질, 도전재, 결합재, 및 용매를 혼합하여 양극 활물질 조성물을 준비한다. 상기 양극 활물질 조성물을 금속 집전체상에 직접 코팅 및 건조하여 양극판을 준비한다. 상기 양극 활물질 조성물을 별도의 지지체상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 금속 집전체상에 라미네이션하여 양극판을 제조하는 것도 가능하다.First, a cathode active material composition is prepared by mixing a cathode active material, a conductive material, a binder, and a solvent. The positive electrode active material composition is directly coated on a metal current collector and dried to prepare a positive electrode plate. It is also possible to produce the positive electrode plate by casting the positive electrode active material composition on a separate support, and then laminating the film obtained by peeling from the support onto a metal current collector.

상기 양극 활물질로는 리튬 함유 금속 산화물로서, 당업계에서 통상적으로 사용되는 것이면 모두 사용가능하며, 예컨대 LiCoO2, LiMnxO2x, LiNi1-xMnxO2x(x=1, 2), Ni1-x-yCoxMnyO2(0≤x≤0.5, 0≤y≤0.5) 등을 들 수 있으며, 보다 구체적으로는 LiMn2O4, LiCoO2, LiNiO2, LiFeO2, V2O5, TiS, 또는 MoS 등의 리튬의 산화 환원이 가능한 화합물들이다.The positive electrode active material may be any lithium-containing metal oxide, as long as it is commonly used in the art, such as LiCoO 2 , LiMn x O 2x , LiNi 1-x Mn x O 2x (x = 1, 2), Ni 1-xy Co x Mn y O 2 (0≤x≤0.5, 0≤y≤0.5) and the like, and more specifically, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2 , V 2 O 5 And compounds capable of redoxing lithium, such as TiS, or MoS.

도전재로는 카본 블랙을 사용하며, 결합재로는 비닐리덴 플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌 및 그 혼합물, 스티렌 부타디엔 고무계 폴리머 등을 사용하며, 용매로는 N-메틸피롤리돈, 아세톤, 물 등을 사용한다. 이때, 양극 활물질, 도전재, 결합재, 및 용매의 함량은 리튬 전지에서 통상적으로 사용하는 수준이다.Carbon black is used as the conductive material, and vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polytetrafluoroethylene and mixtures thereof And styrene butadiene rubber-based polymers, and the like, and N-methylpyrrolidone, acetone, water and the like are used as the solvent. At this time, the content of the positive electrode active material, the conductive material, the binder, and the solvent is a level commonly used in lithium batteries.

세퍼레이터로는 리튬 전지에서 통상적으로 사용되는 것이라면 모두 사용가능 하다. 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 이를 보다 구체적으로 설명하면, 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE), 그 조합물 중에서 선택된 재질로서, 부직포 또는 직포 형태이어도 무방하다. 이를 보다 상세하게 설명하면, 리튬 이온 전지의 경우에는 폴리에틸렌, 폴리프로필렌 등과 같은 재료로 된 권취가능한 세퍼레이터를 사용하며, 리튬 이온 폴리머 전지의 경우에는 유기전해액 함침 능력이 우수한 세퍼레이터를 사용하는데, 이러한 세퍼레이터는 하기 방법에 따라 제조가능하다.As the separator, any one commonly used in lithium batteries can be used. In particular, it is preferable that it is low resistance with respect to the ion migration of electrolyte, and is excellent in electrolyte-moisture capability. In more detail, the material selected from glass fiber, polyester, Teflon, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), and combinations thereof may be nonwoven or woven. In more detail, a lithium-ion battery uses a rollable separator made of a material such as polyethylene or polypropylene, and a lithium-ion polymer battery uses a separator having excellent organic electrolyte impregnation capability. It can manufacture according to the following method.

즉, 고분자 수지, 충진제, 및 용매를 혼합하여 세퍼레이터 조성물을 준비한 다음, 상기 세퍼레이터 조성물을 전극 상부에 직접 코팅 및 건조하여 세퍼레이터 필름을 형성하거나, 또는 상기 세퍼레이터 조성물을 지지체상에 캐스팅 및 건조한 후, 상기 지지체로부터 박리시킨 세퍼레이터 필름을 전극 상부에 라미네이션하여 형성할 수 있다.That is, a separator composition is prepared by mixing a polymer resin, a filler, and a solvent, and the separator composition is directly coated and dried on an electrode to form a separator film, or the separator composition is cast and dried on a support. The separator film peeled off from the support can be formed by laminating on the electrode.

상기 고분자 수지는 특별히 한정되지는 않으며, 전극판의 결합재에 사용되는 물질들이 모두 사용가능하다. 예를 들면, 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 및 그 혼합물 등을 사용할 수 있다.The polymer resin is not particularly limited, and any material used for the binder of the electrode plate may be used. For example, vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, mixtures thereof and the like can be used.

전해액으로는 프로필렌 카보네이트, 에틸렌 카보네이트, 디에틸 카보네이트, 에틸 메틸 카보네이트, 메틸 프로필 카보네이트, 부틸렌 카보네이트, 벤조니트릴, 아세토니트릴, 테트라히드로퓨란, 2-메틸테트라히드로퓨란, γ-부티로락톤, 디옥소 란, 4-메틸디옥소란, N,N-디메틸포름아미드, 디메틸아세트아미드, 디메틸설폭사이드, 디옥산, 1,2-디메톡시에탄, 설포란, 디클로로에탄, 클로로벤젠, 니트로벤젠, 디메틸카보네이트, 메틸에틸카보네이트, 디에틸카보네이트, 메틸프로필카보네이트, 메틸이소프로필카보네이트, 에틸프로필카보네이트, 디프로필카보네이트, 디부틸카보네이트, 디에틸렌글리콜, 디메틸에테르, 또는 이들의 혼합 용매에 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiSbF6, LiAlO4, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(,단 x,y는 자연수), LiCl, LiI 등의 리튬 염으로 이루어진 전해질 중의 1종 또는 이들을 2종 이상 혼합한 것을 용해하여 사용할 수 있다.Examples of the electrolyte include propylene carbonate, ethylene carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, and dioxo Column, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethyl carbonate LiPF 6 , LiBF 4 , LiSbF in methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, dibutyl carbonate, diethylene glycol, dimethyl ether, or a mixed solvent thereof. 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F9SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (wherein x and y are natural waters), one of an electrolyte composed of lithium salts such as LiCl, LiI, or a mixture of two or more thereof can be dissolved and used.

상술한 바와 같은 양극 극판과 음극 극판 사이에 세퍼레이터를 배치하여 전지 구조체를 형성한다. 이러한 전지 구조체를 와인딩하거나 접어서 원통형 전지 케이스나 또는 각형 전지 케이스에 넣은 다음, 유기 전해액을 주입하여 리튬 이온 전지를 제조할 수 있다.The separator is disposed between the positive electrode plate and the negative electrode plate as described above to form a battery structure. The battery structure may be wound or folded to be placed in a cylindrical battery case or a square battery case, and then an organic electrolyte may be injected to manufacture a lithium ion battery.

또한 상기 전지 구조체를 바이셀 구조로 적층한 다음, 이를 유기 전해액에 함침시키고, 얻어진 결과물을 파우치에 넣고 밀봉하여 리튬 이온 폴리머 전지를 제조할 수 있다.In addition, the battery structure may be stacked in a bi-cell structure, and then impregnated in the organic electrolyte, and the resultant is placed in a pouch and sealed to manufacture a lithium ion polymer battery.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 통하여 보다 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments.

실시예 1Example 1

구상의 천연흑연질 탄소재료와 피치를 준비하였다.A spherical natural graphite carbon material and pitch were prepared.

상기 구상의 천연흑연에 테트라하이드로퓨란으로 녹인 피치를 일정한 중량비로 섞고 상압에서 2 시간 이상 습식 교반하여 혼합한 후 건조하여 혼합물을 제조하였다. 이 혼합물을 1,100 ℃와 1,500 ℃에서 각각 1 시간 동안 1, 2차 소성하고, 분급하여 미분을 제거하여 음극 활물질을 제조하였다.The pitch dissolved in tetrahydrofuran in the spherical natural graphite was mixed in a constant weight ratio, mixed by wet stirring at normal pressure for 2 hours or more, and then dried to prepare a mixture. The mixture was calcined first and second at 1,100 ° C. and 1,500 ° C. for 1 hour, and classified to remove fine powder to prepare a negative electrode active material.

그 다음, 2,000 ㎖ 비이커에 2 몰%의 Al(NO3)3·9H2O(음극 활물질 중량부 대비) 2,000 ㎖의 증류수에 용해시킨 후, 상기 제조한 음극 활물질을 담지시키고 교반하여 완전히 함침시켰다. 상기 비이커의 온도를 80 ℃ 정도로 유지하면서 6 몰%의 NH4F 혼합 용액 500 ㎖를 1 ㎖/min의 유량으로 혼합하여 공침반응시키고, 12 시간 동안 더 교반하였다. 이때 반응조의 평균 온도는 80 ℃ 정도로 유지하였다. Then, after dissolving in 2,000 ml beaker of 2 mol% of Al (NO 3 ) 3 .9H 2 O (relative to the weight of the negative electrode active material) 2,000 ml of distilled water, the negative electrode active material prepared above was supported, stirred and completely impregnated. . While maintaining the temperature of the beaker at about 80 ° C., 500 ml of a 6 mol% NH 4 F mixed solution was mixed at a flow rate of 1 ml / min to coprecipitation, and further stirred for 12 hours. At this time, the average temperature of the reactor was maintained at about 80 ℃.

상기 반응을 통하여 얻은 불소 화합물이 코팅된 음극 활물질을 증류수로 세척하고, 110 ℃의 온풍항온조에서 12 시간 동안 건조시킨 후, 불활성분위기 하에서 400 ℃로 열처리하여 AlF3가 팅된 음극 활물질을 제조하였다.The negative electrode active material coated with the fluorine compound obtained through the reaction was washed with distilled water, dried in a warm air bath at 110 ° C. for 12 hours, and heat-treated at 400 ° C. under an inert atmosphere to prepare an AlF 3 -doped negative active material.

상기 제조한 AlF3가 코팅된 음극 활물질 100 g을 500 ㎖의 반응기에 넣고 소량의 N-메틸피롤리돈(NMP)과 바인더(PVDF)를 투입하여 믹서(mixer)를 이용하여 혼련한 다음, 구리 호일상에 압착 건조하여 전극으로 사용하였다. 이때, 전극밀도는 1.5 g/㎤, 전극 두께는 70 ㎛로 하였다. 100 g of the AlF 3 coated negative active material was put into a 500 ml reactor, and a small amount of N-methylpyrrolidone (NMP) and a binder (PVDF) were added and kneaded using a mixer. Compression drying on foil was used as electrode. At this time, electrode density was 1.5 g / cm <3> and electrode thickness was 70 micrometers.

또한, 충,방전 효율을 평가하기 위하여 코인셀(Coin Cell)을 제조하여 평가하였다.In addition, to evaluate the charging and discharging efficiency, a coin cell was prepared and evaluated.

실시예 2Example 2

상기 실시예 1에서 Al(NO3)3·9H2O와 증류수를 대신하여 Al-이소프로폭사이드와 무수에탄올을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.Example 1 was carried out in the same manner as in Example 1, except that Al-isopropoxide and ethanol anhydride were used in place of Al (NO 3 ) 3 .9H 2 O and distilled water.

실시예 3Example 3

상기 실시예 1에서 Al(NO3)3·9H2O를 대신하여 Zr(SO4)2·xH2O를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.Example 1 was carried out in the same manner as in Example 1, except that Zr (SO 4 ) 2 .xH 2 O was used in place of Al (NO 3 ) 3 .9H 2 O.

실시예 4Example 4

상기 실시예 1에서 Al(NO3)3·9H2O와 증류수를 대신하여 Zr-에톡사이드와 무수에탄올을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.Example 1 was carried out in the same manner as in Example 1, except that Zr-ethoxide and ethanol anhydride were used in place of Al (NO 3 ) 3 .9H 2 O and distilled water.

비교예 1Comparative Example 1

구상의 천연흑연질 탄소재료와 피치를 준비하였다.A spherical natural graphite carbon material and pitch were prepared.

상기 구상의 천연흑연에 테트라하이드로퓨란으로 녹인 피치를 일정한 중량비로 섞고, 이 혼합물을 1,100 ℃와 1,500 ℃에서 각각 1 시간 동안 1, 2차 소성하고, 분급하여 미분을 제거하여 음극 활물질을 제조하였다.The pitch dissolved in tetrahydrofuran in the spherical natural graphite was mixed in a constant weight ratio, and the mixture was calcined for 1 hour and 1 hour at 1,100 ° C. and 1,500 ° C., respectively, and classified to remove fine powder to prepare a negative electrode active material.

이렇게 제조된 음극 활물질(흑연질 탄소재료와 피치의 혼합물) 100 g을 500 ㎖의 반응기에 넣고 소량의 N-메틸피롤리돈(NMP)과 바인더(PVDF)를 투입하여 믹서(mixer)를 이용하여 혼련한 다음, 구리 호일상에 압착 건조하여 전극으로 사용하였다. 이때, 전극밀도는 1.5 g/㎤, 전극 두께는 70 ㎛로 하였다. 100 g of the negative electrode active material (a mixture of graphite carbon material and pitch) thus prepared was put into a 500 ml reactor, and a small amount of N-methylpyrrolidone (NMP) and a binder (PVDF) were added thereto. After kneading, it was pressed and dried on a copper foil to use as an electrode. At this time, electrode density was 1.5 g / cm <3> and electrode thickness was 70 micrometers.

또한, 충,방전 효율을 평가하기 위하여 CoinCell을 제조하여 평가하였다.In addition, CoinCell was prepared and evaluated to evaluate the charging and discharging efficiency.

상기 실시예 1 내지 4 및 비교예 1에서 제조한 음극 활물질을 이용하여 하기와 같은 방법으로 전지특성으로 충,방전 시험을 평가하고, 그 결과를 하기 표 1에 나타내었다.Using the negative electrode active materials prepared in Examples 1 to 4 and Comparative Example 1, the charge and discharge tests were evaluated by the battery characteristics as described below, and the results are shown in Table 1 below.

먼저, 전위를 0∼1.5 V의 범위로 규제하여 충전전류 0.5 mA/㎠로 0.01 V가 될 때까지 충전하고, 0.01 V의 전압을 유지하며 충전전류가 0.02 mA/㎠가 될 때까지 충전을 계속하였다. 그리고, 방전전류는 0.5 mA/㎠로 1.5 V까지의 방전을 행하였다.First, the potential is regulated in the range of 0 to 1.5 V to charge until the charging current is 0.5 mA / cm 2 until it becomes 0.01 V, the voltage is maintained at 0.01 V and charging is continued until the charging current becomes 0.02 mA / cm 2. It was. The discharge current was discharged up to 1.5 V at 0.5 mA / cm 2.

하기 표 1에서 충,방전 효율은 충전한 전기용량에 대해 방전한 전기용량의 비율을 나타낸 것이다.In Table 1 below, the charge and discharge efficiency shows the ratio of the discharged capacitance to the charged capacitance.

구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 비교예 1Comparative Example 1 1st Cycle 방전용량 (mAh/g)1st Cycle Discharge Capacity (mAh / g) 351.87351.87 351.1351.1 350.4350.4 350.2350.2 353.8353.8 50 Cycle 용량 유지율 (%)50 Cycle capacity retention rate (%) 96.896.8 97.197.1 96.596.5 97.697.6 86.386.3

상기 표 1을 통하여, 본 발명에 따라 표면이 불소계 화합물로 코팅된 실시예 1 내지 4의 음극 활물질은 표면이 코팅되지 않은 비교예 1의 음극 활물질과 비교하여 충방전시 우수한 사이클 특성을 나타내며 고율 특성이 우수하여 전기화학적 특성이 향상됨을 확인할 수 있었다.Through Table 1, the negative electrode active material of Examples 1 to 4 whose surface is coated with a fluorine-based compound according to the present invention exhibits excellent cycle characteristics during charging and discharging as compared with the negative electrode active material of Comparative Example 1, which is not coated with a surface, and shows high rate characteristics. It was confirmed that the electrochemical properties are improved by this excellent.

이상에서 본 발명의 기재된 구체예에 대해서만 상세히 설명되었지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although only described in detail with respect to the described embodiments of the present invention, it will be apparent to those skilled in the art that various modifications and variations are possible within the technical spirit of the present invention, it is natural that such variations and modifications belong to the appended claims. .

본 발명에 따른 불소계 화합물로 표면이 코팅된 음극 활물질은 표면을 안정화시켜 비가역 용량의 주요 원인인 유기전해액 분해반응의 영향을 줄이는 동시에 충방전 중에 전해질이 산화되어 생성되는 산에 대한 영향력을 감소시켜 충방전시 우수한 사이클 특성 및 고율 특성을 나타낼 수 있는 효과가 있다.The negative electrode active material coated with the fluorine-based compound according to the present invention stabilizes the surface to reduce the effect of the organic electrolyte decomposition reaction, which is the main cause of irreversible capacity, and at the same time reduces the influence on the acid produced by oxidation of the electrolyte during charge and discharge. There is an effect that can exhibit excellent cycle characteristics and high rate characteristics during discharge.

Claims (16)

리튬 이차 전지용 음극 활물질 표면이 불소계 화합물로 코팅되어 있는 것을 특징으로 하되,Characterized in that the surface of the negative electrode active material for a lithium secondary battery is coated with a fluorine-based compound, 상기 불소계 화합물은, 불소(F) 함유 화합물과 원소전구체 함유 화합물을 상호 반응시켜 생성된 CsF, KF, LiF, NaF, RbF, TiF, AgF, AgF2, BaF2, CaF2, CuF2, CdF2, FeF2, HgF2, Hg2F2, MnF2, MgF2, NiF2, PbF2, SnF2, SrF2, XeF2, ZnF2, AlF3, BF3, BiF3, CeF3, CrF3, DyF3, EuF3, GaF3, GdF3, FeF3, HoF3, InF3, LaF3, LuF3, MnF3, NdF3, VOF3, PrF3, SbF3, ScF3, SmF3, TbF3, TiF3, TmF3, YF3, YbF3, TlF3, CeF4, GeF4, HfF4, SiF4, SnF4, TiF4, VF4, ZrF4, NbF5, SbF5, TaF5, BiF5, MoF6, ReF6, SF6, 및 WF6로 이루어지는 물질군으로부터 선택된 단일물 또는 이들 중 임의로 선택된 둘 이상의 혼합물인 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.The fluorine-based compound, a fluorine (F) containing compounds and elemental precursor containing a cross-reacting compound to produce CsF, KF, LiF, NaF, RbF, TiF, AgF, AgF 2, BaF 2, CaF 2, CuF 2, CdF 2 , FeF 2 , HgF 2 , Hg 2 F 2 , MnF 2 , MgF 2 , NiF 2 , PbF 2 , SnF 2 , SrF 2 , XeF 2 , ZnF 2 , AlF 3 , BF 3 , BiF 3 , CeF 3 , CrF 3 , DyF 3, EuF 3, GaF 3, GdF 3, FeF 3, HoF 3, InF 3, LaF 3, LuF 3, MnF 3, NdF 3, VOF 3, PrF 3, SbF 3, ScF 3, SmF 3, TbF 3 , TiF 3 , TmF 3 , YF 3 , YbF 3 , TlF 3 , CeF 4 , GeF 4 , HfF 4 , SiF 4 , SnF 4 , TiF 4 , VF 4 , ZrF 4 , NbF 5 , SbF 5 , TaF 5 , A negative electrode active material for a lithium secondary battery, characterized in that a single material selected from the group consisting of BiF 5 , MoF 6 , ReF 6 , SF 6 , and WF 6 or a mixture of two or more selected from these. 제1항에 있어서,The method of claim 1, 상기 불소계 화합물은, 착염 형태의 물질인 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.The fluorine-based compound is a negative electrode active material for a lithium secondary battery, characterized in that the substance in the form of a complex salt. 제1항에 있어서,The method of claim 1, 상기 불소계 화합물 생성에 이용되는 원소전구체는, Cs, K, Li, Na, Rb, Ti, Ag(Ⅰ), Ag(Ⅱ), Ba, Ca, Cu, Cd, Fe, Hg(Ⅱ), Hg(Ⅰ), Mn(Ⅱ), Mg, Ni, Pb, Sn, Sr, Xe, Zn, Al, B, Bi(Ⅲ), Ce(Ⅲ), Cr, Dy, Du, Ga, Fe, Ho, In, La, Lu, Mn(Ⅲ), Nd, VO, Pr, Sb(Ⅲ), Sc, Sm, Tb, Ti(Ⅲ), Tm, Y, Yb, Tl, Ce(Ⅳ), Ge, Hf, Si, Sn, Ti(Ⅳ), V, Zr, Nb, Sb(Ⅴ), Ta, Bi(Ⅴ), Mo, Re, S, 및 W로 이루어지는 군으로부터 선택된 단일원소 또는 이들 중 임의로 선택된 둘 이상의 원소혼합물인 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.Elemental precursors used to produce the fluorine-based compound are Cs, K, Li, Na, Rb, Ti, Ag (I), Ag (II), Ba, Ca, Cu, Cd, Fe, Hg (II), Hg ( I, Mn (II), Mg, Ni, Pb, Sn, Sr, Xe, Zn, Al, B, Bi (III), Ce (III), Cr, Dy, Du, Ga, Fe, Ho, In, La, Lu, Mn (III), Nd, VO, Pr, Sb (III), Sc, Sm, Tb, Ti (III), Tm, Y, Yb, Tl, Ce (IV), Ge, Hf, Si, Sn, Ti (IV), V, Zr, Nb, Sb (V), Ta, Bi (V), Mo, Re, S, and W is a single element selected from the group or an arbitrary mixture of two or more selected among them A negative electrode active material for a lithium secondary battery, characterized in that. 리튬 이차 전지용 음극 활물질의 제조방법에 있어서,In the manufacturing method of the negative electrode active material for lithium secondary batteries, (S1)불소계 화합물에 음극 활물질을 첨가, 반응시키는 단계; 및(S1) adding and reacting a negative electrode active material to the fluorine compound; And (S2)상기 반응결과로서, 그 표면이 불소계 화합물로 코팅된 음극 활물질을 형성하는 단계;를 포함하여 진행하되,(S2) as a result of the reaction, the surface of the negative electrode active material coated with a fluorine-based compound; proceeds including, 상기 (S1)단계의 불소계 화합물은, 불소(F) 함유 화합물과 원소전구체 함유 화합물을 상호 반응시켜 생성된 CsF, KF, LiF, NaF, RbF, TiF, AgF, AgF2, BaF2, CaF2, CuF2, CdF2, FeF2, HgF2, Hg2F2, MnF2, MgF2, NiF2, PbF2, SnF2, SrF2, XeF2, ZnF2, AlF3, BF3, BiF3, CeF3, CrF3, DyF3, EuF3, GaF3, GdF3, FeF3, HoF3, InF3, LaF3, LuF3, MnF3, NdF3, VOF3, PrF3, SbF3, ScF3, SmF3, TbF3, TiF3, TmF3, YF3, YbF3, TlF3, CeF4, GeF4, HfF4, SiF4, SnF4, TiF4, VF4, ZrF4, NbF5, SbF5, TaF5, BiF5, MoF6, ReF6, SF6, 및 WF6로 이루어지는 물질군으로부터 선택된 단일물 또는 이들 중 임의로 선택된 둘 이상의 혼합물이 이용되는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질 제조방법.The fluorine-based compound of step (S1) is CsF, KF, LiF, NaF, RbF, TiF, AgF, AgF 2 , BaF 2 , CaF 2 , produced by mutually reacting a fluorine (F) -containing compound with an element precursor-containing compound. CuF 2 , CdF 2 , FeF 2 , HgF 2 , Hg 2 F 2 , MnF 2 , MgF 2 , NiF 2 , PbF 2 , SnF 2 , SrF 2 , XeF 2 , ZnF 2 , AlF 3 , BF 3 , BiF 3 , CeF 3, CrF 3, DyF 3 , EuF 3, GaF 3, GdF 3, FeF 3, HoF 3, InF 3, LaF 3, LuF 3, MnF 3, NdF 3, VOF 3, PrF 3, SbF 3, ScF 3 , SmF 3 , TbF 3 , TiF 3 , TmF 3 , YF 3 , YbF 3 , TlF 3 , CeF 4 , GeF 4 , HfF 4 , SiF 4 , SnF 4 , TiF 4 , VF 4 , ZrF 4 , NbF 5 , SbF 5 , TaF 5 , BiF 5 , MoF 6 , ReF 6 , SF 6 , and WF 6 A single material selected from the group consisting of materials or a mixture of two or more selected arbitrarily selected from them, characterized in that the method for producing a negative active material for a lithium secondary battery. 제4항에 있어서,The method of claim 4, wherein 상기 불소계 화합물은, 착염 형태의 물질이 이용되는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질 제조방법.The fluorine-based compound is a method of producing a negative electrode active material for a lithium secondary battery, characterized in that the complex salt material is used. 제4항에 있어서,The method of claim 4, wherein 상기 불소계 화합물 생성에 이용되는 원소전구체는, Cs, K, Li, Na, Rb, Ti, Ag(Ⅰ), Ag(Ⅱ), Ba, Ca, Cu, Cd, Fe, Hg(Ⅱ), Hg(Ⅰ), Mn(Ⅱ), Mg, Ni, Pb, Sn, Sr, Xe, Zn, Al, B, Bi(Ⅲ), Ce(Ⅲ), Cr, Dy, Du, Ga, Fe, Ho, In, La, Lu, Mn(Ⅲ), Nd, VO, Pr, Sb(Ⅲ), Sc, Sm, Tb, Ti(Ⅲ), Tm, Y, Yb, Tl, Ce(Ⅳ), Ge, Hf, Si, Sn, Ti(Ⅳ), V, Zr, Nb, Sb(Ⅴ), Ta, Bi(Ⅴ), Mo, Re, S, 및 W로 이루어지는 군으로부터 선택된 단일원소 또는 이들 중 임의로 선택된 둘 이상의 원소혼합물이 이용되는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질 제조방법.Elemental precursors used to produce the fluorine-based compound are Cs, K, Li, Na, Rb, Ti, Ag (I), Ag (II), Ba, Ca, Cu, Cd, Fe, Hg (II), Hg ( I, Mn (II), Mg, Ni, Pb, Sn, Sr, Xe, Zn, Al, B, Bi (III), Ce (III), Cr, Dy, Du, Ga, Fe, Ho, In, La, Lu, Mn (III), Nd, VO, Pr, Sb (III), Sc, Sm, Tb, Ti (III), Tm, Y, Yb, Tl, Ce (IV), Ge, Hf, Si, A single element selected from the group consisting of Sn, Ti (IV), V, Zr, Nb, Sb (V), Ta, Bi (V), Mo, Re, S, and W, or a mixture of two or more elements selected arbitrarily Method for producing a negative electrode active material for a lithium secondary battery, characterized in that it is used. 제4항에 있어서,The method of claim 4, wherein 상기 (S1)단계는, (S1a)원소전구체 함유 용액에 음극 활물질을 담지, 교반하여 함침시키는 단계; 및The step (S1) may include: impregnating and stirring the negative active material in the solution containing the element precursor (S1a); And (S1b)상기 함침된 결과물에 불소 함유 용액을 혼합하여 공침반응시키고 교반하는 단계;를 포함하여 진행하는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질 제조방법.(S1b) a method of manufacturing a negative electrode active material for a lithium secondary battery, comprising the step of: co-reacting and stirring a mixed fluorine-containing solution in the resultant impregnated product. 제7항에 있어서,The method of claim 7, wherein 상기 (S1a)단계에서, 상기 원소전구체 함유 용액은 상기 음극 활물질 대비 0.1 내지 10 몰%가 되도록 사용되는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질 제조방법.In the step (S1a), the element precursor-containing solution is a lithium secondary battery negative electrode active material manufacturing method characterized in that it is used to be 0.1 to 10 mol% compared to the negative electrode active material. 제7항에 있어서,The method of claim 7, wherein 상기 (S1b)단계에서, 상기 불소 함유 용액은 상기 원소전구체 함유 용액에 대하여 0.1 내지 60 몰%가 되도록 사용되는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질 제조방법.In the step (S1b), the fluorine-containing solution is used to prepare a negative active material for a lithium secondary battery, characterized in that it is used to 0.1 to 60 mol% with respect to the element precursor containing solution. 제7항에 있어서,The method of claim 7, wherein 상기 (S1b)단계에서, 상기 불소 함유 용액은 50 내지 100 ℃의 온도에서 1 내지 100 ㎖/min의 유량으로 3 내지 48 시간 동안 혼합 및 교반되는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질 제조방법.In the step (S1b), the fluorine-containing solution is mixed and stirred for 3 to 48 hours at a flow rate of 1 to 100 ml / min at a temperature of 50 to 100 ℃ lithium secondary battery negative electrode active material manufacturing method. 제4항에 있어서,The method of claim 4, wherein 상기 (S2)단계 이후에, (S3)상기 불소계 화합물이 코팅된 음극 활물질을 세척하는 단계;After the step (S2), (S3) washing the negative active material coated with the fluorine-based compound; (S4)상기 세척된 결과물을 건조하는 단계; 및(S4) drying the washed resultant; And (S5)상기 세척 건조된 결과물을 열처리하는 단계;를 더 포함하여 진행하는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질 제조방법.(S5) heat-treating the washed and dried result; negative electrode active material manufacturing method for a lithium secondary battery, characterized in that further comprising the progress. 제11항에 있어서,The method of claim 11, 상기 (S4)단계의 건조는, 50 내지 150 ℃의 온도에서 진행되는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질 제조방법.Drying of the step (S4), the negative electrode active material manufacturing method for a lithium secondary battery, characterized in that proceeds at a temperature of 50 to 150 ℃. 제11항에 있어서,The method of claim 11, 상기 (S5)단계의 열처리는, 산화성 분위기, 환원성 분위기 및 진공상태 중 선택된 어느 하나의 조건하에서 150 내지 900 ℃에서 1 내지 20 시간 동안 진행되는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질 제조방법.The heat treatment of the step (S5), the negative electrode active material manufacturing method for a lithium secondary battery, characterized in that for 1 to 20 hours at 150 to 900 ℃ under any one condition selected from the oxidizing atmosphere, reducing atmosphere and vacuum state. 제4항 내지 제13항 중 선택된 어느 한 항에 따르는 방법으로 제조된 음극 활물질이 적용된 음극을 구비하는 것을 특징으로 하는 리튬 이차 전지.A lithium secondary battery comprising a negative electrode to which a negative electrode active material prepared by the method according to any one of claims 4 to 13 is applied. 삭제delete 삭제delete
KR1020070016575A 2007-02-16 2007-02-16 Anode active material for rechargeable lithium ion battery and method for preparing thereof and lithium ion battery manufactured using the same KR100853327B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020070016575A KR100853327B1 (en) 2007-02-16 2007-02-16 Anode active material for rechargeable lithium ion battery and method for preparing thereof and lithium ion battery manufactured using the same
JP2009549507A JP2010519682A (en) 2007-02-16 2007-10-25 Anode active material for lithium battery, method for producing the same, and lithium secondary battery using the same
PCT/KR2007/005273 WO2008100002A1 (en) 2007-02-16 2007-10-25 Anode active material for rechargeable lithium ion battery, method for preparing the same, and lithium ion battery manufactured using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070016575A KR100853327B1 (en) 2007-02-16 2007-02-16 Anode active material for rechargeable lithium ion battery and method for preparing thereof and lithium ion battery manufactured using the same

Publications (2)

Publication Number Publication Date
KR20080076527A KR20080076527A (en) 2008-08-20
KR100853327B1 true KR100853327B1 (en) 2008-08-21

Family

ID=39690212

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070016575A KR100853327B1 (en) 2007-02-16 2007-02-16 Anode active material for rechargeable lithium ion battery and method for preparing thereof and lithium ion battery manufactured using the same

Country Status (3)

Country Link
JP (1) JP2010519682A (en)
KR (1) KR100853327B1 (en)
WO (1) WO2008100002A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100991358B1 (en) 2008-03-27 2010-11-03 (주)포스코켐텍 Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode
KR101091546B1 (en) 2009-04-27 2011-12-13 (주)포스코켐텍 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
WO2013180434A1 (en) 2012-05-30 2013-12-05 주식회사 엘지화학 Negative pole active material for lithium secondary battery and lithium secondary battery comprising same
WO2013180432A1 (en) 2012-05-30 2013-12-05 주식회사 엘지화학 Negative pole active material for lithium secondary battery and lithium secondary battery comprising same
KR101523081B1 (en) * 2013-11-28 2015-06-05 주식회사 포스코 Complex of positive electrode active material and fluorine compound, manufacturing method of the same, and rechargable lithium battery including the complex
WO2016052850A1 (en) * 2014-09-30 2016-04-07 주식회사 엘지화학 Negative electrode active material for lithium secondary battery, method for manufacturing same, negative electrode for lithium secondary battery comprising same, and lithium secondary battery

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515476B2 (en) * 2009-07-16 2014-06-11 ソニー株式会社 Secondary battery, negative electrode, positive electrode and electrolyte
CN202977600U (en) * 2009-12-21 2013-06-05 A123系统公司 Anode material
JP5585913B2 (en) * 2010-07-30 2014-09-10 学校法人 関西大学 Method for producing positive electrode material for secondary battery containing Cu, method for producing positive electrode material for secondary battery, and positive electrode material for secondary battery
CN101944562B (en) * 2010-09-03 2012-05-23 湘能华磊光电股份有限公司 Method for removing light-emitting diode (LED) chip electrode
US20140147740A1 (en) * 2011-07-29 2014-05-29 Sanyo Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, positive electrode for nonaqueous electrolyte secondary battery using positive electrode active material, and nonaqueous electrolyte secondary battery using positive electrode
US9099735B2 (en) 2011-09-13 2015-08-04 Wildcat Discovery Technologies, Inc. Cathode for a battery
US20130095386A1 (en) * 2011-10-12 2013-04-18 Battelle Memorial Institute Metal Fluoride Electrode Protection Layer and Method of Making Same
JP5861437B2 (en) * 2011-12-15 2016-02-16 三洋電機株式会社 Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same
KR101888157B1 (en) * 2011-12-20 2018-08-14 엘지디스플레이 주식회사 organic light emitting diode display device
US8916062B2 (en) 2013-03-15 2014-12-23 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
US9093703B2 (en) 2013-03-15 2015-07-28 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
US9159994B2 (en) 2013-03-15 2015-10-13 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
WO2014144179A1 (en) * 2013-03-15 2014-09-18 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
WO2014144167A1 (en) 2013-03-15 2014-09-18 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
KR102341406B1 (en) * 2015-06-09 2021-12-21 삼성에스디아이 주식회사 Composite for anode active material, anode including the composite, lithium secondary battery including the anode, and method of preparing the composite
US11749797B2 (en) 2016-12-15 2023-09-05 Honda Motor Co., Ltd. Nanostructural designs for electrode materials of fluoride ion batteries
US10903483B2 (en) 2015-08-27 2021-01-26 Wildcat Discovery Technologies, Inc High energy materials for a battery and methods for making and use
KR102565564B1 (en) * 2016-12-15 2023-08-10 혼다 기켄 고교 가부시키가이샤 Composite Electrode Materials for Fluoride Ion Electrochemical Cells
KR102155025B1 (en) 2017-01-11 2020-09-11 주식회사 엘지화학 Deposition of LiF on Li metal surface and Li secondary battery using thereof
PL3460882T3 (en) * 2017-01-23 2022-05-30 Lg Energy Solution Ltd. Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and method for manufacturing same
KR102090296B1 (en) 2017-01-23 2020-03-17 주식회사 엘지화학 Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and preparing method thereof
JP7054445B2 (en) * 2018-03-26 2022-04-14 トヨタ自動車株式会社 Negative electrode material and electrolyte-based battery using this
CN109148831B (en) * 2018-09-11 2021-03-16 安徽工业大学 Preparation method of fluoride sodium ion battery electrode material
CN111029533B (en) * 2019-10-31 2021-09-07 北京泰丰先行新能源科技有限公司 Metallic lithium surface protection method, negative electrode and metallic lithium secondary battery
CN111333064B (en) * 2020-03-25 2021-08-10 江西正拓新能源科技股份有限公司 High-performance lithium ion battery graphite negative electrode material and preparation method thereof
CN112614997B (en) * 2020-12-18 2022-07-01 中国民航大学 Preparation method of carbon fluoride anode material based on hydrogen bond organic framework material
CN114613974B (en) * 2022-04-17 2022-09-09 晖阳(贵州)新能源材料有限公司 Long-life quick-charging type lithium ion battery cathode material and preparation method thereof
CN114804211B (en) * 2022-05-20 2024-02-23 洛阳师范学院 High-first-effect lithium ferrite negative electrode material for lithium ion battery and preparation method thereof
CN115504770B (en) * 2022-09-13 2023-07-21 景德镇陶瓷大学 Transition metal ion and Nd 3+ Co-doped solid electrolyte ceramic material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950002099A (en) * 1993-06-03 1995-01-04 윤종용 Secondary Battery and Manufacturing Method Thereof
JPH11265710A (en) * 1998-03-18 1999-09-28 Sanyo Electric Co Ltd Lithium secondary battery and its manufacture
KR20030030818A (en) * 2001-10-12 2003-04-18 주식회사 엘지화학 Electrode materials and method for preparing thereof
KR20060109305A (en) * 2005-04-15 2006-10-19 대정화금주식회사 Cathode active material coated with fluorine compounds for lithium secondary batteries and method of producing thereof
KR20060133615A (en) * 2005-06-21 2006-12-27 대정화금주식회사 Cathode active material added with fluorine compound for lithium secondary batteries and method of producing thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3316412B2 (en) * 1997-03-11 2002-08-19 三洋電機株式会社 Lithium secondary battery
JP4193008B2 (en) * 1997-10-07 2008-12-10 株式会社ジーエス・ユアサコーポレーション Lithium secondary battery
JP2003217593A (en) * 2002-01-16 2003-07-31 Sony Corp Negative electrode active material and production process thereof, and battery and production process thereof
JP2003263984A (en) * 2002-03-11 2003-09-19 Japan Storage Battery Co Ltd Nonaqueous electrolyte cell and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950002099A (en) * 1993-06-03 1995-01-04 윤종용 Secondary Battery and Manufacturing Method Thereof
JPH11265710A (en) * 1998-03-18 1999-09-28 Sanyo Electric Co Ltd Lithium secondary battery and its manufacture
KR20030030818A (en) * 2001-10-12 2003-04-18 주식회사 엘지화학 Electrode materials and method for preparing thereof
KR20060109305A (en) * 2005-04-15 2006-10-19 대정화금주식회사 Cathode active material coated with fluorine compounds for lithium secondary batteries and method of producing thereof
KR20060133615A (en) * 2005-06-21 2006-12-27 대정화금주식회사 Cathode active material added with fluorine compound for lithium secondary batteries and method of producing thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100991358B1 (en) 2008-03-27 2010-11-03 (주)포스코켐텍 Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode
KR101091546B1 (en) 2009-04-27 2011-12-13 (주)포스코켐텍 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
WO2013180434A1 (en) 2012-05-30 2013-12-05 주식회사 엘지화학 Negative pole active material for lithium secondary battery and lithium secondary battery comprising same
WO2013180432A1 (en) 2012-05-30 2013-12-05 주식회사 엘지화학 Negative pole active material for lithium secondary battery and lithium secondary battery comprising same
KR20130134239A (en) 2012-05-30 2013-12-10 주식회사 엘지화학 Negative active material for lithium battery and battery comprising the same
US9601760B2 (en) 2012-05-30 2017-03-21 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
US9812705B2 (en) 2012-05-30 2017-11-07 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
KR101523081B1 (en) * 2013-11-28 2015-06-05 주식회사 포스코 Complex of positive electrode active material and fluorine compound, manufacturing method of the same, and rechargable lithium battery including the complex
WO2016052850A1 (en) * 2014-09-30 2016-04-07 주식회사 엘지화학 Negative electrode active material for lithium secondary battery, method for manufacturing same, negative electrode for lithium secondary battery comprising same, and lithium secondary battery
US9997773B2 (en) 2014-09-30 2018-06-12 Lg Chem, Ltd. Negative active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery comprising same

Also Published As

Publication number Publication date
JP2010519682A (en) 2010-06-03
WO2008100002A1 (en) 2008-08-21
KR20080076527A (en) 2008-08-20

Similar Documents

Publication Publication Date Title
KR100853327B1 (en) Anode active material for rechargeable lithium ion battery and method for preparing thereof and lithium ion battery manufactured using the same
KR102152881B1 (en) Nickel-based active material for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising positive electrode including nickel-based active material
KR101264333B1 (en) Cathode active material, cathode and lithium battery containing the same, and preparation method thereof
KR101430616B1 (en) Cathode and lithium battery using the same
JP5972513B2 (en) Cathode and lithium battery using the same
KR101975394B1 (en) Composite cathode active material, cathode and lithium battery containing the material and preparation method thereof
KR100982325B1 (en) Rechargeable lithium battery
KR101320390B1 (en) Positive active material, manufacturing method thereof, and electrode and lithium battery containing the material
US7674554B2 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the anode active material
KR101297259B1 (en) Positive active material, manufacturing method thereof and lithium battery containing the material
KR101397021B1 (en) Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
KR20090093165A (en) Cathode active material and cathode and lithium battery containing the material
KR102402109B1 (en) Lithium secondary battery with improved high-temperature property
KR101805542B1 (en) Composite cathode active material, cathode and lithium battery containing the material and preparation method thereof
KR20100066026A (en) Anode active material for lithium rechargeable battery, its preparation and lithium battery using same
KR20130003069A (en) Composite cathode active material, cathode and lithium battery comprising the material, and preparation method thereof
KR20180056310A (en) Composite cathode active material, Cathode and Lithium battery containing composite cathode active material and Preparation method thereof
KR20090111130A (en) Positive active material for lithium secondary battery, method for preparing the same, and lithium secondary battery using the same
JP3079382B2 (en) Non-aqueous secondary battery
KR100868135B1 (en) Anode active material for secondary battery and method for preparing thereof and secondary battery containing the same for anode
KR101835586B1 (en) Composite cathode active material, and cathode and lithium battery containing the material
KR101607233B1 (en) Cathode active material, cathode comprising the same and lithium battery using the cathode
KR102389888B1 (en) Lithium secondary battery with improved low-temperature and high-temperature properties
KR102391115B1 (en) Positive electrode active material and lithium secondary battery including positive electrode comprising the same
CN116569357A (en) Positive electrode active material, positive electrode and lithium secondary battery including the same, and method of preparing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130703

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140603

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150706

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee