KR20060133615A - Cathode active material added with fluorine compound for lithium secondary batteries and method of producing thereof - Google Patents

Cathode active material added with fluorine compound for lithium secondary batteries and method of producing thereof Download PDF

Info

Publication number
KR20060133615A
KR20060133615A KR1020050053304A KR20050053304A KR20060133615A KR 20060133615 A KR20060133615 A KR 20060133615A KR 1020050053304 A KR1020050053304 A KR 1020050053304A KR 20050053304 A KR20050053304 A KR 20050053304A KR 20060133615 A KR20060133615 A KR 20060133615A
Authority
KR
South Korea
Prior art keywords
active material
fluorine compound
positive electrode
lithium secondary
electrode active
Prior art date
Application number
KR1020050053304A
Other languages
Korean (ko)
Other versions
KR100701532B1 (en
Inventor
선양국
한정민
Original Assignee
대정화금주식회사
선양국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대정화금주식회사, 선양국 filed Critical 대정화금주식회사
Priority to KR1020050053304A priority Critical patent/KR100701532B1/en
Priority to PCT/KR2006/002362 priority patent/WO2006137673A1/en
Publication of KR20060133615A publication Critical patent/KR20060133615A/en
Application granted granted Critical
Publication of KR100701532B1 publication Critical patent/KR100701532B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Provided are a positive electrode active material for a lithium secondary battery to improve the charge/discharge characteristics, lifetime characteristics, high voltage characteristics and high rate characteristics of a battery, and its preparation method. The positive electrode active material contains a fluorine compound in the form of a complex in a positive electrode active material. The method comprises the steps of adding a solution wherein F is dissolved to a fine powder element precursor solution of high dispersity to react it at 50-150 deg.C for 1-48 hours, thereby preparing a fluorine compound fine powder in the form of a complex having a high dispersity; drying the fluorine compound fine powder at 110 deg.C for 6-24 hours; heat treating the dried one at 150-900 deg.C for 1-20 hours under the oxidative or reductive condition or in vacuum; and adding 0.05-10 parts by weight of the heat treated one to 100 parts by weight of a positive electrode active material and mixing them uniformly.

Description

불소화합물이 첨가된 리튬이차전지 양극 활물질 및 그 제조방법{Cathode active material added with fluorine compound for lithium secondary batteries And Method of producing thereof}{Cathode active material added with fluorine compound for lithium secondary batteries And Method of producing}

도 1은 본 발명의 실시예1에 의한 불소화합물 합성공정의 순서도.       1 is a flow chart of a fluorine compound synthesis process according to Example 1 of the present invention.

도 2는 본 발명의 실시예 1에서 합성한 불소화합물의 XRD 패턴.Figure 2 is an XRD pattern of the fluorine compound synthesized in Example 1 of the present invention.

도 3은 본 발명의 실시예 1에서 합성한 불소화합물의 FE-SEM (Field Emission Scanning Electron Microscopy) 사진.Figure 3 is a FE-SEM (Field Emission Scanning Electron Microscopy) photograph of the fluorine compound synthesized in Example 1 of the present invention.

도 4는 본 발명의 실시예 5와 비교예 1 의 양극 활물질의 XRD 패턴.4 is an XRD pattern of the positive electrode active material of Example 5 and Comparative Example 1 of the present invention.

도 5는 본 발명의 실시예 5의 양극 활물질의 FE-SEM (Field Emission Scanning Electron Microscopy) 사진.5 is a field emission scanning electron microscopy (FE-SEM) photograph of the cathode active material of Example 5 of the present invention.

도 6은 본 발명의 비교예 1의 양극 활물질의 FE-SEM (Field Emission Scanning Electron Microscopy) 사진.6 is a field emission scanning electron microscopy (FE-SEM) photograph of the cathode active material of Comparative Example 1 of the present invention.

도 7은 본 발명의 실시예 5의 양극 활물질의 EDS(Energy Dispersive Spectroscopy) 결과 사진.       Figure 7 is a photograph of the results of Energy Dispersive Spectroscopy (EDS) of the positive electrode active material of Example 5 of the present invention.

도 8은 본 발명의 실시예 5와 비교예 1의 양극 활물질의 전압범위 3.0 ∼4.5V, 상온(30℃) 일정전류밀도 0.2 mA/㎠에서 실험한 반전지의 싸이클 곡선.FIG. 8 is a cycle curve of a half cell experimented at a voltage range of 3.0 to 4.5 mA and a constant current density of 0.2 mA / cm 2 at room temperature (30 ° C.) of Example 5 and Comparative Example 1 of the present invention. FIG.

도 9는 본 발명의 실시예 5와 비교예 1의 양극 활물질의 전압범위 3.0 ∼ 4.5, 상온(30℃) 일정전류밀도 0.8 mA/㎠에서 실험한 반전지의 싸이클 곡선.FIG. 9 is a cycle curve of a half cell experimented at a voltage range of 3.0 to 4.5 and a room temperature (30 ° C.) constant current density of 0.8 mA / cm 2 of Example 5 and Comparative Example 1 of the present invention.

도 10은 본 발명의 실시예 5,6,7 및 8과 비교예 1의 양극 활물질의 전압범위 3.0 ∼4.5 V, 30℃, 일정전류밀도 0.2 mA/㎠에서 실험한 반전지의 싸이클 곡선.10 is a cycle curve of a half cell experimented in the voltage range of 3.0 to 4.5 V, 30 ℃, constant current density 0.2 mA / cm 2 of the positive electrode active material of Examples 5, 6, 7 and 8 and Comparative Example 1 of the present invention.

도 11은 본 발명의 실시예 9와 비교예 2의 양극 활물질의 XRD 패턴.11 is an XRD pattern of the positive electrode active material of Example 9 and Comparative Example 2 of the present invention.

도 12는 본 발명의 실시예 9와 비교예 2의 양극 활물질의 전압범위 2.8 ∼4.5V, 상온(30℃) 일정전류밀도 0.2 mA/㎠에서 실험한 반전지의 싸이클 곡선.12 is a cycle curve of a half cell experimented at a voltage range of 2.8 to 4.5 kW and a constant current density of 0.2 mA / cm 2 at a positive electrode active material of Example 9 and Comparative Example 2 of the present invention.

도 13은 본 발명의 실시예 9와 비교예 2의 양극 활물질의 전압범위 2.8 ∼4.5V, 상온(30℃) 일정전류밀도 0.8 mA/㎠에서 실험한 반전지의 싸이클 곡선.FIG. 13 is a cycle curve of a half cell experimented at a voltage range of 2.8 to 4.5 kV and a constant current density of 0.8 mA / cm 2 at a positive electrode active material of Example 9 and Comparative Example 2 of the present invention. FIG.

도 14은 본 발명의 실시예 10과 비교예 3의 양극 활물질의 XRD 패턴.14 is an XRD pattern of the positive electrode active material of Example 10 and Comparative Example 3 of the present invention.

도 15는 본 발명의 실시예 10과 비교예 3의 양극 활물질의 전압범위 2.8 ∼4.6V, 상온(30℃) 일정전류밀도 0.2 mA/cm2에서 실험한 반전지의 싸이클 곡선.15 is a cycle curve of a half cell experimented at a voltage range of 2.8 ~ 4.6 kW, a constant current density of 0.2 mA / cm 2 of the positive electrode active material of Example 10 and Comparative Example 3 of the present invention.

도 16는 본 발명의 실시예 10과 비교예 3의 양극 활물질의 전압범위 2.8 ∼4.6V, 상온(30℃) 일정전류밀도 0.8 mA/cm2에서 실험한 반전지의 싸이클 곡선.FIG. 16 is a cycle curve of a half cell experimented at a voltage range of 2.8 to 4.6 kW and a constant current density of 0.8 mA / cm 2 at a positive electrode active material of Example 10 and Comparative Example 3 of the present invention.

도 17은 본 발명의 실시예 11과 비교예 4의 양극 활물질의 XRD 패턴.17 is an XRD pattern of the positive electrode active material of Example 11 and Comparative Example 4 of the present invention.

도 18은 본 발명의 실시예 11과 비교예 4의 양극 활물질의 전압범위 2.8 ∼4.6V, 상온(30℃) 일정전류밀도 0.2 mA/㎠에서 실험한 반전지의 싸이클 곡선.18 is a cycle curve of a half cell experimented at a voltage range of 2.8 to 4.6 kW and a constant current density of 0.2 mA / cm 2 at room temperature (30 ° C.) of Example 11 and Comparative Example 4 of the present invention.

도 19는 본 발명의 실시예 11과 비교예 4의 양극 활물질의 전압범위 2.8 ∼4.6V, 상온(30℃) 일정전류밀도 0.8 mA/㎠에서 실험한 반전지의 싸이클 곡선.19 is a cycle curve of a half cell experimented at a voltage range of 2.8 to 4.6 kW and a constant current density of 0.8 mA / cm 2 at room temperature of the positive electrode active materials of Example 11 and Comparative Example 4 of the present invention.

도 20은 본 발명의 실시예 12와 비교예 5의 양극 활물질의 XRD 패턴.20 is an XRD pattern of the positive electrode active material of Example 12 and Comparative Example 5 of the present invention.

도 21은 본 발명의 실시예 12와 비교예 5의 양극 활물질의 전압범위 3.0 ∼4.5V, 상온(30℃) 일정전류밀도 0.2 mA/㎠에서 실험한 반전지의 싸이클 곡선.FIG. 21 is a cycle curve of a half cell tested at a voltage range of 3.0 to 4.5 kW and a constant current density of 0.2 mA / cm 2 at a positive electrode active material of Example 12 and Comparative Example 5 of the present invention. FIG.

도 22는 본 발명의 실시예 12와 비교예 5의 양극 활물질의 전압범위 3.0 ∼4.5V, 상온(30℃) 일정전류밀도 0.8 mA/㎠에서 실험한 반전지의 싸이클 곡선.FIG. 22 is a cycle curve of a half cell experimented at a voltage range of 3.0 to 4.5 mA and a constant current density of 0.8 mA / cm 2 at room temperature of Example 12 of the present invention and Comparative Example 5;

본 발명은 리튬이차전지용 양극 활물질 첨가제의 합성과 수명특성과 고전압특성 등이 우수한 합성된 첨가제가 첨가된 리튬이차전지용 양극 활물질 제조방법을 제공하는 것을 목적으로 한다. 더욱 상세히는 첨가제로써 미세분말의 불소화합물을 합성하고 이를 리튬이차전지용 양극 활물질에 첨가함으로써 전지의 충방전 특성, 수명특성, 고전압특성 및 고율특성 등을 개선하는 것을 목적으로 한다.It is an object of the present invention to provide a method for preparing a cathode active material for a lithium secondary battery to which a synthesized additive, which has excellent life characteristics, high voltage characteristics, and the like, is added. More specifically, an object of the present invention is to improve the charge and discharge characteristics, life characteristics, high voltage characteristics and high rate characteristics of a battery by synthesizing a fluorine compound of a fine powder as an additive and adding it to a cathode active material for a lithium secondary battery.

PDA, 이동전화, 노트북 컴퓨터 등 정보통신을 위한 휴대용 전자 기기나 전기자전거, 전기자동차등의 전원으로 충전과 방전을 거듭하며 사용하는 2차 전지의 수요가 급격하게 증가하고 있다. 특히, 이들의 제품성능이 핵심부품인 이차전지에 의해 좌우되므로 고성능 전지에 대한 요구는 대단히 크다. 전지에 요구되는 특성은 충방전 특성, 수명, 고율특성과 고온에서의 안정성 등 여러 가지 측면이 있다. 리튬 2차 전지는 높은 전압과 높은 에너지 밀도를 가지고 있어 가장 주목받고 있는 전지이다.The demand for secondary batteries, which are used for charging and discharging with portable electronic devices such as PDAs, mobile phones, notebook computers, and electric bicycles and electric vehicles, is rapidly increasing. In particular, since their product performance depends on secondary batteries, which are key components, the demand for high performance batteries is very large. The characteristics required for the battery have various aspects such as charge and discharge characteristics, lifespan, high rate characteristics, and stability at high temperatures. Lithium secondary batteries have the most attention due to their high voltage and high energy density.

리튬 2차 전지는 음극을 리튬금속으로 쓰는 리튬전지와 리튬이온이 삽입과 탈리를 할 수 있는 탄소 등의 층간화합물을 쓰는 리튬이온전지로 구분한다. 또는, 사용되는 전해질에 따라서 액체를 쓰는 액체형 전지, 액체와 폴리머를 혼용해서 쓰는 젤형 폴리머 전지와 순수하게 고분자만을 사용하는 고체형 폴리머 전지로 구분하기도 한다.Lithium secondary batteries are classified into lithium batteries using a negative electrode as a lithium metal and lithium ion batteries using an interlayer compound such as carbon that can be inserted and desorbed. Alternatively, depending on the electrolyte used, it may be classified into a liquid battery using a liquid, a gel polymer battery using a mixture of a liquid and a polymer, and a solid polymer battery using purely a polymer.

현재 시판되는 소형 리튬이온이차전지는 양극에 LiCoO2를, 음극에 탄소를 사용한다. 일본 몰리에너지사는 양극으로 LiMn2O4를 사용하고 있지만 그 사용량은 LiCoO2에 비해 무시할 수 있다. 현재 활발하게 연구 개발되고 있는 양극재료로서 LiNiO2, LiCoxNi1-xO2와 LiMn2O4을 들 수 있다. LiCoO2는 안정된 충·방전특성, 우수한 전자전도성, 높은 열적 안정성 및 평탄한 방전전압 특성을 갖는 뛰어난 물질이나, Co는 매장량이 적고 고가인 데다가 인체에 대한 독성이 있기 때문에 다른 양극 재료 개발이 요망된다. LiNiO2는 재료합성에 어려움이 있을 뿐만 아니라 열적 안정성에 문제가 있어 상품화되지 못하고 있으며, LiMn2O4는 저가격 제품에 일부가 상품화되고 있다. 그러나, 스피넬 구조를 갖는 LiMn2O4는 이론용량이 148mAh/g 정도로 다른 재료에 비해 작고, 3차원 터널 구조를 갖기 때문에 리튬이온의 삽입·탈리시 확산저항이 커서 확산 계수가 2차원 구조를 갖는 LiCoO2와 LiNiO2에 비해 낮으며, 얀-텔러 효과 (Jahn-Teller effect) 때문에 싸이클 특성이 좋지 않다. 특히, 55℃ 이상에서의 고온특성이 LiCoO2에 비해 열악하여 실제 전지에 널리 사용되고 있지 못하 고 있는 실정이다. Commercially available small lithium ion secondary batteries use LiCoO 2 for the positive electrode and carbon for the negative electrode. Japan Moly Energy uses LiMn 2 O 4 as its anode, but its use is negligible compared to LiCoO 2 . LiNiO 2 , LiCo x Ni 1-x O 2 and LiMn 2 O 4 are the anode materials currently being actively researched and developed. LiCoO 2 is an excellent material having stable charging and discharging characteristics, excellent electronic conductivity, high thermal stability, and flat discharge voltage characteristics. However, CoCo has low reserves, is expensive, and toxic to humans. LiNiO 2 is not commercialized due to difficulty in material synthesis and thermal stability, and LiMn 2 O 4 is commercialized in low cost. However, LiMn 2 O 4 with a spinel structure has a theoretical capacity of 148 mAh / g, which is smaller than other materials, and has a three-dimensional tunnel structure. It is lower than LiCoO 2 and LiNiO 2 and has poor cycle characteristics due to the Jahn-Teller effect. In particular, the high temperature property at 55 ℃ or more is poor compared to LiCoO 2 and is not widely used in the actual battery.

따라서 상기 문제점들을 극복할 수 있는 재료로서 층상 결정구조를 갖는 재료들에 관해 많은 연구가 진행되어 왔다. 이중에서 최근 가장 각광받는 층상 결정구조를 갖는 재료로 니켈-망간과 니켈-코발트-망간이 각각 1:1로 혼합된 Li[Ni1/2Mn1/2]O2와 Li[Ni1/3Co1/3Mn1/3]O2 등을 들 수 있다. 이 재료들은 LiCoO2에 비해 저가격, 고용량, 우수한 열적 안정성 등의 특성을 나타낸다.Therefore, much research has been conducted on materials having a layered crystal structure as a material capable of overcoming the above problems. Among these, Li [Ni 1/2 Mn 1/2 ] O 2 and Li [Ni 1/3 in which nickel-manganese and nickel-cobalt-manganese are mixed 1: 1 in each of the most popular layered crystal structures. Co 1/3 Mn 1/3 ] O 2, etc. may be mentioned. These materials exhibit lower cost, higher capacity and better thermal stability than LiCoO 2 .

그러나 이 재료들은 LiCoO2에 비해 낮은 전자전도도로 인해 고율특성과 저온특성이 열악하며, 낮은 탭 밀도로 인해 용량이 높음에도 불구하고 전지의 에너지 밀도가 향상되지 않는다. 특히 Li[Ni1/2Mn1/2]O2의 경우 전자전도도가 아주 낮아 실용화하기에는 어려움이 있다 (J. of Power Sources, 112(2002) 41-48). 특히 이 재료들을 전기자동차용 하이브리드 (hybrid) 전원으로 사용하기에는 고출력 특성이 LiCoO2나 LiMn2O4에 비해 떨어진다. 이러한 문제점을 해결하기 위해 도전성 카본블랙을 처리하는 방법 (일본 특개2003-59491)이 제안되곤 하나 많은 개선은 아직 보고 되어 있지 않다.However, these materials have poor high-rate and low-temperature characteristics due to their low electron conductivity compared to LiCoO 2 , and their energy density does not improve despite the high capacity due to low tap density. In particular, in the case of Li [Ni 1/2 Mn 1/2 ] O 2 , the electrical conductivity is very low, which makes it difficult to put it to practical use (J. of Power Sources, 112 (2002) 41-48). In particular, the high-power characteristics of these materials are less than LiCoO 2 or LiMn 2 O 4 for use as hybrid power sources for electric vehicles. In order to solve this problem, a method of treating conductive carbon black (Japanese Patent Laid-Open No. 2003-59491) has been proposed, but many improvements have not been reported.

리튬이차전지는 충방전을 거듭함에 따라서 수명이 급속하게 떨어지는 문제점이 있다. 특히 고온에서는 이러한 문제가 더욱 심각하다. 이러한 이유로는 전지내부의 수분이나 기타 다른 영향으로 인해 전해질이 분해되거나 활물질이 열화 되고, 또한 전지의 내부저항이 증가되어 생기는 현상 때문이다. 이러한 문제점을 해결하 기 위해 많은 노력들이 진행되고 있다. LiCoO2 활물질에 TiO2를 첨가하여 에너지 밀도와 고율특성을 개선한 기술이 연구되어 있다(Electrochemical and Solid-State Letters, 4(6) A65-A67 2001). 또한 미국특허 제 5,709,968호는 벤젠화합물을 첨가하여 과 충전 전류 및 이로 인한 열 폭주 현상을 방지할 수 있는 방법, 미국특허 제 5,879,834호는 방향족화합물을 소량 첨가하여 전지의 안정성을 향상시키는 방법, 대한민국 공개특허공보 특2003-0061219는 사이클로헥실벤젠을 첨가하여 전기화학적으로 안정성을 향상시키는 방법 등 직접 전해액에다가 화합물을 혼합하여 성능을 향상시키는 기술이 보고 되어 있다. 그러나 아직까지 수명열화의 문제나 충방전 중에 전해질 등의 분해로 인한 가스발생의 문제를 완전히 해결한 것은 아니다. 또한, 전지의 용량감소의 원인으로 충전 중에 전해질이 산화되어 생성되는 산에 의해 활물질이 용해되는 현상이 소개된 바 있다(Journal of Electrochemical Society, 143(1996) P2204). 최근에는 Li[NixCo1-2xMnx]O2 합성 시 LiF를 첨가해 높은 온도에서 전해액과의 반응을 적게 하고, 전기화학적 성능을 향상시키는 기술을 공지하고 있다(Journal of Electrochemical Society, 151(2004) A1749-A1754).Lithium secondary batteries have a problem in that their lifespan drops rapidly as they are repeatedly charged and discharged. This problem is particularly acute at high temperatures. This is due to a phenomenon in which the electrolyte is decomposed or the active material is deteriorated due to moisture or other effects in the battery, and the internal resistance of the battery is increased. Many efforts have been made to solve this problem. Techniques for improving energy density and high rate characteristics by adding TiO 2 to LiCoO 2 active materials have been studied (Electrochemical and Solid-State Letters, 4 (6) A65-A67 2001). In addition, US Patent No. 5,709,968 is a method to prevent the overcharge current and the resulting thermal runaway phenomenon by adding a benzene compound, US Patent No. 5,879,834 is a method for improving the stability of the battery by adding a small amount of aromatic compounds, Korean published Patent Publication No. 2003-0061219 reports a technique for improving performance by mixing a compound in a direct electrolyte solution, such as adding cyclohexylbenzene to improve the chemical stability. However, it is not yet completely solved the problem of deterioration of life or the generation of gas due to decomposition of the electrolyte during charging and discharging. In addition, a phenomenon in which an active material is dissolved by an acid generated by oxidation of an electrolyte during charging is introduced as a cause of a decrease in capacity of a battery (Journal of Electrochemical Society, 143 (1996) P2204). Recently, LiF is added to synthesize Li [Ni x Co 1-2x Mn x ] O 2 to reduce the reaction with the electrolyte at high temperatures and to improve the electrochemical performance (Journal of Electrochemical Society, 151). (2004) A1749-A1754.

상기와 같은 전지 성능의 열화 문제를 해결하기 위하여, 본 발명은 리튬이차전지용 양극 활물질 첨가제를 양극 활물질에 첨가하여 리튬이차전지용 양극 활물질을 제조해 전지의 수명특성, 특히 고압 및 고율에서 성능이 저하되는 현상을 방지 하는 것을 목적으로 한다.     In order to solve the problem of deterioration of the battery performance as described above, the present invention is prepared by adding a positive electrode active material additive for a lithium secondary battery to the positive electrode active material to produce a positive electrode active material for lithium secondary battery performance is reduced in the battery life characteristics, in particular high pressure and high rate It aims to prevent the phenomenon.

상기 목적을 달성하기 위해 본 발명에서는 리튬이차전지 양극 활물질에 있어서, 양극 활물질에 착염형태인 불소화합물이 첨가되어 이루어진 것을 특징으로 하는 리튬이차전지 양극 활물질이 제공된다. In order to achieve the above object, in the present invention, a lithium secondary battery cathode active material is provided in which a fluorine compound in a complex salt form is added to a cathode active material.

상기 불소화합물은 CsF, KF, LiF, NaF, RbF, TiF, AgF, AgF₂, BaF2, CaF2, CuF2, CdF2, FeF2, HgF2, Hg2F2, MnF2, MgF2, NiF2, PbF2, SnF2, SrF2, XeF2, ZnF2, AlF3, BF3, BiF3, CeF3, CrF3, DyF3, EuF3, GaF3, GdF3, FeF3, HoF3, InF3, LaF3, LuF3, MnF3, NdF3, VOF3, PrF3, SbF3, ScF3, SmF3, TbF3, TiF3, TmF3, YF3, YbF3, TIF3, CeF4, GeF4, HfF4, SiF4, SnF4, TiF4, VF4, ZrF4, NbF5, SbF5, TaF5, BiF5, MoF6, ReF6, SF6 및 WF6 으로 이루어진 군과 불소가 포함된 모든화합물으로부터 선택되는 어느 하나이상인 것을 특징으로 한다. The fluorine compound is CsF, KF, LiF, NaF, RbF, TiF, AgF, AgF₂, BaF 2 , CaF 2 , CuF 2 , CdF 2 , FeF 2 , HgF 2 , Hg 2 F 2 , MnF 2 , MgF 2 , NiF 2 , PbF 2 , SnF 2 , SrF 2 , XeF 2 , ZnF 2 , AlF 3 , BF 3 , BiF 3 , CeF 3 , CrF 3 , DyF 3 , EuF 3 , GaF 3 , GdF 3 , FeF 3 , HoF 3 , InF 3, LaF 3, LuF 3 , MnF 3, NdF 3, VOF 3, PrF 3, SbF 3, ScF 3, SmF 3, TbF 3, TiF 3, TmF 3, YF 3, YbF 3, TIF 3, CeF 4 , GeF 4, HfF 4, SiF 4, SnF 4, TiF 4, VF 4, ZrF 4, NbF 5, SbF 5, TaF 5, BiF 5, MoF 6, ReF 6, the group with fluorine consisting of SF 6 and WF 6 It is characterized in that any one or more selected from all compounds containing.

상기 불소화합물이 첨가되는 상기 양극활물질은 육방정계 층상 암염구조를 갖는 Li1+a[Co1-xMx]O2-bNb(0.01≤a≤0.2, 0.01≤b≤0.2, 0.01≤x≤0.1, M = Mg, Al, Ni, Mn, Zn, Fe, Cr, Ga, Mo 및 W으로 이루어진 군에서 선택된 적어도 하나 이상의 금속, N은 F 또는 S), 육방정계 층상 암염구조를 갖는 Li1+a[Ni1-xMx]O2-bNb(0.01≤a≤0.2, 0.01≤b≤0.2, 0.01≤x≤0.5, M = Mg, Al, Co, Mn, Zn, Fe, Cr, Ga, Mo, W으 로 이루어진 군에서 선택된 적어도 하나 이상의 금속, N은 F 또는 S), 육방정계 층상 암염구조를 갖는 Li1+a[Ni1-x-yCoxMny]O2-bNb(0.01≤a≤0.2, 0.01≤b≤0.1, 0.05≤x≤0.3, 0.1≤y≤0.35, 0.15≤x+y≤0.6, N은 F 또는 S), 육방정계 층상 암염구조를 갖는 Li[Lia(NixCo1-2xMnx)1-a]O2-bNb (0.01≤a≤0.2, 0.01≤x≤0.5, 0.01≤b≤0.1, N은 F 또는 S), 육방정계 층상 암염구조를 갖는 Li[Lia(NixCo1-2xMnx-y/2My)1-a]O2-bNb (M=Mg, Ca, Cu, Zn으로 이루어진 군에서 선택된 적어도 하나 이상의 금속, 0.01≤a≤0.2, 0.01≤x≤0.5, 0.01≤y≤0.1, 0.01≤b≤0.1, N은 F 또는 S), 육방정계 층상 암염구조를 갖는 Li[Lia(Ni1/3Co(1/3-2x)Mn(1/3+x)Mx)1-a]O2-bNb (M=Mg, Ca, Cu, Zn으로 이루어진 군에서 선택된 적어도 하나 이상의 금속, 0.01≤a≤0.2, 0.01≤x≤0.5, 0.01≤y≤0.1, 0.01≤bV0.1, N은 F 또는 S), 육방정계 층상 암염구조를 갖는 Li[Lia(NixCo1-2x-yMnxMy)1-a]O2-bNb(M=B, Al, Fe, Cr으로 이루어진 군에서 선택된 적어도 하나 이상의 금속, 0.01≤a≤0.2, 0.01≤x≤0.5, 0.01≤y≤0.1, 0.01≤b≤0.1, N은 F 또는 S), 육방정계 층상 암염구조를 갖는 Li[Lia(NixCo1-2x-yMnx-z/2MyNz)1-a]O2-bNb (M=B, Al, Fe, Cr으로 이루어진 군에서 선택된 적어도 하나 이상의 금속, N=Mg 또는 Ca, 0.01≤a≤0.2, 0.01≤x≤0.5, 0.01≤y≤0.1, 0.01≤b≤0.1, N은 F 또는 S), 올리빈(Olivine)구조를 갖는 LiMxFe1-xPO4 (M=Co, Ni, Mn으로 이루어진 군에서 선택된 적어도 하나 이상의 금속, 0≤x≤1), 큐빅구조를 갖는 스피넬 Li1+a[Mn2-xMx]O4-bNb(0.01≤ a≤0.15, 0.01≤b≤0.2, M=Co, Ni, Cr, Mg, Al, Zn, Mo, W 0.01≤x≤0.1, N은 F 또는 S) 및 큐빅구조를 갖는 스피넬 Li1+a[Ni0.5Mn1.5-xMx]O4-bNb(0.01≤a≤0.15, 0.01≤b≤0.2, 0.01≤x≤0.1, M=Co, Ni, Cr, Mg, Al, Zn, Mo, W군에서 선택된 적어도 하나 이상의 금속이며 N은 F 또는 S) 중 어느 하나인 것을 특징으로 한다.The positive electrode active material to which the fluorine compound is added is Li 1 + a [Co 1-x M x ] O 2-b N b having a hexagonal layered rock salt structure (0.01 ≦ a ≦ 0.2, 0.01 ≦ b ≦ 0.2, 0.01 ≦ x≤0.1, M = Mg, Al, Ni, Mn, Zn, Fe, Cr, Ga, Mo and W at least one metal selected from the group, N is F or S), Li having a hexagonal layered rock salt structure 1 + a [Ni 1-x M x ] O 2-b N b (0.01 ≦ a ≦ 0.2, 0.01 ≦ b ≦ 0.2, 0.01 ≦ x ≦ 0.5, M = Mg, Al, Co, Mn, Zn, Fe, At least one metal selected from the group consisting of Cr, Ga, Mo, W, N is F or S), Li 1 + a [Ni 1-xy Co x Mn y ] O 2-b having a hexagonal layered rock salt structure N b (0.01 ≦ a ≦ 0.2, 0.01 ≦ b ≦ 0.1, 0.05 ≦ x ≦ 0.3, 0.1 ≦ y ≦ 0.35, 0.15 ≦ x + y ≦ 0.6, N is F or S), Li having a hexagonal layered rock salt structure [Li a (Ni x Co 1-2x Mn x ) 1-a ] O 2-b N b (0.01≤a≤0.2, 0.01≤x≤0.5, 0.01≤b≤0.1, N is F or S), hexagonal Li [Li a (Ni x Co 1-2x Mn xy / 2 M y ) 1-a ] O 2 -b N b (M = Mg, Ca, Cu, Zn at least one metal selected from the group consisting of, 0.01≤a≤0.2, 0.01≤x≤0.5, 0.01≤y≤0.1, 0.01≤b≤0.1, N is F or S), Li [Li a (Ni 1/3 Co (1 / 3-2x) Mn ( 1/3 + x) M x ) 1-a ] O 2-b with hexagonal layered rock salt structure N b (at least one metal selected from the group consisting of M = Mg, Ca, Cu, Zn, 0.01 ≦ a ≦ 0.2, 0.01 ≦ x ≦ 0.5, 0.01 ≦ y ≦ 0.1, 0.01 ≦ bV0.1, N is F or S), consisting of Li [Li a (Ni x Co 1-2x-y Mn x M y ) 1-a ] O 2-b N b (M = B, Al, Fe, Cr) with hexagonal layered rock salt structure At least one metal selected from the group, 0.01 ≦ a ≦ 0.2, 0.01 ≦ x ≦ 0.5, 0.01 ≦ y ≦ 0.1, 0.01 ≦ b ≦ 0.1, N is F or S), Li [Li a having a hexagonal layered rock salt structure (Ni x Co 1-2x-y Mn xz / 2 M y N z ) 1-a ] O 2-b N b (M = B, at least one metal selected from the group consisting of Al, Fe, Cr, N = Mg or Ca, 0.01≤a≤0.2, 0.01≤x≤0.5, 0.01≤y≤0.1, 0.01≤b≤0.1, N is F or S), LiM x Fe 1-x PO 4 having an olivine structure (M = Co, Ni, Mn at least one metal selected from the group consisting of, 0≤x≤1), having a cubic structure Spinel Li 1 + a [Mn 2-x M x ] O 4-b N b (0.01 ≦ a ≦ 0.15, 0.01 ≦ b ≦ 0.2, M = Co, Ni, Cr, Mg, Al, Zn, Mo, W 0.01 ≤ x ≤ 0.1, N is F or S) and spinel Li 1 + a having a cubic structure [Ni 0.5 Mn 1.5-x M x ] O 4-b N b (0.01 ≦ a ≦ 0.15, 0.01 ≦ b ≦ 0.2, 0.01 ≦ x ≦ 0.1, M = Co, Ni, Cr, Mg, Al, Zn, Mo, W and at least one metal selected from the group, N is characterized in that any one of F or S).

또한 본 발명에서는 고분산도의 미세분말 원소전구체 용액에 플루오르(F)가 용해된 용액을 첨가하여, 50 ℃내지 150℃에서 1 내지 48시간 반응하여 착염형태의 고분산도의 미세분말 불소화합물을 형성한 후, 상기 형성된 미세분말 불소화합물을 110℃에서 6 내지 24시간 건조 시킨 후, 150℃ 내지 900℃에서 1 내지 20시간 동안 산화성 분위기, 환원성 분위기 및 진공상태 중 어느 한 상태 하에서 열처리하여 미세분말 불소화합물을 준비한 후, 리튬이차전지용 양극 활물질 100중량부 대비 0.05 내지 10 중량부의 상기 미세분말 불소화합물을 첨가하여 균일하게 혼합하는 것을 특징으로 하는 리튬이차전지용 양극 활물질의 제조방법이 제공된다.In the present invention, a solution of fluorine (F) is added to a highly dispersed fine powder element precursor solution, and reacted at 50 ° C. to 150 ° C. for 1 to 48 hours to form a highly dispersed fine powder fluorine compound. Thereafter, the formed fine powder fluorine compound is dried at 110 ° C. for 6 to 24 hours, and then heat treated at 150 ° C. to 900 ° C. for 1 to 20 hours under any one of an oxidizing atmosphere, a reducing atmosphere, and a vacuum state to form a fine powder fluorine compound. After the preparation, a method for producing a cathode active material for a lithium secondary battery, characterized in that uniform mixing by adding 0.05 to 10 parts by weight of the fine powder fluorine compound relative to 100 parts by weight of the cathode active material for lithium secondary batteries.

상기 원소전구체 용액은 0.1 내지 3M 농도의 것을 사용하고, 플루오르(F)가 용해된 용액은 0.1 내지 18M 농도의 것을 사용하여 50℃ 내지 150℃에서 1 내지 48시간 반응하여 착염형태의 고분산도의 미세분말 불소화합물을 형성하는 것을 특징으로 한다.The element precursor solution is used in a concentration of 0.1 to 3M, the solution in which fluorine (F) is dissolved is reacted for 1 to 48 hours at 50 ℃ to 150 ℃ using a 0.1 to 18 M concentration of fine dispersion of complex salt form It is characterized by forming a powdered fluorine compound.

상기 원소 전구체는 Cs, K, Li, Na, Rb, Ti, Ag(Ⅰ), Ag(Ⅱ), Ba, Ca, Cu, Cd, Fe, Hg(Ⅱ), Hg(Ⅰ), Mn(Ⅱ), Mg, Ni, Pb, Sn, Sr, Xe, Zn, Al, B, Bi(Ⅲ), Ce(Ⅲ), Cr, Dy, Eu, Ga, Gd, Fe, Ho, In, La, Lu, Mn(Ⅲ), Nd, VO, Pr, Sb(Ⅲ), Sc, Sm, Tb, Ti(Ⅲ), Tm, Y, Yb, TI, Ce(Ⅳ), Ge, Hf, Si, Sn, Ti(Ⅳ), V, Zr, Nb, Sb(Ⅴ), Ta, Bi(Ⅴ), Mo, Re, S 및 W로 이루어진 군에서 선택되는 적어도 하나 이상의 원소의 알콕사이드염, 황산염, 질산염, 초산염, 염화염, 인산염 중 어느 한 화합물인 것을 특징으로 한다.The element precursors include Cs, K, Li, Na, Rb, Ti, Ag (I), Ag (II), Ba, Ca, Cu, Cd, Fe, Hg (II), Hg (I), Mn (II) , Mg, Ni, Pb, Sn, Sr, Xe, Zn, Al, B, Bi (III), Ce (III), Cr, Dy, Eu, Ga, Gd, Fe, Ho, In, La, Lu, Mn (III), Nd, VO, Pr, Sb (III), Sc, Sm, Tb, Ti (III), Tm, Y, Yb, TI, Ce (IV), Ge, Hf, Si, Sn, Ti (IV ), V, Zr, Nb, Sb (V), Ta, Bi (V), Mo, Re, S and W alkoxide salts, sulfates, nitrates, acetates, chlorides of at least one element selected from the group consisting of It is characterized by any one of phosphate compounds.

상기 원소전구체를 착염형태로 침전시키기 위한 플루오르(F)가 용해된 용액은 NH4F, HF, A(Anhydrous)HF 등 원소전구체를 착염형태로 침전시키기 위해 플루오르(F)를 제공할 수 있는 화합물 군에서 선택되는 적어도 하나 이상의 화합물의 용액인 것을 특징으로 한다.A solution in which fluorine (F) is dissolved to precipitate the elemental precursor in the form of a complex salt is a compound capable of providing fluorine (F) to precipitate the elemental precursor, such as NH 4 F, HF, and A (Anhydrous) HF, in the form of a complex salt. It is characterized in that the solution of at least one compound selected from the group.

이하 본 발명을 보다 상세히 설명하기로 한다.       Hereinafter, the present invention will be described in more detail.

본 발명은 리튬이차전지의 수명특성, 특히 고압 및 고율에서 성능이 저하되는 현상을 방지하기 위해 미세분말 불소화합물을 형성하고 이를 양극 활물질에 첨가하여 이루어진 리튬이차전지용 양극 활물질에 관한 것이다.The present invention relates to a cathode active material for a lithium secondary battery formed by forming a fine powder fluorine compound and adding it to the cathode active material in order to prevent the life characteristics of the lithium secondary battery, in particular, the performance degradation at high pressure and high rate.

본 발명의 제조방법에서는 리튬이차전지용 양극 활물질의 첨가제로 사용될 미세분말 불소화합물을 합성하는데, 합성하는 불소화합물은 CsF, KF, LiF, NaF, RbF, TiF, AgF, AgF₂, BaF2, CaF2, CuF2, CdF2, FeF2, HgF2, Hg2F2, MnF2, MgF2, NiF2, PbF2, SnF2, SrF2, XeF2, ZnF2, AlF3, BF3, BiF3, CeF3, CrF3, DyF3, EuF3, GaF3, GdF3, FeF3, HoF3, InF3, LaF3, LuF3, MnF3, NdF3, VOF3, PrF3, SbF3, ScF3, SmF3, TbF3, TiF3, TmF3, YF3, YbF3, TIF3, CeF4, GeF4, HfF4, SiF4, SnF4, TiF4, VF4, ZrF4, NbF5, SbF5, TaF5, BiF5, MoF6, ReF6, SF6 및 WF6 으로 이루어진 군과 불소가 포함된 모든 화합물으로부터 어느 하나이상이 선택될 수 있다.. In the production method of the present invention synthesizes a fine powder fluorine compound to be used as an additive of the positive electrode active material for lithium secondary batteries, the fluorine compound to be synthesized is CsF, KF, LiF, NaF, RbF, TiF, AgF, AgF₂, BaF 2 , CaF 2 , CuF 2 , CdF 2 , FeF 2 , HgF 2 , Hg 2 F 2 , MnF 2 , MgF 2 , NiF 2 , PbF 2 , SnF 2 , SrF 2 , XeF 2 , ZnF 2 , AlF 3 , BF 3 , BiF 3 , CeF 3, CrF 3, DyF 3 , EuF 3, GaF 3, GdF 3, FeF 3, HoF 3, InF 3, LaF 3, LuF 3, MnF 3, NdF 3, VOF 3, PrF 3, SbF 3, ScF 3 , SmF 3 , TbF 3 , TiF 3 , TmF 3 , YF 3 , YbF 3 , TIF 3 , CeF 4 , GeF 4 , HfF 4 , SiF 4 , SnF 4 , TiF 4 , VF 4 , ZrF 4 , NbF 5 , SbF 5, TaF 5, BiF 5, MoF 6, ReF 6, there is more than one from any compound containing the group consisting of fluorine and SF 6 and WF 6 can be selected.

본 발명의 미세분말 불소화합물의 면은 비정질(amorphous), 결정질, 또는 결정질과 비정질이 혼합된 형태이다.The surface of the fine powder fluorine compound of the present invention is amorphous, crystalline, or a mixture of crystalline and amorphous.

본 발명에서는 리튬이차전지용 양극 활물질 첨가제인 미세분말 불소화합물의 바람직한 제조방법으로서 고분산도의 미세분말 원소전구체 용액에 플루오르(F)가 용해된 용액을 첨가하여, 50℃ 내지 150℃에서 1 내지 48시간 반응하여 착염형태의 고분산도의 미세분말 불소화합물을 형성한 후, 상기 형성된 미세분말 불소화합물을 110℃에서 6 내지 24시간 건조 시킨 후, 150℃ 내지 900℃에서 1 내지 20시간 동안 산화성 분위기, 환원성 분위기 및 진공상태 중 어느 한 상태 하에서 열처리하여 미세분말 불소화합물을 제공할 수 있다. 이렇게 공침반응 온도를 높이는 이유는 원소전구체의 공침은 높은 온도에서는 착염형태로 고분산도의 침전물을 얻을 수 있기 때문이다.In the present invention, as a preferred method for preparing a fine powder fluorine compound, which is a positive electrode active material additive for a lithium secondary battery, a solution in which fluorine (F) is dissolved is added to a high powder fine powder element precursor solution, and is then subjected to 1 to 48 hours at 50 ° C to 150 ° C. After the reaction to form a high-dispersity fine powder fluorine compound in the form of a complex salt, the formed fine powder fluorine compound is dried for 6 to 24 hours at 110 ℃, then oxidizing atmosphere, reducing for 1 to 20 hours at 150 ℃ to 900 ℃ The heat treatment may be performed under any one of an atmosphere and a vacuum to provide a fine powder fluorine compound. The reason for raising the coprecipitation reaction temperature is that the coprecipitation of the element precursor can obtain a highly dispersed precipitate in the form of a complex salt at a high temperature.

상기 방법과 같이 원소전구체가 녹아있는 용액에 플루오르(F)가 포함된 용액을 혼합하면 일정시간 후 미세분말 불소화합물을 형성하게 되며, 이 형성된 미세분말 불소화합물을 열처리하여 리튬이차전지용 양극 활물질 첨가제로 사용할 수 있다. 원소전구체 용액과 플루오르가(F)가 포함된 용액을 혼합하여 불소화합물을 형 성하므로 플루오르(F)가 포함된 용액을 첨가할 때 침전속도를 조절할 필요가 없다. 또한 미리 원소전구체 및 플루오르(F)를 혼합하여 불소화합물을 형성하기 때문에 사용하는 용매의 양을 줄일 수 있다. 예컨대 사용하는 용매가 알코올과 에테르 알코올의 경우 증류수 보다 고가의 시약이기 때문에 용매의 양을 줄이기 되면 불소화합물 합성과정에서 비용을 절감할 수가 있다.   As described above, when a solution containing fluorine (F) is mixed with a solution in which the element precursor is dissolved, a fine powder fluorine compound is formed after a predetermined time, and the formed fine powder fluorine compound is heat-treated as a cathode active material additive for a lithium secondary battery. Can be used. Since the fluorine compound is formed by mixing the element precursor solution and the solution containing fluorine (F), it is not necessary to adjust the precipitation rate when adding the solution containing fluorine (F). In addition, since the fluorine compound is formed by mixing the element precursor and fluorine (F) in advance, the amount of solvent used can be reduced. For example, since the solvent used is a reagent that is more expensive than distilled water in the case of alcohol and ether alcohol, reducing the amount of solvent can reduce the cost in the fluorine compound synthesis process.

구체적으로 설명하면, 먼저 상기 Cs, K, Li, Na, Rb, Ti, Ag(Ⅰ), Ag(Ⅱ), Ba, Ca, Cu, Cd, Fe, Hg(Ⅱ), Hg(Ⅰ), Mn(Ⅱ), Mg, Ni, Pb, Sn, Sr, Xe, Zn, Al, B, Bi(Ⅲ), Ce(Ⅲ), Cr, Dy, Eu, Ga, Gd, Fe, Ho, In, La, Lu, Mn(Ⅲ), Nd, VO, Pr, Sb(Ⅲ), Sc, Sm, Tb, Ti(Ⅲ), Tm, Y, Yb, TI, Ce(Ⅳ), Ge, Hf, Si, Sn, Ti(Ⅳ), V, Zr, Nb, Sb(Ⅴ), Ta, Bi(Ⅴ), Mo, Re, S, W 의 군으로 이루어진 원소전구체 하나이상을 메탄올, 에탄올 및 이소프로판올 등의 알코올 용액이나 에틸렌글리콜, 부틸 글리콜 등의 에테르 용액 또는 증류수에 용해 한 후, 플루오르(F)가 포함된 용액을 혼합하여 미세분말 불소화합물을 형성한다. Specifically, the Cs, K, Li, Na, Rb, Ti, Ag (I), Ag (II), Ba, Ca, Cu, Cd, Fe, Hg (II), Hg (I), Mn (II), Mg, Ni, Pb, Sn, Sr, Xe, Zn, Al, B, Bi (III), Ce (III), Cr, Dy, Eu, Ga, Gd, Fe, Ho, In, La, Lu, Mn (III), Nd, VO, Pr, Sb (III), Sc, Sm, Tb, Ti (III), Tm, Y, Yb, TI, Ce (IV), Ge, Hf, Si, Sn, One or more elemental precursors consisting of Ti (IV), V, Zr, Nb, Sb (V), Ta, Bi (V), Mo, Re, S, and W may be selected from alcohol solutions such as methanol, ethanol and isopropanol or ethylene. After dissolving in distilled water or an ether solution such as glycol and butyl glycol, a solution containing fluorine (F) is mixed to form a fine powder fluorine compound.

이때 사용되는 원소전구체 용액은 0.1 내지 3M 농도의 것을 사용하고, 플루오르(F)가 포함된 용액은 0.1 내지 18M 농도의 것을 사용하는 것이 바람직하다. 상기 원소 전구체로는 메톡사이드, 에톡사이드, 이소프로폭사이드 및 부톡사이드 등의 알콕사이드염 또는 황산염, 질산염, 초산염, 염화염, 또는 산화물염이 사용될 수 있다. 또한 상기 원소전구체를 착염형태로 침전시키기 위해 플루오르(F)가 포함된 용액은 NH4F, HF, A(Anhydrous)HF 등 플루오르(F)가 포함된 것이 사용될 수 있 다. 상기 원소전구체 용액과 플루오르(F)가 포함된 용액을 혼합하여 50℃ 내지 150℃에서 1 내지 48시간 반응시킨다. At this time, the element precursor solution to be used is used in the concentration of 0.1 to 3M, the solution containing fluorine (F) is preferably used in the concentration of 0.1 to 18M. As the element precursor, an alkoxide salt such as methoxide, ethoxide, isopropoxide and butoxide, or sulfate, nitrate, acetate, chloride, or oxide salt may be used. In addition, the solution containing fluorine (F) to precipitate the element precursor in the form of a complex salt may be used that contains fluorine (F), such as NH 4 F, HF, A (Anhydrous) HF. The element precursor solution and the solution containing fluorine (F) are mixed and reacted at 50 ° C. to 150 ° C. for 1 to 48 hours.

또 다른 방법을 구체적으로 설명하면, 고분산도의 미세분말 원소전구체가 녹아있는 용액에 플루오르(F)가 포함된 용액을 일정한 속도로 첨가하여 50℃ 내지 150℃에서 1 내지 48시간 반응하여 착염형태의 미세분말 불소화합물을 형성하는 것을 특징으로 하는 미세분말 불소화합물 제조방법이 제공된다. 이렇게 공침반응 온도를 높이는 이유는 원소전구체의 공침은 높은 온도에서는 착염형태로 고분산도의 침전물을 얻을 수 있기 때문이다. Another method will be described in detail, by adding a solution containing fluorine (F) at a constant rate to a solution in which the highly dispersed fine powder element precursor is dissolved, and reacting at 50 to 150 ° C. for 1 to 48 hours to form a complex salt. There is provided a method for producing a fine powder fluorine compound, characterized in that to form a fine powder fluorine compound. The reason for raising the coprecipitation reaction temperature is that the coprecipitation of the element precursor can obtain a highly dispersed precipitate in the form of a complex salt at a high temperature.

전술한 방법과 같이 원소전구체 및 플루오르(F)를 혼합하여 불소화합물을 형성할 때 원소전구체 특성상 생기는 불소화합물이 고분산도의 미세분말을 형성하지 못하고, 서로 뭉치는 현상이 강해 불소화합물이 큰 분말을 형성하는 경우 양극 활물질에 첨가하여도 특성이 향상되는 효과를 보지 못할 수도 있다. 따라서 이런 경우에는 상기와 같이 플루오르(F)가 포함된 용액을 일정한 속도로 첨가하여 침전속도를 조절해 불소화합물이 고분산도의 미세분말 형태로 형성되도록 하는 것이 좋다. As described above, when the fluorine compound is formed by mixing the element precursor and fluorine (F), the fluorine compound generated due to the characteristics of the element precursor does not form a fine powder of high dispersion, and agglomerates with each other. When forming, even if added to the positive electrode active material may not see the effect of improving the characteristics. Therefore, in this case, as described above, it is preferable to add a solution containing fluorine (F) at a constant rate to control the precipitation rate so that the fluorine compound is formed in the form of fine powder of high dispersion.

먼저 상기 Cs, K, Li, Na, Rb, Ti, Ag(Ⅰ), Ag(Ⅱ), Ba, Ca, Cu, Cd, Fe, Hg(Ⅱ), Hg(Ⅰ), Mn(Ⅱ), Mg, Ni, Pb, Sn, Sr, Xe, Zn, Al, B, Bi(Ⅲ), Ce(Ⅲ), Cr, Dy, Eu, Ga, Gd, Fe, Ho, In, La, Lu, Mn(Ⅲ), Nd, VO, Pr, Sb(Ⅲ), Sc, Sm, Tb, Ti(Ⅲ), Tm, Y, Yb, TI, Ce(Ⅳ), Ge, Hf, Si, Sn, Ti(Ⅳ), V, Zr, Nb, Sb(Ⅴ), Ta, Bi(Ⅴ), Mo, Re, S, W 의 군으로 이루어진 원소전구체 하나이상을 예컨대 메탄올, 에탄올, 및 이소프로판올 등의 알코올 용액이나 에틸렌 글라이콜, 부틸 글라이콜 등의 에테르 용액 및 증류수에 용해 한 후, 플루오르(F)가 포함된 용액을 일정한 속도로 첨가하여 고분산도의 미세분말 불소화합물을 형성한다. First Cs, K, Li, Na, Rb, Ti, Ag (I), Ag (II), Ba, Ca, Cu, Cd, Fe, Hg (II), Hg (I), Mn (II), Mg , Ni, Pb, Sn, Sr, Xe, Zn, Al, B, Bi (III), Ce (III), Cr, Dy, Eu, Ga, Gd, Fe, Ho, In, La, Lu, Mn (Ⅲ ), Nd, VO, Pr, Sb (III), Sc, Sm, Tb, Ti (III), Tm, Y, Yb, TI, Ce (IV), Ge, Hf, Si, Sn, Ti (IV), One or more element precursors consisting of a group of V, Zr, Nb, Sb (V), Ta, Bi (V), Mo, Re, S, W may be used, for example, an alcohol solution such as methanol, ethanol, and isopropanol or ethylene glycol. After dissolving in ether solution such as butyl glycol and distilled water, a solution containing fluorine (F) is added at a constant rate to form a fine powder fluorine compound of high dispersion.

이때 사용되는 원소전구체 용액은 0.1 내지 3M 농도의 것을 사용하고, 플루오르(F)가 포함된 용액은 0.1 내지 18M 농도의 것을 사용하는 것이 바람직하다. 상기 원소전구체로는 메톡사이드, 에톡사이드, 이소프로폭사이드 및 부톡사이드 등의 알콕사이드염 또는 황산염, 질산염, 초산염, 염화염, 또는 산화물염 등이 사용될 수 있다. 또한 상기 원소전구체를 착염형태로 침전시키기 위해 플루오르(F)를 제공할 수 있는 NH4F, HF, A(Anhydrous)HF 등 플루오르(F)가 포함된 것이 사용될 수 있다.상기 원소전구체 용액에 플루오르(F)가 포함된 용액을 일정한 속도로 첨가하여 50℃ 내지 150℃에서 1 내지 48시간 반응시킨다.At this time, the element precursor solution to be used is used in the concentration of 0.1 to 3M, the solution containing fluorine (F) is preferably used in the concentration of 0.1 to 18M. As the element precursor, an alkoxide salt such as methoxide, ethoxide, isopropoxide and butoxide, or sulfate, nitrate, acetate, chloride, or oxide salt may be used. In addition, fluorine (F) such as NH 4 F, HF, and A (Anhydrous) HF, which may provide fluorine (F), may be used to precipitate the element precursor in a complex salt form. The solution containing (F) was added at a constant rate and reacted at 50 ° C. to 150 ° C. for 1 to 48 hours.

본 발명에서는 상기 형성된 미세분말 불소화합물을 110℃에서 6 내지 24시간 건조 시킨 후, 150℃ 내지 900℃에서 1 내지 20시간 동안 산화성 분위기, 환원성 분위기 및 진공상태 중 어느 한 상태 하에서 추가적으로 열처리하여 리튬이차전지용 양극 활물질 첨가제로 사용할 수 있는데 이러한 열처리 공정을 통해 미처 제거하지 못한 불순물을 제거하여 원하는 미세분말 불소화합물 형태로 만들어 준다.In the present invention, the formed fine powder fluorine compound is dried for 6 to 24 hours at 110 ℃, and further heat treatment under any one of oxidizing atmosphere, reducing atmosphere and vacuum for 1 to 20 hours at 150 ℃ to 900 ℃ lithium secondary It can be used as a positive electrode active material additive for batteries, and this heat treatment process removes impurities that could not be removed to make a desired fine powder fluorine compound form.

상기 합성된 미세분말 불소화합물 첨가에 의해 양극 활물질 근처에서 생성되는 산에 대한 영향력을 감소시키거나, 양극 활물질과 전해액과의 반응성을 억제함으로써, 전지의 용량이 급격하게 줄어드는 현상을 개선할 수 있어 충방전 특성, 수명특성, 고전압, 고율특성이 향상된 양극 활물질을 제공할 수 있다. By adding the synthesized fine powder fluorine compound to reduce the influence on the acid generated near the positive electrode active material, or by suppressing the reactivity of the positive electrode active material and the electrolyte, it is possible to improve the phenomenon that the capacity of the battery is sharply reduced A cathode active material having improved discharge characteristics, lifespan characteristics, high voltage, and high rate characteristics can be provided.

본 발명에서는 합성된 미세분말 불소화합물이 첨가된 리튬이차전지용 양극 활물질의 바람직한 제조방법으로서 리튬이차전지용 양극 활물질 및 상기 양극 활물질 대비 0.05 내지 10 중량 %인 미세분말 불소화합물을 균일하게 혼합하여 불소화합물이 첨가된 리튬이차전지용 양극 활물질을 제조한다.        In the present invention, as a preferred method for producing a cathode active material for a lithium secondary battery to which the synthesized fine powder fluorine compound is added, a fluorine compound is uniformly mixed with a lithium secondary battery cathode active material and a fine powder fluorine compound of 0.05 to 10% by weight relative to the cathode active material. An added positive electrode active material for a lithium secondary battery is prepared.

본 발명에서는 상기 합성된 미세분말 불소화합물이 균일하게 혼합된 양극 활물질을 150℃ 내지 600℃에서 1 내지 20시간 동안 산화성 분위기, 환원성 분위기 및 진공상태 중 어느 한 상태 하에서 추가적으로 열처리하여 미세분말 불소화합물이 첨가된 리튬이차전지용 양극 활물질로 사용할 수 있는데 이러한 열처리 공정을 통해 불소화합물과 양극 활물질의 결합력을 증가시켜 준다.       In the present invention, the fine powder fluorine compound is further heat-treated in any one of an oxidizing atmosphere, a reducing atmosphere and a vacuum state for 1 to 20 hours at 150 ℃ to 600 ℃ mixed fine powder fluorine compound synthesized uniformly It can be used as a positive electrode active material for a lithium secondary battery, which increases the bonding strength of the fluorine compound and the positive electrode active material through this heat treatment process.

이하, 실시예를 들어 본 발명을 구체적으로 설명하지만, 이들 실시예로 본 발명이 한정되는 것은 아니다.Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these Examples.

[실시예 1]Example 1

1. AlF3의 제조1. Preparation of AlF 3

500㎖ 비이커에 0.25M의 Al(NO3)3·9H2O를 100㎖의 증류수에 용해시킨 후 0.75M의 NH4F 100㎖ 용액을 제조하고 반응기온도를 80℃ 정도로 유지한 후, 1㎖/min의 유량으로 혼합하였으며, 공침반응 후 12시간동안 교반하였다. 반응조의 평균 온도는 80℃정도로 유지하였다. 이렇게 공침반응 온도를 높이는 것은 AlF3의 공침은 높은 온도에서는 착염형태로 고분산도의 침전물을 얻기 수 있기 때문이다. 이렇게 얻은 불소화합물을 증류수로 여러 번 세척하고 110℃ 온풍항온조에서 12시간 건조시킨 후, 불활성 분위기 하에서 400℃로 열처리하여 AlF3를 제조하였다. After dissolving 0.25 M Al (NO 3 ) 3 .9H 2 O in 100 ml distilled water in a 500 ml beaker, a 0.75 M NH 4 F 100 ml solution was prepared and the reactor temperature was maintained at about 80 ° C., followed by 1 ml The mixture was mixed at a flow rate of / min, and stirred for 12 hours after the coprecipitation reaction. The average temperature of the reactor was maintained at about 80 ° C. The higher coprecipitation reaction temperature is because the coprecipitation of AlF 3 can obtain a highly dispersed precipitate in the form of a complex salt at a high temperature. The fluorine compound thus obtained was washed several times with distilled water, dried in a 110 ° C. warm air bath for 12 hours, and then heat-treated at 400 ° C. under inert atmosphere to prepare AlF 3 .

2. AlF3의 특성평가 2. Characterization of AlF 3

i) XRDi) XRD

상기 제조된 AlF3를 X선 회절 분석장치(상표명:Rint-2000, 회사명: Rigaku, Japan)를 이용하여 X선 회절 패턴을 측정하고 이를 도 2에 나타내었다.The prepared AlF 3 was measured using an X-ray diffraction analyzer (trade name: Rint-2000, company name: Rigaku, Japan), and the X-ray diffraction pattern was measured and shown in FIG. 2.

ii) SEM ( Scanning Electron Microscopy )ii) Scanning Electron Microscopy

상기 실시예 1의 방법에서 제조되는 AlF3의 SEM(상표명:JSM 6400, 회사명:JEOL, Japan) 사진을 도 3에 나타내었다.A SEM (trade name: JSM 6400, company name: JEOL, Japan) photograph of AlF 3 prepared in the method of Example 1 is shown in FIG. 3.

3. AlF3가 첨가된 LiCoO2의 제조3. Preparation of LiCoO 2 with AlF 3

상용화되어 사용되고 있는 리튬이차전지용 양극 활물질 LiCoO2에 상기 제조된 AlF3 양극 활물질 대비 2 mol% 첨가해 균일하게 혼합하여 AlF3가 첨가된 LiCoO2를 제조하였다. AlF 3 prepared in the cathode active material LiCoO 2 for a lithium secondary battery that is commercially available and used 2 mol% of the positive electrode active material was added and uniformly mixed to prepare LiCoO 2 to which AlF 3 was added.

4. AlF3가 첨가된 LiCoO2의 특성평가 4. Characterization of LiCoO 2 with AlF 3

i) XRDi) XRD

상기 제조된 AlF3가 첨가된 LiCoO2을 X선 회절 분석장치(상표명:Rint-2000, 회사명: Rigaku, Japan)를 이용하여 X선 회절 패턴을 측정하고 이를 도 4에 나타내었다.LiCoO 2 to which AlF 3 was added was measured using an X-ray diffractometer (trade name: Rint-2000, company name: Rigaku, Japan), and the X-ray diffraction pattern was measured and shown in FIG. 4.

ii) SEM ( Scanning Electron Microscopy )ii) Scanning Electron Microscopy

상기 제조된 AlF3가 첨가된 LiCoO2의 SEM(상표명:JSM 6400, 회사명:JEOL, Japan) 사진을 도 5에 나타내었다.The SEM (trade name: JSM 6400, company name: JEOL, Japan) photograph of the prepared AlF 3 added LiCoO 2 is shown in FIG. 5.

ⅲ) EDS ( Energy Dispersive Spectroscopy )Iii) Energy Dispersive Spectroscopy (EDS)

상기 제조된 AlF3가 첨가된 LiCoO2의 EDS(상표명:JSM 6400, 회사명:JEOL, Japan) 사진을 도 7에 나타내었다. Al과 F가 고른 분포를 보이며 혼합되어 있었다. The EDS (trade name: JSM 6400, company name: JEOL, Japan) photograph of the prepared AlF 3 added LiCoO 2 is shown in FIG. 7. Al and F were evenly mixed.

5. 양극의 제조5. Manufacture of Anode

상기 제조된 본 발명의 AlF3가 첨가된 LiCoO2로 양극을 제조하기 위하여, AlF3가 첨가된 LiCoO2 20㎎, 테프론화된 아세틸렌 블랙(Taflonized acetylene black) 8㎎, 및 흑연(graphite) 4㎎을 균일하게 혼합하였다. 상기 혼합물을 스테인레스 엑스메트(Ex-met)을 이용하여 1톤의 압력으로 균일하게 압착하고, 130℃ 에서 건조하여 리튬 2차 전지용 양극을 제조하였다. In order to prepare a positive electrode with LiCoO 2 added with AlF 3 of the present invention, 20 mg of LiCoO 2 to which AlF 3 was added, 8 mg of Teflonized acetylene black, and 4 mg of graphite (graphite) Was mixed uniformly. The mixture was uniformly compressed at a pressure of 1 ton using stainless ex-met and dried at 130 ° C. to prepare a cathode for a lithium secondary battery.

6. 코인 전지의 제조6. Manufacturing of coin cell

상기 제조된 양극과 리튬호일을 상대전극으로 하며, 다공성 폴리에틸렌막(셀가르드 엘엘씨 제, Celgard 2300, 두께: 25㎛)을 세퍼레이터로 하고, 에틸렌 카보네이트: 디메틸 카보네이트= 1:1(부피비) 혼합용매의 1몰 LiPF6 용액을 액체 전해액으로 사용하여 리튬 전지의 통상적인 제조공정에 따라 2032 규격의 코인 전지(coin cell)를 제조하였다. The prepared anode and lithium foil were used as counter electrodes, and a porous polyethylene membrane (Celgard ELC, Celgard 2300, thickness: 25 µm) was used as a separator, and ethylene carbonate: dimethyl carbonate = 1: 1 (volume ratio) mixed solvent. A coin cell of the 2032 standard was prepared according to a conventional manufacturing process of a lithium battery using a 1 mol LiPF 6 solution of.

상기 제조된 전지의 특성을 평가하기 위하여 전기화학 분석장치(Toyo 사 제작, Toscat3000U, Japan)를 이용하여 상온(30℃), 3.0 ∼ 4.5 V의 전위영역, 및 0.2mA/㎠ 와 0.8mA/㎠의 전류밀도 조건에서 충ㆍ방전 실험을 하였다. 싸이클에 따른 용량을 도 8내지 도 9에 나타내었다. AlF3가 첨가된 LiCoO2경우, 50번째 싸이클까지 상온(30℃), 0.2mA/㎠에서 94.4%와 0.8mA/㎠에서 89% 용량유지율을 보여 싸이클 횟수에 따른 용량감소가 적어 수명 특성이 우수하였다In order to evaluate the characteristics of the prepared battery, using an electrochemical analyzer (manufactured by Toyo, Toscat3000U, Japan) at room temperature (30 ° C.), a potential region of 3.0 to 4.5 V, and 0.2 mA / cm 2 Charge and discharge experiments were carried out at a current density of 0.8 mA / cm 2. The capacity according to the cycle is shown in FIGS. 8 to 9. In case of LiCoO 2 with AlF 3 added, the 50% cycle is maintained at room temperature (30 ℃), 94.4% at 0.2mA / cm2 and 89% at 0.8mA / cm2. Was

[실시예 2]Example 2

1. ZrF4의 제조1. Preparation of ZrF 4

500㎖ 비이커에 0.25M의 ZrO(NO3)2·2H2O를 100㎖의 증류수에 용해시킨 후 1M의 NH4F 100㎖ 용액을 제조하고 반응기온도를 80℃ 정도로 유지한 후, 1㎖/min의 유량으로 혼합하였으며, 공침반응 후 12시간동안 교반하였다. 반응조의 평균 온도는 80℃정도로 유지하였다. 이렇게 공침반응 온도를 높이는 것은 ZrF4의 공침은 높은 온도에서는 착염형태로 고분산도의 침전물을 얻기 수 있기 때문이다. 이렇게 얻은 불소화합물을 증류수로 여러 번 세척하고 110℃ 온풍항온조에서 12시간 건조시킨 후, 불활성 분위기 하에서 열처리하여 ZrF4를 제조하였다. After dissolving 0.25 M ZrO (NO 3 ) 2 .2H 2 O in a 500 ml beaker in 100 ml of distilled water, a 100 ml solution of 1 M NH 4 F was prepared and the reactor temperature was maintained at about 80 ° C., followed by 1 ml / The mixture was mixed at a flow rate of min and stirred for 12 hours after the coprecipitation reaction. The average temperature of the reactor was maintained at about 80 ° C. The increase in the coprecipitation temperature is because the coprecipitation of ZrF 4 can obtain a highly dispersed precipitate in the form of a complex salt at a high temperature. The fluorine compound thus obtained was washed several times with distilled water, dried in a 110 ° C. warm air bath for 12 hours, and then heat-treated in an inert atmosphere to prepare ZrF 4 .

2. ZrF4가 첨가된 LiCoO2의 제조2. Preparation of LiCoO 2 with ZrF 4

상용화되어 사용되고 있는 리튬이차전지용 양극 활물질 LiCoO2에 상기 제조된 ZrF4 양극 활물질 대비 2 mol% 첨가해 균일하게 혼합하여 ZrF4가 첨가된 LiCoO2를 제조하였다. ZrF 4 prepared in the positive electrode active material LiCoO 2 for a lithium secondary battery which is commercially available and used 2 mol% of the positive electrode active material was added and uniformly mixed to prepare LiCoO 2 to which ZrF 4 was added.

3. 코인 전지의 제조 및 특성평가3. Manufacturing and Characterization of Coin Battery

상기 방법으로 제조된 ZrF4가 첨가된 LiCoO2을 이용하여 상기 실시예 1과 동 일한 방법으로 양극을 제조하고 이를 포함하는 코인 전지를 제조하였다.The positive electrode was manufactured in the same manner as in Example 1 using LiCoO 2 to which ZrF 4 was added, and a coin battery including the same was prepared.

상기 제조된 코인 전지의 특성을 평가하기 위하여 전기화학 분석장치(Toyo 사 제작, Toscat3000U, Japan)를 이용하여 30℃, 3.0 ∼ 4.5 V의 전위영역, 및 0.2 mA/㎠의 전류밀도 조건에서 충ㆍ방전 실험을 하였다. 싸이클에 따른 용량을 도 10에 나타내었다. 제조된 전지에서 싸이클 횟수에 따른 용량감소가 적어 수명 특성이 우수하였다.In order to evaluate the characteristics of the manufactured coin battery, the electrochemical analyzer (manufactured by Toyo, Toscat3000U, Japan) was used at 30 ° C., 3.0 to 4.5 V potential region, and 0.2 mA / cm 2 current density condition. Discharge experiments were made. The capacity according to the cycle is shown in FIG. 10. In the manufactured battery, the capacity was decreased according to the cycle number.

[실시예 3]Example 3

1. MgF2의 제조1. Preparation of MgF 2

500㎖ 비이커에 0.25M의 Mg(NO3)2·6H2O를 100㎖의 증류수에 용해시킨 후 0.5M의 NH4F 100㎖ 용액을 제조하고 반응기온도를 80℃ 정도로 유지한 후, 1㎖/min의 유량으로 혼합하였으며, 공침반응 후 12시간동안 교반하였다. 반응조의 평균 온도는 80℃정도로 유지하였다. 이렇게 공침반응 온도를 높이는 것은 MgF2의 공침은 높은 온도에서는 착염형태로 고분산도의 침전물을 얻기 수 있기 때문이다. 이렇게 얻은 불소화합물을 증류수로 여러 번 세척하고 110℃ 온풍항온조에서 12시간 건조시킨 후, 불활성 분위기 하에서 열처리하여 MgF2를 제조하였다. After dissolving 0.25 M of Mg (NO 3 ) 2 .6H 2 O in a 500 ml beaker in 100 ml of distilled water, a 100 ml solution of 0.5 M NH 4 F was prepared and the reactor temperature was maintained at about 80 ° C., followed by 1 ml The mixture was mixed at a flow rate of / min, and stirred for 12 hours after the coprecipitation reaction. The average temperature of the reactor was maintained at about 80 ° C. The increase in the coprecipitation temperature is because the coprecipitation of MgF 2 can obtain a highly dispersed precipitate in the form of a complex salt at a high temperature. The fluorine compound thus obtained was washed several times with distilled water, dried in a 110 ° C. warm air bath for 12 hours, and heat-treated under an inert atmosphere to prepare MgF 2 .

2. MgF2가 첨가된 LiCoO2의 제조2. Preparation of LiCoO 2 with MgF 2

상용화되어 사용되고 있는 리튬이차전지용 양극 활물질 LiCoO2에 상기 제조된 MgF2 양극 활물질 대비 2 mol% 첨가해 균일하게 혼합하여 MgF2가 첨가된 LiCoO2를 제조하였다. MgF 2 prepared in the cathode active material LiCoO 2 for a lithium secondary battery that is commercially available and used 2 mol% of the positive electrode active material was added and uniformly mixed to prepare LiCoO 2 to which MgF 2 was added.

3. 코인 전지의 제조 및 특성평가3. Manufacturing and Characterization of Coin Battery

상기 방법으로 제조된 MgF2가 첨가된 LiCoO2을 이용하여 상기 실시예 1과 동일한 방법으로 양극을 제조하고 이를 포함하는 코인 전지를 제조하였다.A positive electrode was prepared in the same manner as in Example 1 using LiCoO 2 to which MgF 2 was added by the above method, and a coin battery including the same was prepared.

상기 제조된 코인 전지의 특성을 평가하기 위하여 전기화학 분석장치(Toyo 사 제작, Toscat3000U, Japan)를 이용하여 30℃, 3.0 ∼ 4.5 V의 전위영역, 및 0.2 mA/㎠의 전류밀도 조건에서 충ㆍ방전 실험을 하였다. 싸이클에 따른 용량을 도 10에 나타내었다. 제조된 전지에서 싸이클 횟수에 따른 용량감소가 적어 수명 특성이 우수하였다.In order to evaluate the characteristics of the manufactured coin battery, the electrochemical analyzer (manufactured by Toyo, Toscat3000U, Japan) was used at 30 ° C., 3.0 to 4.5 V potential region, and 0.2 mA / cm 2 current density condition. Discharge experiments were made. The capacity according to the cycle is shown in FIG. 10. In the manufactured battery, the capacity was decreased according to the cycle number.

[실시예 4]Example 4

1. ZnF2의 제조1. Preparation of ZnF 2

500㎖ 비이커에 0.25M의 Zn(NO3)2·2H2O를 100㎖의 증류수에 용해시킨 후 0.5M의 NH4F 100㎖ 용액을 제조하고 반응기온도를 80℃ 정도로 유지한 후, 1㎖/min의 유량으로 혼합하였으며, 공침반응 후 12시간동안 교반하였다. 반응조의 평균 온 도는 80℃정도로 유지하였다. 이렇게 공침반응 온도를 높이는 것은 ZnF2의 공침은 높은 온도에서는 착염형태로 고분산도의 침전물을 얻기 수 있기 때문이다. 이렇게 얻은 불소화합물을 증류수로 여러 번 세척하고 110℃ 온풍항온조에서 12시간 건조시킨 후, 불활성 분위기 하에서 열처리하여 ZnF2를 제조하였다.After dissolving 0.25 M Zn (NO 3 ) 2 .2H 2 O in a 500 ml beaker in 100 ml of distilled water, a 100 ml solution of 0.5 M NH 4 F was prepared and the reactor temperature was maintained at about 80 ° C., followed by 1 ml The mixture was mixed at a flow rate of / min, and stirred for 12 hours after the coprecipitation reaction. The average temperature of the reactor was maintained at about 80 ℃. The higher coprecipitation reaction temperature is because the coprecipitation of ZnF 2 can obtain a highly dispersed precipitate in the form of a complex salt at a high temperature. The fluorine compound thus obtained was washed several times with distilled water, dried in a 110 ° C. warm air bath for 12 hours, and then heat-treated in an inert atmosphere to prepare ZnF 2 .

2. ZnF2가 첨가된 LiCoO2의 제조2. Preparation of LiCoO 2 with ZnF 2

상용화되어 사용되고 있는 리튬이차전지용 양극 활물질 LiCoO2에 상기 제조된 ZnF2 양극 활물질 대비 2 mol% 첨가해 균일하게 혼합하여 ZnF2가 첨가된 LiCoO2를 제조하였다. ZnF 2 prepared in the cathode active material LiCoO 2 for a lithium secondary battery that is commercially available and used 2 mol% of the positive electrode active material was added and uniformly mixed to prepare LiCoO 2 to which ZnF 2 was added.

3. 코인 전지의 제조 및 특성평가3. Manufacturing and Characterization of Coin Battery

상기 방법으로 제조된 ZnF2가 첨가된 LiCoO2을 이용하여 상기 실시예 1과 동일한 방법으로 양극을 제조하고 이를 포함하는 코인 전지를 제조하였다.A positive electrode was prepared in the same manner as in Example 1 using LiCoO 2 to which ZnF 2 was added, and a coin battery including the same was prepared.

상기 제조된 코인 전지의 특성을 평가하기 위하여 전기화학 분석장치(Toyo 사 제작, Toscat3000U, Japan)를 이용하여 30℃, 3.0 ∼ 4.5 V의 전위영역, 및 0.2 mA/㎠의 전류밀도 조건에서 충ㆍ방전 실험을 하였다. 싸이클에 따른 용량을 도 10에 나타내었다. 제조된 전지에서 싸이클 횟수에 따른 용량감소가 적어 수명 특성이 우수하였다.In order to evaluate the characteristics of the manufactured coin battery, the electrochemical analyzer (manufactured by Toyo, Toscat3000U, Japan) was used at 30 ° C., 3.0 to 4.5 V potential region, and 0.2 mA / cm 2 current density condition. Discharge experiments were made. The capacity according to the cycle is shown in FIG. 10. In the manufactured battery, the capacity was decreased according to the cycle number.

[실시예 5] Example 5

상기 실시예 1과 동일한 방법으로 AlF3가 첨가된 LiNi0.5Mn0.5O2를 제조하고 특성을 평가한 후, AlF3가 첨가된 LiNi0.5Mn0.5O2를 이용하여 전지를 제조하였다. 제조된 코인 전지의 특성을 평가하기 위하여 전기화학 분석장치(Toyo 사 제작, Toscat3000U, Japan)를 이용하여 30℃, 2.8 ∼ 4.5 V의 전위영역, 및 0.2mA/㎠와 0.8mA/㎠ 의 전류밀도 조건에서 충ㆍ방전 실험을 하였다. 싸이클에 따른 용량을 도 12내지 도 13에 나타내었다. 제조된 전지에서 싸이클 횟수에 따른 용량감소가 적어 수명 특성이 우수하였다.LiNi 0.5 Mn 0.5 O 2 to which AlF 3 was added and evaluated in the same manner as in Example 1, and then a battery was prepared using LiNi 0.5 Mn 0.5 O 2 to which AlF 3 was added. In order to evaluate the characteristics of the manufactured coin cell, a potential range of 30 ° C., 2.8 to 4.5 V, and 0.2 mA / cm 2 and 0.8 mA / cm 2 using an electrochemical analyzer (Toscat3000U, Japan) Charging and discharging experiments were conducted under current density conditions of. The capacity according to the cycle is shown in FIGS. 12 to 13. In the manufactured battery, the capacity was decreased according to the cycle number.

[실시예 6] Example 6

상기 실시예 1과 동일한 방법으로 AlF3가 첨가된 LiNi1/3Co1/3Mn1/3O2를 제조하고 특성을 평가한 후, AlF3가 첨가된 LiNi1/3Co1/3Mn1/3O2를 이용하여 전지를 제조하였다. 제조된 코인 전지의 특성을 평가하기 위하여 전기화학 분석장치(Toyo 사 제작, Toscat3000U, Japan)를 이용하여 30℃, 2.8 ∼ 4.6 V의 전위영역, 및 0.2mA/㎠ 와 0.8mA/㎠의 전류밀도 조건에서 충ㆍ방전 실험을 하였다. 싸이클에 따른 용량을 도 15내지 도 16에 나타내었다. 제조된 전지에서 싸이클 횟수에 따른 용량감소가 적어 수명 특성이 우수하였다.LiNi 1/3 Co 1/3 Mn 1/3 O 2 to which AlF 3 was added in the same manner as in Example 1, and after evaluating characteristics, LiNi 1/3 Co 1/3 Mn to which AlF 3 was added A battery was prepared using 1 / 3O 2 . In order to evaluate the characteristics of the manufactured coin cell, a potential range of 30 ° C., 2.8 to 4.6 V, and 0.2 mA / cm 2 using an electrochemical analyzer (manufactured by Toyo, Toscat3000U, Japan) Charge and discharge experiments were carried out at a current density of 0.8 mA / cm 2. The capacity according to the cycle is shown in FIGS. 15 to 16. In the manufactured battery, the capacity was decreased according to the cycle number.

[실시예 7] Example 7

상기 실시예 1과 동일한 방법으로 AlF3가 첨가된 LiNi0.4Co0.2Mn0.4O2를 제조하고 특성을 평가한 후, AlF3가 첨가된 LiNi0.4Co0.2Mn0.4O2를 이용하여 전지를 제조하였다. 제조된 코인 전지의 특성을 평가하기 위하여 전기화학 분석장치(Toyo 사 제작, Toscat3000U, Japan)를 이용하여 30℃, 2.8 ∼ 4.6 V의 전위영역, 및 0.2mA/㎠ 와 0.8mA/㎠의 전류밀도 조건에서 충ㆍ방전 실험을 하였다. 싸이클에 따른 용량을 도 18내지 도 19에 나타내었다. 제조된 전지에서 싸이클 횟수에 따른 용량감소가 적어 수명 특성이 우수하였다.LiNi 0.4 Co 0.2 Mn 0.4 O 2 to which AlF 3 was added and evaluated in the same manner as in Example 1, and then a battery was prepared using LiNi 0.4 Co 0.2 Mn 0.4 O 2 to which AlF 3 was added. . In order to evaluate the characteristics of the manufactured coin cell, a potential range of 30 ° C., 2.8 to 4.6 V, and 0.2 mA / cm 2 using an electrochemical analyzer (manufactured by Toyo, Toscat3000U, Japan) Charge and discharge experiments were carried out at a current density of 0.8 mA / cm 2. The capacity according to the cycle is shown in FIGS. 18 to 19. In the manufactured battery, the capacity was decreased according to the cycle number.

[실시예 8] Example 8

상기 실시예 1과 동일한 방법으로 AlF3가 첨가된 LiNi0.8Co0.1Mn0.1O2를 제조하고 특성을 평가한 후, AlF3가 첨가된 LiNi0.8Co0.1Mn0.1O2를 이용하여 전지를 제조하였다. 제조된 코인 전지의 특성을 평가하기 위하여 전기화학 분석장치(Toyo 사 제작, Toscat3000U, Japan)를 이용하여 30℃, 3.0 ∼ 4.5 V의 전위영역, 및 0.2mA/㎠ 와 0.8mA/㎠의 전류밀도 조건에서 충ㆍ방전 실험을 하였다. 싸이클에 따른 용량을 도 21내지 도 22에 나타내었다. 제조된 전지에서 싸이클 횟수에 따른 용량감소가 적어 수명 특성이 우수하였다.LiNi 0.8 Co 0.1 Mn 0.1 O 2 to which AlF 3 was added and evaluated in the same manner as in Example 1, and then a battery was prepared using LiNi 0.8 Co 0.1 Mn 0.1 O 2 to which AlF 3 was added. . In order to evaluate the characteristics of the manufactured coin battery, an electrochemical analyzer (Toscat3000U, Japan, manufactured by Toyo) was used at 30 ° C., 3.0 to 4.5 V potential region, and 0.2 mA / cm 2. Charge and discharge experiments were carried out at a current density of 0.8 mA / cm 2. The capacity according to the cycle is shown in FIGS. 21 to 22. In the manufactured battery, the capacity was decreased according to the cycle number.

[비교예 1]Comparative Example 1

불소화합물이 첨가되지 않은 기존의 LiCoO2 양극 활물질을 상기 실시예 1과 동일한 방법으로 특성평가를 실시하였다. 도 4는 실시예 1과 비교예 1에 의해 얻은 양극 활물질의 XRD 패턴이다. 또한, 비교예 1에 의해 얻은 양극 활물질의 FE-SEM 사진을 도 6에 나타내고 있다. 실시예 1과 비교예 1의 양극 활물질의 전압범위 3.0 ∼4.5V, 30℃ 일정전류밀도 0.2 mA/㎠에서 실험한 반전지의 싸이클 곡선을 도 8에 나타내었으며, 실시예 1과 비교예 1의 양극 활물질의 전압범위 3.0 ∼4.5V, 30℃ 일정전류밀도 0.8 mA/㎠에서 실험한 반전지의 싸이클 곡선을 도 9에 나타내었다. 본 발명의 실시예 1 내지 4와 비교예 1의 양극 활물질의 전압범위 3.0 ∼4.5 V, 30℃ 일정전류밀도 0.2 mA/㎠에서 실험한 반전지의 싸이클 곡선을 도10에 표시하였다. The existing LiCoO 2 positive electrode active material to which the fluorine compound was not added was characterized in the same manner as in Example 1. 4 is an XRD pattern of the positive electrode active material obtained in Example 1 and Comparative Example 1. FIG. Moreover, the FE-SEM photograph of the positive electrode active material obtained by the comparative example 1 is shown in FIG. The cycle curves of the half cell experimented in the voltage range of 3.0-4.5 kV and 30 degreeC constant current density 0.2 mA / cm <2> of the positive electrode active material of Example 1 and the comparative example 1 are shown in FIG. 8, and the positive electrode of Example 1 and the comparative example 1 is shown. The cycle curve of the half cell experimented in the voltage range of 3.0-4.5 kV, 30 degreeC constant current density 0.8 mA / cm <2> of an active material is shown in FIG. The cycle curve of the half cell experimented in the voltage range 3.0-4.5V and 30 degreeC constant current density 0.2mA / cm <2> of the positive electrode active material of Examples 1-4 and Comparative Example 1 of this invention is shown in FIG.

[비교예 2]Comparative Example 2

AlF3가 첨가되지 않은 LiNi0.5Mn0.5O2 양극 활물질을 상기 실시예 1과 동일한 방법으로 특성평가를 실시하였다. 도 11는 실시예 5와 비교예 2에 의해 얻은 양극 활물질의 XRD 패턴이다. 또한, 실시예 5와 비교예 2의 양극 활물질의 전압범위 2.8 ∼4.5V, 30℃ 일정전류밀도 0.2 mA/㎠에서 실험한 반전지의 싸이클 곡선을 도 12에 나타내었으며, 실시예 5와 비교예 2의 양극 활물질의 전압범위 2.8 ∼4.5V, 30 ℃ 일정전류밀도 0.8mA/㎠에서 실험한 반전지의 싸이클 곡선을 도 13에 나타내었다. LiNi without AlF 3 0.5 Mn 0.5 O 2 The positive electrode active material was characterized in the same manner as in Example 1. 11 is an XRD pattern of the positive electrode active material obtained in Example 5 and Comparative Example 2. FIG. In addition, the cycle curves of the half cell experimented in the voltage range of 2.8 to 4.5 kV at 30 ° C. constant current density of 0.2 mA / cm 2 of Example 5 and Comparative Example 2 are shown in FIG. 12, Example 5 and Comparative Example 2 The cycle curve of the half cell experimented in the voltage range of 2.8-4.5 kV and 30 degreeC constant current density of 0.8 mA / cm <2> of the positive electrode active material of is shown in FIG.

[비교예 3]Comparative Example 3

AlF3가 첨가되지 않은 LiNi1/3Co1/3Mn1/3O2 양극 활물질을 상기 실시예 1과 동일한 방법으로 특성평가를 실시하였다. 도 14는 실시예 6과 비교예 3에 의해 얻은 양극 활물질의 XRD 패턴이다. 또한, 실시예 6과 비교예 3의 양극 활물질의 전압범위 2.8 ∼4.6V, 30℃ 일정전류밀도 0.2 mA/㎠에서 실험한 반전지의 싸이클 곡선을 도 15에 나타내었으며, 실시예 6과 비교예 3의 양극 활물질의 전압범위 2.8 ∼4.6V, 30℃ 일정전류밀도 0.8mA/㎠에서 실험한 반전지의 싸이클 곡선을 도 16에 나타내었다.The LiNi 1/3 Co 1/3 Mn 1/3 O 2 positive electrode active material to which AlF 3 was not added was characterized in the same manner as in Example 1. 14 is an XRD pattern of the positive electrode active material obtained in Example 6 and Comparative Example 3. FIG. In addition, the cycle curves of the half cell experimented in the voltage range of 2.8 to 4.6 kW and the constant current density of 0.2 mA / cm 2 at the positive electrode active materials of Example 6 and Comparative Example 3 are shown in FIG. 15, Example 6 and Comparative Example 3 The cycle curve of the half cell experimented in the voltage range of 2.8-4.6 kV, 30 degreeC constant current density of 0.8 mA / cm <2> of the positive electrode active material of is shown in FIG.

[비교예 4][Comparative Example 4]

AlF3가 첨가되지 않은 LiNi0.4Co0.2Mn0.4O2 양극 활물질을 상기 실시예 1과 동일한 방법으로 특성평가를 실시하였다. 도 17는 실시예 7과 비교예 4에 의해 얻은 양극 활물질의 XRD 패턴이다. 또한, 실시예 7과 비교예 4의 양극 활물질의 전압범위 2.8 ∼4.6V, 30℃ 일정전류밀도 0.2 mA/㎠에서 실험한 반전지의 싸이클 곡선을 도 18에 나타내었으며, 실시예 7과 비교예 4의 양극 활물질의 전압범위 2.8 ∼4.6V, 30℃ 일정전류밀도 0.8mA/㎠에서 실험한 반전지의 싸이클 곡선을 도 19에 나타내었 다. The LiNi 0.4 Co 0.2 Mn 0.4 O 2 positive electrode active material to which AlF 3 was not added was characterized in the same manner as in Example 1. 17 is an XRD pattern of the positive electrode active material obtained in Example 7 and Comparative Example 4. FIG. In addition, the cycle curves of the half cell experimented in the voltage range of 2.8 to 4.6 kV at 30 ° C constant current density of 0.2 mA / cm 2 of the positive electrode active materials of Example 7 and Comparative Example 4 are shown in FIG. 18, Example 7 and Comparative Example 4 19 shows a cycle curve of a half cell tested at a voltage range of 2.8 to 4.6 kW and a constant current density of 0.8 mA / cm 2 at 30 ° C. of the cathode active material.

[비교예 5][Comparative Example 5]

AlF3가 첨가되지 않은 LiNi0.8Co0.1Mn0.1O2 양극 활물질을 상기 실시예 1과 동일한 방법으로 특성평가를 실시하였다. 도 20는 실시예 8과 비교예 5에 의해 얻은 양극 활물질의 XRD 패턴이다. 또한, 실시예 8과 비교예 5의 양극 활물질의 전압범위 3.0 ∼4.5V, 30℃ 일정전류밀도 0.2 mA/㎠에서 실험한 반전지의 싸이클 곡선을 도 21에 나타내었으며, 실시예 8과 비교예 5의 양극 활물질의 전압범위 3.0 ∼4.5V, 30℃ 일정전류밀도 0.8mA/㎠에서 실험한 반전지의 싸이클 곡선을 도 22에 나타내었다. The LiNi 0.8 Co 0.1 Mn 0.1 O 2 positive electrode active material to which AlF 3 was not added was characterized in the same manner as in Example 1. 20 is XRD patterns of the positive electrode active materials obtained in Example 8 and Comparative Example 5. FIG. In addition, the cycle curves of the half cell experimented in the voltage range of 3.0 to 4.5 kV at 30 ° C constant current density of 0.2 mA / cm 2 of the positive electrode active materials of Example 8 and Comparative Example 5 are shown in FIG. 21, Example 8 and Comparative Example 5 22 shows a cycle curve of the half cell tested at a voltage range of 3.0 to 4.5 kW and a constant current density of 0.8 mA / cm 2 at 30 ° C.

그러므로 본 발명에 의하여, 리튬이차전지 양극 활물질 첨가제로 미세분말 불소화합물을 합성하고 이를 리튬이차전지용 양극 활물질에 첨가하여 불소화합물이 첨가된 리튬이차전지용 양극 활물질을 제조하여 양극 활물질 근처에서 생성되는 산에 대한 영향력을 감소시키거나, 양극 활물질과 전해액과의 반응성을 억제하여 전지의 용량이 급격하게 줄어드는 현상을 개선하여 충방전 특성, 수명특성, 고전압 및 고율특성이 우수한 양극 활물질을 제공할 수 있다. Therefore, according to the present invention, a fine powder fluorine compound is synthesized with a lithium secondary battery positive electrode active material additive and added to the positive electrode active material for lithium secondary battery to prepare a positive electrode active material for lithium secondary battery to which the fluorine compound is added to acid generated near the positive electrode active material. It is possible to provide a cathode active material having excellent charge / discharge characteristics, lifespan characteristics, high voltage, and high rate characteristics by reducing the influence on the cathode active material or reducing the capacity of the battery by reducing the reactivity between the cathode active material and the electrolyte.

Claims (7)

리튬이차전지 양극 활물질에 있어서,       In a lithium secondary battery positive electrode active material, 양극 활물질에 착염형태인 불소화합물이 첨가되어 이루어진 것을 특징으로 하는 리튬이차전지 양극 활물질. Lithium secondary battery positive electrode active material characterized in that the complex salt is added to the fluorine compound in the positive electrode active material. 제1항에 있어서, 상기 불소화합물은 CsF, KF, LiF, NaF, RbF, TiF, AgF, AgF₂, BaF2, CaF2, CuF2, CdF2, FeF2, HgF2, Hg2F2, MnF2, MgF2, NiF2, PbF2, SnF2, SrF2, XeF2, ZnF2, AlF3, BF3, BiF3, CeF3, CrF3, DyF3, EuF3, GaF3, GdF3, FeF3, HoF3, InF3, LaF3, LuF3, MnF3, NdF3, VOF3, PrF3, SbF3, ScF3, SmF3, TbF3, TiF3, TmF3, YF3, YbF3, TIF3, CeF4, GeF4, HfF4, SiF4, SnF4, TiF4, VF4, ZrF4, NbF5, SbF5, TaF5, BiF5, MoF6, ReF6, SF6 및 WF6 으로 이루어진 군과 불소가 포함된 모든화합물으로부터 선택되는 어느 하나이상인 것을 특징으로 하는 리튬이차전지 양극 활물질. The method of claim 1, wherein the fluorine compound is CsF, KF, LiF, NaF, RbF, TiF, AgF, AgF₂, BaF 2 , CaF 2 , CuF 2 , CdF 2 , FeF 2 , HgF 2 , Hg 2 F 2 , MnF 2 , MgF 2 , NiF 2 , PbF 2 , SnF 2 , SrF 2 , XeF 2 , ZnF 2 , AlF 3 , BF 3 , BiF 3 , CeF 3 , CrF 3 , DyF 3 , EuF 3 , GaF 3 , GdF 3 , FeF 3, HoF 3, InF 3 , LaF 3, LuF 3, MnF 3, NdF 3, VOF 3, PrF 3, SbF 3, ScF 3, SmF 3, TbF 3, TiF 3, TmF 3, YF 3, YbF 3 , TIF 3, CeF 4, GeF 4, HfF 4, SiF 4, SnF 4, TiF 4, VF 4, ZrF 4, NbF 5, SbF 5, TaF 5, BiF 5, MoF 6, ReF 6, SF 6 and WF Lithium secondary battery positive electrode active material, characterized in that any one or more selected from the group consisting of 6 and all compounds containing fluorine. 제1항에 있어서, 상기 불소화합물이 첨가되는 상기 양극활물질은 육방정계 층상 암염구조를 갖는 Li1+a[Co1-xMx]O2-bNb(0.01≤a≤0.2, 0.01≤b≤0.2, 0.01≤x≤ 0.1, M = Mg, Al, Ni, Mn, Zn, Fe, Cr, Ga, Mo 및 W으로 이루어진 군에서 선택된 적어도 하나 이상의 금속, N은 F 또는 S), 육방정계 층상 암염구조를 갖는 Li1+a[Ni1-xMx]O2-bNb(0.01≤a≤0.2, 0.01≤b≤0.2, 0.01≤x≤0.5, M = Mg, Al, Co, Mn, Zn, Fe, Cr, Ga, Mo, W으로 이루어진 군에서 선택된 적어도 하나 이상의 금속, N은 F 또는 S), 육방정계 층상 암염구조를 갖는 Li1+a[Ni1-x-yCoxMny]O2-bNb(0.01≤a≤0.2, 0.01≤b≤0.1, 0.05≤x≤0.3, 0.1≤y≤0.35, 0.15≤x+y≤0.6, N은 F 또는 S), 육방정계 층상 암염구조를 갖는 Li[Lia(NixCo1-2xMnx)1-a]O2-bNb (0.01≤a≤0.2, 0.01≤x≤0.5, 0.01≤b≤0.1, N은 F 또는 S), 육방정계 층상 암염구조를 갖는 Li[Lia(NixCo1-2xMnx-y/2My)1-a]O2-bNb (M=Mg, Ca, Cu, Zn으로 이루어진 군에서 선택된 적어도 하나 이상의 금속, 0.01≤a≤0.2, 0.01≤x≤0.5, 0.01≤y≤0.1, 0.01≤b≤0.1, N은 F 또는 S), 육방정계 층상 암염구조를 갖는 Li[Lia(Ni1/3Co(1/3-2x)Mn(1/3+x)Mx)1-a]O2-bNb (M=Mg, Ca, Cu, Zn으로 이루어진 군에서 선택된 적어도 하나 이상의 금속, 0.01≤a≤0.2, 0.01≤x≤0.5, 0.01≤y≤0.1, 0.01≤bV0.1, N은 F 또는 S), 육방정계 층상 암염구조를 갖는 Li[Lia(NixCo1-2x-yMnxMy)1-a]O2-bNb(M=B, Al, Fe, Cr으로 이루어진 군에서 선택된 적어도 하나 이상의 금속, 0.01≤a≤0.2, 0.01≤x≤0.5, 0.01≤y≤0.1, 0.01≤b≤0.1, N은 F 또는 S), 육방정계 층상 암염구조를 갖는 Li[Lia(NixCo1-2x-yMnx-z/2MyNz)1-a]O2-bNb (M=B, Al, Fe, Cr으로 이루어진 군에서 선택된 적어도 하나 이상의 금속, N=Mg 또는 Ca, 0.01≤a≤0.2, 0.01≤x≤0.5, 0.01≤y≤ 0.1, 0.01≤b≤0.1, N은 F 또는 S), 올리빈(Olivine)구조를 갖는 LiMxFe1-xPO4 (M=Co, Ni, Mn으로 이루어진 군에서 선택된 적어도 하나 이상의 금속, 0≤x≤1), 큐빅구조를 갖는 스피넬 Li1+a[Mn2-xMx]O4-bNb(0.01≤a≤0.15, 0.01≤b≤0.2, M=Co, Ni, Cr, Mg, Al, Zn, Mo, W 0.01≤x≤0.1, N은 F 또는 S) 및 큐빅구조를 갖는 스피넬 Li1+a[Ni0.5Mn1.5-xMx]O4-bNb(0.01≤a≤0.15, 0.01≤b≤0.2, 0.01≤x≤0.1, M=Co, Ni, Cr, Mg, Al, Zn, Mo, W군에서 선택된 적어도 하나 이상의 금속이며 N은 F 또는 S) 중 어느 하나인 것을 특징으로 하는 리튬이차전지 양극 활물질.The cathode active material to which the fluorine compound is added is Li 1 + a [Co 1-x M x ] O 2-b N b having a hexagonal layered rock salt structure (0.01 ≦ a ≦ 0.2, 0.01 ≦ b≤0.2, 0.01≤x≤ 0.1, M = Mg, at least one metal selected from the group consisting of Al, Ni, Mn, Zn, Fe, Cr, Ga, Mo and W, N is F or S), hexagonal system Li 1 + a [Ni 1-x M x ] O 2-b N b having a layered rock salt structure (0.01 ≦ a ≦ 0.2, 0.01 ≦ b ≦ 0.2, 0.01 ≦ x ≦ 0.5, M = Mg, Al, Co, At least one metal selected from the group consisting of Mn, Zn, Fe, Cr, Ga, Mo, W, N is F or S), Li 1 + a [Ni 1-xy Co x Mn y having a hexagonal layered rock salt structure ; ] O 2-b N b (0.01≤a≤0.2, 0.01≤b≤0.1, 0.05≤x≤0.3, 0.1≤y≤0.35, 0.15≤x + y≤0.6, N is F or S), hexagonal layered Li [Li a (Ni x Co 1-2x Mn x ) 1-a ] O 2-b N b having a rock salt structure (0.01≤a≤0.2, 0.01≤x≤0.5, 0.01≤b≤0.1, N is F Or S), Li [Li a (Ni x Co 1-) having a hexagonal layered rock salt structure. 2x Mn xy / 2 M y ) 1-a ] O 2-b N b (M = Mg, Ca, Cu, Zn at least one metal selected from the group consisting of 0.01 ≦ a ≦ 0.2, 0.01 ≦ x ≦ 0.5, 0.01≤y≤0.1, 0.01≤b≤0.1, N is F or S), Li [Li a (Ni 1/3 Co (1 / 3-2x) Mn ( 1/3 + x ) with hexagonal layered rock salt structure ) M x ) 1-a ] O 2-b N b (M = Mg, Ca, Cu, Zn at least one metal selected from the group consisting of, 0.01≤a≤0.2, 0.01≤x≤0.5, 0.01≤y≤ 0.1, 0.01 ≦ bV0.1, N is F or S), Li [Li a (Ni x Co 1-2x-y Mn x M y ) 1-a ] O 2-b N b with hexagonal layered rock salt structure (At least one metal selected from the group consisting of M = B, Al, Fe, Cr, 0.01 ≦ a ≦ 0.2, 0.01 ≦ x ≦ 0.5, 0.01 ≦ y ≦ 0.1, 0.01 ≦ b ≦ 0.1, and N is F or S) , Li [Li a (Ni x Co 1-2x-y Mn xz / 2 M y N z ) 1-a ] O 2-b N b (M = B, Al, Fe, Cr with hexagonal layered rock salt structure) At least one metal selected from the group consisting of N = Mg or Ca, 0.01 ≦ a ≦ 0.2, 0.01 ≦ x ≦ 0.5, 0.01 ≦ y ≦ 0. 1, 0.01 ≦ b ≦ 0.1, N is F or S), at least one metal selected from the group consisting of LiM x Fe 1-x PO 4 (M = Co, Ni, Mn) having an olivine structure, 0 ≦ x ≦ 1), spinel Li 1 + a [Mn 2-x M x ] O 4-b N b having a cubic structure (0.01 ≦ a ≦ 0.15, 0.01 ≦ b ≦ 0.2, M = Co, Ni, Cr, Mg, Al, Zn, Mo, W 0.01≤x≤0.1, N is F or S) and spinel Li 1 + a [Ni 0.5 Mn 1.5-x M x ] O 4-b N b (0.01≤) with cubic structure a≤0.15, 0.01≤b≤0.2, 0.01≤x≤0.1, M = Co, Ni, Cr, Mg, Al, Zn, Mo, at least one metal selected from the group W, N is F or S) Lithium secondary battery positive electrode active material characterized in that. 고분산도의 미세분말 원소전구체 용액에 플루오르(F)가 용해된 용액을 첨가하여, 50℃ 내지 150℃에서 1 내지 48시간 반응하여 착염형태의 고분산도의 미세분말 불소화합물을 형성한 후, 상기 형성된 미세분말 불소화합물을 110℃에서 6 내지 24시간 건조 시킨 후, 150℃ 내지 900℃에서 1 내지 20시간 동안 산화성 분위기, 환원성 분위기 및 진공상태 중 어느 한 상태 하에서 열처리하여 미세분말 불소화합물을 준비한 후, 리튬이차전지용 양극 활물질 100중량부 대비 0.05 내지 10 중량부의 상기 미세분말 불소화합물을 첨가하여 균일하게 혼합하는 것을 특징으로 하는 리튬이차전지용 양극 활물질의 제조방법.After adding a solution in which fluorine (F) was dissolved in a high-dispersion fine powder element precursor solution, and reacting at 50 ° C. to 150 ° C. for 1 to 48 hours to form a high-dispersity fine powder fluorine compound in the form of a complex salt, the formed After drying the fine powder fluorine compound at 110 ℃ for 6 to 24 hours, heat treatment at 150 ℃ to 900 ℃ for 1 to 20 hours in any one of oxidizing atmosphere, reducing atmosphere and vacuum state to prepare the fine powder fluorine compound, A method of manufacturing a cathode active material for a lithium secondary battery, characterized in that 0.05 to 10 parts by weight of the fine powder fluorine compound is added and uniformly mixed with respect to 100 parts by weight of a cathode active material for a lithium secondary battery. 제4항에 있어서, 상기 원소전구체 용액은 0.1 내지 3M 농도의 것을 사용하고, 플루오르(F)가 용해된 용액은 0.1 내지 18M 농도의 것을 사용하여 50℃ 내지 150℃에서 1 내지 48시간 반응하여 착염형태의 고분산도의 미세분말 불소화합물을 형성하는 것을 특징으로 하는 리튬이차전지용 양극 활물질의 제조방법.The method of claim 4, wherein the element precursor solution is used in the concentration of 0.1 to 3M, the solution in which fluorine (F) is dissolved using a 0.1 to 18M concentration of the complex salt by reacting for 1 to 48 hours at 50 ℃ to 150 ℃ A method for producing a cathode active material for a lithium secondary battery, characterized in that to form a highly dispersed fine powder fluorine compound. 제4항 또는 제5항에 있어서, 상기 원소 전구체는 Cs, K, Li, Na, Rb, Ti, Ag(Ⅰ), Ag(Ⅱ), Ba, Ca, Cu, Cd, Fe, Hg(Ⅱ), Hg(Ⅰ), Mn(Ⅱ), Mg, Ni, Pb, Sn, Sr, Xe, Zn, Al, B, Bi(Ⅲ), Ce(Ⅲ), Cr, Dy, Eu, Ga, Gd, Fe, Ho, In, La, Lu, Mn(Ⅲ), Nd, VO, Pr, Sb(Ⅲ), Sc, Sm, Tb, Ti(Ⅲ), Tm, Y, Yb, TI, Ce(Ⅳ), Ge, Hf, Si, Sn, Ti(Ⅳ), V, Zr, Nb, Sb(Ⅴ), Ta, Bi(Ⅴ), Mo, Re, S 및 W로 이루어진 군에서 선택되는 적어도 하나 이상의 원소의 알콕사이드염, 황산염, 질산염, 초산염, 염화염, 인산염 중 어느 한 화합물인 것을 특징으로 하는 리튬이차전지용 양극 활물질의 제조방법.The method of claim 4 or 5, wherein the element precursor is Cs, K, Li, Na, Rb, Ti, Ag (I), Ag (II), Ba, Ca, Cu, Cd, Fe, Hg (II) , Hg (I), Mn (II), Mg, Ni, Pb, Sn, Sr, Xe, Zn, Al, B, Bi (III), Ce (III), Cr, Dy, Eu, Ga, Gd, Fe , Ho, In, La, Lu, Mn (III), Nd, VO, Pr, Sb (III), Sc, Sm, Tb, Ti (III), Tm, Y, Yb, TI, Ce (IV), Ge Alkoxide salts of at least one element selected from the group consisting of Hf, Si, Sn, Ti (IV), V, Zr, Nb, Sb (V), Ta, Bi (V), Mo, Re, S and W , Sulfate, nitrate, acetate, chloride, phosphate any one compound, the method for producing a cathode active material for a lithium secondary battery. 제4항에 있어서, 상기 원소전구체를 착염형태로 침전시키기 위한 플루오르(F)가 용해된 용액은 NH4F, HF, A(Anhydrous)HF 등 원소전구체를 착염형태로 침전시키기 위해 플루오르(F)를 제공할 수 있는 화합물 군에서 선택되는 적어도 하나 이 상의 화합물의 용액인 것을 특징으로 하는 리튬이차전지용 양극 활물질의 제조방법.The solution of claim 4, wherein the solution in which fluorine (F) is dissolved to precipitate the element precursor in the complex salt form is used to precipitate elemental precursors such as NH 4 F, HF, and A (Anhydrous) HF in the complex salt form. Method for producing a cathode active material for a lithium secondary battery, characterized in that the solution of at least one or more compounds selected from the group of compounds that can provide.
KR1020050053304A 2005-06-21 2005-06-21 Cathode active material added with fluorine compound for lithium secondary batteries And Method of producing thereof KR100701532B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020050053304A KR100701532B1 (en) 2005-06-21 2005-06-21 Cathode active material added with fluorine compound for lithium secondary batteries And Method of producing thereof
PCT/KR2006/002362 WO2006137673A1 (en) 2005-06-21 2006-06-20 Cathode active material added with fluorine compound for lithium secondary batteries and method of producing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050053304A KR100701532B1 (en) 2005-06-21 2005-06-21 Cathode active material added with fluorine compound for lithium secondary batteries And Method of producing thereof

Publications (2)

Publication Number Publication Date
KR20060133615A true KR20060133615A (en) 2006-12-27
KR100701532B1 KR100701532B1 (en) 2007-03-29

Family

ID=37570652

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050053304A KR100701532B1 (en) 2005-06-21 2005-06-21 Cathode active material added with fluorine compound for lithium secondary batteries And Method of producing thereof

Country Status (2)

Country Link
KR (1) KR100701532B1 (en)
WO (1) WO2006137673A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100853327B1 (en) * 2007-02-16 2008-08-21 엘에스엠트론 주식회사 Anode active material for rechargeable lithium ion battery and method for preparing thereof and lithium ion battery manufactured using the same
WO2008126968A1 (en) * 2007-04-16 2008-10-23 Ls Mtron, Ltd. Anode material for secondary battery, method for preparing the same, and secondary battery containing the same for anode
KR101009993B1 (en) * 2007-05-07 2011-01-21 주식회사 에너세라믹 Method of preparing positive active material for lithium secondary battery, positive active material for lithium secondary battery prepared by same, and lithium secondary battery including positive active material
WO2012036372A2 (en) * 2010-09-16 2012-03-22 전자부품연구원 Anode active material, non-aqueous lithium secondary battery including the same, and manufacturing method thereof
CN103109403A (en) * 2010-09-16 2013-05-15 电子部品研究院 Anode active material, non-aqueous lithium secondary battery including the same, and manufacturing method thereof
KR101430616B1 (en) * 2007-12-18 2014-08-14 삼성에스디아이 주식회사 Cathode and lithium battery using the same
KR20150021809A (en) * 2013-08-21 2015-03-03 주식회사 엘지화학 Lithium transition metal cathode active material, preparation method thereof, and lithium secondary battery comprising the same
KR101502658B1 (en) * 2012-05-22 2015-03-13 주식회사 엘지화학 Cathode active material composition for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
KR101523081B1 (en) * 2013-11-28 2015-06-05 주식회사 포스코 Complex of positive electrode active material and fluorine compound, manufacturing method of the same, and rechargable lithium battery including the complex
US9660260B2 (en) 2015-05-04 2017-05-23 Korea Institute Of Science And Technology Cathode active material coated with fluorine-doped lithium metal manganese oxide and lithium-ion secondary battery comprising the same
US11631848B2 (en) 2018-05-23 2023-04-18 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100989901B1 (en) 2007-05-07 2010-10-26 한양대학교 산학협력단 Method of preparing positive active material for lithium secondary battery, positive active material for lithium secondary battery prepared by same, and lithium secondary battery including positive active material
US8187752B2 (en) 2008-04-16 2012-05-29 Envia Systems, Inc. High energy lithium ion secondary batteries
CN102171868A (en) 2008-09-30 2011-08-31 安维亚系统公司 Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
US8389160B2 (en) 2008-10-07 2013-03-05 Envia Systems, Inc. Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials
US8465873B2 (en) 2008-12-11 2013-06-18 Envia Systems, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
US10056644B2 (en) 2009-07-24 2018-08-21 Zenlabs Energy, Inc. Lithium ion batteries with long cycling performance
TWI437753B (en) 2009-08-27 2014-05-11 Envia Systems Inc Metal oxide coated positive electrode materials for lithium-based batteries
KR20120089845A (en) 2009-08-27 2012-08-14 엔비아 시스템즈 인코포레이티드 Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
US9843041B2 (en) 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
US8993177B2 (en) 2009-12-04 2015-03-31 Envia Systems, Inc. Lithium ion battery with high voltage electrolytes and additives
US8765306B2 (en) 2010-03-26 2014-07-01 Envia Systems, Inc. High voltage battery formation protocols and control of charging and discharging for desirable long term cycling performance
US8741484B2 (en) 2010-04-02 2014-06-03 Envia Systems, Inc. Doped positive electrode active materials and lithium ion secondary battery constructed therefrom
US9083062B2 (en) 2010-08-02 2015-07-14 Envia Systems, Inc. Battery packs for vehicles and high capacity pouch secondary batteries for incorporation into compact battery packs
US8928286B2 (en) 2010-09-03 2015-01-06 Envia Systems, Inc. Very long cycling of lithium ion batteries with lithium rich cathode materials
US8663849B2 (en) 2010-09-22 2014-03-04 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
US9166222B2 (en) 2010-11-02 2015-10-20 Envia Systems, Inc. Lithium ion batteries with supplemental lithium
US9159990B2 (en) 2011-08-19 2015-10-13 Envia Systems, Inc. High capacity lithium ion battery formation protocol and corresponding batteries
US10170762B2 (en) 2011-12-12 2019-01-01 Zenlabs Energy, Inc. Lithium metal oxides with multiple phases and stable high energy electrochemical cycling
US9070489B2 (en) 2012-02-07 2015-06-30 Envia Systems, Inc. Mixed phase lithium metal oxide compositions with desirable battery performance
US9780358B2 (en) 2012-05-04 2017-10-03 Zenlabs Energy, Inc. Battery designs with high capacity anode materials and cathode materials
US10553871B2 (en) 2012-05-04 2020-02-04 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
US9552901B2 (en) 2012-08-17 2017-01-24 Envia Systems, Inc. Lithium ion batteries with high energy density, excellent cycling capability and low internal impedance
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
US11476494B2 (en) 2013-08-16 2022-10-18 Zenlabs Energy, Inc. Lithium ion batteries with high capacity anode active material and good cycling for consumer electronics
KR101994813B1 (en) 2017-02-24 2019-07-01 정형진 Self-extinguishing adhesive tape
US11094925B2 (en) 2017-12-22 2021-08-17 Zenlabs Energy, Inc. Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance
CN113461058B (en) * 2021-07-15 2022-09-09 宜宾职业技术学院 Cathode material Li with disordered rock salt structure 1.3 Mo 0.3 V 0.4 O 2 Method of synthesis of
CN113594435A (en) * 2021-07-21 2021-11-02 淮北夏川新能源有限公司 High specific energy lithium battery for electric tool

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135251B2 (en) * 2001-06-14 2006-11-14 Samsung Sdi Co., Ltd. Active material for battery and method of preparing the same
KR100441520B1 (en) * 2002-05-28 2004-07-23 삼성에스디아이 주식회사 A positive active material for lithium secondary battery and a method of preparing same
KR20050026443A (en) * 2005-02-03 2005-03-15 박우락 The lighter and tobacco case

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100853327B1 (en) * 2007-02-16 2008-08-21 엘에스엠트론 주식회사 Anode active material for rechargeable lithium ion battery and method for preparing thereof and lithium ion battery manufactured using the same
WO2008100002A1 (en) * 2007-02-16 2008-08-21 Ls Mtron, Ltd. Anode active material for rechargeable lithium ion battery, method for preparing the same, and lithium ion battery manufactured using the same
WO2008126968A1 (en) * 2007-04-16 2008-10-23 Ls Mtron, Ltd. Anode material for secondary battery, method for preparing the same, and secondary battery containing the same for anode
KR101009993B1 (en) * 2007-05-07 2011-01-21 주식회사 에너세라믹 Method of preparing positive active material for lithium secondary battery, positive active material for lithium secondary battery prepared by same, and lithium secondary battery including positive active material
KR101430616B1 (en) * 2007-12-18 2014-08-14 삼성에스디아이 주식회사 Cathode and lithium battery using the same
CN103109403A (en) * 2010-09-16 2013-05-15 电子部品研究院 Anode active material, non-aqueous lithium secondary battery including the same, and manufacturing method thereof
WO2012036372A3 (en) * 2010-09-16 2012-05-10 전자부품연구원 Anode active material, non-aqueous lithium secondary battery including the same, and manufacturing method thereof
WO2012036372A2 (en) * 2010-09-16 2012-03-22 전자부품연구원 Anode active material, non-aqueous lithium secondary battery including the same, and manufacturing method thereof
US8932763B2 (en) 2010-09-16 2015-01-13 Korea Electronics Technology Institute Anode active material, non-aqueous lithium secondary battery including the same, and manufacturing method thereof
CN103109403B (en) * 2010-09-16 2015-11-25 电子部品研究院 Active material of positive electrode, the non-aqueous lithium secondary cell comprising this active material of positive electrode and preparation method thereof
KR101502658B1 (en) * 2012-05-22 2015-03-13 주식회사 엘지화학 Cathode active material composition for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
KR20150021809A (en) * 2013-08-21 2015-03-03 주식회사 엘지화학 Lithium transition metal cathode active material, preparation method thereof, and lithium secondary battery comprising the same
KR101523081B1 (en) * 2013-11-28 2015-06-05 주식회사 포스코 Complex of positive electrode active material and fluorine compound, manufacturing method of the same, and rechargable lithium battery including the complex
US9660260B2 (en) 2015-05-04 2017-05-23 Korea Institute Of Science And Technology Cathode active material coated with fluorine-doped lithium metal manganese oxide and lithium-ion secondary battery comprising the same
US11631848B2 (en) 2018-05-23 2023-04-18 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same

Also Published As

Publication number Publication date
WO2006137673A1 (en) 2006-12-28
KR100701532B1 (en) 2007-03-29

Similar Documents

Publication Publication Date Title
KR100701532B1 (en) Cathode active material added with fluorine compound for lithium secondary batteries And Method of producing thereof
KR100822013B1 (en) Cathode active material coated with fluorine compounds for lithium secondary batteries and method of producing thereof
US20180062170A1 (en) Coated positive electrode materials for lithium ion batteries
US8465873B2 (en) Positive electrode materials for high discharge capacity lithium ion batteries
EP1880435A1 (en) Cathode active material coated with fluorine compound for lithium secondary batteries and method for preparing the same
KR101009993B1 (en) Method of preparing positive active material for lithium secondary battery, positive active material for lithium secondary battery prepared by same, and lithium secondary battery including positive active material
US8389160B2 (en) Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials
KR100428616B1 (en) Positive active material for lithium secondary battery and method of preparing same
KR102210892B1 (en) Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
JP2013524440A (en) Doped positive electrode active material and lithium ion secondary battery comprising the same
JP2013503449A (en) Cathode material for lithium batteries coated with metal oxide
KR20080099132A (en) Method of preparing positive active material for lithium secondary battery, positive active material for lithium secondary battery prepared by same, and lithium secondary battery including positive active material
CN102473957A (en) Lithium ion batteries with long cycling performance
KR100595362B1 (en) Lithium-Nickel complex oxide for Cathode Material of Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Same and Cathode Material containing the Same
JP2003238165A (en) Lithium-containing compound oxide and its production method
CN112771695B (en) Positive electrode active material, positive electrode, nonaqueous electrolyte secondary battery, and method for using same
KR20150069335A (en) Method for preparing Cathode active material, cathode active material prepared by the same, and lithium secondary batteries comprising the same
KR20150080301A (en) Cathode active material and lithium secondary batteries comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130321

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140320

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160310

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170111

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180116

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200116

Year of fee payment: 14