JP2010519682A - Anode active material for lithium battery, method for producing the same, and lithium secondary battery using the same - Google Patents

Anode active material for lithium battery, method for producing the same, and lithium secondary battery using the same Download PDF

Info

Publication number
JP2010519682A
JP2010519682A JP2009549507A JP2009549507A JP2010519682A JP 2010519682 A JP2010519682 A JP 2010519682A JP 2009549507 A JP2009549507 A JP 2009549507A JP 2009549507 A JP2009549507 A JP 2009549507A JP 2010519682 A JP2010519682 A JP 2010519682A
Authority
JP
Japan
Prior art keywords
active material
anode active
lithium secondary
secondary battery
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009549507A
Other languages
Japanese (ja)
Inventor
ジョン−ミン ハン,
ジョン−ハン オー,
ジョン−サン キム,
チュル ユム,
キョン−ヒー ハン,
Original Assignee
エルエス エムトロン リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルエス エムトロン リミテッド filed Critical エルエス エムトロン リミテッド
Publication of JP2010519682A publication Critical patent/JP2010519682A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D8/00Hair-holding devices; Accessories therefor
    • A45D8/02Hair pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D8/00Hair-holding devices; Accessories therefor
    • A45D8/20Hair clamps, i.e. elastic multi-part clamps, the parts of which are pivotally connected between their ends
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D8/00Hair-holding devices; Accessories therefor
    • A45D8/20Hair clamps, i.e. elastic multi-part clamps, the parts of which are pivotally connected between their ends
    • A45D8/22Hair clamps, i.e. elastic multi-part clamps, the parts of which are pivotally connected between their ends with additional fastener
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D8/00Hair-holding devices; Accessories therefor
    • A45D8/24Hair clasps, i.e. multi-part clasps with pivotal connection of parts at their ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【構成】本発明は、リチウム電池用アノード活物質とその製造方法及びこれを用いたリチウム二次電池に関する。本発明のリチウム電池用アノード活物質は、アノード活物質の表面がフッ素系化合物でコートされていることを特徴とする。
【効果】本発明によれば、アノード活物質の表面を安定化させ非可逆容量の主要原因である有機電解液分解反応の影響を減らすことができる。また本発明は、充・放電中に電解質が酸化されて生成される酸による影響力を減少させて、充・放電時に優れたサイクル特性及び高率特性を示すことができる。
【選択図】なし
The present invention relates to an anode active material for a lithium battery, a method for producing the same, and a lithium secondary battery using the same. The anode active material for a lithium battery of the present invention is characterized in that the surface of the anode active material is coated with a fluorine-based compound.
According to the present invention, it is possible to stabilize the surface of the anode active material and reduce the influence of the organic electrolyte decomposition reaction which is the main cause of the irreversible capacity. In addition, the present invention can reduce the influence due to the acid generated by oxidation of the electrolyte during charge / discharge, and can exhibit excellent cycle characteristics and high rate characteristics during charge / discharge.
[Selection figure] None

Description

本発明は、リチウム電池用アノード活物質とその製造方法及びこれを用いたリチウム二次電池に関するものであって、さらに詳しくは、アノード活物質の表面を安定化させ非可逆容量の主要原因である有機電解液分解反応の影響を減らすと同時に、充・放電中に電解質が酸化されて生成される酸による影響力を減少させて充・放電時に優れたサイクル特性及び高率特性を示すことができるリチウム電池用アノード活物質とその製造方法及びこれを用いたリチウム二次電池に関する。   The present invention relates to an anode active material for a lithium battery, a method for producing the same, and a lithium secondary battery using the anode active material. More specifically, the present invention stabilizes the surface of the anode active material and is a major cause of irreversible capacity. Reduces the influence of organic electrolyte decomposition reaction, and at the same time reduces the influence of acid generated by oxidation of the electrolyte during charge / discharge, and exhibits excellent cycle characteristics and high rate characteristics during charge / discharge The present invention relates to an anode active material for a lithium battery, a manufacturing method thereof, and a lithium secondary battery using the same.

最近携帯用の小型電子機器の電源として脚光を浴びているリチウム二次電池は、有機電解液を用いて既存のアルカリ性の水溶液を用いた電池よりも2倍以上高い放電電圧を示すことで高いエネルギー密度を示す電池である。   Recently, lithium secondary batteries, which have been in the spotlight as a power source for portable small electronic devices, have high energy by showing a discharge voltage more than twice as high as that of batteries using existing alkaline aqueous solutions using organic electrolytes. It is a battery showing density.

リチウム二次電池のカソード活物質としては、LiCoO,LiMn,LiNi1−xCo(0<x<1)などのように、リチウムがインターカレーション(intercalation)が可能な構造を有したリチウムと遷移金属とからなった酸化物が主に用いられていた。 The cathode active material of a lithium secondary battery, LiCoO 2, LiMn 2 O 4 , LiNi 1-x Co x O 2 (0 <x <1) , such as, capable lithium intercalation (intercalation) Oxides composed of lithium having a structure and a transition metal were mainly used.

アノード活物質としては、リチウムの挿入/脱離が可能な人造黒鉛、天然黒鉛、ハードカーボンを含んだ種々の形態の炭素系材料が適用されてきた。前記炭素系列のアノード材料は、低電位において電圧平坦性に優れ良好な寿命特性を有する。しかし、有機電解液との高い反応性、物質内リチウムの低い拡散速度などによって、電力特性、初期非可逆制御、充・放電中の電極スウェリング(swelling)現象などは改善が求められている。   As the anode active material, various forms of carbon-based materials including artificial graphite capable of inserting / extracting lithium, natural graphite, and hard carbon have been applied. The carbon-based anode material has excellent voltage flatness at a low potential and has good life characteristics. However, improvements in power characteristics, initial irreversible control, electrode swelling during charging / discharging, and the like are required due to high reactivity with organic electrolytes and low diffusion rate of lithium in the material.

このために、従来技術では、アノードで用いられる黒鉛(或いは、その他の炭素系材料)の電池特性を向上するために、黒鉛粉末の形状、粒度とその分布、密度、非晶質炭素(ピッチ)の被覆、温度による結晶化度などを調節する方法が用いられてきた。   Therefore, in the prior art, in order to improve the battery characteristics of graphite (or other carbon-based material) used in the anode, the shape, particle size and distribution, density, and amorphous carbon (pitch) of graphite powder are used. A method of adjusting the coating, the crystallinity depending on the temperature, and the like has been used.

具体的な例として、韓国公開特許第2005‐0020186号においては、リチウムイオンの挿入及び脱離が可能な炭素系化合物と前記炭素系化合物の表面に形成されたAl,Ag,B,Cu,Mg,Si,Ti,Zn,及びZrからなる群より選択される一つ以上の元素の酸化物膜または水酸化物膜とを含んで寿命特性及び高率特性を向上させることができるアノード活物質に対して記載している。   As a specific example, in Korean Patent Publication No. 2005-0020186, a carbon compound capable of inserting and removing lithium ions and Al, Ag, B, Cu, Mg formed on the surface of the carbon compound are described. An anode active material capable of improving lifetime characteristics and high-rate characteristics including an oxide film or hydroxide film of one or more elements selected from the group consisting of Si, Ti, Zn, and Zr It is described.

しかし、前記従来技術は、非可逆容量の主な原因である有機電解液との反応性が高く、充・放電中に電解質が酸化されて生成された酸による影響力が相変らず大きいという問題点があった。   However, the conventional technique has a high reactivity with the organic electrolyte that is the main cause of the irreversible capacity, and the influence by the acid generated by the oxidation of the electrolyte during charge / discharge is still large. There was a point.

したがって、前述の従来技術の問題点を解決するための努力が関連業界で持続してきており、このような技術的背景の下で本発明が案出された。   Therefore, efforts to solve the above-mentioned problems of the prior art have been sustained in related industries, and the present invention has been devised under such technical background.

韓国公開特許第2005‐0020186号Korean Published Patent No. 2005-0020186

本発明が解決しようとする技術的課題は、非可逆容量の主要原因である有機電解液分解反応の影響性と充・放電中に電解質が酸化されて生成される酸による影響力とを減少させて、充・放電時に優れたサイクル特性及び高率特性を示すことにあり、このような技術的課題が達成できるリチウム電池用アノード活物質及びその製造方法とこれをアノードとして備えるリチウム二次電池を提供することに本発明の目的がある。   The technical problem to be solved by the present invention is to reduce the influence of the decomposition reaction of the organic electrolyte, which is the main cause of the irreversible capacity, and the influence of the acid generated by the oxidation of the electrolyte during charge / discharge. An anode active material for a lithium battery capable of achieving such a technical problem, a method for producing the same, and a lithium secondary battery comprising the same as an anode There is an object of the present invention to provide.

本発明が解決しようとする技術的課題を達成するためのリチウム二次電池用アノード活物質は、リチウム二次電池用アノード活物質の表面がフッ素系化合物でコートされていることを特徴とする。   An anode active material for a lithium secondary battery for achieving the technical problem to be solved by the present invention is characterized in that the surface of the anode active material for a lithium secondary battery is coated with a fluorine compound.

また、本発明が解決しようとする技術的課題を達成するためのリチウム二次電池用アノード活物質の製造方法は、フッ素系化合物にアノード活物質を添加、反応させる段階;及び前記反応結果として、その表面がフッ素系化合物でコートされたアノード活物質を形成する段階;を含むことを特徴とする。   Further, a method for producing an anode active material for a lithium secondary battery for achieving the technical problem to be solved by the present invention includes a step of adding and reacting an anode active material to a fluorine-based compound; Forming an anode active material whose surface is coated with a fluorine-based compound.

また、本発明が解決しようとする技術的課題を達成するためのリチウム二次電池は、前述の製造方法に従って用意されたアノード活物質が適用されたアノードを備えることを特徴とする。   In addition, a lithium secondary battery for achieving the technical problem to be solved by the present invention includes an anode to which an anode active material prepared according to the above manufacturing method is applied.

以下、本発明の望ましい実施例を詳しく説明する。これに先立って、本明細書及び請求範囲に使われた用語や単語は通常的や辞書的な意味に限定して解釈されてはならず、発明者は自らの発明を最善の方法で説明するために用語の概念を適切に定義することができるという原則に則して、本発明の技術的思想に符合する意味と概念とに解釈されなければならない。従って、本明細書に記載された実施例に示された構成は本発明の最も望ましい一実施例に過ぎず、本発明の技術的思想の全てを代弁するものではないため、本出願時点においてこれらに代替できる多様な均等物と変形例があり得ることを理解しなければならない。   Hereinafter, preferred embodiments of the present invention will be described in detail. Prior to this, terms and words used in the specification and claims should not be construed to be limited to ordinary or lexicographic meanings, and the inventor will best explain his invention. Therefore, in accordance with the principle that the concept of a term can be appropriately defined, it should be interpreted as a meaning and a concept consistent with the technical idea of the present invention. Accordingly, the configurations shown in the embodiments described in the present specification are only the most preferred embodiments of the present invention, and do not represent all the technical ideas of the present invention. It should be understood that there can be various equivalents and variations that can be substituted.

本発明のアノード活物質は、フッ素系化合物にアノード活物質を添加、反応させることでその表面をフッ素化合物でコートすることが望ましい。前記アノード活物質の表面をコートするために用いられるフッ素系化合物は、フッ素(F)と前駆体とを反応させて生成されたものである。前記フッ素系化合物は、錯塩形態であることがさらに望ましい。   The anode active material of the present invention is preferably coated on the surface with a fluorine compound by adding and reacting the anode active material to a fluorine compound. The fluorine-based compound used for coating the surface of the anode active material is produced by reacting fluorine (F) with a precursor. More preferably, the fluorine-based compound is in the form of a complex salt.

前記フッ素系化合物としては、CsF,KF,LiF,NaF,RbF,TiF,AgF,AgF,BaF,CaF,CuF,CdF,FeF,HgF,Hg,MnF,MgF,NiF,PbF,SnF,SrF,XeF,ZnF,AlF,BF,BiF,CeF,CrF,DyF,EuF,GaF,GdF,FeF,HoF,InF,LaF,LuF,MnF,NdF,VOF,PrF,SbF,ScF,SmF,TbF,TiF,TmF,YF,YbF,TlF,CeF,GeF,HfF,SiF,SnF,TiF,VF,ZrF,NbF,SbF,TaF,BiF,MoF,ReF,SF,WFなどを用いることができる。 Examples of the fluorine-based compound, CsF, KF, LiF, NaF , RbF, TiF, AgF, AgF 2, BaF 2, CaF 2, CuF 2, CdF 2, FeF 2, HgF 2, Hg 2 F 2, MnF 2, MgF 2, NiF 2, PbF 2 , SnF 2, SrF 2, XeF 2, ZnF 2, AlF 3, BF 3, BiF 3, CeF 3, CrF 3, DyF 3, EuF 3, GaF 3, GdF 3, FeF 3 , HoF 3, InF 3, LaF 3, LuF 3, MnF 3, NdF 3, VOF 3, PrF 3, SbF 3, ScF 3, SmF 3, TbF 3, TiF 3, TmF 3, YF 3, YbF 3, TlF 3 , CeF 4 , GeF 4 , HfF 4 , SiF 4 , SnF 4 , TiF 4 , VF 4 , ZrF 4 , NbF 5 , SbF 5 , TaF 5 , BiF 5 , MoF 6 , ReF 6 , SF 6 , WF 6 and the like can be used.

また、前記前駆体としては、Cs,K,Li,Na,Rb,Ti,Ag(I),Ag(II),Ba,Ca,Cu,Cd,Fe,Hg(II),Hg(I),Mn(II),Mg,Ni,Pb,Sn,Sr,Xe,Zn,Al,B,Bi(III),Ce(III),Cr,Dy,Du,Ga,Fe,Ho,In,La,Lu,Mn(III),Nd,VO,Pr,Sb(III),Sc,Sm,Tb,Ti(III),Tm,Y,Yb,Tl,Ce(IV),Ge,Hf,Si,Sn,Ti(IV),V,Zr,Nb,Sb(V),Ta,Bi(V),Mo,Re,S,Wなどを用いることができる。   The precursors include Cs, K, Li, Na, Rb, Ti, Ag (I), Ag (II), Ba, Ca, Cu, Cd, Fe, Hg (II), Hg (I), Mn (II), Mg, Ni, Pb, Sn, Sr, Xe, Zn, Al, B, Bi (III), Ce (III), Cr, Dy, Du, Ga, Fe, Ho, In, La, Lu , Mn (III), Nd, VO, Pr, Sb (III), Sc, Sm, Tb, Ti (III), Tm, Y, Yb, Tl, Ce (IV), Ge, Hf, Si, Sn, Ti (IV), V, Zr, Nb, Sb (V), Ta, Bi (V), Mo, Re, S, W, etc. can be used.

リチウム二次電池用アノード活物質は以下のように製造できる。
まず、前記のようにフッ素含有化合物と元素前駆体含有化合物とが混合して形成されたフッ素系化合物にアノード活物質を添加、反応させる(S1)。次いで、反応の結果、その表面がフッ素系化合物でコートされたアノード活物質を形成する(S2)。具体的には、前記(S1)段階は、元素前駆体含有溶液にアノード活物質を担持、撹拌して含浸させた後(S1a)、前記含浸された結果物にフッ素含有溶液を混合して共沈反応させ撹拌(S1b)してもよい。
The anode active material for a lithium secondary battery can be manufactured as follows.
First, an anode active material is added to and reacted with the fluorine-based compound formed by mixing the fluorine-containing compound and the element precursor-containing compound as described above (S1). Next, as a result of the reaction, an anode active material whose surface is coated with a fluorine compound is formed (S2). Specifically, in the step (S1), the anode active material is supported on the element precursor-containing solution, impregnated by stirring (S1a), and then the fluorine-containing solution is mixed with the impregnated result. A precipitation reaction may be performed and stirring may be performed (S1b).

前記(S1a)段階において、元素前駆体含有溶液は、アノード活物質に対して0.1ないし10モル%になるように用いられることが望ましい。前記元素前駆体含有溶液の濃度に関する数値範囲において、前記下限値未満である場合にはコーティング効果が現れず、酸による影響力を減少させることができないので望ましくない。また、前記上限値を超える場合には自重によって容量やエネルギー密度が減少するので望ましくない。   In the step (S1a), the element precursor-containing solution is preferably used in an amount of 0.1 to 10 mol% with respect to the anode active material. In the numerical range relating to the concentration of the element precursor-containing solution, if it is less than the lower limit value, the coating effect does not appear, and the influence by the acid cannot be reduced, which is not desirable. Further, when the upper limit is exceeded, the capacity and energy density are reduced by its own weight, which is not desirable.

また前記(S1b)段階において、フッ素含有溶液は、元素前駆体含有溶液に応じてその量が定められる。具体的には、元素前駆体含有溶液に対して0.1ないし60モル%で用いられることが望ましい。前記フッ素含有溶液の濃度に関する数値範囲において、前記下限値未満である場合にはコーティングしようとする元素前駆体でフッ素と結合できない元素があって所望のコーティング量をコーティングできず、これにより所望の特性を得ることができないので望ましくない。また、前記上限値を超える場合には過量のフッ素が添加されてアノード活物質の性能に影響を及ぼすことがあるので望ましくない。   In the step (S1b), the amount of the fluorine-containing solution is determined according to the element precursor-containing solution. Specifically, it is preferably used in an amount of 0.1 to 60 mol% with respect to the element precursor-containing solution. In the numerical range relating to the concentration of the fluorine-containing solution, if it is less than the lower limit value, there is an element that cannot be bonded to fluorine in the element precursor to be coated, and thus the desired coating amount cannot be coated, and thus the desired characteristics. Is not desirable because it cannot be obtained. On the other hand, if the upper limit is exceeded, an excessive amount of fluorine is added, which may affect the performance of the anode active material, which is not desirable.

前記(S1b)段階において、前記フッ素含有溶液は、50ないし100℃の温度で1ないし100ml/minの流量で3ないし48時間混合して共沈反応させた後撹拌してアノード活物質の表面にフッ素系化合物をコートすることができる。   In the step (S1b), the fluorine-containing solution is mixed at a temperature of 50 to 100 ° C. at a flow rate of 1 to 100 ml / min for 3 to 48 hours to be coprecipitated and then stirred to form a surface on the anode active material. A fluorine compound can be coated.

前記フッ素化合物含有溶液の流量速度の数値範囲に関しては、前記下限値未満である場合にはアノード活物質の表面に徐々にフッ素化合物を形成することができるという長所があるが、反応時間が長くかかるので望ましくない。また、前記上限値を超える場合には元素前駆体と結合するフッ素の速い結合速度によってアノード活物質の表面に一様にコーティングできないので望ましくない。また、形成されるフッ素系化合物の粒子サイズが大きくなって活物質表面に均一の厚さの層を形成することができず、これにより電気化学的性能が低下することがあるので望ましくない。   Regarding the numerical range of the flow rate of the fluorine compound-containing solution, when it is less than the lower limit, there is an advantage that the fluorine compound can be gradually formed on the surface of the anode active material, but the reaction time is long. So undesirable. On the other hand, when the upper limit is exceeded, it is not desirable because the surface of the anode active material cannot be uniformly coated due to the fast binding rate of fluorine that binds to the element precursor. In addition, the particle size of the fluorine-based compound to be formed is increased, and a layer having a uniform thickness cannot be formed on the surface of the active material, which is undesirable because electrochemical performance may be deteriorated.

前記反応時間の数値範囲に関しては、前記下限値未満である場合には元素前駆体とフッ素とが結合してフッ素化合物を形成し、このフッ素化合物がアノード活物質の表面に均一にコートされるのに十分な時間がなくて所望の形態のフッ素化合物が形成できないので望ましくない。また、前記上限値を超える場合にはアノード活物質の表面が溶媒によって酸化されるなど変質されることがあり、これはアノード活物質の性能に影響を及ぼすことがあるので望ましくない。   With respect to the numerical range of the reaction time, when it is less than the lower limit value, the element precursor and fluorine are combined to form a fluorine compound, and this fluorine compound is uniformly coated on the surface of the anode active material. In this case, it is not desirable because a sufficient amount of time is not sufficient to form a fluorine compound in a desired form. When the upper limit is exceeded, the surface of the anode active material may be altered, such as being oxidized by a solvent, which is undesirable because it may affect the performance of the anode active material.

本発明では、アノード活物質をフッ素化合物でコートするために所望の形態のフッ素化合物を得るべきである。前記共沈反応の温度が前記範囲内である場合には高い温度で共沈がなされることで錯塩形態の高分散度のフッ素系化合物を得ることができる。このような錯塩形態の高分散度のフッ素系化合物は、アノード活物質のコーティングにおいてさらに好ましい。   In the present invention, the desired form of the fluorine compound should be obtained in order to coat the anode active material with the fluorine compound. When the temperature of the coprecipitation reaction is within the above range, coprecipitation is performed at a high temperature, whereby a highly disperse fluorine compound in the form of a complex salt can be obtained. Such a highly disperse fluorine compound in the form of a complex salt is more preferable in the coating of the anode active material.

前記のようにして得られたフッ素系化合物がコートされたアノード活物質は、
以後洗浄する段階(S3);
前記洗浄された結果物を乾燥する段階(S4); 及び
前記乾燥された結果物を熱処理する段階(S5)を経て、
最終的に製造することができる。
The anode active material coated with the fluorine-based compound obtained as described above is
The subsequent washing step (S3);
A step of drying the washed result (S4); and a step of heat-treating the dried result (S5),
Finally it can be manufactured.

このとき、前記(S3)段階において、前記洗浄は、常法に従って蒸留水を用いて行うことができる。
前記(S4)乾燥段階において、溶媒の種類に応じてその温度範囲を異なるようにすることができる。本発明においては、水またはメタノール、エタノールなどのアルコール系溶媒を用いて50ないし150℃の温度で行う。前記乾燥温度に関する数値範囲において、前記下限値未満である場合にはコーティング工程後溶媒を除去する時間が長くかかり、全体的な工程時間が長くなるので望ましくなく、前記上限値を超える場合にはアノード活物質の表面が酸化されるなど変質される可能性がある。また、変質されればアノード活物質の性能にも影響を及ぼすことがあるので望ましくない。また、前記乾燥は、コーティング工程後溶媒を除去する工程であるので、アノード活物質が充分に乾燥できる時間であれば、乾燥時間は制限されない。
At this time, in the step (S3), the washing can be performed using distilled water according to a conventional method.
In the (S4) drying step, the temperature range can be varied depending on the type of solvent. In the present invention, the reaction is carried out at a temperature of 50 to 150 ° C. using water or an alcohol solvent such as methanol or ethanol. In the numerical range related to the drying temperature, if it is less than the lower limit, it takes a long time to remove the solvent after the coating process, which is undesirable because the overall process time becomes long. There is a possibility that the surface of the active material is altered, such as being oxidized. In addition, if it is altered, it may affect the performance of the anode active material, which is not desirable. In addition, the drying is a step of removing the solvent after the coating step, and therefore the drying time is not limited as long as the anode active material can be sufficiently dried.

また、前記(S5)段階において、前記熱処理段階は、フッ素化合物を形成するために用いられる元素前駆体の種類に応じてそれぞれ熱処理温度を異ならせてもよい。具体的には、酸化性雰囲気、還元性雰囲気、及び真空状態の中で選択される何れか一つの条件の下で150ないし900℃で1ないし20時間行うことが好ましい。前記熱処理温度に関する数値範囲において、前記下限値未満である場合には所望の形態のフッ素化合物が形成できないので望ましくない。また、前記上限値を超える場合には所望の形態のフッ素化合物が形成できないか、炭化が進んでアノード活物質の物性や性能に影響を及ぼすことがあるので望ましくない。また、前記熱処理時間に関する数値範囲において、前記下限値未満である場合には熱処理時間が短いので所望の形態のフッ素化合物が形成できないか、不純物が残存する可能性があるので望ましくない。また、前記上限値を超える場合にはアノード活物質の物性や性能に影響を及ぼすことがあるので望ましくない。   In the step (S5), in the heat treatment step, the heat treatment temperature may be varied depending on the type of the element precursor used for forming the fluorine compound. Specifically, it is preferably performed at 150 to 900 ° C. for 1 to 20 hours under any one condition selected from an oxidizing atmosphere, a reducing atmosphere, and a vacuum state. In the numerical range related to the heat treatment temperature, if it is less than the lower limit value, it is not desirable because a fluorine compound in a desired form cannot be formed. On the other hand, when the above upper limit is exceeded, it is not desirable because a fluorine compound in a desired form cannot be formed or carbonization proceeds to affect the physical properties and performance of the anode active material. Further, in the numerical range related to the heat treatment time, when the heat treatment time is less than the lower limit, the heat treatment time is short, so that a fluorine compound in a desired form cannot be formed or impurities may remain, which is not desirable. Further, when the upper limit is exceeded, the physical properties and performance of the anode active material may be affected, which is not desirable.

本発明に用いられる前記アノード活物質は当業界で製造される常法に従って製造したアノード活物質であればその種類は制限されない。具体的には、芯材炭素材料に低結晶性炭素を被覆して製造したアノード活物質を用いることができる。   The anode active material used in the present invention is not limited as long as it is an anode active material manufactured according to a conventional method manufactured in the art. Specifically, an anode active material produced by coating a core carbon material with low crystalline carbon can be used.

前記芯材炭素材料としては、天然黒鉛、人造黒鉛、またはこれらの混合物を用いることができる。特に、前記芯材炭素材料としては、球状の天然黒鉛を用いることが好適である。   As the core carbon material, natural graphite, artificial graphite, or a mixture thereof can be used. In particular, it is preferable to use spherical natural graphite as the core carbon material.

前記低結晶性炭素としては、ピッチ、タール、フェノール樹脂、フラン樹脂、フルフリルアルコールなどを用いることができる。
すなわち、本発明は、芯材炭素材料に低結晶性炭素を被覆してアノード活物質を用意した後、前記アノード活物質の表面を前記したようなフッ素系化合物でコートすることを特徴とする。
As the low crystalline carbon, pitch, tar, phenol resin, furan resin, furfuryl alcohol, and the like can be used.
That is, the present invention is characterized in that a core carbon material is coated with low crystalline carbon to prepare an anode active material, and then the surface of the anode active material is coated with a fluorine compound as described above.

また、本発明のリチウム二次電池は、前記方法で製造されたアノード活物質を含んで製造されることを特徴とする。本発明のリチウム二次電池は次のように製造できる。
まず、カソード活物質、導電材、結合材、及び溶媒を混合してカソード活物質組成物を用意する。前記カソード活物質組成物を金属集電体上に直接コーティング及び乾燥してカソード板を用意する。また、前記カソード活物質組成物を別途の支持体上にキャスティングした後、この支持体から剥離して得られたフィルムを金属集電体上にラミネーションしてカソード板を製造することも可能である。
In addition, the lithium secondary battery of the present invention is manufactured by including the anode active material manufactured by the above method. The lithium secondary battery of the present invention can be manufactured as follows.
First, a cathode active material, a conductive material, a binder, and a solvent are mixed to prepare a cathode active material composition. The cathode active material composition is directly coated on a metal current collector and dried to prepare a cathode plate. In addition, the cathode active material composition can be cast on a separate support, and then a film obtained by peeling from the support can be laminated on a metal current collector to produce a cathode plate. .

前記カソード活物質としては、リチウム含有金属酸化物であって、当業界で通常用いられるものであればすべて用いることができる。例えば、前記カソード活物質としては、LiCoO,LiMn2x,LiNi1−xMn2x(x=1,2),Ni1−x−yCoMn(0≦x≦0.5,0≦y≦0.5)などを用いることができる。より具体的には、LiMn,LiCoO,LiNiO,LiFeO,V,TiS,MoSなどのリチウムの酸化還元が可能な化合物を用いることができる。 As the cathode active material, any lithium-containing metal oxides that are usually used in the art can be used. For example, as the cathode active material, LiCoO 2, LiMn x O 2x , LiNi 1-x Mn x O 2x (x = 1,2), Ni 1-x-y Co x Mn y O 2 (0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.5), etc. can be used. More specifically, a compound capable of oxidation and reduction of lithium, such as LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2 , V 2 O 5 , TiS, and MoS, can be used.

導電材としてはカーボンブラックを用い、結合材としてはビニリデンフルオライド/ヘキサフルオロプロピレンコポリマー、ポリビニリデンフルオライド、ポリアクリロニトリル、ポリメチルメタクリレート、ポリテトラフルオロエチレン及びその混合物、スチレンブタジエンゴム系ポリマーなどを用いることができる。溶媒としては、N‐メチルピロリドン、アセトン、水などを用いることができる。このとき、カソード活物質、導電材、結合材、及び溶媒は、リチウム電池で通常用いる含量レベルで使用される。   Carbon black is used as the conductive material, and vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polytetrafluoroethylene and a mixture thereof, and styrene-butadiene rubber-based polymer are used as the binder. be able to. As the solvent, N-methylpyrrolidone, acetone, water or the like can be used. At this time, the cathode active material, the conductive material, the binder, and the solvent are used at a content level normally used in a lithium battery.

セパレーターとしては、リチウム電池で通常用いられるものであればすべて用いることができる。特に、電解質のイオン移動に対して低抵抗であり、かつ電解液含湿能力に優れたものが望ましい。具体的には、前記セパレーターは、ガラス繊維、ポリエステル、テフロン(登録商標)、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、その混合物から選択された材質であり、不織布または織布形態でも構わない。これをより詳しく説明すれば、リチウムイオン電池の場合にはポリエチレン、ポリプロピレンなどのような材料からなる巻き取り可能なセパレーターを用い、リチウムイオンポリマー電池の場合には有機電解液の含浸能力に優れたセパレーターを用いる。このようなセパレーターは、下記方法に従って製造可能である。   As the separator, any separator that is usually used in lithium batteries can be used. In particular, it is desirable to have a low resistance to ion migration of the electrolyte and an excellent electrolyte solution moisture-containing ability. Specifically, the separator is a material selected from glass fiber, polyester, Teflon (registered trademark), polyethylene, polypropylene, polytetrafluoroethylene (PTFE), and a mixture thereof, and may be a nonwoven fabric or a woven fabric. . More specifically, in the case of a lithium ion battery, a rollable separator made of a material such as polyethylene or polypropylene is used, and in the case of a lithium ion polymer battery, the organic electrolyte solution has excellent impregnation ability. Use a separator. Such a separator can be manufactured according to the following method.

すなわち、高分子樹脂、充填剤、及び溶媒を混合してセパレーター組成物を用意する。前記セパレーター組成物を電極上部に直接コーティング及び乾燥してセパレーターフィルムを形成するか、または支持体上にキャスティング及び乾燥した後、前記支持体から剥離させたセパレーターフィルムを電極上部にラミネーションして形成することができる。   That is, a polymer resin, a filler, and a solvent are mixed to prepare a separator composition. The separator composition is coated directly on the electrode and dried to form a separator film, or after casting and drying on a support, the separator film peeled off from the support is laminated on the electrode. be able to.

前記高分子樹脂は特に限定されず、電極板の結合材に用いられる物質はすべて用いることができる。例えば、ビニルリデンフルオライド/ヘキサフルオロプロピレンコポリマー、ポリビニリデンフルオライド、ポリアクリロニトリル、ポリメチルメタクリレート、これらの混合物などを用いることができる。   The polymer resin is not particularly limited, and all substances used for the binder of the electrode plate can be used. For example, vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, a mixture thereof, and the like can be used.

電解液としては、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチレンカーボネート、ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2‐メチルテトラヒドロフラン、γ‐ブチロラクトン、ジオキソラン、4‐メチルジオキソラン、N,N‐ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサ、1,2‐ジメトキシエタン、スルホラン、ジクロロエタン、クロロベンゼン、ニトロベンゼン、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、ジブチルカーボネート、ジエチレングリコール、ジメチルエーテル、またはこれらの混合溶媒に、LiPF,LiBF,LiSbF,LiAsF,LiClO,LiCFSO,Li(CFSON,LiCSO,LiSbF,LiAlO,LiAlCl,LiN(C2x+1SO)(C2y+1SO)(但し、x,yは、自然数),LiCl,LiIなどのリチウム塩からなる電解質の中で1種またはこれらを2種以上の混合物を溶解して用いることができる。 Examples of the electrolyte include propylene carbonate, ethylene carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxa, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, Dipropyl carbonate, dibutyl carbonate LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , diethylene glycol, dimethyl ether, or a mixed solvent thereof. LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (where x and y are natural numbers), among electrolytes made of lithium salts such as LiCl and LiI 1 type or these can melt | dissolve and use 2 or more types of mixtures.

前述したようなカソード極板とアノード極板の間にセパレーターを配置して電池構造体を形成する。このような電池構造体をワインディングするか折って円筒形電池ケースやまたは角形電池ケースに入れた後、有機電解液を注入してリチウムイオン電池を製造することができる。   A battery structure is formed by disposing a separator between the cathode plate and the anode plate as described above. After winding or folding such a battery structure into a cylindrical battery case or a rectangular battery case, an organic electrolyte can be injected to manufacture a lithium ion battery.

また、前記電池構造体をバイセル構造で積層した後、これを有機電解液に含浸させ、得られた結果物をポーチに入れて密封してリチウムイオンポリマー電池を製造することができる。   Moreover, after laminating | stacking the said battery structure by a bicell structure, this can be made to impregnate with an organic electrolyte solution, and the obtained result can be sealed in a pouch, and a lithium ion polymer battery can be manufactured.

以下、本発明の理解を助けるために、望ましい実施例を通じてより具体的に説明する。
実施例1
球状の天然黒鉛質の炭素材料とピッチを用意した。
Hereinafter, the present invention will be described more specifically through preferred embodiments in order to help understanding of the present invention.
Example 1
Spherical natural graphite carbon material and pitch were prepared.

前記球状の天然黒鉛に、テトラヒドロフランで溶かしたピッチを一定の重量比で交ぜた。これを常圧で2時間以上湿式撹拌して混合した後乾燥して混合物を製造した。この混合物を1,100℃と1,500℃でそれぞれ1時間1・2次焼成し、分級して微粉を除去してアノード活物質を製造した。   The spherical natural graphite was mixed with a pitch dissolved in tetrahydrofuran at a constant weight ratio. This was wet-stirred for 2 hours or more at normal pressure, mixed and then dried to produce a mixture. This mixture was subjected to primary and secondary firing for 1 hour at 1,100 ° C. and 1,500 ° C. for 1 hour, respectively, and classified to remove fine powders to produce an anode active material.

次いで、2,000mlのビーカーに2モル%のAl(NO・9HO(アノード活物質の重量部に対して)を2,000mlの蒸留水に溶解させた後、前記製造したアノード活物質を担持させ撹拌して完全に含浸させた。前記ビーカーの温度を80℃程度に維持しながら6モル%のNHF混合溶液500mlを1ml/minの流量で混合して共沈反応させた。前記反応物を12時間さらに撹拌した。このとき反応槽の平均温度は80℃程度を維持した。 Next, after dissolving 2 mol% of Al (NO 3) 3 · 9H 2 O in a beaker of 2,000 ml (based on weight of the anode active material) of distilled water 2,000 ml, the anode was the production The active material was supported and stirred until it was completely impregnated. While maintaining the temperature of the beaker at about 80 ° C., 500 ml of a 6 mol% NH 4 F mixed solution was mixed at a flow rate of 1 ml / min for coprecipitation reaction. The reaction was further stirred for 12 hours. At this time, the average temperature of the reaction vessel was maintained at about 80 ° C.

前記反応を通じて得られたフッ素化合物がコートされたアノード活物質を蒸留水で洗浄し、110℃の温風恒温槽で12時間乾燥させた。次いで、前記乾燥されたアノード活物質を不活性雰囲気の下で400℃で熱処理してAlFがコートされたアノード活物質を製造した。 The anode active material coated with the fluorine compound obtained through the above reaction was washed with distilled water and dried in a hot air constant temperature bath at 110 ° C. for 12 hours. Next, the dried anode active material was heat-treated at 400 ° C. under an inert atmosphere to produce an anode active material coated with AlF 3 .

前記製造したAlFがコートされたアノード活物質100gを500mlの反応器に入れ、少量のN‐メチルピロリドン(NMP)と、バインダー(PVDF)とを投入してミキサーを用いて混練した。次いで混合物を銅ホイル上に圧着乾燥して電極として用いた。このとき、電極密度は1.5g/cm3、電極厚さは70μmにした。 100 g of the prepared anode active material coated with AlF 3 was placed in a 500 ml reactor, and a small amount of N-methylpyrrolidone (NMP) and a binder (PVDF) were added and kneaded using a mixer. Subsequently, the mixture was pressure-dried on copper foil and used as an electrode. At this time, the electrode density was 1.5 g / cm 3 and the electrode thickness was 70 μm.

また、充・放電効率を評価するためにコインセル(Coin Cell)を製造して評価した。
実施例2
前記実施例1において、Al(NO・9HOと蒸留水の代わりに、Al‐イソプロポキシドと無水エタノールを用いたことを除いては、前記実施例1と同一の方法で製造した。
Moreover, in order to evaluate charging / discharging efficiency, the coin cell (Coin Cell) was manufactured and evaluated.
Example 2
In Example 1, except that Al-isopropoxide and absolute ethanol were used instead of Al (NO 3 ) 3 · 9H 2 O and distilled water, the same method as in Example 1 was used. did.

実施例3
前記実施例1において、Al(NO・9HOの代わりに、Zr(SO・xHOを用いたことを除いては、前記実施例1と同一の方法で製造した。
Example 3
In Example 1, except for using Zr (SO 4 ) 2 .xH 2 O instead of Al (NO 3 ) 3 .9H 2 O, the same method as in Example 1 was used. .

実施例4
前記実施例1において、Al(NO・9HOと蒸留水の代わりに、Zr‐エトキシドと無水エタノールを用いたことを除いては、前記実施例1と同一の方法で製造した。
Example 4
Example 1 was prepared in the same manner as in Example 1 except that Zr-ethoxide and absolute ethanol were used in place of Al (NO 3 ) 3 · 9H 2 O and distilled water.

比較例1
球状の天然黒鉛質の炭素材料とピッチを用意した。
前記球状の天然黒鉛にテトラヒドロフランで溶かしたピッチを一定の重量比で交ぜた。この混合物を1,100℃と1,500℃でそれぞれ1時間1・2次焼成し、分級して微粉を除去してアノード活物質を製造した。
Comparative Example 1
Spherical natural graphite carbon material and pitch were prepared.
The spherical natural graphite was mixed with a pitch dissolved in tetrahydrofuran at a constant weight ratio. This mixture was subjected to primary and secondary firing for 1 hour at 1,100 ° C. and 1,500 ° C. for 1 hour, respectively, and classified to remove fine powders to produce an anode active material.

このように製造されたアノード活物質(黒鉛質炭素材料とピッチの混合物)100gを500mlの反応器に入れ、少量のN‐メチルピロリドン(NMP)と、バインダー(PVDF)とを投入してミキサーを用いて混練した。次いで、銅ホイル上に圧着乾燥して電極として用いた。このとき、電極密度は1.5g/cm3、電極厚さは70μmにした。 100 g of the anode active material (a mixture of graphitic carbon material and pitch) thus produced is put into a 500 ml reactor, and a small amount of N-methylpyrrolidone (NMP) and a binder (PVDF) are added to the mixer. And kneaded. Next, it was pressure-dried on a copper foil and used as an electrode. At this time, the electrode density was 1.5 g / cm 3 and the electrode thickness was 70 μm.

また、充・放電効率を評価するためにコインセルを製造して評価した。
前記実施例1ないし4と比較例1で製造したアノード活物質を用いて下記のような方法で電池特性で充・放電試験を評価し、その結果を下記表1に示した。
Moreover, in order to evaluate charging / discharging efficiency, the coin cell was manufactured and evaluated.
Using the anode active materials prepared in Examples 1 to 4 and Comparative Example 1, the charge / discharge test was evaluated by battery characteristics by the following method. The results are shown in Table 1 below.

まず、電位を0〜1.5Vの範囲で規制しながら充電電流0.5mA/cm3で0.01Vになるまで充電した。0.01Vの電圧を維持しながら充電電流が0.02mA/cm3になるまで充電し続けた。そして、放電電流は0.5mA/cm3で1.5Vまでの放電を行った。 First, the battery was charged to 0.01 V at a charging current of 0.5 mA / cm 3 while regulating the potential in the range of 0 to 1.5 V. While maintaining the voltage of 0.01 V, the charging was continued until the charging current reached 0.02 mA / cm 3 . The discharge current was 0.5 mA / cm 3 and discharge was performed up to 1.5 V.

下記表1において、充・放電効率とは、充電した電気容量に対して放電した電気容量の比率を示したものである。   In the following Table 1, the charge / discharge efficiency indicates the ratio of the discharged electric capacity to the charged electric capacity.

Figure 2010519682
前記表1からわかるように、本発明によって表面がフッ素系化合物でコートされた実施例1ないし4のアノード活物質は、表面がコートされていない比較例1のアノード活物質と比較して充・放電時に優れたサイクル特性を現わし、高率特性に優れているので電気化学的特性が向上されることを確認することができた。
Figure 2010519682
As can be seen from Table 1, the anode active materials of Examples 1 to 4 whose surfaces were coated with a fluorine-based compound according to the present invention were charged as compared with the anode active materials of Comparative Example 1 whose surfaces were not coated. Excellent cycle characteristics were exhibited during discharge, and it was confirmed that the electrochemical characteristics were improved because of excellent high rate characteristics.

以上、本発明の記載された具体例に対してのみ詳しく説明したが、本発明の技術思想の範囲内で多様な変形及び修正が可能なのは当業者において明白なことであり、このような変形及び修正が添付された特許請求の範囲に属することは言うまでもない。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various modifications and corrections are possible within the scope of the technical idea of the present invention. It goes without saying that the modifications belong to the appended claims.

本発明によるフッ素系化合物で表面がコートされたアノード活物質は、表面を安定化させ非可逆容量の主要原因である有機電解液分解反応の影響を減らすことができる。また、本発明のアノード活物質は、充・放電中に電解質が酸化されて生成される酸による影響力を減少させて、充・放電時に優れたサイクル特性及び高率特性を示すことができる。   The anode active material whose surface is coated with a fluorine-based compound according to the present invention can stabilize the surface and reduce the influence of the organic electrolyte decomposition reaction, which is the main cause of irreversible capacity. In addition, the anode active material of the present invention can exhibit excellent cycle characteristics and high rate characteristics during charge / discharge by reducing the influence of an acid generated by oxidation of the electrolyte during charge / discharge.

Claims (16)

リチウム二次電池用アノード活物質の表面がフッ素系化合物でコートされていることを特徴とするリチウム二次電池用アノード活物質。 An anode active material for a lithium secondary battery, wherein a surface of the anode active material for a lithium secondary battery is coated with a fluorine compound. 前記フッ素系化合物は、フッ素(F)と前駆体とを相互反応させて生成された、CsF,KF,LiF,NaF,RbF,TiF,AgF,AgF,BaF,CaF,CuF,CdF,FeF,HgF,Hg,MnF,MgF,NiF,PbF,SnF,SrF,XeF,ZnF,AlF,BF,BiF,CeF,CrF,DyF,EuF,GaF,GdF,FeF,HoF,InF,LaF,LuF,MnF,NdF,VOF,PrF,SbF,ScF,SmF,TbF,TiF,TmF,YF,YbF,TlF,CeF,GeF,HfF,SiF,SnF,TiF,VF,ZrF,NbF,SbF,TaF,BiF,MoF,ReF,SF及びWFからなる物質群より選択される1種またはこれらの混合物であることを特徴とする請求項1に記載のリチウム二次電池用アノード活物質。 The fluorine-based compounds are CsF, KF, LiF, NaF, RbF, TiF, AgF, AgF 2 , BaF 2 , CaF 2 , CuF 2 , CdF, which are produced by reacting fluorine (F) with a precursor. 2 , FeF 2 , HgF 2 , Hg 2 F 2 , MnF 2 , MgF 2 , NiF 2 , PbF 2 , SnF 2 , SrF 2 , XeF 2 , ZnF 2 , AlF 3 , BF 3 , BiF 3 , CeF 3 , CrF 3, DyF 3, EuF 3, GaF 3, GdF 3, FeF 3, HoF 3, InF 3, LaF 3, LuF 3, MnF 3, NdF 3, VOF 3, PrF 3, SbF 3, ScF 3, SmF 3, TbF 3 , TiF 3 , TmF 3 , YF 3 , YbF 3 , TlF 3 , CeF 4 , GeF 4 , HfF 4 , SiF 4 , SnF 4 , TiF 4 , VF 4 , ZrF 4 , NbF 5 , SbF 5 , TaF 5 , BiF 5 , MoF 6 , ReF 6 , SF 6, and WF 6, or a mixture thereof The anode active material for a lithium secondary battery according to claim 1. 前記フッ素系化合物は、錯塩形態の物質であることを特徴とする請求項1に記載のリチウム二次電池用アノード活物質。 The anode active material for a lithium secondary battery according to claim 1, wherein the fluorine compound is a complex salt material. 前記元素前駆体が、Cs,K,Li,Na,Rb,Ti,Ag(I),Ag(II),Ba,Ca,Cu,Cd,Fe,Hg(II),Hg(I),Mn(II),Mg,Ni,Pb,Sn,Sr,Xe,Zn,Al,B,Bi(III),Ce(III),Cr,Dy,Du,Ga,Fe,Ho,In,La,Lu,Mn(III),Nd,VO,Pr,Sb(III),Sc,Sm,Tb,Ti(III),Tm,Y,Yb,Tl,Ce(IV),Ge,Hf,Si,Sn,Ti(IV),V,Zr,Nb,Sb(V),Ta,Bi(V),Mo,Re,S及びWからなる群より選択された単一元素またはこれらの中で任意に選択された二つ以上の元素混合物であることを特徴とする請求項2に記載のリチウム二次電池用アノード活物質。 The element precursor is Cs, K, Li, Na, Rb, Ti, Ag (I), Ag (II), Ba, Ca, Cu, Cd, Fe, Hg (II), Hg (I), Mn ( II), Mg, Ni, Pb, Sn, Sr, Xe, Zn, Al, B, Bi (III), Ce (III), Cr, Dy, Du, Ga, Fe, Ho, In, La, Lu, Mn (III), Nd, VO, Pr, Sb (III), Sc, Sm, Tb, Ti (III), Tm, Y, Yb, Tl, Ce (IV), Ge, Hf, Si, Sn, Ti (IV ), V, Zr, Nb, Sb (V), Ta, Bi (V), Mo, Re, S and W, or a single element arbitrarily selected from these. The anode active material for a lithium secondary battery according to claim 2, wherein the anode active material is an element mixture of the following. リチウム二次電池用アノード活物質の製造方法において、
(S1)フッ素系化合物にアノード活物質を添加、反応させる段階;及び
(S2)前記反応結果として、その表面がフッ素系化合物でコートされたアノード活物質を形成する段階;
を含むことを特徴とするリチウム二次電池用アノード活物質の製造方法。
In the method for producing an anode active material for a lithium secondary battery,
(S1) adding and reacting an anode active material to the fluorine-based compound; and (S2) forming an anode active material whose surface is coated with the fluorine-based compound as a result of the reaction;
A method for producing an anode active material for a lithium secondary battery, comprising:
前記(S1)段階において、
フッ素系化合物として、フッ素(F)と前駆体とを反応させて生成された、CsF,KF,LiF,NaF,RbF,TiF,AgF,AgF,BaF,CaF,CuF,CdF,FeF,HgF,Hg,MnF,MgF,NiF,PbF,SnF,SrF,XeF,ZnF,AlF,BF,BiF,CeF,CrF,DyF,EuF,GaF,GdF,FeF,HoF,InF,LaF,LuF,MnF,NdF,VOF,PrF,SbF,ScF,SmF,TbF,TiF,TmF,YF,YbF,TlF,CeF,GeF,HfF,SiF,SnF,TiF,VF,ZrF,NbF,SbF,TaF,BiF,MoF,ReF,SF及びWFからなる物質群より選択される1種またはこれらの混合物を用いることを特徴とする請求項5に記載のリチウム二次電池用アノード活物質の製造方法。
In the step (S1),
As the fluorine-based compound, a fluorine (F) is reacted with the precursor is generated, CsF, KF, LiF, NaF , RbF, TiF, AgF, AgF 2, BaF 2, CaF 2, CuF 2, CdF 2, FeF 2, HgF 2, Hg 2 F 2, MnF 2, MgF 2, NiF 2, PbF 2, SnF 2, SrF 2, XeF 2, ZnF 2, AlF 3, BF 3, BiF 3, CeF 3, CrF 3, DyF 3, EuF 3, GaF 3 , GdF 3, FeF 3, HoF 3, InF 3, LaF 3, LuF 3, MnF 3, NdF 3, VOF 3, PrF 3, SbF 3, ScF 3, SmF 3, TbF 3 , TiF 3, TmF 3, YF 3, YbF 3, TlF 3, CeF 4, GeF 4, HfF 4, SiF 4, SnF 4, iF 4, VF 4, a ZrF 4, NbF 5, SbF 5 , TaF 5, BiF 5, MoF 6, the use of the ReF 6, SF 6, and one or a mixture thereof selected from the group of substances consisting of WF 6 The method for producing an anode active material for a lithium secondary battery according to claim 5.
前記フッ素系化合物は、錯塩形態の物質であることを特徴とする請求項6に記載のリチウム二次電池用アノード活物質の製造方法。 The method for producing an anode active material for a lithium secondary battery according to claim 6, wherein the fluorine-based compound is a complex salt material. 前記前駆体が、Cs,K,Li,Na,Rb,Ti,Ag(I),Ag(II),Ba,Ca,Cu,Cd,Fe,Hg(II),Hg(I),Mn(II),Mg,Ni,Pb,Sn,Sr,Xe,Zn,Al,B,Bi(III),Ce(III),Cr,Dy,Du,Ga,Fe,Ho,In,La,Lu,Mn(III),Nd,VO,Pr,Sb(III),Sc,Sm,Tb,Ti(III),Tm,Y,Yb,Tl,Ce(IV),Ge,Hf,Si,Sn,Ti(IV),V,Zr,Nb,Sb(V),Ta,Bi(V),Mo,Re,S及びWからなる群より選択される1種元素またはこれらの混合元素であることを特徴とする請求項6に記載のリチウム二次電池用アノード活物質の製造方法。 The precursor is Cs, K, Li, Na, Rb, Ti, Ag (I), Ag (II), Ba, Ca, Cu, Cd, Fe, Hg (II), Hg (I), Mn (II ), Mg, Ni, Pb, Sn, Sr, Xe, Zn, Al, B, Bi (III), Ce (III), Cr, Dy, Du, Ga, Fe, Ho, In, La, Lu, Mn ( III), Nd, VO, Pr, Sb (III), Sc, Sm, Tb, Ti (III), Tm, Y, Yb, Tl, Ce (IV), Ge, Hf, Si, Sn, Ti (IV) , V, Zr, Nb, Sb (V), Ta, Bi (V), Mo, Re, S, and W, or a mixed element thereof. 6. A method for producing an anode active material for a lithium secondary battery according to 6. 前記(S1)段階は、
(S1a)元素前駆体含有溶液にアノード活物質を担持、撹拌して含浸させる段階;及び
(S1b)前記含浸された結果物にフッ素含有溶液を混合して共沈反応させ撹拌する段階;
を含むことを特徴とする請求項5に記載のリチウム二次電池用アノード活物質の製造方法。
The step (S1) includes:
(S1a) a step of supporting an anode active material in an element precursor-containing solution, stirring and impregnating; and (S1b) a step of mixing the impregnated product with a fluorine-containing solution to perform a coprecipitation reaction and stirring;
The manufacturing method of the anode active material for lithium secondary batteries of Claim 5 characterized by the above-mentioned.
前記(S1a)段階において、前記元素前駆体含有溶液は、前記アノード活物質に対して0.1ないし10モル%になるように用いられることを特徴とする請求項9に記載のリチウム二次電池用アノード活物質の製造方法。 The lithium secondary battery according to claim 9, wherein in the step (S1a), the element precursor-containing solution is used in an amount of 0.1 to 10 mol% with respect to the anode active material. A method for producing an anode active material. 前記(S1b)段階において、前記フッ素含有溶液は、前記元素前駆体含有溶液に対して0.1ないし60モル%になるように用いられることを特徴とする請求項9に記載のリチウム二次電池用アノード活物質の製造方法。 The lithium secondary battery according to claim 9, wherein in the step (S1b), the fluorine-containing solution is used in an amount of 0.1 to 60 mol% with respect to the element precursor-containing solution. A method for producing an anode active material. 前記(S1b)段階において、前記フッ素含有溶液は、50ないし100℃の温度で1ないし100ml/minの流量で3ないし48時間混合及び撹拌されることを特徴とする請求項9に記載のリチウム二次電池用アノード活物質の製造方法。 The lithium secondary solution according to claim 9, wherein, in the step (S1b), the fluorine-containing solution is mixed and stirred for 3 to 48 hours at a flow rate of 1 to 100 ml / min at a temperature of 50 to 100 ° C. A method for producing an anode active material for a secondary battery. 前記(S2)段階以後に、(S3)前記フッ素系化合物がコートされたアノード活物質を洗浄する段階;
(S4)前記洗浄された結果物を乾燥する段階;及び
(S5)前記洗浄乾燥された結果物を熱処理する段階;をさらに含んで行うことを特徴とする請求項5に記載のリチウム二次電池用アノード活物質の製造方法。
After the step (S2), (S3) a step of washing the anode active material coated with the fluorine compound;
6. The lithium secondary battery according to claim 5, further comprising: (S4) drying the washed result; and (S5) heat treating the washed result. A method for producing an anode active material.
前記(S4)段階の乾燥は、50ないし150℃の温度で行われることを特徴とする請求項13に記載のリチウム二次電池用アノード活物質の製造方法。 The method according to claim 13, wherein the drying in the step (S4) is performed at a temperature of 50 to 150 ° C. 前記(S5)段階の熱処理は、酸化性雰囲気、還元性雰囲気及び真空状態の中で選択された何れか一つの条件の下で150ないし900℃で1ないし20時間行われることを特徴とする請求項13に記載のリチウム二次電池用アノード活物質の製造方法。 The heat treatment of the step (S5) is performed at 150 to 900 ° C. for 1 to 20 hours under any one condition selected from an oxidizing atmosphere, a reducing atmosphere, and a vacuum state. Item 14. A method for producing an anode active material for a lithium secondary battery according to Item 13. 請求項5ないし請求項15のうち選択された何れか1項による方法に従って製造されたアノード活物質が適用されたアノードを備えることを特徴とするリチウム二次電池。 A lithium secondary battery comprising an anode to which an anode active material manufactured according to the method according to any one of claims 5 to 15 is applied.
JP2009549507A 2007-02-16 2007-10-25 Anode active material for lithium battery, method for producing the same, and lithium secondary battery using the same Pending JP2010519682A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070016575A KR100853327B1 (en) 2007-02-16 2007-02-16 Anode active material for rechargeable lithium ion battery and method for preparing thereof and lithium ion battery manufactured using the same
PCT/KR2007/005273 WO2008100002A1 (en) 2007-02-16 2007-10-25 Anode active material for rechargeable lithium ion battery, method for preparing the same, and lithium ion battery manufactured using the same

Publications (1)

Publication Number Publication Date
JP2010519682A true JP2010519682A (en) 2010-06-03

Family

ID=39690212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009549507A Pending JP2010519682A (en) 2007-02-16 2007-10-25 Anode active material for lithium battery, method for producing the same, and lithium secondary battery using the same

Country Status (3)

Country Link
JP (1) JP2010519682A (en)
KR (1) KR100853327B1 (en)
WO (1) WO2008100002A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033387A (en) * 2010-07-30 2012-02-16 Kansai Univ MANUFACTURING METHOD OF POSITIVE ELECTRODE MATERIAL FOR SECONDARY BATTERY CONTAINING Cu, MANUFACTURING METHOD OF POSITIVE ELECTRODE MATERIAL FOR SECONDARY BATTERY, AND POSITIVE ELECTRODE MATERIAL FOR SECONDARY BATTERY
WO2013018692A1 (en) * 2011-07-29 2013-02-07 三洋電機株式会社 Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, positive electrode for nonaqueous electrolyte secondary cell using positive electrode active substance, and nonaqueous electrolyte secondary cell using positive electrode
JP2013515349A (en) * 2009-12-21 2013-05-02 エー123 システムズ, インコーポレイテッド Anode material
JP2013125662A (en) * 2011-12-15 2013-06-24 Sanyo Electric Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2019169438A (en) * 2018-03-26 2019-10-03 トヨタ自動車株式会社 Negative electrode material and electrolyte battery arranged by use thereof
JP2020502752A (en) * 2016-12-15 2020-01-23 本田技研工業株式会社 Composite electrode material for fluoride ion electrochemical cell
US11749797B2 (en) 2016-12-15 2023-09-05 Honda Motor Co., Ltd. Nanostructural designs for electrode materials of fluoride ion batteries

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100991358B1 (en) 2008-03-27 2010-11-03 (주)포스코켐텍 Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode
KR101091546B1 (en) 2009-04-27 2011-12-13 (주)포스코켐텍 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
JP5515476B2 (en) * 2009-07-16 2014-06-11 ソニー株式会社 Secondary battery, negative electrode, positive electrode and electrolyte
CN101944562B (en) * 2010-09-03 2012-05-23 湘能华磊光电股份有限公司 Method for removing light-emitting diode (LED) chip electrode
US9099735B2 (en) 2011-09-13 2015-08-04 Wildcat Discovery Technologies, Inc. Cathode for a battery
US20130095386A1 (en) * 2011-10-12 2013-04-18 Battelle Memorial Institute Metal Fluoride Electrode Protection Layer and Method of Making Same
KR101888157B1 (en) * 2011-12-20 2018-08-14 엘지디스플레이 주식회사 organic light emitting diode display device
KR101511822B1 (en) 2012-05-30 2015-04-13 주식회사 엘지화학 Negative active material for lithium battery and battery comprising the same
KR101579641B1 (en) * 2012-05-30 2015-12-22 주식회사 엘지화학 Negative active material for lithium battery and battery comprising the same
US20140272581A1 (en) 2013-03-15 2014-09-18 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
US8916062B2 (en) 2013-03-15 2014-12-23 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
WO2014144167A1 (en) 2013-03-15 2014-09-18 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
US9159994B2 (en) 2013-03-15 2015-10-13 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
WO2014144179A1 (en) 2013-03-15 2014-09-18 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
KR101523081B1 (en) * 2013-11-28 2015-06-05 주식회사 포스코 Complex of positive electrode active material and fluorine compound, manufacturing method of the same, and rechargable lithium battery including the complex
KR101746903B1 (en) * 2014-09-30 2017-06-14 주식회사 엘지화학 Negative active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery comprising same
KR102341406B1 (en) * 2015-06-09 2021-12-21 삼성에스디아이 주식회사 Composite for anode active material, anode including the composite, lithium secondary battery including the anode, and method of preparing the composite
US10903483B2 (en) 2015-08-27 2021-01-26 Wildcat Discovery Technologies, Inc High energy materials for a battery and methods for making and use
KR102155025B1 (en) 2017-01-11 2020-09-11 주식회사 엘지화학 Deposition of LiF on Li metal surface and Li secondary battery using thereof
EP3460882B1 (en) * 2017-01-23 2022-03-02 LG Energy Solution Ltd. Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and method for manufacturing same
KR102090296B1 (en) 2017-01-23 2020-03-17 주식회사 엘지화학 Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and preparing method thereof
CN109148831B (en) * 2018-09-11 2021-03-16 安徽工业大学 Preparation method of fluoride sodium ion battery electrode material
CN111029533B (en) * 2019-10-31 2021-09-07 北京泰丰先行新能源科技有限公司 Metallic lithium surface protection method, negative electrode and metallic lithium secondary battery
CN111333064B (en) * 2020-03-25 2021-08-10 江西正拓新能源科技股份有限公司 High-performance lithium ion battery graphite negative electrode material and preparation method thereof
CN112614997B (en) * 2020-12-18 2022-07-01 中国民航大学 Preparation method of carbon fluoride anode material based on hydrogen bond organic framework material
CN114583148B (en) * 2022-03-05 2024-04-16 青岛泰达华润新能源科技有限公司 Preparation method of silicon oxide-based graphite composite anode material for lithium ion battery
CN114613974B (en) * 2022-04-17 2022-09-09 晖阳(贵州)新能源材料有限公司 Long-life quick-charging type lithium ion battery cathode material and preparation method thereof
CN114804211B (en) * 2022-05-20 2024-02-23 洛阳师范学院 High-first-effect lithium ferrite negative electrode material for lithium ion battery and preparation method thereof
CN115504770B (en) * 2022-09-13 2023-07-21 景德镇陶瓷大学 Transition metal ion and Nd 3+ Co-doped solid electrolyte ceramic material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255837A (en) * 1997-03-11 1998-09-25 Sanyo Electric Co Ltd Lithium secondary battery
JPH11111342A (en) * 1997-10-07 1999-04-23 Yuasa Corp Lithium secondary battery
JP2003217593A (en) * 2002-01-16 2003-07-31 Sony Corp Negative electrode active material and production process thereof, and battery and production process thereof
JP2003263984A (en) * 2002-03-11 2003-09-19 Japan Storage Battery Co Ltd Nonaqueous electrolyte cell and manufacturing method thereof
JP2008536285A (en) * 2005-04-15 2008-09-04 エナーセラミック インコーポレイテッド Positive electrode active material for lithium secondary battery coated with fluorine compound and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950002099A (en) * 1993-06-03 1995-01-04 윤종용 Secondary Battery and Manufacturing Method Thereof
JPH11265710A (en) * 1998-03-18 1999-09-28 Sanyo Electric Co Ltd Lithium secondary battery and its manufacture
KR100440489B1 (en) * 2001-10-12 2004-07-14 주식회사 엘지화학 Electrode materials and method for preparing thereof
KR100701532B1 (en) * 2005-06-21 2007-03-29 대정화금주식회사 Cathode active material added with fluorine compound for lithium secondary batteries And Method of producing thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255837A (en) * 1997-03-11 1998-09-25 Sanyo Electric Co Ltd Lithium secondary battery
JPH11111342A (en) * 1997-10-07 1999-04-23 Yuasa Corp Lithium secondary battery
JP2003217593A (en) * 2002-01-16 2003-07-31 Sony Corp Negative electrode active material and production process thereof, and battery and production process thereof
JP2003263984A (en) * 2002-03-11 2003-09-19 Japan Storage Battery Co Ltd Nonaqueous electrolyte cell and manufacturing method thereof
JP2008536285A (en) * 2005-04-15 2008-09-04 エナーセラミック インコーポレイテッド Positive electrode active material for lithium secondary battery coated with fluorine compound and method for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515349A (en) * 2009-12-21 2013-05-02 エー123 システムズ, インコーポレイテッド Anode material
JP2012033387A (en) * 2010-07-30 2012-02-16 Kansai Univ MANUFACTURING METHOD OF POSITIVE ELECTRODE MATERIAL FOR SECONDARY BATTERY CONTAINING Cu, MANUFACTURING METHOD OF POSITIVE ELECTRODE MATERIAL FOR SECONDARY BATTERY, AND POSITIVE ELECTRODE MATERIAL FOR SECONDARY BATTERY
WO2013018692A1 (en) * 2011-07-29 2013-02-07 三洋電機株式会社 Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, positive electrode for nonaqueous electrolyte secondary cell using positive electrode active substance, and nonaqueous electrolyte secondary cell using positive electrode
CN103733392A (en) * 2011-07-29 2014-04-16 三洋电机株式会社 Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, positive electrode for nonaqueous electrolyte secondary cell using positive electrode active substance, and nonaqueous electrolyte secondary cell
JP2013125662A (en) * 2011-12-15 2013-06-24 Sanyo Electric Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2020502752A (en) * 2016-12-15 2020-01-23 本田技研工業株式会社 Composite electrode material for fluoride ion electrochemical cell
US11251420B2 (en) 2016-12-15 2022-02-15 Honda Motor Co., Ltd. Composite electrode materials for fluoride-ion electrochemical cells
US11749797B2 (en) 2016-12-15 2023-09-05 Honda Motor Co., Ltd. Nanostructural designs for electrode materials of fluoride ion batteries
JP7340451B2 (en) 2016-12-15 2023-09-07 本田技研工業株式会社 Composite electrode material for fluoride ion electrochemical cells
US11881581B2 (en) 2016-12-15 2024-01-23 Honda Motor Co., Ltd. Composite electrode materials for fluoride-ion electrochemical cells
JP2019169438A (en) * 2018-03-26 2019-10-03 トヨタ自動車株式会社 Negative electrode material and electrolyte battery arranged by use thereof
JP7054445B2 (en) 2018-03-26 2022-04-14 トヨタ自動車株式会社 Negative electrode material and electrolyte-based battery using this

Also Published As

Publication number Publication date
KR20080076527A (en) 2008-08-20
KR100853327B1 (en) 2008-08-21
WO2008100002A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
KR100853327B1 (en) Anode active material for rechargeable lithium ion battery and method for preparing thereof and lithium ion battery manufactured using the same
KR102656479B1 (en) Composite positive active material, preparing method thereof, positive electrode including the same, and lithium battery including the positive electrode
KR101264333B1 (en) Cathode active material, cathode and lithium battery containing the same, and preparation method thereof
KR101785265B1 (en) Composite cathode active material, cathode, lithium battery comprising the same, and preparation method thereof
KR101473322B1 (en) Cathode active material and cathode and lithium battery containing the material
KR101975394B1 (en) Composite cathode active material, cathode and lithium battery containing the material and preparation method thereof
KR101754800B1 (en) Cathode, preparation method thereof, and lithium battery containing the same
US20140242463A1 (en) Cathode active material for a lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
CN108075115B (en) Composite positive active material, positive electrode and lithium battery including the same, and method of preparing composite positive active material
US20130071745A1 (en) Electrode active material, preparation method thereof, and electrode and lithium battery containing the same
US7674554B2 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the anode active material
US9917305B2 (en) Positive electrode active material, method of manufacturing the positive electrode active material, and lithium battery employing the positive electrode active material
JP5572298B2 (en) Cathode active material, method for producing the same, cathode employing the same, and lithium battery
KR101805542B1 (en) Composite cathode active material, cathode and lithium battery containing the material and preparation method thereof
US10290862B2 (en) Composite cathode active material, cathode and lithium battery including the composite cathode active material, and method of preparing the composite cathode active material
KR20160002200A (en) Composite cathode active material, cathode and lithium battery containing the material, and preparation method thereof
KR20180025686A (en) Composite anode active material, and Anode and Lithium battery comprising composite anode active material
KR20190055733A (en) Electrolyte additive for lithium battery, electrolyte solution comprising additive and Lithium battery comprising additive
KR20090111130A (en) Positive active material for lithium secondary battery, method for preparing the same, and lithium secondary battery using the same
KR101613498B1 (en) Cathode active material, cathode and lithium battery containing the material and preparation method thereof
KR20190079368A (en) Organic electrolyte and Lithium battery comprising organic electrolyte
KR101835586B1 (en) Composite cathode active material, and cathode and lithium battery containing the material
KR102391115B1 (en) Positive electrode active material and lithium secondary battery including positive electrode comprising the same
KR102344365B1 (en) Lithium battery
CN116569357A (en) Positive electrode active material, positive electrode and lithium secondary battery including the same, and method of preparing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113