JPH11111342A - Lithium secondary battery - Google Patents
Lithium secondary batteryInfo
- Publication number
- JPH11111342A JPH11111342A JP9274051A JP27405197A JPH11111342A JP H11111342 A JPH11111342 A JP H11111342A JP 9274051 A JP9274051 A JP 9274051A JP 27405197 A JP27405197 A JP 27405197A JP H11111342 A JPH11111342 A JP H11111342A
- Authority
- JP
- Japan
- Prior art keywords
- calcium compound
- carbon
- battery
- negative electrode
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はリチウム二次電池に
係り、特に放電容量、出力密度が大であってサイクル特
性に優れたリチウム二次電池用負極に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly, to a negative electrode for a lithium secondary battery having a large discharge capacity and a high output density and excellent cycle characteristics.
【0002】[0002]
【従来の技術】リチウム二次電池の負極として、従来よ
りリチウム金属及びリチウム合金が用いられてきたが、
これらの電池は、樹脂状リチウムの析出(デンドライ
ト)による正負両極の短絡やサイクル寿命が短く、その
ためその劣化分を補償すべく電池容量の3倍当量のリチ
ウムが必要であり、エネルギー密度が低いという欠点が
あった。最近ではこれらの問題点を解決するため炭素粒
子を負極に用いる研究が活発である。この種の負極、特
に黒鉛化の進んだグラファイトを用いる場合、例えば正
極にコバルト酸リチウムを用いると、電池電圧がフラッ
トなものになり、単電池使用の携帯機器に用いる場合容
量面で優位性がある。しかしながら、このグラファイト
を用いてハイレート充電を行うと、充電時のドープ電圧
が0V付近となり、リチウムの析出との競争反応となっ
てしまう。そのため、例えば特開平5−299073号
での構成は、芯を形成する高結晶炭素粒子の表面をVI
II族の金属元素を含む膜で被覆し、さらにその上を炭
素が被覆することよりなる炭素複合体を電極材料として
おり、これによって表面の乱層構造を有する炭素粒子が
リチウムのインターカレーションを助けると同時に、電
極の表面積が大きいために充放電容量および充放電速度
が著しく向上したとしている。しかし、負極炭素粒子の
炭素の不可逆容量が増加し、その結果エネルギー密度が
未だ十分とはいえなかった。2. Description of the Related Art As a negative electrode of a lithium secondary battery, lithium metal and lithium alloy have been conventionally used.
These batteries have a short circuit between the positive and negative electrodes due to precipitation of resinous lithium (dendrites) and have a short cycle life. Therefore, lithium equivalent to three times the battery capacity is required to compensate for the deterioration, and the energy density is low. There were drawbacks. In recent years, studies to use carbon particles for the negative electrode have been active in order to solve these problems. When using this type of negative electrode, especially graphite with advanced graphitization, for example, using lithium cobalt oxide for the positive electrode, the battery voltage becomes flat, and when used in portable equipment using unit cells, the superiority in terms of capacity is obtained. is there. However, when high-rate charging is performed using this graphite, the doping voltage at the time of charging becomes close to 0 V, which is a competitive reaction with the precipitation of lithium. Therefore, for example, in the configuration disclosed in Japanese Patent Application Laid-Open No. H5-299073, the surface of the highly crystalline carbon particles forming the core is
The electrode material is a carbon composite that is coated with a film containing a metal element of Group II and further coated with carbon, whereby carbon particles having a turbostratic structure on the surface are capable of intercalating lithium. At the same time, the charge / discharge capacity and the charge / discharge rate are remarkably improved due to the large surface area of the electrode. However, the irreversible capacity of carbon of the negative electrode carbon particles increased, and as a result, the energy density was not yet sufficient.
【0003】[0003]
【発明が解決しようとする課題】前述した如く、炭素粒
子及び複合材を負極として用いた場合、炭素の不可逆容
量の増加や電極製造の難しさという問題がある。本発明
は、この問題点を解決するため、負極活物質における主
構成物質に、カルシウム化合物を付着保持した炭素粒子
を用いることにより、急速充放電時においても高容量、
高エネルギー密度で、不可逆容量の少ない充放電サイク
ル特性の優れたリチウム二次電池を提供することを目的
とする。As described above, when carbon particles and a composite material are used as a negative electrode, there is a problem that the irreversible capacity of carbon is increased and that it is difficult to manufacture an electrode. In order to solve this problem, the present invention uses a carbon particle having a calcium compound adhered and held as a main constituent material in the negative electrode active material, thereby achieving a high capacity even during rapid charge and discharge.
It is an object of the present invention to provide a lithium secondary battery having high energy density and excellent charge / discharge cycle characteristics with small irreversible capacity.
【0004】[0004]
【課題を解決するための手段】負極活物質として炭素を
考えた場合、炭素粒子へのリチウムの吸蔵、放出(イン
ターカレーション、デインターカレーション)が主に起
こる反応だが、その反応を支配する因子の一つとして、
電解液と炭素表面の間に生じる被膜状態が関与している
ことがわかった。例えば、リチウム金属を負極活物質に
した場合で代表されるように、緻密でイオン導伝性の高
い被膜はその電池特性も優れており、逆に厚くイオン伝
導性の低い被膜はレート特性や、サイクル特性が悪いこ
とが知られている。その場合、前者は炭酸リチウムや酸
化リチウム等の被膜であり、後者はフッ化リチウム等の
被膜であることが報告されている。これと同じことが炭
素表面に生じる被膜についても考えられる。つまり、炭
素粒子のレート特性を阻害する要因の一つとして、炭素
粒子の表面にフッ化リチウム等のイオン伝導度の低い被
膜の形成があげられる。本発明者らは、この被膜につい
ての問題点を解決するため種々検討した結果、負極表面
にカルシウム化合物を付着保持させることにより電解液
中に存在するフッ素アニオンが電解液と炭素粒子の界面
へ来ることを抑制することを見い出した。Means for Solving the Problems When carbon is considered as the negative electrode active material, the reaction mainly occurs in the occlusion and release (intercalation, deintercalation) of lithium into carbon particles, but the reaction governs the reaction. As one of the factors,
It was found that the state of the film formed between the electrolyte and the carbon surface was involved. For example, as represented by the case where lithium metal is used as a negative electrode active material, a dense and highly ion-conductive film has excellent battery characteristics, while a thick and low-ion conductive film has a rate characteristic and It is known that cycle characteristics are poor. In that case, it is reported that the former is a coating such as lithium carbonate or lithium oxide, and the latter is a coating such as lithium fluoride. The same is conceivable for a coating formed on the carbon surface. That is, one of the factors that hinder the rate characteristics of the carbon particles is formation of a film having low ionic conductivity such as lithium fluoride on the surface of the carbon particles. The present inventors have conducted various studies in order to solve the problem of this coating, and as a result, by attaching and holding a calcium compound on the negative electrode surface, the fluorine anion present in the electrolyte comes to the interface between the electrolyte and the carbon particles. It has been found that this can be suppressed.
【0005】炭素粒子に付着保持させるカルシウム化合
物としては、カルシウムと化合するものであれば何でも
かまわず、例えばハロゲン化物、酸化物、硫酸塩、硝酸
塩等があげられるが、これらに限定されるものではな
い。好ましくは、ハロゲン化物、酸化物等の無水物であ
り、さらに好ましくはハロゲン化物である。ハロゲン化
物の中でも最も好ましくはフッ化物であり、CaF2 や
CaF3 があげられる。カルシウム化合物の付着保持方
法としては、カルシウム化合物を蒸着法、スパッタリン
グ法、湿式還元法、電気化学的還元法、気相還元ガス処
理法、レーザーアブレーション等により表面に付着保持
させた後、化学的、電気化学的に処理する方法や、カル
シウム化合物自身をメカノフュウジョン等により付着保
持させること等が挙げられるが、これらに限定されるも
のではない。The calcium compound to be adhered and retained on the carbon particles may be any compound as long as it can be combined with calcium, and examples thereof include halides, oxides, sulfates, and nitrates, but are not limited thereto. Absent. Preferred are anhydrides such as halides and oxides, and more preferred are halides. Among the halides, fluorides are most preferred, and CaF 2 and CaF 3 can be mentioned. As a method for holding and holding the calcium compound, the calcium compound is deposited and held on the surface by a vapor deposition method, a sputtering method, a wet reduction method, an electrochemical reduction method, a gas phase reduction gas treatment method, laser ablation, etc. Examples of the method include an electrochemical treatment method and a method in which the calcium compound is adhered and held by mechanofusion or the like, but is not limited thereto.
【0006】付着保持させるカルシウム化合物の量につ
いては、30wt%以下、好ましくは10wt%以下で
ある。さらに、付着保持されたカルシウム化合物の粒径
は1μm以下が望ましい。The amount of the calcium compound to be adhered and retained is 30 wt% or less, preferably 10 wt% or less. Further, the particle size of the calcium compound adhered and held is desirably 1 μm or less.
【0007】カルシウム化合物を付着保持させる炭素粒
子は、リチウムを吸蔵、放出可能な炭素粒子であればよ
く、特にX線回折法による面間隔(d002)が3. 3
54〜3. 369Åで、C軸方向の結晶の大きさ(L
c)が200Å以上である炭素粒子は、高容量が得られ
るため好ましい。The carbon particles for adhering and holding the calcium compound may be any carbon particles capable of occluding and releasing lithium, and particularly have a plane spacing (d002) of 3.3 by X-ray diffraction.
54 to 3.369 °, the crystal size (L
Carbon particles having c) of 200 ° or more are preferable because a high capacity can be obtained.
【0008】本発明に用いる炭素粒子は、平均粒子サイ
ズ100μm以下であることが望ましい。所定の形状を
得る上で、粉体を得るためには粉砕機や分級機が用いら
れる。例えば乳鉢、ボールミル、サンドミル、振動ボー
ルミル、遊星ボールミル、ジェットミル、カウンタージ
ェトミル、旋回気流型ジェットミルや篩等が用いられ
る。粉砕時には水、あるいはヘキサン等の有機溶剤を共
存させた湿式粉砕を用いることもできる。分級方法とし
ては、特に限定はなく、篩や風力分級機などが乾式、湿
式ともに必要に応じて用いられる。The carbon particles used in the present invention preferably have an average particle size of 100 μm or less. In obtaining a predetermined shape, a pulverizer or a classifier is used to obtain a powder. For example, a mortar, a ball mill, a sand mill, a vibration ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air jet mill, a sieve, and the like are used. At the time of pulverization, wet pulverization in which an organic solvent such as water or hexane coexists can be used. The classification method is not particularly limited, and a sieve, an air classifier, or the like is used as needed in both dry and wet methods.
【0009】本発明に併せて用いることができる負極材
料としては、リチウム金属、リチウム合金などや、カル
コゲン化合物、メチルリチウム等のリチウムを含有する
有機化合物等が挙げられる。また、リチウム金属やリチ
ウム合金、リチウムを含有する有機化合物を併用するこ
とによって、本発明に用いる炭素粒子にあらかじめリチ
ウムを挿入することも可能である。Examples of the negative electrode material that can be used in conjunction with the present invention include lithium metals, lithium alloys and the like, and chalcogen compounds and organic compounds containing lithium such as methyllithium. In addition, it is possible to insert lithium in advance into the carbon particles used in the present invention by using lithium metal, a lithium alloy, and an organic compound containing lithium in combination.
【0010】本発明のカルシウム化合物を付着保持した
炭素粒子を用いる場合、電極合剤として導電剤や結着剤
やフィラー等を添加することができる。導電剤として
は、電池性能に悪影響を及ぼさない電子伝導性材料であ
れば何でも良い。通常、天然黒鉛(鱗状黒鉛、鱗片状黒
鉛、土状黒鉛など)、人造黒鉛、カーボンブラック、ア
セチレンブラック、ケッチェンブラック、カーボンウイ
スカー、炭素繊維や金属(銅、ニッケル、アルミニウ
ム、銀、金など)粉、金属繊維、導電性セラミックス材
料等の導電性材料を1種またはそれらの混合物として含
ませることができる。これらの中で、アセチレンブラッ
クとケッチェンブラックの併用が望ましい。その添加量
は1〜50重量%が好ましく、特に2〜30重量%が好
ましい。In the case of using the carbon particles having the calcium compound of the present invention adhered thereto, a conductive agent, a binder, a filler or the like can be added as an electrode mixture. Any conductive material may be used as long as it does not adversely affect battery performance. Normally, natural graphite (scale graphite, flake graphite, earth graphite, etc.), artificial graphite, carbon black, acetylene black, Ketjen black, carbon whiskers, carbon fibers and metals (copper, nickel, aluminum, silver, gold, etc.) Conductive materials such as powders, metal fibers, and conductive ceramic materials can be included as one type or a mixture thereof. Among them, acetylene black and Ketjen black are preferably used in combination. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight.
【0011】本発明のカルシウム化合物を付着保持した
炭素粒子を用いる場合、その粉体の少なくとも表面層部
分をカルシウム化合物以外の物で修飾することも可能で
ある。例えば、金、銀、カーボン、ニッケル、銅等の電
子伝導性のよい物質や、炭酸リチウム、ホウ素ガラス、
固体電解質等のイオン伝導性のよい物質をメッキ、焼
結、メカノフュージョン、蒸着等の技術を応用してコー
トすることが挙げられる。When the carbon particles of the present invention having the calcium compound adhered thereto are used, at least the surface layer of the powder may be modified with a substance other than the calcium compound. For example, gold, silver, carbon, nickel, copper and other materials with good electron conductivity, lithium carbonate, boron glass,
Coating a material having good ion conductivity such as a solid electrolyte by applying techniques such as plating, sintering, mechanofusion, and vapor deposition.
【0012】結着剤としては、通常、テトラフルオロエ
チレン、ポリフッ化ビニリデン、ポリエチレン、ポリプ
ロピレン、エチレン−プロピレンジエンターポリマー
(EPDM)、スルホン化EPDM、スチレンブタジエ
ンゴム(SBR)、フッ素ゴム、カルボキシメチルセル
ロース等といった熱可塑性樹枝、ゴム弾性を有するポリ
マー、多糖類等を1種または2種以上の混合物として用
いることができる。また、多糖類の様にリチウムと反応
する官能機を有する結着剤は、例えばメチル化するなど
してその官能基を失活させておくことが望ましい。その
添加量としては、1〜50重量%が好ましく、特に2〜
30重量%が好ましい。As the binder, there are usually used tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoro rubber, carboxymethyl cellulose and the like. Thermoplastic tree, a polymer having rubber elasticity, a polysaccharide, and the like can be used alone or as a mixture of two or more. Further, it is desirable that a binder having a functional group that reacts with lithium, such as a polysaccharide, has its functional group deactivated by, for example, methylation. The addition amount is preferably 1 to 50% by weight, particularly 2 to 50% by weight.
30% by weight is preferred.
【0013】フィラーとしては、電池性能に悪影響を及
ぼさない材料であれば何でも良い。通常、ポリプロピレ
ン、ポリエチレン等のオレフィン系ポリマー、アエロジ
ル、ゼオライト、ガラス、炭素等が用いられる。フィラ
ーの添加量は0〜30重量%が好ましい。As the filler, any material may be used as long as it does not adversely affect battery performance. Usually, olefin polymers such as polypropylene and polyethylene, aerosil, zeolite, glass, carbon and the like are used. The addition amount of the filler is preferably 0 to 30% by weight.
【0014】電極活物質の集電体としては、構成された
電池において悪影響を及ぼさない電子伝導体であれば何
でもよい。例えば、正極用集電体としては、アルミニウ
ム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電
性高分子、導電性ガラス等の他に、接着性、導電性、耐
酸化性向上の目的で、アルミニウムや銅等の表面をカー
ボン、ニッケル、チタンや銀等で処理した物を用いるこ
とができる。負極用集電体としては、銅、ステンレス
鋼、ニッケル、アルミニウム、チタン、焼成炭素、導電
性高分子、導電性ガラス、Al−Cd合金等の他に、接
着性、導電性、耐酸化性向上の目的で、銅等の表面をカ
ーボン、ニッケル、チタンや銀等で処理した物を用いる
ことができる。これらの材料については表面を酸化処理
することも可能である。これらの形状については、フォ
イル状の他、フィルム状、シート状、ネット状、パンチ
又はエキスパンドされた物、ラス体、多孔質体、発砲
体、繊維群の形成体等が用いられる。厚みは特に限定は
ないが、1〜500μmのものが用いられる。As the current collector of the electrode active material, any current collector that does not adversely affect the battery formed may be used. For example, as the current collector for the positive electrode, in addition to aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, and the like, for the purpose of improving adhesiveness, conductivity, and oxidation resistance, aluminum And the surface of copper or the like treated with carbon, nickel, titanium, silver or the like can be used. As the current collector for the negative electrode, besides copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., the adhesiveness, conductivity, and oxidation resistance are improved. For the purpose of the above, a product obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver, or the like can be used. These materials can be oxidized on the surface. As these shapes, in addition to the foil shape, a film shape, a sheet shape, a net shape, a punched or expanded material, a lath body, a porous body, a foamed body, a formed body of a fiber group, and the like are used. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used.
【0015】この様にしてカルシウム化合物を付着保持
した炭素粒子を負極活物質における主構成物質にした負
極を得ることが出来る。一方、正極活物質としては、M
nO2 ,MoO3 ,V2 O5 ,Lix CoO2 ,Lix
NiO2 ,Lix Mn2 O4等の金属酸化物や、TiS
2 ,MoS2 ,NbSe3 等の金属カルコゲン化物、ポ
リアセン、ポリパラフェニレン、ポリピロール、ポリア
ニリン等のグラファイト層間化合物、及び導電性高分子
等のアルカリ金属イオンや、アニオンを吸放出可能な各
種の物質を利用することができる。[0015] In this way, a negative electrode can be obtained in which the carbon particles having the calcium compound adhered and retained thereon are used as the main constituent material of the negative electrode active material. On the other hand, as the positive electrode active material, M
nO 2 , MoO 3 , V 2 O 5 , Li x CoO 2 , Li x
Metal oxides such as NiO 2 and Li x Mn 2 O 4 , TiS
Metal chalcogenides such as 2 , MoS 2 and NbSe 3 , graphite intercalation compounds such as polyacene, polyparaphenylene, polypyrrole and polyaniline, and alkali metal ions such as conductive polymers and various substances capable of absorbing and releasing anions. Can be used.
【0016】特に本発明のカルシウム化合物を付着保持
した炭素粒子を負極活物質として用いる場合、高エネル
ギー密度という観点からV2 O5 ,MnO2 ,Lix C
oO2 ,Lix NiO2 ,Lix Mn2 O4 等の3〜4
Vの電極電位を有するものが望ましい。特にLix Co
O2 ,Lix NiO2 ,Lix Mn2 O4 等のリチウム
含有遷移金属酸化物が好ましい。In particular, when the carbon particles carrying the calcium compound of the present invention are used as a negative electrode active material, V 2 O 5 , MnO 2 , and Li x C are used from the viewpoint of high energy density.
oO 2, Li x NiO 2, 3~4 such Li x Mn 2 O 4
Those having an electrode potential of V are desirable. Especially Li x Co
Lithium-containing transition metal oxides such as O 2 , Li x NiO 2 , and Li x Mn 2 O 4 are preferred.
【0017】また、電解質としては、例えば有機電解
液、高分子固体電解質、無機固体電解質、溶融塩等をも
ちいることができ、この中でも有機電解液を用いること
が好ましい。この有機電解液の有機溶媒として、プロピ
レンカーボネート、エチレンカーボネート、ブチレンカ
ーボネート、ジエチルカーボネート、ジメチルカーボネ
ート、メチルエチルカーボネート、γ−ブチロラクトン
等のエステル類や、テトラヒドロフラン、2−メチルテ
トラヒドロフラン等の置換テトラヒドロフラン、ジオキ
ソラン、ジエチルエーテル、ジメトキシエタン、ジエト
キシエタン、メトキシエトキシエタン等のエーテル類、
ジメチルスルホキシド、スルホラン、メチルスルホラ
ン、アセトニトリル、ギ酸メチル、酢酸メチル、N−メ
チルピロリドン、ジメチルフォルムアミド等が挙げら
れ、これらを単独又は混合溶媒として用いることができ
る。また、支持電解質塩としては、LiClO4 、Li
PF6 、LiBF4 、LiAsF6 、LiCF3 S
O3 、LiN(CF3 SO2 )2 等が挙げられる。一
方、高分子固体電解質としては、上記のような支持電解
質塩をポリエチレンオキシドやその架橋体、ポリフォス
ファゼンやその架橋体等といったポリマーの中に溶かし
込んだ物を用いることができる。さらに、Li3 N,L
iI等の無機固体電解質も使用可能である。つまり、リ
チウムイオン導伝性の非水電解質であればよい。As the electrolyte, for example, an organic electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used, and among them, the organic electrolyte is preferably used. As the organic solvent of the organic electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, esters such as γ-butyrolactone, tetrahydrofuran, substituted tetrahydrofuran such as 2-methyltetrahydrofuran, dioxolane, Ethers such as diethyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane,
Dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, methyl acetate, N-methylpyrrolidone, dimethylformamide and the like can be used, and these can be used alone or as a mixed solvent. In addition, as the supporting electrolyte salt, LiClO 4 , Li
PF 6 , LiBF 4 , LiAsF 6 , LiCF 3 S
O 3 , LiN (CF 3 SO 2 ) 2 and the like can be mentioned. On the other hand, as the polymer solid electrolyte, a material obtained by dissolving the above-mentioned supporting electrolyte salt in a polymer such as polyethylene oxide or a crosslinked product thereof, or polyphosphazene or a crosslinked product thereof can be used. Further, Li 3 N, L
An inorganic solid electrolyte such as iI can also be used. That is, any non-aqueous electrolyte having lithium ion conductivity may be used.
【0018】セパレーターとしては、イオンの透過度が
優れ、機械的強度のある絶縁性薄膜を用いることができ
る。耐有機溶剤性と疎水性からポリプロピレンやポリエ
チレンといったオレフィン系のポリマー、ガラス繊維、
ポリフッ化ビニリデン、ポリテトラフルオロエチレン等
からつくられたシート、微孔膜、不織布が用いられる。
セパレーターの孔径は、一般に電池に用いられる範囲の
ものであり、例えば0.01〜10μmである。また、
その厚みについても同様で、一般に電池に用いられる範
囲のものであり、例えば5〜300μmである。As the separator, an insulating thin film having excellent ion permeability and mechanical strength can be used. Olefin polymers such as polypropylene and polyethylene, glass fiber, and organic solvent resistant and hydrophobic
Sheets, microporous membranes, and nonwoven fabrics made of polyvinylidene fluoride, polytetrafluoroethylene, or the like are used.
The pore size of the separator is in a range generally used for a battery, and is, for example, 0.01 to 10 μm. Also,
The same applies to the thickness, which is in the range generally used for batteries, for example, 5 to 300 μm.
【0019】充放電特性、特にレート特性が向上する理
由として、必ずしも明確ではないが以下のように考察さ
れる。一般的に、電池内部において、電池の充放電に関
与しない種々の不純物を含んでいることが多い。例えば
LiPF6 を電解質に用いる場合、塩そのものが不純物
を持ち込んだり、電池内部や溶媒中に含まれる極微量の
水と反応することでHF(フッ酸)を生じることが考え
られる。リチウム吸蔵の際に炭素粒子表面では、電解液
と炭素粒子の間に炭酸リチウムのようなイオン伝導性の
高い被膜を形成するが、この被膜形成時あるいは形成後
にフッ酸の様な酸が存在すると、イオン伝導性の低いハ
ロゲン化リチウムを生じる。炭素粒子と電解液の界面に
生じたハロゲン化リチウムは、リチウムの吸蔵放出を妨
げ、その結果負極のレート特性を低減する原因の一つと
考えられる。そこで、炭素粒子と電解液の界面にフッ酸
を寄せ付けなくすることで、この問題が解決できるので
はないかと考え、炭素粒子にカルシウム化合物を付着保
持させることを試みた。その結果、ハロゲンアニオン、
特にフッ素アニオンを自ら吸蔵し、あるいはそのカルシ
ウムフッ素化合物がそのイオン効果により、炭素粒子と
電解液界面にフッ酸を寄せ付けなくすることを期待した
ところ、負極のレート特性向上が確認されたため、本発
明に至った。The reason why the charge / discharge characteristics, particularly the rate characteristics, are improved is not necessarily clear but is considered as follows. Generally, the battery often contains various impurities that do not contribute to the charge and discharge of the battery. For example, when LiPF 6 is used for the electrolyte, it is conceivable that HF (hydrofluoric acid) is generated when the salt itself introduces impurities or reacts with a trace amount of water contained in the battery or in the solvent. On the surface of the carbon particles during lithium occlusion, a film having high ion conductivity such as lithium carbonate is formed between the electrolytic solution and the carbon particles, but when an acid such as hydrofluoric acid is present during or after the formation of the film. , Resulting in lithium halides with low ionic conductivity. Lithium halide generated at the interface between the carbon particles and the electrolytic solution is considered to be one of the causes of preventing the absorption and release of lithium and, as a result, reducing the rate characteristics of the negative electrode. Therefore, we thought that this problem could be solved by keeping hydrofluoric acid away from the interface between the carbon particles and the electrolytic solution, and tried to attach and hold a calcium compound to the carbon particles. As a result, the halogen anion,
In particular, we expected to occlude the fluorine anion by itself or that the calcium fluorine compound would keep hydrofluoric acid away from the interface between the carbon particles and the electrolyte due to its ionic effect. Reached.
【0020】[0020]
【実施例】以下、本発明を実施例に基づき説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.
【0021】(実施例1)人造黒鉛(粒径6μm)を炭
酸カルシウムをフッ化水素酸に溶解させた水溶液に浸
し、これを濃縮した後に110℃で乾燥し、さらに20
0℃で16時間真空乾燥をした。得られた粉末Aのカル
シウム化合物の付着保持量は、化学分析によれば、仕込
み量組成の10.0重量%に対して、8.5重量%の付
着保持量であった。また、蛍光X線回折によりカルシウ
ム化合物の存在状態を調べたところ、カルシウム由来の
ピークパターンが検出された。次にエネルギー分散型電
子プローブマイクロアナリシス(EPMA)によりカル
シウム化合物の分散状態を観察したところ、カルシウム
化合物は人造黒鉛の全面に分布しており、人造粒子の端
面部に若干濃縮していた。さらに透過型電子顕微鏡でカ
ルシウム化合物粒子の大きさを観察したところ、数10
0Åの粒子がほぼ均一に分散していた。Example 1 Artificial graphite (particle size: 6 μm) was immersed in an aqueous solution of calcium carbonate dissolved in hydrofluoric acid, concentrated, dried at 110 ° C.
Vacuum dried at 0 ° C. for 16 hours. According to the chemical analysis, the adhesion holding amount of the calcium compound of the obtained powder A was 8.5% by weight with respect to 10.0% by weight of the charged amount composition. When the presence state of the calcium compound was examined by fluorescent X-ray diffraction, a peak pattern derived from calcium was detected. Next, when the dispersion state of the calcium compound was observed by energy dispersive electron probe microanalysis (EPMA), the calcium compound was distributed over the entire surface of the artificial graphite, and was slightly concentrated on the end surface of the artificial particles. Further observation of the size of the calcium compound particles with a transmission electron microscope showed that
0 ° particles were almost uniformly dispersed.
【0022】(実施例2)上記実施例1で得られた粉末
Aを負極活物質として用い、次のようにして図1に示す
コイン型非水電解質電池を試作した。負極活物質とポリ
テトラフルオロエチレン粉末とを重量比95:5で混合
し、トルエンを加えて十分混練した。これをローラープ
レスにより厚み0.1mmのシート状に成形した。次に
これを直径16mmの円形に打ち抜き、減圧下200℃
で15時間乾燥して負極2を得た。負極2は負極集電体
7の付いた負極缶5に圧着して用いた。Example 2 Using the powder A obtained in Example 1 as a negative electrode active material, a coin-type nonaqueous electrolyte battery shown in FIG. 1 was experimentally manufactured as follows. The negative electrode active material and the polytetrafluoroethylene powder were mixed at a weight ratio of 95: 5, and toluene was added and kneaded sufficiently. This was formed into a sheet having a thickness of 0.1 mm by a roller press. Next, this was punched out into a circle having a diameter of 16 mm,
For 15 hours to obtain a negative electrode 2. The negative electrode 2 was used by being pressed against a negative electrode can 5 provided with a negative electrode current collector 7.
【0023】正極1は、正極活物質としてLiCoO2
とアセチレンブラック及びポリテトラフルオロエチレン
粉末とを重量比85:10:5で混合し、トルエンを加
えて十分混練した。これをローラープレスにより厚み
0.8mmのシート状に成形した。次にこれを直径16
mmの円形に打ち抜き、減圧下200℃で15時間乾燥
し正極1を得た。正極1は正極集電体6の付いた正極缶
4に圧着して用いた。エチレンカーボネートとジエチル
カーボネートとの体積比1:1の混合溶剤にLiPF6
を1mol/l溶解した電解液を用い、セパレータ3に
はポリプロピレン製微多孔膜を用いた。上記正極、負
極、電解液及びセパレータを用いて直径20mm、厚さ
1.6mmのコイン型リチウム電池を作製した。この粉
末Aを用いた電池を電池(A)とする。The positive electrode 1 is made of LiCoO 2 as a positive electrode active material.
And acetylene black and polytetrafluoroethylene powder were mixed at a weight ratio of 85: 10: 5, and toluene was added and kneaded sufficiently. This was formed into a 0.8 mm thick sheet by a roller press. Next, this is
mm, and was dried at 200 ° C. under reduced pressure for 15 hours to obtain a positive electrode 1. The positive electrode 1 was used by being pressed against a positive electrode can 4 provided with a positive electrode current collector 6. LiPF 6 was added to a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1.
Was dissolved in 1 mol / l, and a microporous polypropylene membrane was used for the separator 3. A coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was manufactured using the above-mentioned positive electrode, negative electrode, electrolyte and separator. A battery using the powder A is referred to as a battery (A).
【0024】(比較例)負極活物質として粉末Aの代わ
りに、人造黒鉛(粒径6μm)である粉末Bをを用い、
それ以外は実施例2と同様にして電池を作製した。得ら
れた電池を比較電池(B)とする。(Comparative Example) Powder B, which is artificial graphite (particle size: 6 μm), was used instead of powder A as the negative electrode active material.
Otherwise, the procedure of Example 2 was followed to fabricate a battery. The obtained battery is referred to as a comparative battery (B).
【0025】これらの電池(A)、(B)を用いて充放
電試験を行なった。充放電速度は炭素1g当たり100
mAと200mA、充放電の上下限電位は、それぞれ
1.0Vと0.01Vとした。得られた5サイクル目の
放電容量の結果を金属を表1に示した。A charge / discharge test was conducted using these batteries (A) and (B). The charge / discharge rate is 100 / g of carbon.
mA and 200 mA, and the upper and lower limit potentials of charge and discharge were 1.0 V and 0.01 V, respectively. Table 1 shows the results of the discharge capacity at the fifth cycle.
【0026】[0026]
【表1】 [Table 1]
【0027】粉末Aと粉末Bを用いた電池(A)と比較
電池(B)を比較してみると、充放電速度が炭素1g当
たり100mAの場合、その放電容量に差が見られない
ものの、充放電速度が炭素1g当たり200mAの場
合、粉末Aを用いた本発明電池(A)の方が比較電池
(B)に比べ放電容量が大きいことがわかる。これらの
現象についてその理由は定かではないものの、負極活物
質における主構成物質にカルシウム化合物を付着保持し
た炭素粒子を用いる場合において、電解液、特にその溶
質と材料表面の間で起こる界面の状態が関与していると
考えられる。即ち、従来用いられてきたカルシウム化合
物を付着保持していない炭素粒子である粉末Bの場合、
リチウムの吸蔵放出等で生じるカーボン表面の被膜が、
電池内部に微量に存在するハロゲン化水素と反応するこ
とでハロゲン化リチウムを生じ、イオン電導度の低下に
より急速充放電特性が低下したと考えられる。一方、負
極活物質における主構成物質にカルシウム化合物を付着
保持した炭素粒子である粉末Aの場合、電池内部に微量
に存在するハロゲン化水素を炭素粒子と電解液の界面に
到着する前に捕捉したり、ハロゲン化物のイオン効果に
より、ハロゲン化水素から炭素粒子の被膜を保護するよ
うな働きがあることが考えられる。A comparison between the battery (A) using the powder A and the powder B and the comparative battery (B) shows that when the charging / discharging rate is 100 mA / g of carbon, there is no difference in the discharge capacity. When the charge / discharge rate is 200 mA / g of carbon, the battery of the present invention (A) using powder A has a larger discharge capacity than the comparative battery (B). Although the reason for these phenomena is not clear, when using carbon particles having a calcium compound adhered and held as the main constituent material in the negative electrode active material, the state of the interface between the electrolyte, particularly the solute and the material surface, is reduced. Probably involved. That is, in the case of powder B, which is a carbon particle that does not adhere and hold a calcium compound conventionally used,
The coating on the carbon surface generated by the insertion and extraction of lithium,
It is considered that the lithium-halide was produced by reacting with a small amount of hydrogen halide present inside the battery, and the rapid charge / discharge characteristics were lowered due to the decrease in ionic conductivity. On the other hand, in the case of the powder A, which is a carbon particle in which a calcium compound is adhered and held to a main constituent material of the negative electrode active material, a small amount of hydrogen halide present inside the battery is captured before reaching the interface between the carbon particle and the electrolyte. It is also conceivable that the ionic effect of the halide serves to protect the coating of the carbon particles from hydrogen halide.
【0028】さらに、電池(A)、比較電池(B)の初
期充放電効率を比較してみると、ほとんど差が見られな
かったことから、炭素粒子と電解液の界面で起こる反応
を増やすことなく、イオン伝導度の低下のみを抑制する
ことができたと考えられる。上記実施例においては、負
極活物質における主構成物質にフッ化カルシウムを付着
保持した炭素粒子について挙げたが、同様の効果が他の
カルシウム化合物についても確認された。更に、リチウ
ム二次電池の内部にカルシウム化合物を添加した場合に
も、同様の効果が見られた。なお、本発明は上記実施例
に記載された活物質の出発原料、製造方法、正極、負
極、電解質、セパレータ及び電池形状などに限定される
ものではない。Further, comparing the initial charge and discharge efficiencies of the battery (A) and the comparative battery (B), there was almost no difference, so that the reaction occurring at the interface between the carbon particles and the electrolyte was increased. It is considered that only a decrease in ionic conductivity could be suppressed. In the above example, the carbon particles in which calcium fluoride is adhered and held as the main constituent material in the negative electrode active material have been described. However, the same effect was confirmed for other calcium compounds. Further, the same effect was obtained when a calcium compound was added to the inside of the lithium secondary battery. The present invention is not limited to the starting materials, the production method, the positive electrode, the negative electrode, the electrolyte, the separator, the shape of the battery, and the like of the active material described in the above-described embodiment.
【0029】[0029]
【発明の効果】本発明は上述の如く構成されているの
で、負極活物質界面でのイオン伝導度の低下が少なく、
その結果急速充放電特性が向上し、サイクル特性も向上
する。また、その処理が簡単で安価であることから、負
極材料の優れた改質の方法であり、その結果得られる電
池は、急速充放電においても高容量、高エネルギー密度
で、不可逆容量の少ない優れた充放電サイクル特性を示
す。Since the present invention is configured as described above, the decrease in ionic conductivity at the negative electrode active material interface is small,
As a result, rapid charge / discharge characteristics are improved, and cycle characteristics are also improved. In addition, since the treatment is simple and inexpensive, it is an excellent method of reforming the negative electrode material, and the resulting battery has high capacity, high energy density, and low irreversible capacity even in rapid charge and discharge. FIG.
【図1】本発明の実施例に係るコイン型非水電解質電池
の断面図である。FIG. 1 is a cross-sectional view of a coin-type non-aqueous electrolyte battery according to an example of the present invention.
1 正極 2 負極 3 セパレータ 4 正極缶 5 負極缶 6 正極集電体 7 負極集電体 REFERENCE SIGNS LIST 1 positive electrode 2 negative electrode 3 separator 4 positive electrode can 5 negative electrode can 6 positive electrode current collector 7 negative electrode current collector
Claims (4)
たことを特徴とするリチウム二次電池。1. A lithium secondary battery characterized by adding a calcium compound to the inside of the battery.
化合物を付着保持した炭素粒子を用いることを特徴とす
るリチウム二次電池。2. A lithium secondary battery characterized by using carbon particles having a calcium compound adhered and held as a main constituent material of a negative electrode active material.
合物であることを特徴とする請求項1記載のリチウム二
次電池。3. The lithium secondary battery according to claim 1, wherein the calcium compound is a compound with fluorine.
回折法による面間隔(d002)が3.354〜3.3
69Åで、C軸方向の結晶の大きさ(Lc)が200Å
以上であることを特徴とするリチウム二次電池。4. The carbon particles as the negative electrode active material have a plane distance (d002) of 3.354 to 3.3 according to an X-ray diffraction method.
69 °, the crystal size (Lc) in the C-axis direction is 200 °
A lithium secondary battery as described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27405197A JP4193008B2 (en) | 1997-10-07 | 1997-10-07 | Lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27405197A JP4193008B2 (en) | 1997-10-07 | 1997-10-07 | Lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11111342A true JPH11111342A (en) | 1999-04-23 |
JP4193008B2 JP4193008B2 (en) | 2008-12-10 |
Family
ID=17536292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27405197A Expired - Fee Related JP4193008B2 (en) | 1997-10-07 | 1997-10-07 | Lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4193008B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000079620A1 (en) * | 1999-06-23 | 2000-12-28 | Matsushita Electric Industrial Co., Ltd. | Rechargeable nonaqueous electrolytic battery |
JP2002313339A (en) * | 2001-04-16 | 2002-10-25 | Matsushita Battery Industrial Co Ltd | Nonaqueous electrolyte secondary battery |
JP2006504234A (en) * | 2002-10-23 | 2006-02-02 | イドロ−ケベック | Particles containing nuclei based on graphite and coated with at least one continuous or discontinuous layer, their preparation and use |
JP2006310265A (en) * | 2005-03-31 | 2006-11-09 | Mitsubishi Chemicals Corp | Negative electrode material for non-aqueous electrolytic liquid secondary battery and non-aqueous electrolytic liquid secondary battery using it |
JP2010519682A (en) * | 2007-02-16 | 2010-06-03 | エルエス エムトロン リミテッド | Anode active material for lithium battery, method for producing the same, and lithium secondary battery using the same |
JP2017220311A (en) * | 2016-06-03 | 2017-12-14 | 株式会社リコー | Nonaqueous electrolyte power storage element |
CN109509873A (en) * | 2017-09-14 | 2019-03-22 | 丰田自动车株式会社 | The cathode graphite material and its manufacturing method of lithium ion secondary battery |
US10683231B2 (en) | 2015-03-26 | 2020-06-16 | Pilkington Group Limited | Glasses |
-
1997
- 1997-10-07 JP JP27405197A patent/JP4193008B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7122278B1 (en) | 1999-06-23 | 2006-10-17 | Matsushita Electric Industrial Co., Ltd. | Non-aqueous electrolyte secondary battery |
KR100690140B1 (en) * | 1999-06-23 | 2007-03-08 | 마츠시타 덴끼 산교 가부시키가이샤 | Nonaqueous Electrolyte Secondary Battery and Manufacturing Method Thereof |
WO2000079620A1 (en) * | 1999-06-23 | 2000-12-28 | Matsushita Electric Industrial Co., Ltd. | Rechargeable nonaqueous electrolytic battery |
JP2002313339A (en) * | 2001-04-16 | 2002-10-25 | Matsushita Battery Industrial Co Ltd | Nonaqueous electrolyte secondary battery |
JP4824930B2 (en) * | 2002-10-23 | 2011-11-30 | イドロ−ケベック | Particles containing nuclei based on graphite and coated with at least one continuous or discontinuous layer, their preparation and use |
JP2006504234A (en) * | 2002-10-23 | 2006-02-02 | イドロ−ケベック | Particles containing nuclei based on graphite and coated with at least one continuous or discontinuous layer, their preparation and use |
JP2006310265A (en) * | 2005-03-31 | 2006-11-09 | Mitsubishi Chemicals Corp | Negative electrode material for non-aqueous electrolytic liquid secondary battery and non-aqueous electrolytic liquid secondary battery using it |
JP2010519682A (en) * | 2007-02-16 | 2010-06-03 | エルエス エムトロン リミテッド | Anode active material for lithium battery, method for producing the same, and lithium secondary battery using the same |
US10683231B2 (en) | 2015-03-26 | 2020-06-16 | Pilkington Group Limited | Glasses |
JP2017220311A (en) * | 2016-06-03 | 2017-12-14 | 株式会社リコー | Nonaqueous electrolyte power storage element |
CN109509873A (en) * | 2017-09-14 | 2019-03-22 | 丰田自动车株式会社 | The cathode graphite material and its manufacturing method of lithium ion secondary battery |
JP2019053873A (en) * | 2017-09-14 | 2019-04-04 | トヨタ自動車株式会社 | Lithium ion secondary battery, graphite for negative electrode of lithium ion secondary battery, and manufacturing method of graphite |
US10950860B2 (en) | 2017-09-14 | 2021-03-16 | Toyota Jidosha Kabushiki Kaisha | Graphite material for negative electrode of lithium ion secondary cell and method for producing the same |
CN109509873B (en) * | 2017-09-14 | 2022-03-11 | 丰田自动车株式会社 | Graphite material for negative electrode of lithium ion secondary battery and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP4193008B2 (en) | 2008-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6258641B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4854289B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2000156229A (en) | Nonaqueous electrolyte lithium secondary battery | |
JP4296580B2 (en) | Nonaqueous electrolyte lithium secondary battery | |
JP6998335B2 (en) | Negative electrode active material and power storage device | |
JP3906944B2 (en) | Non-aqueous solid electrolyte battery | |
JP3985143B2 (en) | Electrode material and lithium battery using the same | |
JP4547963B2 (en) | Negative electrode for secondary battery, method for producing the same, and secondary battery | |
EP2333881B1 (en) | Positive electrode active material for lithium battery and lithium battery using the same | |
JP4513385B2 (en) | Negative electrode for secondary battery and secondary battery | |
JP2020533768A (en) | Sulfur-carbon composite, its manufacturing method and lithium secondary battery containing it | |
JPH11204145A (en) | Lithium secondary battery | |
JP2017134923A (en) | Negative electrode for lithium secondary battery, lithium secondary battery and manufacturing methods thereof | |
JP4029224B2 (en) | Non-aqueous electrolyte battery | |
JP4193008B2 (en) | Lithium secondary battery | |
JP6002475B2 (en) | Negative electrode material, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and production method thereof | |
JP2005293960A (en) | Anode for lithium ion secondary battery, and lithium ion secondary battery | |
JP3994497B2 (en) | Non-aqueous electrolyte battery | |
JP4355862B2 (en) | Non-aqueous electrolyte battery | |
JP2002175807A (en) | Nonaqueous electrolyte secondary battery | |
KR20210021950A (en) | Carbon materials, conductive aids, electrodes for power storage devices, and power storage devices | |
JPH1140152A (en) | Nonaqueous electrolyte battery | |
JPH11273735A (en) | Lithium-ion polymer secondary battery | |
JPH11345614A (en) | Nonaqueous electrolyte battery | |
JP3972454B2 (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040924 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080521 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080718 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080827 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080909 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121003 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131003 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |