JP3906944B2 - Non-aqueous solid electrolyte battery - Google Patents

Non-aqueous solid electrolyte battery Download PDF

Info

Publication number
JP3906944B2
JP3906944B2 JP12041197A JP12041197A JP3906944B2 JP 3906944 B2 JP3906944 B2 JP 3906944B2 JP 12041197 A JP12041197 A JP 12041197A JP 12041197 A JP12041197 A JP 12041197A JP 3906944 B2 JP3906944 B2 JP 3906944B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
battery
active material
negative electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12041197A
Other languages
Japanese (ja)
Other versions
JPH10312789A (en
Inventor
徳雄 稲益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP12041197A priority Critical patent/JP3906944B2/en
Publication of JPH10312789A publication Critical patent/JPH10312789A/en
Application granted granted Critical
Publication of JP3906944B2 publication Critical patent/JP3906944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軽量で優れたサイクル特性を示し、かつ液漏れのない安全な非水固体電解質電池に関する。
【0002】
【従来の技術】
固体電解質を用いた非水電解質電池は、小型、軽量であり、液漏れのない優れた電池である。この種の電池は、これまで負極にリチウム金属、正極にV,Co,Mn等の酸化物を用いることが代表的であったが、充電時に生成するリチウムの樹枝状析出(デンドライト)のため、サイクル寿命の点で問題があった。また、このデンドライトはセパレーターを貫通し内部短絡を引き起こしたり、発火の原因ともなっている。
【0003】
また、上記のような充電時に生成するデンドライトを防止する目的で負極にリチウム合金も用いられたが、充電量が大きくなると負極の微細粉化や、負極活物質の脱落などの問題があった。
【0004】
一方、長寿命化及び安全性のために負極に炭素材料を用いる電池などが注目を集めている。しかしながら、負極に用いられる炭素材料は、リチウムのドープ、脱ドープに伴い格子定数が変化し、活物質の膨張、収縮が生じる。そのため、固体電解質を用いる場合、活物質のイオン的な孤立化を生じサイクル特性が不十分であった。
【0005】
【発明が解決しようとする課題】
そのため、固体電解質を用いる電池のサイクル特性を向上させるためには、充放電時のリチウムの吸蔵放出の際に結晶系の変化や体積変化が少なく、サイクル特性の優れた電池材料の開発が望まれている。
【0006】
本発明は上記のような課題を解決するもので、充放電に伴う活物質の結晶が膨張収縮することや、粒子内部のインピーダンス増加を防止することで、充放電サイクル特性に優れ、軽量で液漏れのない安全な非水固体電解質電池を提供することにある。
【0007】
【課題を解決するための手段】
固体電解質を用いた非水電解質電池は、軽量でかつ液漏れのない安全な電池として注目を集めている。つまり、固体電解質を用いた電池は電解質が固体であるため、電解質の流動性が電解液のみを使用した電池系に比べてほとんどなく、また引火も起こりにくいことから漏液のない安全な電池の提供が可能となる。一方、正極や負極となる活物質は、リチウムといったような物質の移動を含むことから、充放電に伴う結晶構造の変化、及び結晶の体積膨張、収縮が観察される。つまり、固体電解質を用いる電池において、充放電に伴う結晶構造の変化、及び結晶の体積膨張、収縮の大きな活物質を用いると、固体電解質がその変化に追随できず、活物質のイオン的な孤立を生じ、サイクル劣化要因の一つとなる。すなわち、固体電解質を用いる電池においては、充放電に伴う結晶構造の変化、及び結晶の体積膨張、収縮の小さな活物質を用いることがサイクル特性向上に重要であることを見い出し、本発明に至った。
【0008】
本発明は前記問題点に鑑みてなされたものであって、非水固体電解質電池に使用され、リチウムを吸蔵、放出する活物質の主成分にリン酸化合物を用いることを特徴とする。
【0009】
本発明に関わる固体電解質は、高エネルギー密度を達成するためには有機固体電解質であることが好ましい。さらに、良好な充放電特性を得るには有機固体電解質はゲル電解質であることが好ましい。また、活物質の主成分であるリン酸化合物が鉄を含んでいることが望ましく、そのリン酸化合物として化学式Lix FePO4 で表されることが最も望ましい。電池形状としては、高エネルギー密度を達成するためにフィルム状であることが望ましい。
【0010】
本発明が、支持電解質を溶解した固体電解質を用い、リチウムを吸蔵、放出する活物質の主成分にリン酸化合物を用いることにより、以上の様な優れた充放電サイクル特性が得られる理由は、必ずしも明確ではないが以下のように考察される。すなわち、固体電解質を用いた従来の正負極材料は、充放電に伴う結晶の変化により体積変化が起こり、固体電解質との界面に隙間を生じ、活物質が孤立化することによりサイクル劣化が起こっていたと考えられる。しかし、本発明で用いているリン酸化合物は、充放電に伴う結晶の変化が殆どみられず、よってサイクルに伴う活物質の孤立化を生じないことから、十分なイオン伝導をいつまでも得られることができ、優れた充放電サイクル特性が得られ、軽量で液漏れのない安全な非水固体電解質電池を実現できる。さらに、軽量化の目的からこの非水固体電解質電池の形状はフィルム状であることが好ましい。
【0011】
リン酸化合物としては化学式Lix y (PO4 z で示される。Mは遷移金属が好ましく、遷移金属の中でもTi,Feが好ましく、さらにFeは資源的に豊富であることからさらに好ましい。式中のx,y,zはMの価数によって決定される。例えばMがFeの場合、化学式Li3+x Fe2 (PO4 3 、Lix FePO4 等があげられる。中でも、Lix FePO4 は、リチウムの吸蔵、放出ににおける結晶構造の変化がほとんど見られないため最も好ましい。
【0012】
【発明の実施の形態】
本発明の固体電解質として、例えば無機固体電解質、有機固体電解質、無機有機固体電解質、溶融塩等を用いることができる。無機固体電解質には、リチウムの窒化物、ハロゲン化物、酸素酸塩、硫化リン化合物などがよく知られており、これらの1種または2種以上を混合して用いることができる。なかでも、Li3 N,LiI,Li5 NI2 ,Li3 N−LiI−LiOH,Li4 SiO4 ,Li4 SiO4 −LiI−LiOH,xLi3 PO 4-(1-x)Li4 SiO4 ,Li2 SiS3 等が有効である。一方有機固体電解質では、ポリエチレンオキサイド誘導体か少なくとも該誘導体を含むポリマー、ポリプロピレンオキサイド誘導体か少なくとも該誘導体を含むポリマー、ポリフォスファゼンや該誘導体、イオン解離基を含むポリマー、リン酸エステルポリマー誘導体、さらにポリビニルピリジン誘導体、ビスフェノールA誘導体、ポリアクリロニトリル、ポリビニリデンフルオライド、フッ素ゴム等に非水電解液を含有させた高分子マトリックス材料(ゲル電解質)等が有効である。この非水電解液の有機溶媒として、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン等のエステル類や、テトラヒドロフラン、2−メチルテトラヒドロフラン等の置換テトラヒドロフラン、ジオキソラン、ジエチルエーテル、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン等のエーテル類、ジメチルスルホキシド、スルホラン、メチルスルホラン、アセトニトリル、ギ酸メチル、酢酸メチル、N−メチルピロリドン、ジメチルフォルムアミド等が挙げられ、これらを単独又は混合溶媒として用いることができる。また、これら無機と有機固体電解質を併用する方法も有効である。上記のような固体電解質に用いる支持電解質塩としては、LiClO4 、LiPF6 、LiBF4 、LiAsF6 、LiCF3 SO3 、LiN(CF3 SO2 2 等が挙げられる。
【0013】
本発明非水固体電解質電池において、電極合剤として導電剤や結着剤やフィラー等を添加することができる。導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば何でも良い。通常、天然黒鉛(鱗片状黒鉛、土状黒鉛など)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維や金属(銅、ニッケル、鉄、銀、金など)粉、金属繊維、金属の蒸着、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。その添加量は1〜50重量%が好ましく、特に2〜30重量%が好ましい。
【0014】
結着剤としては、通常、テトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、エチレン−プロピレンジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム、カルボキシメチルセルロース等といった熱可塑性樹脂、ゴム弾性を有するポリマー、多糖類等を1種または2種以上の混合物として用いることができる。また、多糖類の様にリチウムと反応する官能基を有する結着剤は、例えばメチル化するなどしてその官能基を失活させておくことが望まし。その添加量としては、1〜50重量%が好ましく、特に2〜30重量%が好ましい。
【0015】
フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、アエロジル、アルミナ、炭素等が用いられる。フィラーの添加量は0〜30重量%が好ましい。
【0016】
本発明リン酸化合物を負極活物質として用いる場合、その正極活物質としては、MnO2 ,MoO3 ,V2 5 ,Lix CoO2 ,Lix NiO2 ,Lix Mn2 4 ,等の金属酸化物や、TiS2 ,MoS2 ,NbSe3 等の金属カルコゲン化物、ポリアセン、ポリパラフェニレン、ポリピロール、ポリアニリン等のグラファイト層間化合物、及び導電性高分子等のアルカリ金属イオンや、アニオンを吸放出可能な各種の物質を利用することができる。
【0017】
特に本発明の非水固体電解質電池の場合、高エネルギー密度という観点からV,MnO,LiCoO,LiNiO,LiMn等の3〜4Vの電極電位を有するものが望ましい。特にLiCoO,LiNiO,LiMn等のリチウム含有遷移金属酸化物が好ましい。なかでも、充放電に伴う体積変化が少ないことから、前記非水固体電解質電池の正極活物質の主成分がLiCoNi 1−b (a≧0、0≦b≦1)であることが望ましい。その上、b=0.5の場合最も充放電に伴う体積変化が少ないことからさらに望ましい。
【0018】
一方、本発明リン酸化合物を正極活物質として用いる場合、その負極活物質としては、リチウム金属、リチウム合金、シリコンやゲルマニウムに不純物をドープした外来半導体、スズ酸化物、リチウム系スピネル酸化物等の金属酸化物や金属カルコゲン化物、本発明で用いているリン酸化合物、グラファイト層間化合物や難黒鉛化材料等の炭素材料等があげられる。特に本発明の非水固体電解質電池の場合、高エネルギー密度という観点からリチウム金属、リチウム合金等の0〜1Vの電極電位を有するものが望ましい。また、チタン系スピネル酸化物には、Li4 Ti5 12のように、充放電に伴う結晶系の変化が見られないものもあり、このような特性は固体電解質電池の場合特に好ましい。
【0019】
固体電解質と併用してセパレーターを用いることができる。セパレーターとしては、イオンの透過度が優れ、機械的強度のある絶縁性薄膜を用いることができる。耐有機溶剤性と疎水性からポリプロピレンやポリエチレンといったオレフィン系のポリマー、ガラス繊維、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等からつくられたシート、微孔膜、不織布が用いられる。セパレーターの孔径は、一般に電池に用いられる範囲のものであり、例えば0.01〜10μmである。また、その厚みについても同様で、一般に電池に用いられる範囲のものであり、例えば5〜300μmである。
【0020】
本発明に用いる正負極活物質は、平均粒子サイズ0.1〜100μmである粉体が望ましい。所定の形状を得る上で、粉体を得るためには粉砕機や分級機や造粒機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが乾式、湿式ともに必要に応じて用いられる。
【0021】
本発明に併せて用いることができる負極材料としては、リチウム金属、リチウム合金などや、リチウムイオンまたはリチウム金属を吸蔵放出できる合金、焼成炭素質化合物やカルコゲン化合物、メチルリチウム等のリチウムを含有する有機化合物等が挙げられる。また、リチウム金属やリチウム合金、リチウムを含有する有機化合物を併用することによって、本発明に用いる負極活物質をあらかじめ低い(卑な)電位にすることや、初期効率の改善が可能である。
【0022】
電極活物質の集電体としては、構成された電池において悪影響を及ぼさない電子伝導体であれば何でもよい。例えば、正極材料としては、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性、耐酸化性向上の目的で、アルミニウムや銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。負極材料としては、銅、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金等の他に、接着性、導電性、耐酸化性向上の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。これらの材料については表面を酸化処理することも可能である。これらの形状については、フォイル状の他、フィルム状、シート状、ネット状、パンチ、エキスパンドされた形状、ラス体、多孔質体、発砲体、繊維群の形成体等が用いられる。厚みは特に限定はないが、1〜500μmのものが用いられる。
【0024】
固体電解質を用いた電池形状としては、円筒形、角形、コイン形、ボタン形、扁平形、フィルム状等が挙げられる。中でも、高エネルギー密度を達成するためには非水固体電解質電池の電池形状としてはフィルム状であることが望ましい。
【0025】
【実施例】
以下、本発明の実施例について説明する。
【0026】
(本発明)
高純度化学(株)製リン酸鉄(FePO4 ・2H2 O)を200℃で真空乾燥し、無水のリン酸鉄(FePO4 )を負極活物質として用いた。正極活物質は、水酸化コバルト(Co(OH)2 )と水酸化ニッケル(Ni(OH)2 )を等モル均一に混合し、さらにLiOH・H2 Oと混合し、これらを乾燥空気雰囲気下において750℃で20時間熱処理して得たニッケル・コバルト酸リチウム(LiNi0.5 Co0.5 2 )を正極活物質として用いた。
【0027】
ビスフェノールAのエチレンオキサイド付加体をアクリレート化したものを高分子マトリックス材料モノマー(モノマー)として用いた。平均分子量は約500であった。ここに含有させる電解液として、γ−ブチロラクトンにLiBF4 を1mol/リットルとなるように溶解したものを用いた。
【0028】
負極の調整方法として、集電体である銅箔35μm上に負極活物質であるFePO4 とケッチェンブラックをそれぞれ10gと0.2g、前述のモノマー1.2gと前述の電解液4.8gとを混合したものを塗布して電子線を照射し、重合を行った。
【0029】
正極の調整方法として、集電体であるアルミニウム箔50μm上にアンダーコートとしてカーボン被膜を塗布・乾燥し、その上にLiNi0.5 Co0.5 2 とケッチェンブラックをそれぞれ10gと0.2g、前述のモノマー1.2gと前述の電解液4.8gとを混合したものを塗布して電子線を照射し、重合を行った。
【0030】
ポリエチレンオキサイドとポリプロピレンオキサイドの共重合体で3官能のアクリルエステルと前述の電解液を3:7で混合したものを正極、負極上に塗布、硬化し各々45μmの非水固体電解質層を設けた。
【0031】
作製した正極/電解質と電解質/負極を張り合わせて電極周囲にホットメルト接着剤を設置後、四角形である3辺をヒートシールし、残りの1辺を真空下でヒートシールした。
【0032】
図1に本発明非水固体電解質電池の断面を示す。図1において、1は正極、2は負極、3は非水固体電解質層6は正極集電体、7は負極集電体である。
【0033】
(比較例)
負極活物質としてグラファイトを用いること以外は上記本発明と同様に非水固体電解質電池を作製した。
【0034】
これらのセルを用いて充放電試験を行った。充放電試験は室温で実施した。充放電は10時間率で行い、本発明電池においては充電終止電圧3.0V、放電終止電圧を2.0Vとした。一方、比較電池においては充電終止電圧を4.2V、放電終止電圧を3.0Vとした。以上の本発明および比較例についてサイクル試験を実施した結果を表1に示す。
【0035】
【表1】

Figure 0003906944
【0036】
表1示した如く、各電池について1サイクル目の放電容量を同じにし、サイクル特性を調査した。100サイクル後のサイクル劣化率を比べると明らかにサイクル特性に差が有ることがわかる。理由は定かではないが、非水固体電解質電池の場合、充放電に伴う活物質の膨張、収縮が、活物質と非水固体電解質との界面に隙間を生じさせ、活物質の孤立化を起こし、サイクル劣化が生じているものと考えられる。特にこの現象は、フィルム状のような外部からの緊圧をかけにくいセル構造に生じることが考えられる。つまり、充放電の際に膨張収縮の大きなグラファイトを用いた場合、この現象が顕著に現れたものと考えられる。
【0037】
なお、本発明は上記実施例に記載された活物質の出発原料、製造方法、正極、負極、電解質、セパレータ及び電池形状などに限定されるものではない。また、上記実施例においては、リン酸化合物を負極活物質として用いているが、正極活物質としても使用可能であることは言うまでもない。さらに、電池の形状についてもフィルム状に限定されるものではない。
【0038】
【発明の効果】
本発明は上述の如く構成されているので、軽量で優れたサイクル特性を示し、かつ液漏れのない安全な非水固体電解質電池を提供できる。
【図面の簡単な説明】
【図1】本発明非水固体電解質電池の断面図である。
【符号の説明】
1 正極
2 負極
非水固体電解質層
4 正極缶
5 負極缶
6 正極集電体
7 負極集電体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a safe non-aqueous solid electrolyte battery that is lightweight, exhibits excellent cycle characteristics, and does not leak.
[0002]
[Prior art]
A nonaqueous electrolyte battery using a solid electrolyte is an excellent battery that is small and lightweight and has no liquid leakage. In this type of battery, it has been typical to use lithium metal for the negative electrode and an oxide such as V, Co, Mn or the like for the positive electrode, but due to dendritic precipitation of lithium (dendrite) generated during charging, There was a problem in terms of cycle life. In addition, this dendrite penetrates through the separator and causes an internal short circuit or causes ignition.
[0003]
Further, lithium alloys are also used for the negative electrode for the purpose of preventing dendrite generated during charging as described above. However, when the charge amount is increased, there are problems such as fine powdering of the negative electrode and dropping of the negative electrode active material.
[0004]
On the other hand, a battery using a carbon material for the negative electrode has been attracting attention for the purpose of extending its life and safety. However, in the carbon material used for the negative electrode, the lattice constant changes with lithium doping and undoping, and the active material expands and contracts. Therefore, when a solid electrolyte is used, the active material is ionized and the cycle characteristics are insufficient.
[0005]
[Problems to be solved by the invention]
Therefore, in order to improve the cycle characteristics of a battery using a solid electrolyte, it is desired to develop a battery material having excellent cycle characteristics with little change in crystal system and volume during the insertion and extraction of lithium during charge and discharge. ing.
[0006]
The present invention solves the above-described problems. By preventing the active material crystals from expanding and contracting during charging / discharging and increasing the impedance inside the particles, the charging / discharging cycle characteristics are excellent, and the liquid weight is low. The object is to provide a safe non-aqueous solid electrolyte battery without leakage.
[0007]
[Means for Solving the Problems]
Nonaqueous electrolyte batteries using solid electrolytes are attracting attention as light batteries and safe batteries that do not leak. In other words, since a battery using a solid electrolyte is a solid electrolyte, the electrolyte has almost no fluidity compared to a battery system using only an electrolytic solution, and it is less likely to ignite. Provision is possible. On the other hand, since the active material to be a positive electrode or a negative electrode includes movement of a substance such as lithium, a change in crystal structure accompanying charge / discharge, and volume expansion and contraction of the crystal are observed. In other words, in a battery using a solid electrolyte, if an active material having a large change in crystal structure due to charging / discharging and a large volume expansion or contraction of the crystal is used, the solid electrolyte cannot follow the change, and the active material is ionically isolated. This is one of the causes of cycle deterioration. That is, in a battery using a solid electrolyte, it was found that it is important to improve the cycle characteristics by using an active material having a small change in crystal structure accompanying charge / discharge, and a small volume expansion and contraction of the crystal. .
[0008]
This invention is made | formed in view of the said problem, Comprising: It uses for a non-aqueous solid electrolyte battery, It is characterized by using a phosphoric acid compound for the main component of the active material which occludes and discharge | releases lithium.
[0009]
The solid electrolyte according to the present invention is preferably an organic solid electrolyte in order to achieve a high energy density. Furthermore, in order to obtain good charge / discharge characteristics, the organic solid electrolyte is preferably a gel electrolyte. Moreover, it is desirable that the phosphoric acid compound which is the main component of the active material contains iron, and it is most desirable that the phosphoric acid compound is represented by the chemical formula Li x FePO 4 . The battery shape is desirably a film shape in order to achieve a high energy density.
[0010]
The present invention uses a solid electrolyte in which a supporting electrolyte is dissolved, and by using a phosphoric acid compound as a main component of an active material that occludes and releases lithium, the reason why the above excellent charge / discharge cycle characteristics are obtained is as follows. Although it is not necessarily clear, it is considered as follows. In other words, conventional positive and negative electrode materials using a solid electrolyte undergo a volume change due to a change in crystal accompanying charge / discharge, resulting in a gap at the interface with the solid electrolyte, and cycle deterioration due to isolation of the active material. It is thought. However, the phosphoric acid compound used in the present invention shows almost no change in crystal accompanying charging / discharging, and therefore does not cause isolation of the active material accompanying the cycle, so that sufficient ion conduction can be obtained forever. Thus, excellent charge / discharge cycle characteristics can be obtained, and a safe non-aqueous solid electrolyte battery that is lightweight and does not leak can be realized. Further, for the purpose of weight reduction, the shape of the non-aqueous solid electrolyte battery is preferably a film.
[0011]
Examples of the phosphoric acid compound represented by the chemical formula Li x M y (PO 4) z. M is preferably a transition metal, and among the transition metals, Ti and Fe are preferable, and Fe is more preferable because it is rich in resources. X, y, and z in the formula are determined by the valence of M. For example, when M is Fe, the chemical formulas Li 3 + x Fe 2 (PO 4 ) 3 , Li x FePO 4 and the like can be mentioned. Among these, Li x FePO 4 is most preferable because the crystal structure hardly changes during insertion and extraction of lithium.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
As the solid electrolyte of the present invention, for example, an inorganic solid electrolyte, an organic solid electrolyte, an inorganic organic solid electrolyte, a molten salt, or the like can be used. As the inorganic solid electrolyte, lithium nitride, halide, oxyacid salt, phosphorus sulfide compound, and the like are well known, and one or more of these can be used in combination. Among them, Li 3 N, LiI, Li 5 NI 2, Li 3 N-LiI-LiOH, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, xLi 3 PO 4- (1-x) Li 4 SiO 4 Li 2 SiS 3 and the like are effective. On the other hand, for organic solid electrolytes, polyethylene oxide derivatives or polymers containing at least the derivatives, polypropylene oxide derivatives or polymers containing at least the derivatives, polyphosphazenes and derivatives thereof, polymers containing ionic dissociation groups, phosphate ester polymer derivatives, and polyvinyl A polymer matrix material (gel electrolyte) in which a nonaqueous electrolytic solution is contained in a pyridine derivative, a bisphenol A derivative, polyacrylonitrile, polyvinylidene fluoride, fluorine rubber or the like is effective. Examples of organic solvents for this non-aqueous electrolyte include esters such as propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, and γ-butyrolactone, substituted tetrahydrofuran such as tetrahydrofuran and 2-methyltetrahydrofuran, and dioxolane. , Ethers such as diethyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, methyl acetate, N-methylpyrrolidone, dimethylformamide, etc. It can be used alone or as a mixed solvent. In addition, a method of using these inorganic and organic solid electrolytes together is also effective. Examples of the supporting electrolyte salt used for the solid electrolyte as described above include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 and the like.
[0013]
In the non-aqueous solid electrolyte battery of the present invention, a conductive agent, a binder, a filler, or the like can be added as an electrode mixture. As the conductive agent, any electronic conductive material that does not adversely affect battery performance may be used. Usually, natural graphite (flaky graphite, earthy graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber and metal (copper, nickel, iron, silver, gold, etc.) powder, metal Conductive materials such as fibers, metal vapor deposition, and conductive ceramic materials can be included as one type or a mixture thereof. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight.
[0014]
As the binder, thermoplastics such as tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoro rubber, carboxymethyl cellulose, etc. are usually used. Resins, polymers having rubber elasticity, polysaccharides, and the like can be used as one or a mixture of two or more. In addition, it is desirable that a binder having a functional group that reacts with lithium, such as a polysaccharide, be deactivated by, for example, methylation. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight.
[0015]
As the filler, any material that does not adversely affect the battery performance may be used. Usually, olefin polymers such as polypropylene and polyethylene, aerosil, alumina, carbon and the like are used. The amount of filler added is preferably 0 to 30% by weight.
[0016]
When the phosphoric acid compound of the present invention is used as a negative electrode active material, examples of the positive electrode active material include MnO 2 , MoO 3 , V 2 O 5 , Li x CoO 2 , Li x NiO 2 , and Li x Mn 2 O 4 . Absorbs and releases metal oxides, metal chalcogenides such as TiS 2 , MoS 2 , NbSe 3 , graphite intercalation compounds such as polyacene, polyparaphenylene, polypyrrole, polyaniline, and alkali metal ions such as conductive polymers, and anions A variety of possible materials can be utilized.
[0017]
In particular, in the case of the nonaqueous solid electrolyte battery of the present invention, an electrode potential of 3 to 4 V such as V 2 O 5 , MnO 2 , Li x CoO 2 , Li x NiO 2 , or Li x Mn 2 O 4 from the viewpoint of high energy density. It is desirable to have Particularly preferred are lithium-containing transition metal oxides such as Li x CoO 2 , Li x NiO 2 , and Li x Mn 2 O 4 . Especially, since the volume change accompanying charging / discharging is small, the main component of the positive electrode active material of the non-aqueous solid electrolyte battery is Li a Co b Ni 1-b O 2 (a ≧ 0, 0 ≦ b ≦ 1). It is desirable to be. In addition, when b = 0.5, it is further desirable because the volume change accompanying charge / discharge is the smallest.
[0018]
On the other hand, when the phosphoric acid compound of the present invention is used as a positive electrode active material, examples of the negative electrode active material include lithium metals, lithium alloys, foreign semiconductors doped with impurities in silicon and germanium, tin oxide, lithium spinel oxide, etc. Examples thereof include metal oxides, metal chalcogenides, phosphoric acid compounds used in the present invention, graphite intercalation compounds, carbon materials such as non-graphitizable materials, and the like. In particular, in the case of the non-aqueous solid electrolyte battery of the present invention, those having an electrode potential of 0 to 1 V such as lithium metal and lithium alloy are desirable from the viewpoint of high energy density. In addition, some titanium-based spinel oxides, such as Li 4 Ti 5 O 12 , do not show a change in crystal system due to charge / discharge, and such characteristics are particularly preferable in the case of a solid electrolyte battery.
[0019]
A separator can be used in combination with a solid electrolyte. As the separator, an insulating thin film having excellent ion permeability and mechanical strength can be used. Sheets, microporous membranes, and nonwoven fabrics made from olefin polymers such as polypropylene and polyethylene, glass fibers, polyvinylidene fluoride, polytetrafluoroethylene, etc. are used because of their organic solvent resistance and hydrophobicity. The pore diameter of the separator is in a range generally used for batteries, and is, for example, 0.01 to 10 μm. Moreover, it is the same also about the thickness, and is a thing of the range generally used for a battery, for example, is 5-300 micrometers.
[0020]
The positive and negative electrode active materials used in the present invention are preferably powders having an average particle size of 0.1 to 100 μm. In obtaining a predetermined shape, a pulverizer, a classifier, or a granulator is used to obtain a powder. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill, a sieve, or the like is used. At the time of pulverization, wet pulverization in the presence of water or an organic solvent such as hexane may be used. The classification method is not particularly limited, and a sieve, an air classifier, or the like is used as necessary for both dry and wet methods.
[0021]
Examples of the negative electrode material that can be used in conjunction with the present invention include lithium metal, lithium alloy, and the like, alloys capable of occluding and releasing lithium ions or lithium metal, fired carbonaceous compounds, chalcogen compounds, and organic compounds containing lithium such as methyllithium. Compounds and the like. In addition, by using a lithium metal, a lithium alloy, or an organic compound containing lithium, the negative electrode active material used in the present invention can be set to a low (base) potential in advance, or the initial efficiency can be improved.
[0022]
The current collector for the electrode active material may be any electronic conductor as long as it does not adversely affect the constructed battery. For example, the positive electrode material includes aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, etc., and aluminum, copper, etc. for the purpose of improving adhesion, conductivity, and oxidation resistance. A material obtained by treating the surface with carbon, nickel, titanium, silver or the like can be used. In addition to copper, stainless steel, nickel, aluminum, titanium, baked carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., the negative electrode material is used for the purpose of improving adhesion, conductivity, and oxidation resistance. A material obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver or the like can be used. The surface of these materials can be oxidized. As for these shapes, a film shape, a sheet shape, a net shape, a punch, an expanded shape, a lath body, a porous body, a foamed body, a formed body of fiber groups, and the like are used in addition to the foil shape. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used.
[0024]
Examples of the battery shape using the solid electrolyte include a cylindrical shape, a square shape, a coin shape, a button shape, a flat shape, and a film shape. Among these, in order to achieve a high energy density, the battery shape of the non-aqueous solid electrolyte battery is preferably a film shape.
[0025]
【Example】
Examples of the present invention will be described below.
[0026]
(Invention)
Iron phosphate (FePO 4 .2H 2 O) manufactured by High Purity Chemical Co., Ltd. was vacuum-dried at 200 ° C., and anhydrous iron phosphate (FePO 4 ) was used as the negative electrode active material. As the positive electrode active material, cobalt hydroxide (Co (OH) 2 ) and nickel hydroxide (Ni (OH) 2 ) are mixed in an equimolar amount, and further mixed with LiOH · H 2 O. The lithium nickel cobaltate (LiNi 0.5 Co 0.5 O 2 ) obtained by heat treatment at 750 ° C. for 20 hours was used as the positive electrode active material.
[0027]
An acrylated adduct of bisphenol A with ethylene oxide was used as a polymer matrix material monomer (monomer). The average molecular weight was about 500. As an electrolytic solution to be contained here, a solution obtained by dissolving LiBF 4 in γ-butyrolactone so as to be 1 mol / liter was used.
[0028]
As a method for adjusting the negative electrode, 10 g and 0.2 g of the negative electrode active material FePO 4 and Ketjen black on the copper foil 35 μm as the current collector, 1.2 g of the monomer and 4.8 g of the electrolytic solution, respectively, The mixture was applied and irradiated with an electron beam for polymerization.
[0029]
As a method for preparing the positive electrode, a carbon film was applied and dried as an undercoat on 50 μm of an aluminum foil as a current collector, and LiNi 0.5 Co 0.5 O 2 and Ketjen Black were applied thereon to 10 g and 0.2 g, respectively. A mixture of 1.2 g of the monomer and 4.8 g of the above-described electrolyte solution was applied and irradiated with an electron beam for polymerization.
[0030]
A copolymer of polyethylene oxide and polypropylene oxide in which a trifunctional acrylic ester and the above-described electrolyte solution were mixed at a ratio of 3: 7 was applied and cured on the positive electrode and the negative electrode to provide a non-aqueous solid electrolyte layer of 45 μm.
[0031]
The prepared positive electrode / electrolyte and electrolyte / negative electrode were bonded to each other, and a hot melt adhesive was set around the electrode. Then, three sides of the quadrilateral were heat sealed, and the remaining one side was heat sealed under vacuum.
[0032]
FIG. 1 shows a cross section of the nonaqueous solid electrolyte battery of the present invention. In FIG. 1, 1 is a positive electrode , 2 is a negative electrode , 3 is a non-aqueous solid electrolyte layer , 6 is a positive electrode current collector, and 7 is a negative electrode current collector .
[0033]
(Comparative example)
A nonaqueous solid electrolyte battery was produced in the same manner as in the present invention except that graphite was used as the negative electrode active material.
[0034]
A charge / discharge test was performed using these cells. The charge / discharge test was performed at room temperature. Charging / discharging was performed at a rate of 10 hours, and in the battery of the present invention, the charge end voltage was 3.0 V and the discharge end voltage was 2.0 V. On the other hand, in the comparative battery, the end-of-charge voltage was 4.2V, and the end-of-discharge voltage was 3.0V. Table 1 shows the results of a cycle test performed on the present invention and comparative examples.
[0035]
[Table 1]
Figure 0003906944
[0036]
As shown in Table 1, the discharge capacity in the first cycle for each battery the same west were investigated cycle characteristics. When the cycle deterioration rate after 100 cycles is compared, it is clear that there is a difference in cycle characteristics. The reason is not clear, but in the case of a non-aqueous solid electrolyte battery, the expansion and contraction of the active material that accompanies charging / discharging creates a gap at the interface between the active material and the non-aqueous solid electrolyte, causing isolation of the active material. It is considered that cycle deterioration has occurred. In particular, this phenomenon is considered to occur in a cell structure that is difficult to apply external pressure such as a film. That is, it is considered that this phenomenon appears remarkably when graphite having a large expansion and contraction is used during charging and discharging.
[0037]
In addition, this invention is not limited to the starting material of the active material described in the said Example, the manufacturing method, a positive electrode, a negative electrode, an electrolyte, a separator, a battery shape, etc. Moreover, in the said Example, although the phosphoric acid compound is used as a negative electrode active material, it cannot be overemphasized that it can be used also as a positive electrode active material. Furthermore, the shape of the battery is not limited to a film shape.
[0038]
【The invention's effect】
Since the present invention is configured as described above, it is possible to provide a safe non-aqueous solid electrolyte battery that is lightweight, exhibits excellent cycle characteristics, and does not leak.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a nonaqueous solid electrolyte battery of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Non-aqueous solid electrolyte layer 4 Positive electrode can 5 Negative electrode can 6 Positive electrode collector 7 Negative electrode collector

Claims (1)

支持電解質を溶解したゲル電解質を用い、リチウムを吸蔵・放出する負極活物質の主成分に鉄を含んでいるリン酸化合物を用いた非水固体電解質電池。  A non-aqueous solid electrolyte battery using a gel electrolyte in which a supporting electrolyte is dissolved and using a phosphoric acid compound containing iron as a main component of a negative electrode active material that absorbs and releases lithium.
JP12041197A 1997-05-12 1997-05-12 Non-aqueous solid electrolyte battery Expired - Fee Related JP3906944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12041197A JP3906944B2 (en) 1997-05-12 1997-05-12 Non-aqueous solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12041197A JP3906944B2 (en) 1997-05-12 1997-05-12 Non-aqueous solid electrolyte battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006315913A Division JP2007080839A (en) 2006-11-22 2006-11-22 Nonaqueous solid electrolyte cell

Publications (2)

Publication Number Publication Date
JPH10312789A JPH10312789A (en) 1998-11-24
JP3906944B2 true JP3906944B2 (en) 2007-04-18

Family

ID=14785564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12041197A Expired - Fee Related JP3906944B2 (en) 1997-05-12 1997-05-12 Non-aqueous solid electrolyte battery

Country Status (1)

Country Link
JP (1) JP3906944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133566A1 (en) 2011-03-28 2012-10-04 兵庫県 Electrode material for secondary battery, method for producing electrode material for secondary battery, and secondary battery

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4526617B2 (en) * 1998-12-25 2010-08-18 アオイ電子株式会社 Secondary battery
CN1323447C (en) * 1999-04-06 2007-06-27 索尼株式会社 Positive electrode active material, non-aqueous electrolyte secondary battery
KR20010025116A (en) * 1999-04-06 2001-03-26 이데이 노부유끼 Method for manufacturing active material of positive plate and method for manufacturing nonaqueous electrolyte secondary cell
JP4963330B2 (en) * 2000-06-29 2012-06-27 株式会社豊田中央研究所 Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP4491946B2 (en) * 2000-09-29 2010-06-30 ソニー株式会社 Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4686852B2 (en) * 2000-12-04 2011-05-25 ソニー株式会社 Non-aqueous electrolyte battery
CA2378278C (en) * 2001-03-26 2008-11-18 Kabushiki Kaisha Toshiba Positive electrode active material and nonaqueous electrolyte secondary battery
JP3690684B2 (en) 2003-04-18 2005-08-31 松下電器産業株式会社 Solid electrolyte and all-solid battery including the same
JP2005135775A (en) * 2003-10-30 2005-05-26 Yuasa Corp Lithium ion secondary battery
BRPI0612557A2 (en) 2005-06-29 2012-02-28 Umicore Nv process for preparing crystalline lifepo4 powder, carbon-free, crystalline lifepo4 powder, use of it, and, electrode mixture for lithium secondary batteries with non-aqueous liquid electrolyte
JP5011518B2 (en) * 2005-07-01 2012-08-29 国立大学法人九州大学 Method for producing positive electrode material for secondary battery, and secondary battery
JP5188677B2 (en) * 2005-12-21 2013-04-24 三星エスディアイ株式会社 Lithium secondary battery and method for producing lithium secondary battery
US9444120B2 (en) * 2005-12-21 2016-09-13 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method for manufacturing the same
JP5078120B2 (en) * 2006-02-24 2012-11-21 日本碍子株式会社 All solid battery
JP5423495B2 (en) * 2010-03-15 2014-02-19 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP5831426B2 (en) * 2012-10-31 2015-12-09 トヨタ自動車株式会社 Negative electrode active material for lithium ion battery, lithium ion battery, and method of using lithium ion battery
JP5586116B2 (en) * 2012-12-27 2014-09-10 トヨタ自動車株式会社 Positive electrode mixture for lithium secondary battery and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133566A1 (en) 2011-03-28 2012-10-04 兵庫県 Electrode material for secondary battery, method for producing electrode material for secondary battery, and secondary battery

Also Published As

Publication number Publication date
JPH10312789A (en) 1998-11-24

Similar Documents

Publication Publication Date Title
JP4196234B2 (en) Nonaqueous electrolyte lithium secondary battery
JP3906944B2 (en) Non-aqueous solid electrolyte battery
JP3596578B2 (en) Non-aqueous electrolyte secondary battery
JP4296580B2 (en) Nonaqueous electrolyte lithium secondary battery
JP2017174648A (en) Power storage device
KR20090080909A (en) Battery
JP4547963B2 (en) Negative electrode for secondary battery, method for producing the same, and secondary battery
JP4513385B2 (en) Negative electrode for secondary battery and secondary battery
KR20190047196A (en) Silicon-carbon composite, and lithium secondary battery comprising the same
JP2018006331A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JPH11204145A (en) Lithium secondary battery
JP4029224B2 (en) Non-aqueous electrolyte battery
JP4193008B2 (en) Lithium secondary battery
JP4496688B2 (en) Secondary battery
JP3824111B2 (en) Non-aqueous electrolyte battery
KR20130107927A (en) Composite cathode active material, electrode for lithium secondary battery comprising the same and lithium secondary battery
JP4355862B2 (en) Non-aqueous electrolyte battery
JP2000357517A (en) Electrode, battery using the same, and nonaqueous electrolyte secondary battery
KR20190073777A (en) Graphite composite, method for preparing the same, and negative electrode material and lithium secondary battery comprising the same
JP2000173607A (en) Nonaqueous electrolyte secondary battery
JP3972454B2 (en) Lithium secondary battery
JP2001202996A (en) Lithium-polymer secondary battery
KR102303569B1 (en) Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP3821180B2 (en) Lithium secondary battery
JP2000106187A (en) Nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061024

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees