JP4029224B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4029224B2
JP4029224B2 JP15907897A JP15907897A JP4029224B2 JP 4029224 B2 JP4029224 B2 JP 4029224B2 JP 15907897 A JP15907897 A JP 15907897A JP 15907897 A JP15907897 A JP 15907897A JP 4029224 B2 JP4029224 B2 JP 4029224B2
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
general formula
electrolyte
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15907897A
Other languages
Japanese (ja)
Other versions
JPH117979A (en
Inventor
徳雄 稲益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP15907897A priority Critical patent/JP4029224B2/en
Publication of JPH117979A publication Critical patent/JPH117979A/en
Application granted granted Critical
Publication of JP4029224B2 publication Critical patent/JP4029224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は非水電解質電池に関するもので、さらに詳しくはその負極活物質とその電池に用いられる電解質に関するものである。
【0002】
【従来の技術】
従来より非水電解質電池用の負極活物質として、リチウムを用いることが代表的であったが、充電時に生成するリチウムの樹枝状析出(デンドライト)のため、サイクル寿命の点で問題があった。また、このデンドライトはセパレーターを貫通し内部短絡を引き起こしたり、発火の原因ともなっている。
【0003】
また、上記のような充電時に生成するデンドライトを防止する目的でリチウム合金も用いられたが、充電量が大きくなると負極の微細粉化や、負極活物質の脱落などの問題があった。
【0004】
現在、長寿命化及び安全性のために負極に炭素材料を用いる電池などが注目を集め一部実用化されている。しかしながら、負極に用いられる炭素材料は、急速充電時に内部短絡や充電効率の低下という問題があった。これらの炭素材料は、一般的に炭素材料へのリチウムのドープ電位が0Vに近いため、急速充電を行う場合、電位が0V以下になり電極上にリチウムを析出することがある。そのため、セルの内部短絡を引き起こしたり、放電効率を低下させる原因となる。また、このような炭素材料は、サイクル寿命の点でかなりの改善がなされているが、密度が比較的小さいため、体積当たりの容量が低くなってしまうことになる。つまり、この炭素材料は高エネルギー密度という点からは未だ不十分である。その上、炭素上に被膜を形成する必要があるものについては初期充放電効率が低下し、この被膜形成に使われる電気量は不可逆であるため、その電気量分の容量低下につながる。さらなる高容量、高エネルギー密度で、サイクル寿命が長く、安全な非水電解質電池用負極材料の開発が望まれている。
【0005】
既に、シリコン合金をとして、Binary Alloy Phase Diagrams(p2465)にあるように、Li22Si5 までの組成で合金化することが知られている。また、特開平5−74463号では、負極にシリコンの単結晶を用いることを報告している。しかしながら、急速充放電用非水電解質電池の負極材としてシリコンにリチウムをドープさせようと試みると、ほとんどドープが起こらずにリチウムが析出してしまうことが分かった。そこで、本発明者は、すでに不純物(ドーパント)を有する外来半導体について検討を行った結果、リチウムの吸蔵、放出が進行することが分かった。この吸蔵反応は約0.1Vという極めてリチウム電位に近い電位で進行し、理論容量に近いリチウムの吸蔵が起こり、可逆性もあることが分かった。一方、米国特許第5294503号ではLix Mg2 Siを、特開平5−159780号ではFeSiを、特開平7−29602号ではLix Siを、特開平8−138744号ではSiBn を、特開平8−153517号ではニッケルケイ化物を負極材料として用いることが報告されている。しかしながら、電解質の溶質としてLiPF6 やLiBF4 を用いた電解質を用いた場合、各サイクルの充放電効率が低く、サイクル劣化が起こることが分かった。
【0006】
【発明が解決しようとする課題】
つまり、負極としてリチウム金属やリチウムと金属の合金を用いる場合は、高電圧、高容量、高エネルギー密度としての利点はあるものの、サイクル性や安全性の上で問題があり、炭素材料を用いる場合は、高電圧、安全性の面で有利であるものの、高容量、高エネルギー密度の面で不十分である。また、高容量、高エネルギー密度が期待されるシリコン合金を負極活物質として用いた場合、各サイクルの充放電効率が低く、サイクル劣化につながることが問題であった。
【0007】
このため、高電圧、高エネルギー密度で、優れた充放電サイクル特性を示し、安全性の高い二次電池を得るには、可逆的にリチウムを吸蔵放出可能であり、そのリチウムの吸蔵放出における充放電効率に優れ、できるだけリチウム電位に近い作動領域で動作する化合物が望まれている。
【0008】
【課題を解決するための手段】
本発明は上記問題点に鑑みてなされたものであって、非水電解質電池に使用される負極活物質の主構成物質がシリコン合金である非水電解質電池において、電解質の主構成溶質として炭素を含有する塩を用いることを特徴とする。
【0009】
さらに、上記に挙げた炭素を含有する塩が、少なくとも一般式(2)
(R1Y1)(R2Y2)NLi ・・・・ 一般式(2)
(一般式(2)中のR1、R2がCn 2n+1で表され、nは1から4までの数であり、R1=R2あるいはR1≠R2であり、さらにY1,Y2がCO、SO、SO2 のいずれかで表され、Y1=Y2あるいはY1≠Y2である。)で表される塩を用いることを特徴とする。また、前記炭素を含有する塩が、一般式(2)中のR1=R2=CF3 以外で表されることを特徴とする。
【0010】
つまり、非水電解質電池において、従来一般的に用いられていたLiBF4 やLiPF6 を電解質に用いると、そのものを溶質とした電解液のイオン伝導性は優れているものの、いったん分解するとルイス酸を生じたり、水との反応ではフッ化水素等を生じることが分かっている。これらの溶質を用いてシリコン合金を負極活物質として用いた場合、溶質から生じる不純物がシリコン合金表面に存在する被膜と反応し、その表面被膜は電気抵抗が高くイオン伝導性の悪い被膜に変化することが分かった。そのため、充放電を行うごとに電極抵抗が増大し、充放電効率を低下させ、よってサイクル劣化につながることが考えられる。
【0011】
一方、本発明溶質である炭素を含有する塩は上記のような分解が起こりにくく、水との反応においてもフッ化水素等をほとんど放出しないことが分かった。よって、シリコン合金を負極活物質として用いた場合、その表面被膜の電気抵抗増大や、イオン伝導性の低下が抑えられ、充放電効率が向上し、よってサイクル特性が向上することが考えられる。
【0012】
さらに、ここで言うシリコンと合金可能な元素としては、Binary Alloy Phase Diagramsにあげられているような元素すべてであるが、好ましくはLi,Ni,Fe,Co,Mn,Ca,Mg,P,Al,As,W,B,Ti,V,Pt,Zr,Sr等である。しかし、これらに限定されるものではない。ここで言うシリコン合金の結晶系については、単結晶、多結晶、アモルファス等が挙げられる。
【0013】
本発明に用いるシリコン合金は、平均粒子サイズ0.1〜100μmである粉体が望ましい。所定の粉体を得るためには粉砕機や分級機が用いられる。粉体を得る場合、例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが乾式、湿式ともに必要に応じて用いられる。
【0014】
本発明に併せて用いることができる負極材料としては、リチウム金属、リチウム合金などや、リチウムイオンまたはリチウム金属を吸蔵放出できる焼成炭素質化合物やカルコゲン化合物、メチルリチウム等のリチウムを含有する有機化合物等が挙げられる。また、リチウム金属やリチウム合金、リチウムを含有する有機化合物を併用することによって、本発明に用いるシリコン合金にリチウムを電池内部で挿入することも可能である。
【0015】
本発明のシリコン合金を粉末として用いる場合、電極合剤として導電剤や結着剤やフィラー等を添加することができる。導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば何でも良い。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維や金属(銅、ニッケル、アルミニウム、銀、金など)粉、金属繊維、金属の蒸着、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。これらの中で、黒鉛とアセチレンブラックとケッチェンブラックの併用が望ましい。その添加量は1〜50重量%が好ましく、特に2〜30重量%が好ましい。
【0016】
結着剤としては、通常、テトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、エチレン−プロピレンジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム、カルボキシメチルセルロース等といった熱可塑性樹脂、ゴム弾性を有するポリマー、多糖類等を1種または2種以上の混合物として用いることができる。また、多糖類の様にリチウムと反応する官能基を有する結着剤は、例えばメチル化するなどしてその官能基を失活させておくことが望ましい。その添加量としては、1〜50重量%が好ましく、特に2〜30重量%が好ましい。
【0017】
フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、アエロジル、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は30重量%以下が好ましい。
【0018】
電極活物質の集電体としては、構成された電池において悪影響を及ぼさない電子伝導体であれば何でもよい。例えば、正極に用いる集電体材料として、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性、耐酸化性向上の目的で、アルミニウムや銅等の表面をカーボン、ニッケル、チタンや銀等で処理したものを用いることができる。負極材料としては、銅、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金等の他に、接着性、導電性、耐酸化性向上の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理したものを用いることができる。これらの材料については表面を酸化処理することも可能である。これらの形状については、フォイル状、フィルム状、シート状、ネット状、又はパンチングメタル、エキスパンドされたもの、ラス体、多孔質体、発砲体、繊維群の形成体等が用いられる。厚みは特に限定はないが、1〜500μmのものが用いられる。
【0019】
一方、正極活物質としては、MnO2 ,MoO3 ,V2 5 ,Lix CoO2 ,Lix NiO2 ,Lix Mn2 4 ,等の金属酸化物や、TiS2 ,MoS2 ,NbSe3 等の金属カルコゲン化物、ポリアセン、ポリパラフェニレン、ポリピロール、ポリアニリン等のグラファイト層間化合物、及び導電性高分子等のアルカリ金属イオンや、アニオンを吸放出可能な各種の物質を利用することができる。
【0020】
特に本発明のシリコン合金をを負極活物質として用いる場合、高エネルギー密度という観点からV2 5 ,MnO2 ,Lix CoO2 ,Lix NiO2 ,Lix Mn2 4 等の3〜4Vの電極電位を有するものが望ましい。特にLix CoO2 ,Lix NiO2 ,Lix Mn2 4 等のリチウム含有遷移金属酸化物が好ましい。
【0021】
また、電解質としては、例えば有機電解液、高分子固体電解質、無機固体電解質、溶融塩等を用いることができ、この中でも有機電解液を用いることが好ましい。この有機電解液の有機溶媒として、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン等のエステル類や、テトラヒドロフラン、2−メチルテトラヒドロフラン等の置換テトラヒドロフラン、ジオキソラン、ジエチルエーテル、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン等のエーテル類、ジメチルスルホキシド、スルホラン、メチルスルホラン、アセトニトリル、ギ酸メチル、酢酸メチル、N−メチルピロリドン、ジメチルフォルムアミド等が挙げられ、これらを単独又は混合溶媒として用いることができる。
【0022】
本発明に用いられる電解質の主構成溶質としては、炭素を含有する塩であればよい。例えば、特開昭58−225045号で用いられている式:
(Cn 2n+1Y)2 - ,M+ で表せるものや、下記一般式(3)、(4):
(RSO2 3 - ,M+ ・・・・ 一般式(3)
(RSO2 )O- ,M+ ・・・・ 一般式(4)
で表せるものが好ましい。さらに好ましくは一般式(2)
(R1Y1)(R2Y2)NLi ・・・・ 一般式(2)
(一般式(2)中のR1、R2がCn 2n+1で表され、nは1から4までの数であり、R1=R2あるいはR1≠R2であり、さらにY1,Y2がCO、SO、SO2 のいずれかで表され、Y1=Y2あるいはY1≠Y2である。)
で表される塩を用いることである。よりさらに好ましくはR1=R2=C2 5 、あるいはR1=CF3 、R2=C4 9 で表されるものを用いることである。
ここで、正極活物質にリチウム含有遷移金属酸化物を用いる場合、一般式(2)中のR1=R2=CF3 を用いるとサイクル劣化が大きいことがわかった。つまり、正極活物質の主構成物質にリチウム含有遷移金属酸化物を用いる場合、一般式(2)中のR1=R2=CF3 以外で表される塩を用いることが好ましい。一方、固体電解質として、例えば無機固体電解質、有機固体電解質、無機有機固体電解質、溶融塩等を用いることができる。無機固体電解質には、リチウムの窒化物、ハロゲン化物、酸素酸塩、硫化リン化合物などがよく知られており、これらの1種または2種以上を混合して用いることができる。なかでも、Li3 N,LiI,Li5 NI2 ,Li3 N−LiI−LiOH,Li4 SiO4 ,Li4 SiO4 −LiI−LiOH,xLi3 PO4-(1-x) Li4 SiO4 ,Li2 SiS3 等が有効である。一方有機固体電解質では、ポリエチレンオキサイド誘導体か少なくとも該誘導体を含むポリマー、ポリプロピレンオキサイド誘導体か少なくとも該誘導体を含むポリマー、ポリフォスファゼンや該誘導体、イオン解離基を含むポリマー、リン酸エステルポリマー誘導体、さらにポリビニルピリジン誘導体、ビスフェノールA誘導体、ポリアクリロニトリル、ポリビニリデンフルオライド、フッ素ゴム等に非水電解液を含有させた高分子マトリックス材料(ゲル電解質)等が有効である。
【0023】
セパレータとしては、イオンの透過度が優れ、機械的強度のある絶縁性薄膜を用いることができる。耐有機溶剤性と疎水性からポリプロピレンやポリエチレンといったオレフィン系のポリマー、ガラス繊維、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等からつくられたシート、微孔膜、不織布が用いられる。セパレータの孔径は、一般に電池に用いられる範囲のものであり、例えば0.01〜10μmである。またその厚みについても同様で、一般に電池に用いられる範囲のものであり、例えば5〜300μmである。
【0024】
この様に本発明は、負極活物質の主構成物質が、シリコン合金である非水電解質電池において、該電解質の主構成溶質として炭素を含有する塩を用いることにより、金属リチウムに対し少なくとも0〜2Vの範囲でリチウムイオンを吸蔵放出することができ、通常の合金にみられる充放電時の微細粉化や負極活物質の部分的な孤立化が抑えられ、このような溶質を非水電解質として用いることにより、充放電効率に優れ、サイクル特性が良好な充放電特性の優れた二次電池の負極として用いることができる。
【0025】
【実施例】
以下、本発明の実施例について説明する。
【0026】
(実施例1)
シリコン合金として、Li12Si7 (a)、Ni2 Si(b)、FeSi(c)、CoSi(d)、MnSi(e)、CaSi(f)、Mg2 Si(g)、PSi(h)、AlSi(i)、AsSi(j)、WSi(k)、B3 Si(l)、TiSi(m)、SiV3 (n)、PtSi(o)を用い、それぞれを乳鉢で粉砕し、この負極活物質を用いて次のようにしてコイン型非水電解質電池を試作した。活物質とアセチレンブラック及びポリテトラフルオロエチレン粉末とを重量比85:10:5で混合し、トルエンを加えて十分混練した。これをローラープレスにより厚み0.1mmのシート状に成形した。次にこれを直径16mmの円形に打ち抜き、減圧下200℃で15時間乾燥し負極2を得た。負極2は負極集電体7の付いた負極缶5に圧着して用いた。正極1は、正極活物質としてLiCoO2 とアセチレンブラック及びポリテトラフルオロエチレン粉末とを重量比85:10:5で混合し、トルエンを加えて十分混練した。これをローラープレスにより厚み0.8mmのシート状に成形した。次にこれを直径16mmの円形に打ち抜き減圧下200℃で15時間乾燥し正極1を得た。正極1は正極集電体6の付いた正極缶4に圧着して用いた。 エチレンカーボネートとジエチルカーボネートとの体積比1:1の混合溶剤に(C2 5 SO2 2 NLiを1mol/l溶解した電解液を用い、セパレータ3にはポリプロピレン製微多孔膜を用いた。上記正極、負極、電解液及びセパレータを用いて直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。それぞれのシリコン合金を(a)〜(o)を用いた電池をそれぞれ電池(A1)〜(O1)とする。
【0027】
(比較例1)
電解液の溶質として、(C2 5 SO2 2 NLiの代わりにLiBF4 を用い、それ以外は実施例1と同様にして電池を作製した。得られた電池を比較電池(A2)〜(O2)とする。
【0028】
(実施例2)
電解液の溶質として、(C2 5 SO2 2 NLiの代わりに(CF3 SO2 2 NLiを用い、それ以外は実施例1と同様にして電池を作製した。得られた電池を電池(A3)〜(O3)とする。
【0029】
このようにして作製した本発明電池(A1)〜(O1)、比較電池(A2)〜(O2)、本発明電池(A3)〜(O3)を用いて充放電サイクル試験を行った。試験条件は、充電電流3mA、充電終止電圧4.1V、放電電流3mA、放電終止電圧3.0Vとした。これら作製した電池の充放電試験の結果を表1から表3に示す。
【0030】
【表1】

Figure 0004029224
【0031】
【表2】
Figure 0004029224
【0032】
【表3】
Figure 0004029224
【0033】
表1、表2、表3から分かるように本発明による電解液の溶質に炭素を含有する塩を用いた本発明電池(A1)〜(O1)及び(A3)〜(O3)は、電解液の溶質として炭素を含有する塩の代わりにLiBF4 を用いた比較電池(A2)〜(O2)に比べて充放電特性に優れており、10サイクル後の減少が小さかった。また、本発明電池(A1)〜(O1)と本発明電池(A3)〜(O3)との比較から、電解液の溶質に(C2 5 SO2 2 NLiを用いた本発明電池(A1)〜(O1)が、(CF3 SO2 2 NLiを用いた本発明電池(A3)〜(O3)に比べて充放電特性に優れており、10サイクル後の減少が小さかった。シリコン合金を用いる場合において、これらの現象についてその理由は定かではないものの、電解液、特にその溶質と材料表面の間で起こる界面の状態が関与しているものと考えられる。
【0034】
上記実施例においては、電解液の溶質として(C2 5 SO2 2 NLi、(CF3 SO2 2 NLiについて挙げたが、同様の効果が他の炭素を含有する塩についても確認された。なお、本発明は上記実施例に記載された活物質の出発原料、製造方法、正極、負極、電解質、セパレータ及び電池形状などに限定されるものではない。
【0035】
【発明の効果】
本発明は上述の如く構成されているので、高電圧、高容量、高エネルギー密度で、優れた充放電サイクル特性を示し、安全性の高い非水電解質電池を提供できる。
【図面の簡単な説明】
【図1】本発明の非水電解質電池の断面図である。
【符号の説明】
1 正極
2 負極
3 セパレータ
4 正極缶
5 負極缶
6 正極集電体
7 負極集電体
8 絶縁パッキング[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte battery, and more particularly to an anode active material and an electrolyte used in the battery.
[0002]
[Prior art]
Conventionally, lithium has been typically used as a negative electrode active material for non-aqueous electrolyte batteries, but there has been a problem in terms of cycle life due to dendritic precipitation of lithium generated during charging. In addition, this dendrite penetrates through the separator and causes an internal short circuit or causes ignition.
[0003]
In addition, lithium alloys have also been used for the purpose of preventing dendrites generated during charging as described above. However, when the amount of charge increases, there are problems such as fine powdering of the negative electrode and dropping of the negative electrode active material.
[0004]
At present, a battery using a carbon material for the negative electrode has been attracting attention and partly put into practical use for extending the life and safety. However, the carbon material used for the negative electrode has problems such as an internal short circuit and a decrease in charging efficiency during rapid charging. Since these carbon materials generally have a lithium doping potential to the carbon material close to 0 V, when rapid charging is performed, the potential may be 0 V or less and lithium may be deposited on the electrode. Therefore, it causes an internal short circuit of the cell and causes a decrease in discharge efficiency. Moreover, although such a carbon material is considerably improved in terms of cycle life, the capacity per volume is lowered because the density is relatively small. That is, this carbon material is still insufficient from the viewpoint of high energy density. In addition, the initial charge / discharge efficiency is reduced for those that need to form a film on carbon, and the amount of electricity used to form this film is irreversible, leading to a decrease in capacity for that amount of electricity. Development of a negative electrode material for non-aqueous electrolyte batteries that has a higher capacity, higher energy density, longer cycle life, and safety is desired.
[0005]
It is already known that a silicon alloy is alloyed with a composition up to Li 22 Si 5 as described in Binary Alloy Phase Diagrams (p2465). Japanese Patent Laid-Open No. 5-74463 reports using a single crystal of silicon for the negative electrode. However, when trying to dope lithium into silicon as a negative electrode material for a non-aqueous electrolyte battery for rapid charge / discharge, it has been found that lithium is deposited with almost no doping. Therefore, as a result of examining the exogenous semiconductor which already has impurities (dopants), the present inventor has found that lithium occlusion and release proceed. It was found that this occlusion reaction proceeded at a potential very close to the lithium potential of about 0.1 V, lithium occlusion near the theoretical capacity occurred, and there was reversibility. On the other hand, US Pat. No. 5,294,503 discloses Li x Mg 2 Si, JP-A-5-159780, FeSi, JP-A-7-29602, Li x Si, JP-A-8-138744, SiB n , No. 8-153517 reports the use of nickel silicide as a negative electrode material. However, it has been found that when an electrolyte using LiPF 6 or LiBF 4 is used as the electrolyte solute, the charge / discharge efficiency of each cycle is low and cycle deterioration occurs.
[0006]
[Problems to be solved by the invention]
In other words, when lithium metal or lithium-metal alloy is used as the negative electrode, there are advantages in terms of high voltage, high capacity, and high energy density, but there are problems in terms of cycleability and safety, and when carbon materials are used. Is advantageous in terms of high voltage and safety, but is insufficient in terms of high capacity and high energy density. Further, when a silicon alloy that is expected to have a high capacity and a high energy density is used as the negative electrode active material, the charge / discharge efficiency of each cycle is low, leading to cycle deterioration.
[0007]
Therefore, in order to obtain a secondary battery with high voltage, high energy density, excellent charge / discharge cycle characteristics, and high safety, lithium can be reversibly occluded and released. A compound that has excellent discharge efficiency and operates in an operating region as close to a lithium potential as possible is desired.
[0008]
[Means for Solving the Problems]
The present invention has been made in view of the above problems, and in a non-aqueous electrolyte battery in which the main constituent material of the negative electrode active material used in the non-aqueous electrolyte battery is a silicon alloy, carbon is used as the main constituent solute of the electrolyte. It is characterized by using a contained salt.
[0009]
Further, the above-mentioned salt containing carbon is at least represented by the general formula (2).
(R1Y1) (R2Y2) NLi ... General formula (2)
(R1 and R2 in the general formula (2) are represented by C n F 2n + 1 , n is a number from 1 to 4, R1 = R2 or R1 ≠ R2, and Y1 and Y2 are CO, It is characterized by using a salt represented by either SO or SO 2 and Y1 = Y2 or Y1 ≠ Y2. Also, salts containing the carbon, characterized by the general formula (2) can be expressed by non R1 = R2 = CF 3 in.
[0010]
In other words, when LiBF 4 or LiPF 6 that has been generally used in a nonaqueous electrolyte battery is used as an electrolyte, the ionic conductivity of the electrolyte solution with the solute as a solute is excellent, but once decomposed, Lewis acid is removed. It is known that hydrogen fluoride and the like are produced in the reaction with water. When a silicon alloy is used as a negative electrode active material using these solutes, impurities generated from the solute react with the film present on the surface of the silicon alloy, and the surface film changes to a film with high electrical resistance and poor ion conductivity. I understood that. For this reason, it is conceivable that the electrode resistance increases each time charging / discharging is performed and the charging / discharging efficiency is lowered, thereby leading to cycle deterioration.
[0011]
On the other hand, it was found that the salt containing carbon as the solute of the present invention hardly decomposes as described above, and hardly releases hydrogen fluoride or the like even in the reaction with water. Therefore, when a silicon alloy is used as the negative electrode active material, it is conceivable that an increase in electrical resistance of the surface coating and a decrease in ion conductivity are suppressed, and charge / discharge efficiency is improved, thereby improving cycle characteristics.
[0012]
Furthermore, the elements that can be alloyed with silicon here are all elements listed in Binary Alloy Phase Diagrams, but preferably Li, Ni, Fe, Co, Mn, Ca, Mg, P, and Al. , As, W, B, Ti, V, Pt, Zr, Sr, and the like. However, it is not limited to these. The crystal system of the silicon alloy mentioned here includes single crystal, polycrystal, amorphous, and the like.
[0013]
The silicon alloy used in the present invention is preferably a powder having an average particle size of 0.1 to 100 μm. In order to obtain a predetermined powder, a pulverizer or a classifier is used. When obtaining powder, for example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill or a sieve is used. At the time of pulverization, wet pulverization in the presence of water or an organic solvent such as hexane may be used. The classification method is not particularly limited, and a sieve, an air classifier, or the like is used as necessary for both dry and wet methods.
[0014]
Examples of the negative electrode material that can be used in conjunction with the present invention include lithium metal, lithium alloy and the like, calcined carbonaceous compounds and chalcogen compounds capable of occluding and releasing lithium ions or lithium metal, and lithium-containing organic compounds such as methyl lithium. Is mentioned. In addition, by using a lithium metal, a lithium alloy, or an organic compound containing lithium, lithium can be inserted into the silicon alloy used in the present invention inside the battery.
[0015]
When the silicon alloy of the present invention is used as a powder, a conductive agent, a binder, a filler, or the like can be added as an electrode mixture. As the conductive agent, any electronic conductive material that does not adversely affect battery performance may be used. Usually, natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber and metal (copper, nickel, aluminum, silver, gold, etc.) Conductive materials such as powder, metal fibers, metal deposition, and conductive ceramic materials can be included as one type or a mixture thereof. Of these, the combined use of graphite, acetylene black and ketjen black is desirable. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight.
[0016]
As the binder, thermoplastics such as tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoro rubber, carboxymethyl cellulose and the like are usually used. Resins, polymers having rubber elasticity, polysaccharides, and the like can be used as one or a mixture of two or more. In addition, it is desirable that a binder having a functional group that reacts with lithium, such as a polysaccharide, be deactivated by, for example, methylation. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight.
[0017]
As the filler, any material that does not adversely affect the battery performance may be used. Usually, olefin polymers such as polypropylene and polyethylene, aerosil, zeolite, glass, carbon and the like are used. The amount of filler added is preferably 30% by weight or less.
[0018]
The current collector for the electrode active material may be any electronic conductor as long as it does not adversely affect the constructed battery. For example, as a current collector material used for the positive electrode, in addition to aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, etc., in order to improve adhesiveness, conductivity, and oxidation resistance, The surface of aluminum or copper treated with carbon, nickel, titanium, silver or the like can be used. In addition to copper, stainless steel, nickel, aluminum, titanium, baked carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., the negative electrode material is used for the purpose of improving adhesion, conductivity, and oxidation resistance. The surface of copper or the like treated with carbon, nickel, titanium, silver or the like can be used. The surface of these materials can be oxidized. About these shapes, foil shape, film shape, sheet shape, net shape, punched metal, expanded material, lath body, porous body, foamed body, formed body of fiber group, and the like are used. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used.
[0019]
On the other hand, examples of the positive electrode active material include metal oxides such as MnO 2 , MoO 3 , V 2 O 5 , Li x CoO 2 , Li x NiO 2 , and Li x Mn 2 O 4 , TiS 2 , MoS 2 , and NbSe. Various metal chalcogenides such as 3 , graphite intercalation compounds such as polyacene, polyparaphenylene, polypyrrole, and polyaniline, and alkali metal ions such as conductive polymers, and various substances capable of absorbing and releasing anions can be used.
[0020]
In particular, when the silicon alloy of the present invention is used as a negative electrode active material, 3 to 4 V such as V 2 O 5 , MnO 2 , Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 from the viewpoint of high energy density. It is desirable to have an electrode potential of In particular, lithium-containing transition metal oxides such as Li x CoO 2 , Li x NiO 2 , and Li x Mn 2 O 4 are preferable.
[0021]
As the electrolyte, for example, an organic electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used, and among these, an organic electrolyte is preferably used. Examples of the organic solvent for the organic electrolyte include esters such as propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, and γ-butyrolactone, substituted tetrahydrofuran such as tetrahydrofuran and 2-methyltetrahydrofuran, dioxolane, Examples include ethers such as diethyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, methyl acetate, N-methylpyrrolidone, dimethylformamide, etc. Alternatively, it can be used as a mixed solvent.
[0022]
The main constituent solute of the electrolyte used in the present invention may be a salt containing carbon. For example, the formula used in JP-A-58-225045:
(C n X 2n + 1 Y) 2 N , M + , and the following general formulas (3) and (4):
(RSO 2 ) 3 C , M + ... General formula (3)
(RSO 2 ) O , M + ... General formula (4)
What can be represented by is preferable. More preferably, the general formula (2)
(R1Y1) (R2Y2) NLi ... General formula (2)
(R1 and R2 in the general formula (2) are represented by C n F 2n + 1 , n is a number from 1 to 4, R1 = R2 or R1 ≠ R2, and Y1 and Y2 are CO, (It is represented by either SO or SO 2 , and Y1 = Y2 or Y1 ≠ Y2.)
It is using the salt represented by these. Even more preferably, R1 = R2 = C 2 F 5 , R1 = CF 3 , or R2 = C 4 F 9 is used.
Here, when using a lithium-containing transition metal oxide positive electrode active material, it was found that a large cycle degradation With R1 = R2 = CF 3 in the general formula (2). In other words, when using a lithium-containing transition metal oxide in the main constituent of the positive electrode active material, it is preferable to use a salt represented by other than R1 = R2 = CF 3 in the general formula (2). On the other hand, as the solid electrolyte, for example, an inorganic solid electrolyte, an organic solid electrolyte, an inorganic organic solid electrolyte, a molten salt, or the like can be used. As the inorganic solid electrolyte, lithium nitride, halide, oxyacid salt, phosphorus sulfide compound, and the like are well known, and one or more of these can be used in combination. Among them, Li 3 N, LiI, Li 5 NI 2, Li 3 N-LiI-LiOH, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, xLi 3 PO 4- (1-x) Li 4 SiO 4 Li 2 SiS 3 etc. are effective. On the other hand, for organic solid electrolytes, polyethylene oxide derivatives or polymers containing at least the derivatives, polypropylene oxide derivatives or polymers containing at least the derivatives, polyphosphazenes and derivatives thereof, polymers containing ion dissociation groups, phosphate ester polymer derivatives, and polyvinyl A polymer matrix material (gel electrolyte) in which a nonaqueous electrolytic solution is contained in a pyridine derivative, a bisphenol A derivative, polyacrylonitrile, polyvinylidene fluoride, fluorine rubber or the like is effective.
[0023]
As the separator, an insulating thin film having excellent ion permeability and mechanical strength can be used. Sheets, microporous membranes, and nonwoven fabrics made from olefin polymers such as polypropylene and polyethylene, glass fibers, polyvinylidene fluoride, polytetrafluoroethylene, etc. are used because of their organic solvent resistance and hydrophobicity. The pore diameter of the separator is in a range generally used for batteries, for example, 0.01 to 10 μm. The thickness is also the same, generally in the range used for batteries, for example, 5 to 300 μm.
[0024]
Thus, in the present invention, in a nonaqueous electrolyte battery in which the main constituent material of the negative electrode active material is a silicon alloy, by using a salt containing carbon as the main constituent solute of the electrolyte, at least 0 to 0 with respect to metallic lithium. Lithium ions can be occluded and released in the range of 2V, and fine pulverization and partial isolation of the negative electrode active material at the time of charging and discharging, which are observed in ordinary alloys, can be suppressed. Such solutes can be used as non-aqueous electrolytes. By using it, it can be used as a negative electrode of a secondary battery having excellent charge / discharge efficiency and excellent cycle characteristics and excellent charge / discharge characteristics.
[0025]
【Example】
Examples of the present invention will be described below.
[0026]
Example 1
As a silicon alloy, Li 12 Si 7 (a), Ni 2 Si (b), FeSi (c), CoSi (d), MnSi (e), CaSi (f), Mg 2 Si (g), PSi (h) , AlSi (i), AsSi (j), WSi (k), B 3 Si (l), TiSi (m), SiV 3 (n), PtSi (o), and pulverizing each in a mortar. A coin-type nonaqueous electrolyte battery was prototyped using the active material as follows. The active material, acetylene black and polytetrafluoroethylene powder were mixed at a weight ratio of 85: 10: 5, and toluene was added and kneaded sufficiently. This was formed into a sheet having a thickness of 0.1 mm by a roller press. Next, this was punched into a circle having a diameter of 16 mm, and dried under reduced pressure at 200 ° C. for 15 hours to obtain a negative electrode 2. The negative electrode 2 was used by being pressure-bonded to the negative electrode can 5 with the negative electrode current collector 7 attached thereto. In the positive electrode 1, LiCoO 2 , acetylene black, and polytetrafluoroethylene powder as a positive electrode active material were mixed at a weight ratio of 85: 10: 5, and toluene was added and kneaded sufficiently. This was formed into a sheet having a thickness of 0.8 mm by a roller press. Next, this was punched into a circle having a diameter of 16 mm and dried at 200 ° C. under reduced pressure for 15 hours to obtain a positive electrode 1. The positive electrode 1 was used by being crimped to a positive electrode can 4 with a positive electrode current collector 6 attached thereto. An electrolytic solution in which 1 mol / l of (C 2 F 5 SO 2 ) 2 NLi was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 was used, and the separator 3 was a polypropylene microporous film. A coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was manufactured using the positive electrode, the negative electrode, the electrolytic solution, and the separator. The batteries using (a) to (o) for the respective silicon alloys are referred to as batteries (A1) to (O1), respectively.
[0027]
(Comparative Example 1)
A battery was fabricated in the same manner as in Example 1 except that LiBF 4 was used instead of (C 2 F 5 SO 2 ) 2 NLi as the solute of the electrolytic solution. The obtained batteries are referred to as comparative batteries (A2) to (O2).
[0028]
(Example 2)
A battery was fabricated in the same manner as in Example 1 except that (CF 3 SO 2 ) 2 NLi was used instead of (C 2 F 5 SO 2 ) 2 NLi as the solute of the electrolytic solution. The obtained batteries are referred to as batteries (A3) to (O3).
[0029]
A charge / discharge cycle test was conducted using the batteries of the present invention (A1) to (O1), comparative batteries (A2) to (O2), and batteries of the present invention (A3) to (O3). The test conditions were a charge current of 3 mA, a charge end voltage of 4.1 V, a discharge current of 3 mA, and a discharge end voltage of 3.0 V. Tables 1 to 3 show the results of the charge / discharge tests of these batteries.
[0030]
[Table 1]
Figure 0004029224
[0031]
[Table 2]
Figure 0004029224
[0032]
[Table 3]
Figure 0004029224
[0033]
As can be seen from Table 1, Table 2, and Table 3, the batteries (A1) to (O1) and (A3) to (O3) of the present invention using a salt containing carbon as the solute of the electrolyte according to the present invention are electrolytes. Compared to comparative batteries (A2) to (O2) using LiBF 4 in place of the salt containing carbon as the solute, the charge / discharge characteristics were excellent, and the decrease after 10 cycles was small. Further, from comparison between the present invention batteries (A1) to (O1) and the present invention batteries (A3) to (O3), the present invention battery using (C 2 F 5 SO 2 ) 2 NLi as the solute of the electrolytic solution ( A1) to (O1) were excellent in charge / discharge characteristics as compared with the present invention batteries (A3) to (O3) using (CF 3 SO 2 ) 2 NLi, and the decrease after 10 cycles was small. In the case of using a silicon alloy, although the reason for these phenomena is not clear, it is considered that the state of the interface occurring between the electrolyte, particularly its solute, and the material surface is involved.
[0034]
In the above examples, (C 2 F 5 SO 2 ) 2 NLi and (CF 3 SO 2 ) 2 NLi are mentioned as the solute of the electrolytic solution, but the same effect is confirmed for other carbon-containing salts. It was. In addition, this invention is not limited to the starting material of the active material described in the said Example, the manufacturing method, a positive electrode, a negative electrode, an electrolyte, a separator, a battery shape, etc.
[0035]
【The invention's effect】
Since the present invention is configured as described above, it is possible to provide a non-aqueous electrolyte battery having high voltage, high capacity, high energy density, excellent charge / discharge cycle characteristics, and high safety.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a nonaqueous electrolyte battery of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode can 5 Negative electrode can 6 Positive electrode collector 7 Negative electrode collector 8 Insulation packing

Claims (3)

負極活物質の主構成物質が一般式(1)
SiM ・・・・ 一般式(1)
(一般式(1)中のMはシリコンと合金可能な1種類以上の元素、x>0)で表されるシリコン合金であり、且つ電解質の主構成溶質が、少なくとも一般式(2)
(R1Y1)(R2Y2)NLi ・・・・ 一般式(2)
(一般式(2)中のR1、R2がC2n+1で表され、nは1から4までの数であり、R1=R2あるいはR1≠R2であり、さらにY1,Y2がCO、SO、SO2 のいずれかで表され、Y1=Y2あるいはY1≠Y2である。)で表される塩であることを特徴とする非水電解質電池。
The main constituent material of the negative electrode active material is the general formula (1)
SiM x ··· General formula (1)
(M in the general formula (1) is a silicon alloy represented by one or more elements that can be alloyed with silicon, x> 0), and the main constituent solute of the electrolyte is at least the general formula (2)
(R1Y1) (R2Y2) NLi ... General formula (2)
(R1 and R2 in the general formula (2) are represented by C n F 2n + 1 , n is a number from 1 to 4, R1 = R2 or R1 ≠ R2, and Y1, Y2 are CO, SO, is represented by any one of SO 2, the non-aqueous electrolyte battery you being a salt represented by a Y1 = Y2 or Y1 ≠ Y2.).
記塩が、一般式(2)中のR1=R2=CF以外で表されることを特徴とする請求項3記載の非水電解質電池。Before Kishio the general formula (2) non-aqueous electrolyte battery according to claim 3, characterized by being represented by other than R1 = R2 = CF 3 in. 前記シリコンと合金可能な元素Mが、Li,Ni,Fe,Co,Mn,Ca,Mg,P,Al,As,W,B,Ti,V,Pt,Zr,Srのうち、少なくとも1種類以上の元素であることを特徴とする請求項1又は2記載の非水電解質電池。The element M that can be alloyed with silicon is at least one of Li, Ni, Fe, Co, Mn, Ca, Mg, P, Al, As, W, B, Ti, V, Pt, Zr, and Sr. the nonaqueous electrolyte battery according to claim 1 or 2, wherein the a elements.
JP15907897A 1997-06-17 1997-06-17 Non-aqueous electrolyte battery Expired - Lifetime JP4029224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15907897A JP4029224B2 (en) 1997-06-17 1997-06-17 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15907897A JP4029224B2 (en) 1997-06-17 1997-06-17 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH117979A JPH117979A (en) 1999-01-12
JP4029224B2 true JP4029224B2 (en) 2008-01-09

Family

ID=15685747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15907897A Expired - Lifetime JP4029224B2 (en) 1997-06-17 1997-06-17 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4029224B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4449094B2 (en) 1999-02-22 2010-04-14 パナソニック株式会社 Nonaqueous electrolyte secondary battery
KR100426095B1 (en) * 1999-07-01 2004-04-06 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary cell
EP2302720B1 (en) * 2003-03-26 2012-06-27 Canon Kabushiki Kaisha Electrode material for lithium secondary battery and electrode structure including the same
US8039148B2 (en) 2005-12-13 2011-10-18 Panasonic Corporation Non-aqueous electrolyte secondary battery
EP2051318B1 (en) 2007-02-02 2012-08-22 Panasonic Corporation Lithium cell electrode, and method for manufacturing the lithium cell electrode
CN102280664B (en) * 2010-06-09 2015-07-22 中国科学院物理研究所 Electrolyte and secondary lithium battery and capacitor containing electrolyte
JP4685192B1 (en) 2010-07-27 2011-05-18 富久代 市村 Solid-state secondary battery using silicon compound and method for manufacturing the same
JP4800440B1 (en) 2010-12-22 2011-10-26 富久代 市村 Solid-state secondary battery using silicon compound and method for manufacturing the same
JP6011313B2 (en) * 2012-12-19 2016-10-19 株式会社豊田自動織機 NEGATIVE ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND POWER STORAGE DEVICE
JP6589513B2 (en) * 2015-09-28 2019-10-16 株式会社豊田自動織機 Method for producing silicon material

Also Published As

Publication number Publication date
JPH117979A (en) 1999-01-12

Similar Documents

Publication Publication Date Title
JP6258641B2 (en) Non-aqueous electrolyte secondary battery
JP4196234B2 (en) Nonaqueous electrolyte lithium secondary battery
JP3620559B2 (en) Non-aqueous electrolyte battery
JP3596578B2 (en) Non-aqueous electrolyte secondary battery
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
JP4296580B2 (en) Nonaqueous electrolyte lithium secondary battery
JP2006222073A (en) Nonaqueous secondary battery and method of manufacturing its anode
JP3906944B2 (en) Non-aqueous solid electrolyte battery
WO2005064714A1 (en) Negative electrode material for secondary battery, negative electrode for secondary battery and secondary battery using same
JP4547963B2 (en) Negative electrode for secondary battery, method for producing the same, and secondary battery
JP4029224B2 (en) Non-aqueous electrolyte battery
JP3653717B2 (en) Non-aqueous electrolyte battery
JPH11204145A (en) Lithium secondary battery
JP2001222995A (en) Lithium ion secondary battery
JP2005294078A (en) Negative electrode for secondary battery, and secondary battery
JP3824111B2 (en) Non-aqueous electrolyte battery
JP4193008B2 (en) Lithium secondary battery
JP4355862B2 (en) Non-aqueous electrolyte battery
JP3994497B2 (en) Non-aqueous electrolyte battery
JP4624500B2 (en) Non-aqueous electrolyte battery
JP4161383B2 (en) Nonaqueous electrolyte secondary battery
JP2001015168A (en) Lithium secondary battery
JP4110562B2 (en) battery
JP3972454B2 (en) Lithium secondary battery
JP3775107B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

EXPY Cancellation because of completion of term