JPH117979A - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JPH117979A
JPH117979A JP9159078A JP15907897A JPH117979A JP H117979 A JPH117979 A JP H117979A JP 9159078 A JP9159078 A JP 9159078A JP 15907897 A JP15907897 A JP 15907897A JP H117979 A JPH117979 A JP H117979A
Authority
JP
Japan
Prior art keywords
salt
negative electrode
solute
carbon
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9159078A
Other languages
Japanese (ja)
Other versions
JP4029224B2 (en
Inventor
Tokuo Inamasu
徳雄 稲益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP15907897A priority Critical patent/JP4029224B2/en
Publication of JPH117979A publication Critical patent/JPH117979A/en
Application granted granted Critical
Publication of JP4029224B2 publication Critical patent/JP4029224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To give high voltage, high capacity, high energy density, an excellent charge and discharge cycle characteristic and high safety to a non-aqueous electrolyte battery by using silicon alloy as the main structural material for negative electrode active material, and using a salt, which contains carbon, as the main structural solute for electrolyte. SOLUTION: As the main structural material for negative electrode active material, silicon alloy expressed with a formula SiMx is used. In the formula, M means one or more kinds of elements, which can form the alloy with silicon, and (x) satisfies a relation that (x)>0. A salt, which contains carbon, is used as the main structural solute for electrolyte. As a salt, which contains carbon, a Li salt expressed with a formula (R1Y1)(R2Y2)NLi is used. In the formula, R1, R2 mean Cn F2n+1 , (n) is 1-4, R1=R2 or R1≠R2, and Y1, Y2 mean CO, SO, SO2 , and Y1=Y2, or Y1≠Y2. A salt as a solute, which includes carbon, is hard to be decomposed, and at the time of reaction with water, the salt as a solute hardly release hydrogen fluoride.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質電池に関
するもので、さらに詳しくはその負極活物質とその電池
に用いられる電解質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to a negative electrode active material and an electrolyte used in the battery.

【0002】[0002]

【従来の技術】従来より非水電解質電池用の負極活物質
として、リチウムを用いることが代表的であったが、充
電時に生成するリチウムの樹枝状析出(デンドライト)
のため、サイクル寿命の点で問題があった。また、この
デンドライトはセパレーターを貫通し内部短絡を引き起
こしたり、発火の原因ともなっている。
2. Description of the Related Art Conventionally, lithium has been typically used as a negative electrode active material for a nonaqueous electrolyte battery. However, dendritic deposition of lithium generated during charging (dendrite)
Therefore, there was a problem in terms of cycle life. In addition, the dendrite penetrates through the separator, causing an internal short circuit and causing ignition.

【0003】また、上記のような充電時に生成するデン
ドライトを防止する目的でリチウム合金も用いられた
が、充電量が大きくなると負極の微細粉化や、負極活物
質の脱落などの問題があった。
Further, lithium alloys have been used for the purpose of preventing dendrite generated at the time of charging as described above. However, when the charge amount is increased, there are problems such as fine powdering of the negative electrode and falling off of the negative electrode active material. .

【0004】現在、長寿命化及び安全性のために負極に
炭素材料を用いる電池などが注目を集め一部実用化され
ている。しかしながら、負極に用いられる炭素材料は、
急速充電時に内部短絡や充電効率の低下という問題があ
った。これらの炭素材料は、一般的に炭素材料へのリチ
ウムのドープ電位が0Vに近いため、急速充電を行う場
合、電位が0V以下になり電極上にリチウムを析出する
ことがある。そのため、セルの内部短絡を引き起こした
り、放電効率を低下させる原因となる。また、このよう
な炭素材料は、サイクル寿命の点でかなりの改善がなさ
れているが、密度が比較的小さいため、体積当たりの容
量が低くなってしまうことになる。つまり、この炭素材
料は高エネルギー密度という点からは未だ不十分であ
る。その上、炭素上に被膜を形成する必要があるものに
ついては初期充放電効率が低下し、この被膜形成に使わ
れる電気量は不可逆であるため、その電気量分の容量低
下につながる。さらなる高容量、高エネルギー密度で、
サイクル寿命が長く、安全な非水電解質電池用負極材料
の開発が望まれている。
At present, batteries using a carbon material for the negative electrode have been attracting attention for their long life and safety, and some of them have been put to practical use. However, the carbon material used for the negative electrode is
There were problems such as an internal short circuit and a decrease in charging efficiency during rapid charging. These carbon materials generally have a lithium doping potential of the carbon material close to 0 V. Therefore, when rapid charging is performed, the potential becomes 0 V or less, and lithium may be deposited on the electrode. As a result, this may cause an internal short circuit of the cell or lower the discharge efficiency. Although such carbon materials have been considerably improved in terms of cycle life, their relatively low density results in low capacity per volume. That is, this carbon material is still insufficient in terms of high energy density. In addition, in the case where a film needs to be formed on carbon, the initial charge / discharge efficiency decreases, and the amount of electricity used for forming the film is irreversible, which leads to a reduction in capacity corresponding to the amount of electricity. With even higher capacity and higher energy density,
There is a demand for the development of a safe negative electrode material for nonaqueous electrolyte batteries having a long cycle life.

【0005】既に、シリコン合金をとして、Binar
y Alloy Phase Diagrams(p2
465)にあるように、Li22Si5 までの組成で合金
化することが知られている。また、特開平5−7446
3号では、負極にシリコンの単結晶を用いることを報告
している。しかしながら、急速充放電用非水電解質電池
の負極材としてシリコンにリチウムをドープさせようと
試みると、ほとんどドープが起こらずにリチウムが析出
してしまうことが分かった。そこで、本発明者は、すで
に不純物(ドーパント)を有する外来半導体について検
討を行った結果、リチウムの吸蔵、放出が進行すること
が分かった。この吸蔵反応は約0.1Vという極めてリ
チウム電位に近い電位で進行し、理論容量に近いリチウ
ムの吸蔵が起こり、可逆性もあることが分かった。一
方、米国特許第5294503号ではLix Mg2 Si
を、特開平5−159780号ではFeSiを、特開平
7−29602号ではLix Siを、特開平8−138
744号ではSiBn を、特開平8−153517号で
はニッケルケイ化物を負極材料として用いることが報告
されている。しかしながら、電解質の溶質としてLiP
6 やLiBF4 を用いた電解質を用いた場合、各サイ
クルの充放電効率が低く、サイクル劣化が起こることが
分かった。
[0005] Binar has already been used as a silicon alloy.
y Alloy Phase Diagrams (p2
465), alloying with a composition up to Li 22 Si 5 is known. Also, Japanese Patent Application Laid-Open No.
No. 3 reports that a single crystal of silicon is used for the negative electrode. However, when trying to dope lithium into silicon as a negative electrode material of a nonaqueous electrolyte battery for rapid charge / discharge, it was found that lithium was deposited with almost no doping. Then, the present inventor studied an extrinsic semiconductor already having an impurity (dopant), and found that the occlusion and release of lithium proceeded. It was found that this occlusion reaction proceeded at a potential very close to the lithium potential of about 0.1 V, occlusion of lithium near the theoretical capacity occurred, and there was also reversibility. On the other hand, US Pat. No. 5,294,503 discloses Li x Mg 2 Si
JP-A-5-159780 discloses FeSi, JP-A-7-29602 discloses Li x Si, JP-A-8-138.
No. 744 reports that SiB n is used as a negative electrode material, and JP-A-8-153517 reports that nickel silicide is used as a negative electrode material. However, as a solute of the electrolyte, LiP
It was found that when an electrolyte using F 6 or LiBF 4 was used, the charge / discharge efficiency of each cycle was low, and cycle deterioration occurred.

【0006】[0006]

【発明が解決しようとする課題】つまり、負極としてリ
チウム金属やリチウムと金属の合金を用いる場合は、高
電圧、高容量、高エネルギー密度としての利点はあるも
のの、サイクル性や安全性の上で問題があり、炭素材料
を用いる場合は、高電圧、安全性の面で有利であるもの
の、高容量、高エネルギー密度の面で不十分である。ま
た、高容量、高エネルギー密度が期待されるシリコン合
金を負極活物質として用いた場合、各サイクルの充放電
効率が低く、サイクル劣化につながることが問題であっ
た。
In other words, when lithium metal or an alloy of lithium and a metal is used as the negative electrode, there are advantages of high voltage, high capacity, and high energy density, but in terms of cycleability and safety. There is a problem, and when a carbon material is used, it is advantageous in terms of high voltage and safety, but insufficient in terms of high capacity and high energy density. In addition, when a silicon alloy expected to have a high capacity and a high energy density is used as a negative electrode active material, the charge / discharge efficiency of each cycle is low, which leads to a problem that cycle deterioration is caused.

【0007】このため、高電圧、高エネルギー密度で、
優れた充放電サイクル特性を示し、安全性の高い二次電
池を得るには、可逆的にリチウムを吸蔵放出可能であ
り、そのリチウムの吸蔵放出における充放電効率に優
れ、できるだけリチウム電位に近い作動領域で動作する
化合物が望まれている。
For this reason, high voltage, high energy density,
In order to obtain a secondary battery with excellent charge / discharge cycle characteristics and high safety, lithium can be inserted and released reversibly, and the charge / discharge efficiency in the insertion and extraction of lithium is excellent and the operation is as close to the lithium potential as possible. A compound that operates in the field is desired.

【0008】[0008]

【課題を解決するための手段】本発明は上記問題点に鑑
みてなされたものであって、非水電解質電池に使用され
る負極活物質の主構成物質がシリコン合金である非水電
解質電池において、電解質の主構成溶質として炭素を含
有する塩を用いることを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and is directed to a non-aqueous electrolyte battery in which the main constituent material of the negative electrode active material used in the non-aqueous electrolyte battery is a silicon alloy. In addition, a salt containing carbon is used as a main constituent solute of the electrolyte.

【0009】さらに、上記に挙げた炭素を含有する塩
が、少なくとも一般式(2) (R1Y1)(R2Y2)NLi ・・・・ 一般式(2) (一般式(2)中のR1、R2がCn 2n+1で表され、
nは1から4までの数であり、R1=R2あるいはR1
≠R2であり、さらにY1,Y2がCO、SO、SO2
のいずれかで表され、Y1=Y2あるいはY1≠Y2で
ある。)で表される塩を用いることを特徴とする。ま
た、前記炭素を含有する塩が、一般式(2)中のR1=
R2=CF3 以外で表されることを特徴とする。
Further, the above-mentioned carbon-containing salts may be any one of the compounds represented by the following general formula (2): (R1Y1) (R2Y2) NLi... General formula (2) Represented by C n F 2n + 1 ,
n is a number from 1 to 4, and R1 = R2 or R1
≠ R2, and Y1 and Y2 are CO, SO, SO 2
Y1 = Y2 or Y1 ≠ Y2. ) Is used. Further, the salt containing carbon is represented by the general formula (2) wherein R1 =
Characterized by being represented by the non-R2 = CF 3.

【0010】つまり、非水電解質電池において、従来一
般的に用いられていたLiBF4 やLiPF6 を電解質
に用いると、そのものを溶質とした電解液のイオン伝導
性は優れているものの、いったん分解するとルイス酸を
生じたり、水との反応ではフッ化水素等を生じることが
分かっている。これらの溶質を用いてシリコン合金を負
極活物質として用いた場合、溶質から生じる不純物がシ
リコン合金表面に存在する被膜と反応し、その表面被膜
は電気抵抗が高くイオン伝導性の悪い被膜に変化するこ
とが分かった。そのため、充放電を行うごとに電極抵抗
が増大し、充放電効率を低下させ、よってサイクル劣化
につながることが考えられる。
That is, in a non-aqueous electrolyte battery, when LiBF 4 or LiPF 6 which has been generally used in the past is used as an electrolyte, the ionic conductivity of the electrolyte using the same as a solute is excellent, but once it is decomposed, It has been found that Lewis acids are produced and that reaction with water produces hydrogen fluoride and the like. When a silicon alloy is used as a negative electrode active material using these solutes, impurities generated from the solute react with a film existing on the surface of the silicon alloy, and the surface film changes into a film having high electric resistance and poor ion conductivity. I understood that. Therefore, it is conceivable that the electrode resistance increases each time charging / discharging is performed, which lowers the charging / discharging efficiency, thereby leading to cycle deterioration.

【0011】一方、本発明溶質である炭素を含有する塩
は上記のような分解が起こりにくく、水との反応におい
てもフッ化水素等をほとんど放出しないことが分かっ
た。よって、シリコン合金を負極活物質として用いた場
合、その表面被膜の電気抵抗増大や、イオン伝導性の低
下が抑えられ、充放電効率が向上し、よってサイクル特
性が向上することが考えられる。
On the other hand, it has been found that the salt containing carbon, which is the solute of the present invention, hardly decomposes as described above, and hardly releases hydrogen fluoride or the like even in the reaction with water. Therefore, when a silicon alloy is used as the negative electrode active material, it is conceivable that an increase in the electrical resistance of the surface film and a decrease in ionic conductivity are suppressed, the charge / discharge efficiency is improved, and the cycle characteristics are improved.

【0012】さらに、ここで言うシリコンと合金可能な
元素としては、Binary Alloy Phase
Diagramsにあげられているような元素すべて
であるが、好ましくはLi,Ni,Fe,Co,Mn,
Ca,Mg,P,Al,As,W,B,Ti,V,P
t,Zr,Sr等である。しかし、これらに限定される
ものではない。ここで言うシリコン合金の結晶系につい
ては、単結晶、多結晶、アモルファス等が挙げられる。
Further, the element which can be alloyed with silicon as referred to herein includes Binary Alloy Phase
All of the elements listed in Diagrams, but preferably Li, Ni, Fe, Co, Mn,
Ca, Mg, P, Al, As, W, B, Ti, V, P
t, Zr, Sr and the like. However, it is not limited to these. The crystal system of the silicon alloy mentioned here includes single crystal, polycrystal, amorphous and the like.

【0013】本発明に用いるシリコン合金は、平均粒子
サイズ0.1〜100μmである粉体が望ましい。所定
の粉体を得るためには粉砕機や分級機が用いられる。粉
体を得る場合、例えば乳鉢、ボールミル、サンドミル、
振動ボールミル、遊星ボールミル、ジェットミル、カウ
ンタージェトミル、旋回気流型ジェットミルや篩等が用
いられる。粉砕時には水、あるいはヘキサン等の有機溶
剤を共存させた湿式粉砕を用いることもできる。分級方
法としては、特に限定はなく、篩や風力分級機などが乾
式、湿式ともに必要に応じて用いられる。
The silicon alloy used in the present invention is preferably a powder having an average particle size of 0.1 to 100 μm. A pulverizer or a classifier is used to obtain a predetermined powder. When obtaining powder, for example, mortar, ball mill, sand mill,
A vibration ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air jet mill, a sieve, and the like are used. At the time of pulverization, wet pulverization in which an organic solvent such as water or hexane coexists can be used. The classification method is not particularly limited, and a sieve, an air classifier, or the like is used as needed in both dry and wet methods.

【0014】本発明に併せて用いることができる負極材
料としては、リチウム金属、リチウム合金などや、リチ
ウムイオンまたはリチウム金属を吸蔵放出できる焼成炭
素質化合物やカルコゲン化合物、メチルリチウム等のリ
チウムを含有する有機化合物等が挙げられる。また、リ
チウム金属やリチウム合金、リチウムを含有する有機化
合物を併用することによって、本発明に用いるシリコン
合金にリチウムを電池内部で挿入することも可能であ
る。
The negative electrode material which can be used in conjunction with the present invention includes lithium metal, lithium alloy, etc., calcined carbonaceous compounds capable of inserting and extracting lithium ions or lithium metal, chalcogen compounds, and lithium such as methyllithium. Organic compounds and the like can be mentioned. Further, by using lithium metal, a lithium alloy, and an organic compound containing lithium in combination, lithium can be inserted into the silicon alloy used in the present invention inside the battery.

【0015】本発明のシリコン合金を粉末として用いる
場合、電極合剤として導電剤や結着剤やフィラー等を添
加することができる。導電剤としては、電池性能に悪影
響を及ぼさない電子伝導性材料であれば何でも良い。通
常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛な
ど)、人造黒鉛、カーボンブラック、アセチレンブラッ
ク、ケッチェンブラック、カーボンウイスカー、炭素繊
維や金属(銅、ニッケル、アルミニウム、銀、金など)
粉、金属繊維、金属の蒸着、導電性セラミックス材料等
の導電性材料を1種またはそれらの混合物として含ませ
ることができる。これらの中で、黒鉛とアセチレンブラ
ックとケッチェンブラックの併用が望ましい。その添加
量は1〜50重量%が好ましく、特に2〜30重量%が
好ましい。
When the silicon alloy of the present invention is used as a powder, a conductive agent, a binder, a filler or the like can be added as an electrode mixture. Any conductive material may be used as long as it does not adversely affect battery performance. Usually, natural graphite (flaky graphite, flaky graphite, earthy graphite, etc.), artificial graphite, carbon black, acetylene black, Ketjen black, carbon whiskers, carbon fibers and metals (copper, nickel, aluminum, silver, gold, etc.)
A conductive material such as powder, metal fiber, metal deposition, and conductive ceramic material can be included as one type or a mixture thereof. Among these, the combined use of graphite, acetylene black and Ketjen black is desirable. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight.

【0016】結着剤としては、通常、テトラフルオロエ
チレン、ポリフッ化ビニリデン、ポリエチレン、ポリプ
ロピレン、エチレン−プロピレンジエンターポリマー
(EPDM)、スルホン化EPDM、スチレンブタジエ
ンゴム(SBR)、フッ素ゴム、カルボキシメチルセル
ロース等といった熱可塑性樹脂、ゴム弾性を有するポリ
マー、多糖類等を1種または2種以上の混合物として用
いることができる。また、多糖類の様にリチウムと反応
する官能基を有する結着剤は、例えばメチル化するなど
してその官能基を失活させておくことが望ましい。その
添加量としては、1〜50重量%が好ましく、特に2〜
30重量%が好ましい。
As the binder, usually, tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoro rubber, carboxymethyl cellulose, etc. Such as a thermoplastic resin, a polymer having rubber elasticity, a polysaccharide and the like can be used alone or as a mixture of two or more. Further, it is desirable that a binder having a functional group that reacts with lithium, such as a polysaccharide, be deactivated by, for example, methylation. The addition amount is preferably 1 to 50% by weight, particularly 2 to 50% by weight.
30% by weight is preferred.

【0017】フィラーとしては、電池性能に悪影響を及
ぼさない材料であれば何でも良い。通常、ポリプロピレ
ン、ポリエチレン等のオレフィン系ポリマー、アエロジ
ル、ゼオライト、ガラス、炭素等が用いられる。フィラ
ーの添加量は30重量%以下が好ましい。
As the filler, any material may be used as long as it does not adversely affect battery performance. Usually, olefin polymers such as polypropylene and polyethylene, aerosil, zeolite, glass, carbon and the like are used. The added amount of the filler is preferably 30% by weight or less.

【0018】電極活物質の集電体としては、構成された
電池において悪影響を及ぼさない電子伝導体であれば何
でもよい。例えば、正極に用いる集電体材料として、ア
ルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭
素、導電性高分子、導電性ガラス等の他に、接着性、導
電性、耐酸化性向上の目的で、アルミニウムや銅等の表
面をカーボン、ニッケル、チタンや銀等で処理したもの
を用いることができる。負極材料としては、銅、ステン
レス鋼、ニッケル、アルミニウム、チタン、焼成炭素、
導電性高分子、導電性ガラス、Al−Cd合金等の他
に、接着性、導電性、耐酸化性向上の目的で、銅等の表
面をカーボン、ニッケル、チタンや銀等で処理したもの
を用いることができる。これらの材料については表面を
酸化処理することも可能である。これらの形状について
は、フォイル状、フィルム状、シート状、ネット状、又
はパンチングメタル、エキスパンドされたもの、ラス
体、多孔質体、発砲体、繊維群の形成体等が用いられ
る。厚みは特に限定はないが、1〜500μmのものが
用いられる。
The current collector of the electrode active material may be any current collector that does not adversely affect the battery. For example, as a current collector material used for the positive electrode, aluminum, titanium, stainless steel, nickel, fired carbon, conductive polymer, conductive glass and the like, for the purpose of improving adhesiveness, conductivity, oxidation resistance, A material obtained by treating the surface of aluminum, copper, or the like with carbon, nickel, titanium, silver, or the like can be used. As the negative electrode material, copper, stainless steel, nickel, aluminum, titanium, calcined carbon,
In addition to conductive polymers, conductive glasses, and Al-Cd alloys, for the purpose of improving adhesion, conductivity, and oxidation resistance, copper and other surfaces treated with carbon, nickel, titanium, silver, etc. Can be used. These materials can be oxidized on the surface. With respect to these shapes, foil, film, sheet, net, or punched metal, expanded, lath, porous, foamed, and formed fibers are used. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used.

【0019】一方、正極活物質としては、MnO2 ,M
oO3 ,V2 5 ,Lix CoO2,Lix NiO2
Lix Mn2 4 ,等の金属酸化物や、TiS2 ,Mo
2,NbSe3 等の金属カルコゲン化物、ポリアセン、ポリ
パラフェニレン、ポリピロール、ポリアニリン等のグラ
ファイト層間化合物、及び導電性高分子等のアルカリ金
属イオンや、アニオンを吸放出可能な各種の物質を利用
することができる。
On the other hand, MnO 2 , M
oO 3 , V 2 O 5 , Li x CoO 2 , Li x NiO 2 ,
Metal oxides such as Li x Mn 2 O 4 , TiS 2 , Mo
Utilize metal chalcogenides such as S 2 and NbSe 3 , graphite intercalation compounds such as polyacene, polyparaphenylene, polypyrrole, and polyaniline, and alkali metal ions such as conductive polymers and various substances capable of absorbing and releasing anions. be able to.

【0020】特に本発明のシリコン合金をを負極活物質
として用いる場合、高エネルギー密度という観点からV
2 5 ,MnO2 ,Lix CoO2 ,Lix NiO2
Lix Mn2 4 等の3〜4Vの電極電位を有するもの
が望ましい。特にLix CoO2 ,Lix NiO2 ,L
x Mn2 4 等のリチウム含有遷移金属酸化物が好ま
しい。
In particular, when the silicon alloy of the present invention is used as a negative electrode active material, V
2 O 5 , MnO 2 , Li x CoO 2 , Li x NiO 2 ,
Those having an electrode potential of 3 to 4 V, such as Li x Mn 2 O 4, are desirable. In particular, Li x CoO 2 , Li x NiO 2 , L
i x Mn lithium-containing transition metal oxides such as 2 O 4 are preferred.

【0021】また、電解質としては、例えば有機電解
液、高分子固体電解質、無機固体電解質、溶融塩等を用
いることができ、この中でも有機電解液を用いることが
好ましい。この有機電解液の有機溶媒として、プロピレ
ンカーボネート、エチレンカーボネート、ブチレンカー
ボネート、ジエチルカーボネート、ジメチルカーボネー
ト、メチルエチルカーボネート、γ−ブチロラクトン等
のエステル類や、テトラヒドロフラン、2−メチルテト
ラヒドロフラン等の置換テトラヒドロフラン、ジオキソ
ラン、ジエチルエーテル、ジメトキシエタン、ジエトキ
シエタン、メトキシエトキシエタン等のエーテル類、ジ
メチルスルホキシド、スルホラン、メチルスルホラン、
アセトニトリル、ギ酸メチル、酢酸メチル、N−メチル
ピロリドン、ジメチルフォルムアミド等が挙げられ、こ
れらを単独又は混合溶媒として用いることができる。
Further, as the electrolyte, for example, an organic electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt and the like can be used, and among them, the organic electrolyte is preferable. As the organic solvent of the organic electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, esters such as γ-butyrolactone, tetrahydrofuran, substituted tetrahydrofuran such as 2-methyltetrahydrofuran, dioxolane, Ethers such as diethyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, dimethylsulfoxide, sulfolane, methylsulfolane,
Acetonitrile, methyl formate, methyl acetate, N-methylpyrrolidone, dimethylformamide and the like can be mentioned, and these can be used alone or as a mixed solvent.

【0022】本発明に用いられる電解質の主構成溶質と
しては、炭素を含有する塩であればよい。例えば、特開
昭58−225045号で用いられている式:(Cn
2n+1Y)2 - ,M+ で表せるものや、下記一般式
(3)、(4): (RSO2 3 - ,M+ ・・・・ 一般式(3) (RSO2 )O- ,M+ ・・・・ 一般式(4) で表せるものが好ましい。さらに好ましくは一般式
(2) (R1Y1)(R2Y2)NLi ・・・・ 一般式(2) (一般式(2)中のR1、R2がCn 2n+1で表され、
nは1から4までの数であり、R1=R2あるいはR1
≠R2であり、さらにY1,Y2がCO、SO、SO2
のいずれかで表され、Y1=Y2あるいはY1≠Y2で
ある。)で表される塩を用いることである。よりさらに
好ましくはR1=R2=C2 5、あるいはR1=CF
3 、R2=C4 9 で表されるものを用いることであ
る。ここで、正極活物質にリチウム含有遷移金属酸化物
を用いる場合、一般式(2)中のR1=R2=CF3
用いるとサイクル劣化が大きいことがわかった。つま
り、正極活物質の主構成物質にリチウム含有遷移金属酸
化物を用いる場合、一般式(2)中のR1=R2=CF
3 以外で表される塩を用いることが好ましい。一方、固
体電解質として、例えば無機固体電解質、有機固体電解
質、無機有機固体電解質、溶融塩等を用いることができ
る。無機固体電解質には、リチウムの窒化物、ハロゲン
化物、酸素酸塩、硫化リン化合物などがよく知られてお
り、これらの1種または2種以上を混合して用いること
ができる。なかでも、Li3 N,LiI,Li5
2 ,Li3 N−LiI−LiOH,Li4 SiO4
Li4 SiO4 −LiI−LiOH,xLi3 PO
4-(1-x) Li4 SiO4 ,Li2SiS3 等が有効であ
る。一方有機固体電解質では、ポリエチレンオキサイド
誘導体か少なくとも該誘導体を含むポリマー、ポリプロ
ピレンオキサイド誘導体か少なくとも該誘導体を含むポ
リマー、ポリフォスファゼンや該誘導体、イオン解離基
を含むポリマー、リン酸エステルポリマー誘導体、さら
にポリビニルピリジン誘導体、ビスフェノールA誘導
体、ポリアクリロニトリル、ポリビニリデンフルオライ
ド、フッ素ゴム等に非水電解液を含有させた高分子マト
リックス材料(ゲル電解質)等が有効である。
The main constituent solute of the electrolyte used in the present invention may be a salt containing carbon. For example, the formula used in JP-A-58-225045: (C n X
2n + 1 Y) 2 N , M + , and the following general formulas (3) and (4): (RSO 2 ) 3 C , M + ... General formula (3) (RSO 2 ) O , M + ... A compound represented by the general formula (4) is preferable. More preferably, general formula (2) (R1Y1) (R2Y2) NLi General formula (2) (R1 and R2 in general formula (2) are represented by C n F 2n + 1 ,
n is a number from 1 to 4, and R1 = R2 or R1
≠ R2, and Y1 and Y2 are CO, SO, SO 2
Y1 = Y2 or Y1 ≠ Y2. ) Is used. Still more preferably, R1 = R2 = C 2 F 5 or R1 = CF
3, R2 = is C 4 to use those represented by F 9. Here, when a lithium-containing transition metal oxide was used as the positive electrode active material, it was found that when R1 = R2 = CF 3 in the general formula (2) was used, the cycle deterioration was large. That is, when a lithium-containing transition metal oxide is used as the main constituent material of the positive electrode active material, R1 = R2 = CF in the general formula (2).
It is preferable to use a salt represented by other than 3 . On the other hand, as the solid electrolyte, for example, an inorganic solid electrolyte, an organic solid electrolyte, an inorganic organic solid electrolyte, a molten salt, or the like can be used. Well known inorganic solid electrolytes include lithium nitrides, halides, oxyacid salts, phosphorus sulfide compounds, and the like, and one or more of these can be used in combination. Among them, Li 3 N, LiI, Li 5 N
I 2 , Li 3 N—LiI—LiOH, Li 4 SiO 4 ,
Li 4 SiO 4 -LiI-LiOH, xLi 3 PO
4- (1-x) Li 4 SiO 4 , Li 2 SiS 3 and the like are effective. On the other hand, in an organic solid electrolyte, a polyethylene oxide derivative or a polymer containing at least the derivative, a polypropylene oxide derivative or a polymer containing at least the derivative, polyphosphazene or the derivative, a polymer containing an ion dissociating group, a phosphate ester polymer derivative, and a polyvinyl ester A pyridine derivative, a bisphenol A derivative, polyacrylonitrile, polyvinylidene fluoride, a polymer matrix material (gel electrolyte) containing a non-aqueous electrolyte solution in fluororubber, or the like is effective.

【0023】セパレータとしては、イオンの透過度が優
れ、機械的強度のある絶縁性薄膜を用いることができ
る。耐有機溶剤性と疎水性からポリプロピレンやポリエ
チレンといったオレフィン系のポリマー、ガラス繊維、
ポリフッ化ビニリデン、ポリテトラフルオロエチレン等
からつくられたシート、微孔膜、不織布が用いられる。
セパレータの孔径は、一般に電池に用いられる範囲のも
のであり、例えば0.01〜10μmである。またその
厚みについても同様で、一般に電池に用いられる範囲の
ものであり、例えば5〜300μmである。
As the separator, an insulating thin film having excellent ion permeability and mechanical strength can be used. Olefin polymers such as polypropylene and polyethylene, glass fiber, and organic solvent resistant and hydrophobic
Sheets, microporous membranes, and nonwoven fabrics made of polyvinylidene fluoride, polytetrafluoroethylene, or the like are used.
The pore size of the separator is in a range generally used for a battery, and is, for example, 0.01 to 10 μm. The same applies to the thickness, which is in the range generally used for batteries, for example, 5 to 300 μm.

【0024】この様に本発明は、負極活物質の主構成物
質が、シリコン合金である非水電解質電池において、該
電解質の主構成溶質として炭素を含有する塩を用いるこ
とにより、金属リチウムに対し少なくとも0〜2Vの範
囲でリチウムイオンを吸蔵放出することができ、通常の
合金にみられる充放電時の微細粉化や負極活物質の部分
的な孤立化が抑えられ、このような溶質を非水電解質と
して用いることにより、充放電効率に優れ、サイクル特
性が良好な充放電特性の優れた二次電池の負極として用
いることができる。
As described above, the present invention provides a non-aqueous electrolyte battery in which the main constituent material of the negative electrode active material is a silicon alloy, by using a salt containing carbon as the main constituent solute of the electrolyte, thereby reducing the use of lithium metal. Lithium ions can be inserted and extracted at least in the range of 0 to 2 V, and fine powdering during charge and discharge and partial isolation of the negative electrode active material, which are observed in ordinary alloys, can be suppressed. By using as a water electrolyte, it can be used as a negative electrode of a secondary battery having excellent charge / discharge efficiency, excellent cycle characteristics, and excellent charge / discharge characteristics.

【0025】[0025]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0026】(実施例1)シリコン合金として、Li12
Si7 (a)、Ni2 Si(b)、FeSi(c)、C
oSi(d)、MnSi(e)、CaSi(f)、Mg
2 Si(g)、PSi(h)、AlSi(i)、AsS
i(j)、WSi(k)、B3 Si(l)、TiSi
(m)、SiV3 (n)、PtSi(o)を用い、それ
ぞれを乳鉢で粉砕し、この負極活物質を用いて次のよう
にしてコイン型非水電解質電池を試作した。活物質とア
セチレンブラック及びポリテトラフルオロエチレン粉末
とを重量比85:10:5で混合し、トルエンを加えて
十分混練した。これをローラープレスにより厚み0.1
mmのシート状に成形した。次にこれを直径16mmの
円形に打ち抜き、減圧下200℃で15時間乾燥し負極
2を得た。負極2は負極集電体7の付いた負極缶5に圧
着して用いた。正極1は、正極活物質としてLiCoO
2 とアセチレンブラック及びポリテトラフルオロエチレ
ン粉末とを重量比85:10:5で混合し、トルエンを
加えて十分混練した。これをローラープレスにより厚み
0.8mmのシート状に成形した。次にこれを直径16
mmの円形に打ち抜き減圧下200℃で15時間乾燥し
正極1を得た。正極1は正極集電体6の付いた正極缶4
に圧着して用いた。 エチレンカーボネートとジエチル
カーボネートとの体積比1:1の混合溶剤に(C2 5
SO2 2 NLiを1mol/l溶解した電解液を用
い、セパレータ3にはポリプロピレン製微多孔膜を用い
た。上記正極、負極、電解液及びセパレータを用いて直
径20mm、厚さ1.6mmのコイン型リチウム電池を
作製した。それぞれのシリコン合金を(a)〜(o)を
用いた電池をそれぞれ電池(A1)〜(O1)とする。
(Example 1) As a silicon alloy, Li 12
Si 7 (a), Ni 2 Si (b), FeSi (c), C
oSi (d), MnSi (e), CaSi (f), Mg
2 Si (g), PSi ( h), AlSi (i), AsS
i (j), WSi (k), B 3 Si (l), TiSi
(M), SiV 3 (n) and PtSi (o), each of which was pulverized in a mortar, and using this negative electrode active material, a coin-type non-aqueous electrolyte battery was prototyped as follows. The active material, acetylene black and polytetrafluoroethylene powder were mixed at a weight ratio of 85: 10: 5, and toluene was added and kneaded sufficiently. This is roll-pressed to a thickness of 0.1
mm. Next, this was punched out into a circle having a diameter of 16 mm and dried at 200 ° C. under reduced pressure for 15 hours to obtain a negative electrode 2. The negative electrode 2 was used by being pressed against a negative electrode can 5 provided with a negative electrode current collector 7. The positive electrode 1 is made of LiCoO as a positive electrode active material.
2 and acetylene black and polytetrafluoroethylene powder were mixed at a weight ratio of 85: 10: 5, and toluene was added and kneaded sufficiently. This was formed into a 0.8 mm thick sheet by a roller press. Next, this is
A positive electrode 1 was obtained by punching out into a circular shape of mm and drying under reduced pressure at 200 ° C. for 15 hours. Positive electrode 1 is a positive electrode can 4 with a positive electrode current collector 6
To be used. (C 2 F 5) was added to a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1.
An electrolytic solution in which 1 mol / l of SO 2 ) 2 NLi was dissolved was used, and a polypropylene microporous film was used for the separator 3. A coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was manufactured using the above-mentioned positive electrode, negative electrode, electrolyte and separator. Batteries using the respective silicon alloys (a) to (o) are referred to as batteries (A1) to (O1), respectively.

【0027】(比較例1)電解液の溶質として、(C2
5 SO2 2 NLiの代わりにLiBF4 を用い、そ
れ以外は実施例1と同様にして電池を作製した。得られ
た電池を比較電池(A2)〜(O2)とする。
Comparative Example 1 As a solute of the electrolytic solution, (C 2
A battery was fabricated in the same manner as in Example 1, except that LiBF 4 was used instead of F 5 SO 2 ) 2 NLi. The obtained batteries are referred to as comparative batteries (A2) to (O2).

【0028】(実施例2)電解液の溶質として、(C2
5 SO2 2 NLiの代わりに(CF3 SO22
Liを用い、それ以外は実施例1と同様にして電池を作
製した。得られた電池を電池(A3)〜(O3)とす
る。
(Example 2) As a solute of the electrolytic solution, (C 2
(CF 3 SO 2 ) 2 N instead of F 5 SO 2 ) 2 NLi
A battery was fabricated in the same manner as in Example 1 except for using Li. The obtained batteries are referred to as batteries (A3) to (O3).

【0029】このようにして作製した本発明電池(A
1)〜(O1)、比較電池(A2)〜(O2)、本発明
電池(A3)〜(O3)を用いて充放電サイクル試験を
行った。試験条件は、充電電流3mA、充電終止電圧
4.1V、放電電流3mA、放電終止電圧3.0Vとし
た。これら作製した電池の充放電試験の結果を表1から
表3に示す。
The battery of the present invention (A
1) to (O1), comparative batteries (A2) to (O2), and batteries of the present invention (A3) to (O3) were subjected to charge / discharge cycle tests. The test conditions were a charge current of 3 mA, a charge end voltage of 4.1 V, a discharge current of 3 mA, and a discharge end voltage of 3.0 V. Tables 1 to 3 show the results of the charge / discharge test of these batteries.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】表1、表2、表3から分かるように本発明
による電解液の溶質に炭素を含有する塩を用いた本発明
電池(A1)〜(O1)及び(A3)〜(O3)は、電
解液の溶質として炭素を含有する塩の代わりにLiBF
4 を用いた比較電池(A2)〜(O2)に比べて充放電
特性に優れており、10サイクル後の減少が小さかっ
た。また、本発明電池(A1)〜(O1)と本発明電池
(A3)〜(O3)との比較から、電解液の溶質に(C
2 5 SO2 2 NLiを用いた本発明電池(A1)〜
(O1)が、(CF3 SO2 2 NLiを用いた本発明
電池(A3)〜(O3)に比べて充放電特性に優れてお
り、10サイクル後の減少が小さかった。シリコン合金
を用いる場合において、これらの現象についてその理由
は定かではないものの、電解液、特にその溶質と材料表
面の間で起こる界面の状態が関与しているものと考えら
れる。
As can be seen from Tables 1, 2 and 3, the batteries (A1) to (O1) and (A3) to (O3) of the present invention using a salt containing carbon as the solute of the electrolytic solution according to the present invention are: And LiBF instead of a salt containing carbon as a solute of the electrolyte
The charge / discharge characteristics were superior to the comparative batteries (A2) to (O2) using No. 4, and the decrease after 10 cycles was small. Also, from the comparison between the batteries (A1) to (O1) of the present invention and the batteries (A3) to (O3) of the present invention, (C)
The present invention battery (A1) using 2 F 5 SO 2 ) 2 NLi
(O1) is, (CF 3 SO 2) is excellent in charge and discharge characteristics as compared with the present invention battery using 2 NLi (A3) ~ (O3 ), was small loss after 10 cycles. In the case of using a silicon alloy, although the reason for these phenomena is not clear, it is considered that the state of the interface which occurs between the electrolyte, particularly the solute and the material surface is involved.

【0034】上記実施例においては、電解液の溶質とし
て(C2 5 SO2 2 NLi、(CF3 SO2 2
Liについて挙げたが、同様の効果が他の炭素を含有す
る塩についても確認された。なお、本発明は上記実施例
に記載された活物質の出発原料、製造方法、正極、負
極、電解質、セパレータ及び電池形状などに限定される
ものではない。
In the above embodiment, (C 2 F 5 SO 2 ) 2 NLi and (CF 3 SO 2 ) 2 N are used as solutes of the electrolytic solution.
Although described for Li, the same effect was confirmed for other carbon-containing salts. The present invention is not limited to the starting materials, the production method, the positive electrode, the negative electrode, the electrolyte, the separator, the shape of the battery, and the like of the active material described in the above-described embodiment.

【0035】[0035]

【発明の効果】本発明は上述の如く構成されているの
で、高電圧、高容量、高エネルギー密度で、優れた充放
電サイクル特性を示し、安全性の高い非水電解質電池を
提供できる。
Since the present invention is configured as described above, it is possible to provide a non-aqueous electrolyte battery having high voltage, high capacity, high energy density, excellent charge / discharge cycle characteristics, and high safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水電解質電池の断面図である。FIG. 1 is a cross-sectional view of a non-aqueous electrolyte battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極缶 5 負極缶 6 正極集電体 7 負極集電体 8 絶縁パッキング REFERENCE SIGNS LIST 1 positive electrode 2 negative electrode 3 separator 4 positive electrode can 5 negative electrode can 6 positive electrode current collector 7 negative electrode current collector 8 insulating packing

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質の主構成物質が一般式(1) SiMx ・・・・ 一般式(1) (一般式(1)中のMはシリコンと合金可能な1種類以
上の元素、x>0)で表されるシリコン合金であり、且
つ電解質の主構成溶質が炭素を含有する塩であることを
特徴とする非水電解質電池。
The main constituent material of the negative electrode active material is a general formula (1) SiM x ... General formula (1) (wherein M in the general formula (1) is at least one element that can be alloyed with silicon; a non-aqueous electrolyte battery characterized by being a silicon alloy represented by x> 0), and wherein a main constituent solute of the electrolyte is a salt containing carbon.
【請求項2】 前記炭素を含有する塩が、少なくともC
−Fの結合を有することを特徴とする請求項1記載の非
水電解質電池。
2. The method according to claim 1, wherein the salt containing carbon is at least C
The non-aqueous electrolyte battery according to claim 1, wherein the battery has a bond of -F.
【請求項3】 前記炭素を含有する塩が、少なくとも一
般式(2) (R1Y1)(R2Y2)NLi ・・・・ 一般式(2) (一般式(2)中のR1、R2がCn 2n+1で表され、
nは1から4までの数であり、R1=R2あるいはR1
≠R2であり、さらにY1,Y2がCO、SO、SO2
のいずれかで表され、Y1=Y2あるいはY1≠Y2で
ある。)で表される塩であることを特徴とする請求項1
又は2記載の非水電解質電池。
3. A salt containing the carbon, at least the general formula (2) (R1Y1) (R2Y2 ) NLi ···· formula (2) (formula (2) R1 in, R2 is C n F 2n + 1
n is a number from 1 to 4, and R1 = R2 or R1
≠ R2, and Y1 and Y2 are CO, SO, SO 2
Y1 = Y2 or Y1 ≠ Y2. 2. A salt represented by the formula:
Or the non-aqueous electrolyte battery according to 2.
【請求項4】 前記炭素を含有する塩が、一般式(2)
中のR1=R2=CF3 以外で表されることを特徴とす
る請求項3記載の非水電解質電池。
4. The carbon-containing salt according to the general formula (2)
The nonaqueous electrolyte battery according to claim 3, characterized by being represented by other than R1 = R2 = CF 3 in.
【請求項5】 前記シリコンと合金可能な元素Mが、L
i,Ni,Fe,Co,Mn,Ca,Mg,P,Al,
As,W,B,Ti,V,Pt,Zr,Srのうち、少
なくとも1種類以上の元素であることを特徴とする請求
項1記載の非水電解質電池。
5. The method according to claim 1, wherein the element M capable of alloying with silicon is L
i, Ni, Fe, Co, Mn, Ca, Mg, P, Al,
2. The non-aqueous electrolyte battery according to claim 1, wherein the non-aqueous electrolyte battery is at least one of As, W, B, Ti, V, Pt, Zr, and Sr.
JP15907897A 1997-06-17 1997-06-17 Non-aqueous electrolyte battery Expired - Lifetime JP4029224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15907897A JP4029224B2 (en) 1997-06-17 1997-06-17 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15907897A JP4029224B2 (en) 1997-06-17 1997-06-17 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH117979A true JPH117979A (en) 1999-01-12
JP4029224B2 JP4029224B2 (en) 2008-01-09

Family

ID=15685747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15907897A Expired - Lifetime JP4029224B2 (en) 1997-06-17 1997-06-17 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4029224B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544687B1 (en) 1999-07-01 2003-04-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
US6576366B1 (en) 1999-02-22 2003-06-10 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, and material for negative electrode used therefor
WO2004086539A1 (en) 2003-03-26 2004-10-07 Canon Kabushiki Kaisha Electrode material for lithium secondary battery and electrode structure having the electrode material
US8039148B2 (en) 2005-12-13 2011-10-18 Panasonic Corporation Non-aqueous electrolyte secondary battery
CN102280664A (en) * 2010-06-09 2011-12-14 中国科学院物理研究所 Electrolyte and secondary lithium battery and capacitor containing electrolyte
WO2012014556A1 (en) 2010-07-27 2012-02-02 Ichimura Fukuyo Solid secondary battery using silicon compound and method for manufacturing same
US8129076B2 (en) 2007-02-02 2012-03-06 Panasonic Corporation Electrode for lithium batteries and method of manufacturing electrode for lithium batteries
WO2012086258A1 (en) 2010-12-22 2012-06-28 Ichimura Fukuyo Solid secondary cell using silicon compound and method for producing same
JP2014120429A (en) * 2012-12-19 2014-06-30 Toyota Industries Corp Negative electrode active material, process of manufacturing the same, and power storage device
JP2017065938A (en) * 2015-09-28 2017-04-06 株式会社豊田自動織機 Method for producing silicon material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576366B1 (en) 1999-02-22 2003-06-10 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, and material for negative electrode used therefor
US6544687B1 (en) 1999-07-01 2003-04-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
KR100426095B1 (en) * 1999-07-01 2004-04-06 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary cell
EP2302720A1 (en) * 2003-03-26 2011-03-30 Canon Kabushiki Kaisha Electrode material for lithium secondary battery and electrode structure including the same
EP1604415A1 (en) * 2003-03-26 2005-12-14 Canon Kabushiki Kaisha Electrode material for lithium secondary battery and electrode structure having the electrode material
EP1604415A4 (en) * 2003-03-26 2009-01-28 Canon Kk Electrode material for lithium secondary battery and electrode structure having the electrode material
WO2004086539A1 (en) 2003-03-26 2004-10-07 Canon Kabushiki Kaisha Electrode material for lithium secondary battery and electrode structure having the electrode material
US8039148B2 (en) 2005-12-13 2011-10-18 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8129076B2 (en) 2007-02-02 2012-03-06 Panasonic Corporation Electrode for lithium batteries and method of manufacturing electrode for lithium batteries
CN102280664A (en) * 2010-06-09 2011-12-14 中国科学院物理研究所 Electrolyte and secondary lithium battery and capacitor containing electrolyte
WO2012014556A1 (en) 2010-07-27 2012-02-02 Ichimura Fukuyo Solid secondary battery using silicon compound and method for manufacturing same
WO2012086258A1 (en) 2010-12-22 2012-06-28 Ichimura Fukuyo Solid secondary cell using silicon compound and method for producing same
JP2014120429A (en) * 2012-12-19 2014-06-30 Toyota Industries Corp Negative electrode active material, process of manufacturing the same, and power storage device
JP2017065938A (en) * 2015-09-28 2017-04-06 株式会社豊田自動織機 Method for producing silicon material

Also Published As

Publication number Publication date
JP4029224B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
KR101169947B1 (en) Cathode Active Material for Lithium Secondary Battery
KR101123057B1 (en) Cathode Active Material for Lithium Secondary Battery
JP6258641B2 (en) Non-aqueous electrolyte secondary battery
JP3620559B2 (en) Non-aqueous electrolyte battery
JP3596578B2 (en) Non-aqueous electrolyte secondary battery
KR20160141676A (en) Lithium ion secondary battery
JP4296580B2 (en) Nonaqueous electrolyte lithium secondary battery
JP2006222073A (en) Nonaqueous secondary battery and method of manufacturing its anode
JP3906944B2 (en) Non-aqueous solid electrolyte battery
JP4029224B2 (en) Non-aqueous electrolyte battery
JP3653717B2 (en) Non-aqueous electrolyte battery
JP5078330B2 (en) Negative electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using this negative electrode plate
JPH11204145A (en) Lithium secondary battery
JP2003187798A (en) Lithium secondary battery
JP2001222995A (en) Lithium ion secondary battery
JP3972577B2 (en) Lithium secondary battery
JP3824111B2 (en) Non-aqueous electrolyte battery
JP4193008B2 (en) Lithium secondary battery
JP4355862B2 (en) Non-aqueous electrolyte battery
JP3994497B2 (en) Non-aqueous electrolyte battery
JP4624500B2 (en) Non-aqueous electrolyte battery
JP4161383B2 (en) Nonaqueous electrolyte secondary battery
JPH11345614A (en) Nonaqueous electrolyte battery
JP4110562B2 (en) battery
JP2001015168A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

EXPY Cancellation because of completion of term