JP5011518B2 - Method for producing positive electrode material for secondary battery, and secondary battery - Google Patents

Method for producing positive electrode material for secondary battery, and secondary battery Download PDF

Info

Publication number
JP5011518B2
JP5011518B2 JP2005193301A JP2005193301A JP5011518B2 JP 5011518 B2 JP5011518 B2 JP 5011518B2 JP 2005193301 A JP2005193301 A JP 2005193301A JP 2005193301 A JP2005193301 A JP 2005193301A JP 5011518 B2 JP5011518 B2 JP 5011518B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
fepo
ion
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005193301A
Other languages
Japanese (ja)
Other versions
JP2007012491A (en
Inventor
重人 岡田
友透 白土
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Priority to JP2005193301A priority Critical patent/JP5011518B2/en
Publication of JP2007012491A publication Critical patent/JP2007012491A/en
Application granted granted Critical
Publication of JP5011518B2 publication Critical patent/JP5011518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、二次電池用正極材料の製造方法、およびその正極材料を構成要素とする二次電池に関し、より詳しくは、金属リチウム等のアルカリ金属やその合金および化合物等を負極活物質に有する金属リチウム電池、リチウムイオン電池、リチウムポリマー電池等の二次電池に用いられる正極材料(FePO4)の製造方法、およびその方法によって製造される正極材料を有する二次電池に関する。 The present invention relates to a method for producing a positive electrode material for a secondary battery and a secondary battery having the positive electrode material as a constituent element. More specifically, the negative electrode active material includes an alkali metal such as metallic lithium or an alloy or compound thereof. The present invention relates to a method for producing a positive electrode material (FePO 4 ) used in a secondary battery such as a metal lithium battery, a lithium ion battery, or a lithium polymer battery, and a secondary battery having a positive electrode material produced by the method.

金属リチウム等のアルカリ金属やその合金および化合物等を負極活物質に有する金属リチウム電池、リチウムイオン電池、リチウムポリマー電池等の二次電池は、容量が大きく近年脚光を浴びている。このような二次電池の高機能化、高容量化、低コスト化等の観点から、レアメタルフリーの正極活物質として種々の材料が検討されている。例えば特許文献1には、一般式LiFePO4で表されるオリビン型鉄リン酸錯体を主体とする正極活物質が記載されているが、この材料は大気中で合成できないという欠点があり、不活性雰囲気もしくは還元性雰囲気下で焼成する必要がある。一方、大気中で合成可能なレアメタルフリー正極として、特許文献2に、リン酸鉄(FePO4)が提案されている。リン酸鉄を簡便に合成する方法としては、特許文献3に鉄と五酸化リンの水溶液を遊星ボールミルを用いて1日混合後、アニールする極めて原料コストの安価な製造方法が開示されているが、遊星ボールミルの混合過程がその量産性を著しく阻害するという問題があった。 Secondary batteries such as metallic lithium batteries, lithium ion batteries, and lithium polymer batteries having an alkali metal such as metallic lithium or an alloy or compound thereof as a negative electrode active material have been attracting attention in recent years because of their large capacity. Various materials have been studied as a rare metal-free positive electrode active material from the viewpoints of high functionality, high capacity, low cost, and the like of such secondary batteries. For example, Patent Document 1 describes a positive electrode active material mainly composed of an olivine-type iron phosphate complex represented by the general formula LiFePO 4 , but this material has a drawback that it cannot be synthesized in the atmosphere and is inactive. It is necessary to fire in an atmosphere or a reducing atmosphere. On the other hand, Patent Document 2 proposes iron phosphate (FePO 4 ) as a rare metal-free positive electrode that can be synthesized in the atmosphere. As a method for simply synthesizing iron phosphate, Patent Document 3 discloses a manufacturing method at an extremely low raw material cost in which an aqueous solution of iron and phosphorus pentoxide is mixed for one day using a planetary ball mill and then annealed. There is a problem that the mixing process of the planetary ball mill significantly hinders the mass productivity.

特許第3523397号公報Japanese Patent No. 3523397 特許第3126007号公報Japanese Patent No. 3126007 特願2002-303932号公報Japanese Patent Application No. 2002-303932

本発明の課題は、二次電池用正極材料に適したリン酸鉄を容易簡便に量産できる製造方法、およびこの方法により得られる正極材料を有する高性能な二次電池を提供することにある。   The subject of this invention is providing the high performance secondary battery which has the positive electrode material obtained by the manufacturing method which can mass-produce iron phosphate suitable for the positive electrode material for secondary batteries easily and simply, and this method.

上記課題を解決するため、請求項1に記載の二次電池用正極材料の製造方法の発明は、リン酸イオンを遊離する化合物と金属鉄の水溶液を擂潰、撹拌することなく、静置することだけで反応させ、その後、焼成することを特徴とする。   In order to solve the above-mentioned problems, the invention of the method for producing a positive electrode material for a secondary battery according to claim 1 leaves the compound free of phosphate ions and an aqueous solution of metallic iron, without crushing and stirring them. It is characterized by reacting only by this, and then firing.

この二次電池用正極材料の製造方法によれば、正極材料としてのリン酸鉄を化学量論的組成比の原料から容易簡便に大気中で合成することができる。   According to this method for producing a positive electrode material for a secondary battery, iron phosphate as a positive electrode material can be easily and simply synthesized in the air from a raw material having a stoichiometric composition ratio.

この二次電池用正極材料の製造方法によれば、遊星ボールミルの工程での水素ガス発生による水溶液の混合容器内圧の上昇噴出の危険を回避できるだけでなく、ボールの摩耗による不純物の混入を防ぐことができ、工程を減らせることによる、量産性の向上効果が大きい。   According to this method for producing a positive electrode material for a secondary battery, not only can the risk of an increase in the internal pressure of the mixing vessel of the aqueous solution due to the generation of hydrogen gas in the planetary ball mill process be avoided, but also the contamination by impurities due to ball wear can be prevented. Can improve the mass productivity by reducing the number of processes.

また、請求項3に記載の二次電池の発明は、請求項1または請求項2に記載の方法により製造された正極材料を構成要素とすることを特徴とする。本発明方法によって製造された正極材料を有する二次電池は、正極材料の電気化学的特性が優れているために、二次電池として高性能な電池特性を発現することができる。   The invention of the secondary battery according to claim 3 is characterized in that the positive electrode material produced by the method according to claim 1 or 2 is used as a constituent element. A secondary battery having a positive electrode material manufactured by the method of the present invention can exhibit high-performance battery characteristics as a secondary battery because the electrochemical characteristics of the positive electrode material are excellent.

本発明の二次電池用正極材料の製造方法は溶液中でリン酸イオンを遊離する化合物と金属鉄を水溶液中で2週間静置後、焼成を行うことを特徴とする。   The method for producing a positive electrode material for a secondary battery of the present invention is characterized in that a compound that liberates phosphate ions and metallic iron in a solution are allowed to stand in an aqueous solution for 2 weeks, followed by firing.

本発明における正極材料としては、原料を反応させたのち、反応生成物を大気中で焼成することによって合成できる一般式FePO4で示されるリン酸鉄が好ましい。リン酸鉄は三方晶P321の空間群を持ち、FeO4四面体とPO4四面体が頂点共有骨格を形成しているため、ゲストカチオンの拡散のボトルネックが大きく、リチウムイオンのみならず、それより2.5倍イオン体積の大きなナトリウムイオンに対してもインターカレーションホストとして機能しうることが期待できる理想的なレアメタルフリー正極材料である。 As the positive electrode material in the present invention, iron phosphate represented by the general formula FePO 4 that can be synthesized by reacting the raw materials and then firing the reaction product in the air is preferable. Iron phosphate has a trigonal P321 space group, and the FeO 4 tetrahedron and PO 4 tetrahedron form a vertex-sharing skeleton, so the bottleneck of guest cation diffusion is large, not only lithium ions, It is an ideal rare metal-free positive electrode material that can be expected to function as an intercalation host even for sodium ions having a 2.5 times larger ion volume.

本発明の正極材料であるリン酸鉄の原料としては、溶液中でリン酸イオンを遊離する化合物および金属鉄が用いられる。これらの原料は、P:Feのモル比が1:1になるように、化学量論組成比に沿って調整することが好ましい。溶液中でリン酸イオンを遊離する化合物としては特に限定されないが、リン酸、五酸化リン、リン酸二水素アンモニウム、リン酸水素二アンモニウム等を挙げることができる。この中では、鉄を溶解する過程で比較的強い酸性条件下に保たれ、余計な副生成物であるアンモニアガスの発生が少ないことが好ましいため、リン酸や五酸化リンが好適である。   As the raw material for iron phosphate, which is the positive electrode material of the present invention, a compound that releases phosphate ions in solution and metallic iron are used. These raw materials are preferably adjusted along the stoichiometric composition ratio so that the molar ratio of P: Fe is 1: 1. The compound that liberates phosphate ions in the solution is not particularly limited, and examples thereof include phosphoric acid, phosphorus pentoxide, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and the like. Among these, phosphoric acid and phosphorus pentoxide are preferred because it is preferable to maintain relatively strong acidic conditions in the process of dissolving iron and to generate less ammonia gas as an extra by-product.

原料としてリン酸を用いる場合には、通常リン酸は水溶液の状態で市販されているために、その含有率(純度)を滴定等によって性格に求めた後に使用することが好ましい。金属鉄は撹拌なしでも反応を促進するために、少しでも表面積を稼ぎ、酸に溶けやすくした微粉末状態(粒径100ミクロン以下)であるものが好ましい。これらを原料として水溶液状態で2週間放置後、水分を飛ばすため、加熱焼成することによって不純物のないリン酸鉄を合成することが可能である。水溶液中にはナトリウム等の不揮発性元素が原料に含まれていないために、撹拌だけでなく、濾過や分留などの煩雑な工程が一切不要であることが特徴である。   When phosphoric acid is used as a raw material, since phosphoric acid is usually marketed in the form of an aqueous solution, it is preferably used after its content (purity) is determined by titration or the like. In order to promote the reaction without stirring, the metallic iron is preferably in a fine powder state (particle size of 100 microns or less) which has a small surface area and is easily dissolved in an acid. Since these are used as raw materials in an aqueous solution state for 2 weeks and then water is removed, it is possible to synthesize iron phosphate free from impurities by heating and baking. Since the aqueous solution does not contain a non-volatile element such as sodium in the raw material, not only stirring but also complicated steps such as filtration and fractional distillation are unnecessary.

焼成は、例えば、常温〜焼成完了温度(100℃〜800℃、より好ましくは300℃から650℃)までの1段階の昇温および保持過程にて行うことができる。また、低温域(常温〜300℃)での焼成過程(仮焼成)と高温域(300℃〜800℃)での焼成過程(本焼成)の2段階に分けて行うこともできる。焼成では、前駆体を上記温度域において数時間〜1日間程度保持することが好ましい。   Firing can be performed, for example, in a one-step temperature rise and holding process from room temperature to firing completion temperature (100 ° C. to 800 ° C., more preferably 300 ° C. to 650 ° C.). Moreover, it can also divide into two steps, the baking process (temporary baking) in a low temperature range (normal temperature-300 degreeC), and the baking process (main baking) in a high temperature range (300 degreeC-800 degreeC). In the firing, it is preferable to keep the precursor in the temperature range for several hours to about 1 day.

以上のようにして得られる本発明に係る正極材料は、二次電池の構成材料として好適に用いることができる。本発明により提供される一つの非水電解質二次電池は、上述した正極材料を備える。また、リチウムイオンやナトリウムイオンなどのアルカリ金属やアルカリ土金属イオンを吸蔵放出する材料を有する負極を備える。また、この二次電池は非水系電解質を備えることができる。このような二次電池は、充放電特性の改善された電極活物質を備えることから、電池性能のよいものとなり得る。   The positive electrode material according to the present invention obtained as described above can be suitably used as a constituent material of a secondary battery. One nonaqueous electrolyte secondary battery provided by the present invention includes the positive electrode material described above. Moreover, the negative electrode which has the material which occludes and discharges alkali metal and alkaline-earth metal ions, such as lithium ion and sodium ion, is provided. In addition, the secondary battery can include a non-aqueous electrolyte. Since such a secondary battery includes an electrode active material with improved charge / discharge characteristics, the battery performance can be improved.

本発明に係る正極活物質は、各種カチオンの挿入・脱離により二次電池の電極活物質として機能し得る。挿入・脱離するカチオンとしては、リチウムイオン,ナトリウムイオン,カリウムイオン,セシウムイオン等のアルカリ金属イオン、カルシウムイオン,バリウムイオン等のアルカリ土類金属イオン、マグネシウムイオン、アルミニウムイオン、銀イオン、亜鉛イオン、テトラブチルアンモニウムイオン,テトラエチルアンモニウムイオン,テトラメチルアンモニウムイオン,トリエチルメチルアンモニウムイオン,トリエチルアンモニウムイオン等のアンモニウムイオン類、イミダゾリウムイオン,エチルメチルイミダゾリウムイオン等のイミダゾリウムイオン類、ピリジニウムイオン、水素イオン、テトラエチルホスホニウムイオン、テトラメチルホスホニウムイオン、テトラフェニルホスホニウムイオン、トリフェニルスルホニウムイオン、トリエチルスルホニウムイオン等が挙げられる。これらのうち好ましいものはアルカリ金属やアルカリ土金属イオンであり、特にリチウムイオン、ナトリウムイオンが好ましい。   The positive electrode active material according to the present invention can function as an electrode active material of a secondary battery by inserting and removing various cations. As cations to be inserted and removed, alkali metal ions such as lithium ion, sodium ion, potassium ion and cesium ion, alkaline earth metal ions such as calcium ion and barium ion, magnesium ion, aluminum ion, silver ion and zinc ion Ammonium ions such as tetrabutylammonium ion, tetraethylammonium ion, tetramethylammonium ion, triethylmethylammonium ion, triethylammonium ion, imidazolium ions such as imidazolium ion, ethylmethylimidazolium ion, pyridinium ion, hydrogen ion Tetraethylphosphonium ion, tetramethylphosphonium ion, tetraphenylphosphonium ion, triphenylsulfonium ion Emissions, triethyl sulfonium ions, and the like. Among these, preferred are alkali metal and alkaline earth metal ions, and lithium ions and sodium ions are particularly preferred.

この正極活物質を電池に用いる場合、その対極である負極の活物質としては、リチウム、ナトリウム、マグネシウム、カルシウム等の金属またはその合金、あるいはカチオンを吸蔵放出可能な炭素材料等を用いることができる。   When this positive electrode active material is used in a battery, the active material of the negative electrode that is the counter electrode can be a metal such as lithium, sodium, magnesium, calcium, or an alloy thereof, or a carbon material that can occlude and release cations. .

本発明に係る正極活物質を有する電極は、コイン型、円筒型、角型等の各種形状の二次電池の電極として好適に用いることができる。例えば、この電極活物質を圧縮成形してペレット状等の電極を形成することができる。また、金属等の導電性材料からなる集電体に上記電極活物質を付着させることによって、板状またはシート状の電極を形成することができる。このような電極は、本発明に係る電極活物質の他に、一般的な電極活物質を用いた電極と同様の一種または二種以上の材料を必要に応じて含有することができる。そのような材料の代表例としては導電材および結着剤が挙げられる。導電材としてはアセチレンブラック等の炭素材料を用いることができる。また、結着剤としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVDF−HFP)等を用いることができる。   The electrode having the positive electrode active material according to the present invention can be suitably used as an electrode of a secondary battery having various shapes such as a coin shape, a cylindrical shape, and a square shape. For example, the electrode active material can be compression-molded to form a pellet-shaped electrode. A plate-like or sheet-like electrode can be formed by attaching the electrode active material to a current collector made of a conductive material such as metal. In addition to the electrode active material according to the present invention, such an electrode can contain one or more materials similar to those using a general electrode active material, if necessary. Typical examples of such a material include a conductive material and a binder. A carbon material such as acetylene black can be used as the conductive material. As the binder, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), or the like can be used.

二次電池に用いる非水系電解質としては、非水系溶媒と、電極活物質に挿入・脱離し得るカチオンを含む化合物(支持電解質)とを含むものを使用することができる。
非水系電解質を構成する非水系溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性の溶媒を特に限定なく用いることができる。例えば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン、1,3−ジオキソラン、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ−ブチロラクトン等が挙げられる。このような非水系溶媒から選択される一種のみを用いてもよく、二種以上を混合して用いてもよい。
また、非水系電解質を構成する支持電解質としては、電極活物質に挿入・脱離するカチオンを含む化合物、例えばリチウムイオン二次電池の場合であればLiPF6,LiBF4,LiN(CF3SO22,LiCF3SO3,LiC49SO3,LiC(CF3SO23,LiClO4等のリチウム化合物(リチウム塩)から選択される一種または二種以上を用いることができる。
As the non-aqueous electrolyte used for the secondary battery, a non-aqueous solvent and a compound containing a compound (supporting electrolyte) containing a cation that can be inserted into and removed from the electrode active material can be used.
As the non-aqueous solvent constituting the non-aqueous electrolyte, aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones, and lactones can be used without particular limitation. For example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, acetonitrile, propionitrile, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, 1, Examples include 3-dioxolane, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide, sulfolane, and γ-butyrolactone. Only 1 type selected from such a non-aqueous solvent may be used, and 2 or more types may be mixed and used for it.
In addition, as the supporting electrolyte constituting the non-aqueous electrolyte, a compound containing a cation inserted / extracted from the electrode active material, for example, LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 in the case of a lithium ion secondary battery). ) 2 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiClO 4, or one or more selected from lithium compounds (lithium salts) can be used.

以下、実験例により本発明をさらに詳細に説明する。
<実施例1:FePO4粉末試料の作製>
出発原料に鉄源として鉄粉(和光純薬 98 %)、リン源として五酸化リン(P2O5)(和光純薬 98 %)をグローブボックス内で化学量論比に合計で25 gになるよう秤量した 。その後、ドラフト内にて純水(200 ml)を加え、そのまま15日間静置反応させた後、大気中100℃で24時間乾燥の上、メノウ乳鉢を用いて十分らいかいし、さらに大気中にて100℃〜650℃で12時間アニール処理を行った。焼成試料は粉末X線回折装置(Rigaku RINT 2100HLR/PC)を用いて同定した。650℃12時間の加熱焼成処理で得られた正極材料は図1に示すX線回折結果より三方晶P321のリン酸鉄(ICDD No.29-0715)単相であることが確認された。
Hereinafter, the present invention will be described in more detail with reference to experimental examples.
<Example 1: Preparation of FePO 4 powder sample>
Iron powder (98% Wako Pure Chemical) as the starting material and phosphorus pentoxide (P 2 O 5 ) (98% Wako Pure Chemical) as the phosphorus source in the glove box to a total stoichiometric ratio of 25 g Weighed to be. Then, after adding pure water (200 ml) in a fume hood and allowing it to stand for 15 days, it was dried in the atmosphere at 100 ° C. for 24 hours, and then thoroughly agitated using an agate mortar. Annealing treatment was performed at 100 ° C. to 650 ° C. for 12 hours. The calcined sample was identified using a powder X-ray diffractometer (Rigaku RINT 2100HLR / PC). From the X-ray diffraction results shown in FIG. 1, it was confirmed that the positive electrode material obtained by the heat treatment at 650 ° C. for 12 hours was a trigonal P321 iron phosphate (ICDD No. 29-0715) single phase.

<比較例1:FePO4粉末試料の作製>
出発原料に鉄源として鉄粉(和光純薬 98 %)、リン源として五酸化リン(P2O5)(和光純薬 98 %)をグローブボックス内で化学量論比に合計で25 gになるよう秤量した 。その後、ドラフト内にて純水(200 ml)を加え、遊星ボールミルにて1日間撹拌らいかいしながら反応させた後は、実施例1と同様にして大気中100℃で24時間乾燥の上、メノウ乳鉢を用いて十分らいかいし、さらに大気中にて100℃〜650℃で12時間アニール処理を行った
<Comparative Example 1: Preparation of FePO 4 powder sample>
Iron powder (98% Wako Pure Chemical) as the starting material and phosphorus pentoxide (P 2 O 5 ) (98% Wako Pure Chemical) as the phosphorus source in the glove box to a total stoichiometric ratio of 25 g Weighed to be. After that, after adding pure water (200 ml) in a fume hood and reacting with stirring in a planetary ball mill for 1 day, it was dried in the atmosphere at 100 ° C. for 24 hours in the same manner as in Example 1. The agate mortar was used, and annealing was performed at 100 ° C to 650 ° C for 12 hours in the atmosphere.

<実施例2:FePO4正極ペレットの作製>
実施例1と比較例1で得られた正極材料と、導電性付与剤としてのアセチレンブラック(電気化学工業製デンカブラック50%プレス品)と結着剤としてのPTFE(ポリテトラフルオロエチレン)を重量比70:25:5となるように調整し、混合混練して0.7mmのシート状に成形し、これを直径10mmφに打ち抜いて正極ペレットとした。
<Example 2: Production of FePO 4 positive electrode pellet>
Weight of the positive electrode material obtained in Example 1 and Comparative Example 1, acetylene black (Denka Black 50% manufactured by Denki Kagaku Kogyo) as a conductivity-imparting agent, and PTFE (polytetrafluoroethylene) as a binder The ratio was adjusted to 70: 25: 5, mixed and kneaded to form a 0.7 mm sheet, which was punched out to a diameter of 10 mm to obtain a positive electrode pellet.

<実施例3:FePO4正極/リチウム負極コイン電池の作製>
実施例2で得られた正極ペレットの対極として、直径1.5mm、厚さ0.15mmのリチウム箔を用いた。セパレータとしては、直径22mm、厚さ0.02mmの多孔質ポリエチレンシートを用いた。また、非水系電解質としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)との体積比1:1の混合溶媒に、約1モル/リットルの濃度でLiPF6を溶解させたものを使用した。これらの構成要素をステンレス製容器に組み込んで、厚さ2mm、直径32mm(2032型)の図2に示すコイン型測定用セルを作製した。なお、一連の電池組み立て作業はアルゴン精製装置を備えた露点-90℃以下のドライボックス内で行った。
<Example 3: Production of FePO 4 positive electrode / lithium negative electrode coin battery>
As the counter electrode of the positive electrode pellet obtained in Example 2, a lithium foil having a diameter of 1.5 mm and a thickness of 0.15 mm was used. As the separator, a porous polyethylene sheet having a diameter of 22 mm and a thickness of 0.02 mm was used. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of about 1 mol / liter in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) in a volume ratio of 1: 1 was used. These constituent elements were incorporated into a stainless steel container to produce a coin-type measuring cell shown in FIG. 2 having a thickness of 2 mm and a diameter of 32 mm (2032 type). A series of battery assembly operations were performed in a dry box having a dew point of −90 ° C. or less equipped with an argon purifier.

<実施例4:FePO4正極/ナトリウム負極コイン電池の作製>
実施例2で得られた正極ペレットの対極として、直径1.5mm、厚さ0.15mmのナトリウム箔を用いた。また、非水系電解質としては、プロピレンカーボネート(PC)単独溶媒に、約1モル/リットルの濃度でLiClO4を溶解させたものを使用した。それ以外の構成要素は、表1に示すように実施例3と同様である。なお、一連の電池組み立て作業はアルゴン精製装置を備えた露点-90℃以下のドライボックス内で行った。

Figure 0005011518
(表1) 実施例3と実施例4で作製したリチウム及びナトリウムコインセルの構成表
<Example 4: Production of FePO 4 positive electrode / sodium negative electrode coin battery>
As the counter electrode of the positive electrode pellet obtained in Example 2, a sodium foil having a diameter of 1.5 mm and a thickness of 0.15 mm was used. As the non-aqueous electrolyte, a solution obtained by dissolving LiClO 4 in a propylene carbonate (PC) single solvent at a concentration of about 1 mol / liter was used. Other constituent elements are the same as those in the third embodiment as shown in Table 1. A series of battery assembly operations were performed in a dry box having a dew point of −90 ° C. or less equipped with an argon purifier.

Figure 0005011518
(Table 1) Composition table of lithium and sodium coin cells prepared in Example 3 and Example 4

<実施例5: FePO4正極の充放電特性の各加熱処理温度依存性>
100℃から650℃の各加熱焼成温度で得られた実施例1のFePO4正極の初回サイクルの充放電プロファイルを図3〜7に示す。むしろ結晶化の進んでいない350℃加熱焼成処理FePO4正極で最も可逆容量が大きいことがわかる。
<Example 5: Dependence of charge / discharge characteristics of FePO 4 positive electrode on each heat treatment temperature>
The charge / discharge profile of the first cycle of the FePO 4 positive electrode of Example 1 obtained at each heating and firing temperature of 100 ° C. to 650 ° C. is shown in FIGS. Rather, it can be seen that the reversible capacity is highest in the 350 ° C. heat-fired FePO 4 positive electrode that has not progressed in crystallization.

<実施例6:加熱焼成処理FePO4正極のレート特性の各加熱処理温度依存性>
100℃および200℃の加熱焼成温度で得られた実施例1のFePO4正極の各放電電流密度(右から順に1.0、2.0、3.0、4.0、5.0 mA/cm2)での放電プロファイルを図8および図9にそれぞれ示す。また、2週間静置反応させた実施例1のFePO4正極と一日遊星ボールミルで撹拌しながら反応させた比較例1のFePO4正極のレート特性結果を図10に比較して示す。2週間静置反応させたFePO4正極の方がレート特性に優れることがわかる。
<Example 6: Heat treatment temperature dependency of rate characteristics of heat-fired FePO 4 positive electrode>
FIG. 8 shows the discharge profile at each discharge current density (1.0, 2.0, 3.0, 4.0, 5.0 mA / cm 2 in order from the right) of the FePO 4 positive electrode of Example 1 obtained at the heating and firing temperatures of 100 ° C. and 200 ° C. And in FIG. Further, FIG. 10 shows a comparison of the rate characteristic results of the FePO 4 positive electrode of Example 1 that was allowed to stand for 2 weeks and the FePO 4 positive electrode of Comparative Example 1 that was reacted with stirring in a planetary ball mill for one day. It can be seen that the FePO 4 positive electrode allowed to stand for 2 weeks is superior in rate characteristics.

<実施例7: 200℃加熱焼成処理FePO4正極のレート特性の各加熱処理温度依存性>
100℃および200℃の加熱焼成温度で得られた実施例1のFePO4正極を用いて、実施例4で作製したナトリウム電池の初回サイクルの充放電曲線を図11、12に示す。
頂点共有骨格のみからなるFePO4正極は、狙いとおり、リチウムイオンだけでなく、ナトリウムイオンに対しても可逆性に優れた正極材料として機能しうることが確認された。
<Example 7: Each heat treatment temperature dependence of rate characteristics of 200 ° C. heat-fired FePO 4 positive electrode>
The charge / discharge curves of the initial cycle of the sodium battery produced in Example 4 using the FePO 4 positive electrode of Example 1 obtained at the heating and firing temperatures of 100 ° C. and 200 ° C. are shown in FIGS.
It was confirmed that the FePO 4 positive electrode composed only of the vertex shared skeleton can function as a positive electrode material excellent in reversibility not only for lithium ions but also for sodium ions as intended.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは、各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの1つの目的を達成すること自体で技術的有用性を持つものである。
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
In addition, the technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. Moreover, the technique illustrated in this specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

実施例1で作製した各加熱焼成温度での合成試料のX線プロファイルX-ray profile of the synthesized sample at each heating and baking temperature produced in Example 1 実施例3で作製したコインセルの構成図The block diagram of the coin cell produced in Example 3 実施例1で作製した100℃加熱焼成処理FePO4正極の初回充放電プロファイルInitial charge / discharge profile of 100 ° C. heat-fired FePO 4 positive electrode produced in Example 1 実施例1で作製した200℃加熱焼成処理FePO4正極の初回充放電プロファイルInitial charge / discharge profile of 200 ° C heat-fired FePO 4 positive electrode produced in Example 1 実施例1で作製した350℃加熱焼成処理FePO4正極の初回充放電プロファイルInitial charge / discharge profile of 350 ° C heat-fired FePO 4 positive electrode prepared in Example 1 実施例1で作製した500℃加熱焼成処理FePO4正極の初回充放電プロファイルFirst charge / discharge profile of FePO 4 positive electrode with 500 ° C. heat-fired heat treatment prepared in Example 1 実施例1で作製した650℃加熱焼成処理FePO4正極の初回充放電プロファイルInitial charge / discharge profile of 650 ° C. heat-fired FePO 4 positive electrode produced in Example 1 実施例1で作製した100℃加熱焼成処理FePO4正極のレート特性 (右から順に1.0、2.0、3.0、4.0、5.0 mA/cm2)Rate characteristics of 100 ° C. heat-fired FePO 4 positive electrode produced in Example 1 (1.0, 2.0, 3.0, 4.0, 5.0 mA / cm 2 in order from the right) 実施例1で作製した200℃加熱焼成処理FePO4正極のレート特性 (右から順に1.0、2.0、3.0、4.0、5.0 mA/cm2)Rate characteristics of the 200 ° C. heat-fired FePO 4 positive electrode prepared in Example 1 (1.0, 2.0, 3.0, 4.0, 5.0 mA / cm 2 in order from the right) 実施例1で作製した加熱焼成処理FePO4正極のレート特性 (右から順に1.0、2.0、3.0、4.0、5.0 mA/cm2)Rate characteristics of heat-fired FePO 4 positive electrode produced in Example 1 (1.0, 2.0, 3.0, 4.0, 5.0 mA / cm 2 in order from the right) 実施例1で作製した100℃加熱焼成処理FePO4正極のリチウム電池およびナトリウム電池の初回充放電曲線First charge / discharge curves of lithium battery and sodium battery of FePO 4 positive electrode heated and baked at 100 ° C. prepared in Example 1 実施例1で作製した200℃加熱焼成処理FePO4正極のリチウム電池およびナトリウム電池の初回充放電曲線First charge / discharge curves of lithium battery and sodium battery of FePO 4 positive electrode heated and baked at 200 ° C. prepared in Example 1

Claims (3)

溶液中でリン酸イオンを遊離する化合物と金属鉄水溶液を擂潰、攪拌することなく、静置することだけで、反応させた後、焼成を行うことを特徴とする、二次電池用正極材料FePOの製造方法。 A positive electrode for a secondary battery, characterized in that an aqueous solution of a compound that liberates phosphate ions in a solution and an aqueous solution of metallic iron are crushed and left to stand without reacting and then fired. Production method of material FePO 4 . 請求項1において、前記溶液中でリン酸イオンを遊離する化合物が、リン酸、五酸化リン、リン酸水素二アンモニウム、またはリン酸二水素アンモニウムであることを特徴とする二次電池用正極材料FePO4の製造方法。 2. The positive electrode material for a secondary battery according to claim 1, wherein the compound that liberates phosphate ions in the solution is phosphoric acid, phosphorus pentoxide, diammonium hydrogen phosphate, or ammonium dihydrogen phosphate. Manufacturing method of FePO 4 . 請求項1または請求項2に記載の方法により製造された正極活物質FePO4を有する正極を構成要素とすることを特徴とする二次電池。 A secondary battery comprising a positive electrode having a positive electrode active material FePO 4 produced by the method according to claim 1 or 2 as a constituent element.
JP2005193301A 2005-07-01 2005-07-01 Method for producing positive electrode material for secondary battery, and secondary battery Active JP5011518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005193301A JP5011518B2 (en) 2005-07-01 2005-07-01 Method for producing positive electrode material for secondary battery, and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005193301A JP5011518B2 (en) 2005-07-01 2005-07-01 Method for producing positive electrode material for secondary battery, and secondary battery

Publications (2)

Publication Number Publication Date
JP2007012491A JP2007012491A (en) 2007-01-18
JP5011518B2 true JP5011518B2 (en) 2012-08-29

Family

ID=37750692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005193301A Active JP5011518B2 (en) 2005-07-01 2005-07-01 Method for producing positive electrode material for secondary battery, and secondary battery

Country Status (1)

Country Link
JP (1) JP5011518B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159133B2 (en) * 2007-03-23 2013-03-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5159134B2 (en) * 2007-03-23 2013-03-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5375580B2 (en) * 2008-12-18 2013-12-25 株式会社エクォス・リサーチ Electrolyte for sodium ion battery
US20110008233A1 (en) 2009-07-10 2011-01-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material
JP5423495B2 (en) * 2010-03-15 2014-02-19 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
KR101778569B1 (en) * 2015-07-16 2017-09-14 전남대학교 산학협력단 Method for preparing electrode material, electrode material prepared thereby, and battery including the electrode material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3126007B2 (en) * 1993-03-26 2001-01-22 日本電信電話株式会社 Non-aqueous electrolyte battery
JP3906944B2 (en) * 1997-05-12 2007-04-18 株式会社ジーエス・ユアサコーポレーション Non-aqueous solid electrolyte battery
KR100449073B1 (en) * 2002-10-15 2004-09-18 한국전자통신연구원 Cathode material for lithium secondary batteries and method for manufacturing the Same
CN100369302C (en) * 2002-10-18 2008-02-13 国立九州大学 Method for preparing positive electrode material for lithium cell, and lithium cell
JP2005108826A (en) * 2003-09-05 2005-04-21 Japan Storage Battery Co Ltd Lithium-containing substance and method of manufacturing non-aqueous electrolyte electrochemical cell

Also Published As

Publication number Publication date
JP2007012491A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP4431064B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP5268134B2 (en) Method for producing positive electrode active material and non-aqueous electrolyte battery using the same
KR101369658B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
WO2017047015A1 (en) Battery
JP5473894B2 (en) Room temperature single phase Li insertion / extraction material for use in Li-based batteries
JP5463561B2 (en) COMPOUND HAVING ORIBIN STRUCTURE, PROCESS FOR PRODUCING THE SAME, POSITIVE ACTIVE MATERIAL USING COMPOUND HAVING ORIBIN STRUCTURE AND NON-AQUEOUS ELECTROLYTE BATTERY
JP4403244B2 (en) Method for producing positive electrode material for lithium battery, and lithium battery
JP5682040B2 (en) Pyrophosphate compound and method for producing the same
JP2005158673A (en) Electrode active material, manufacturing method therefor and non-aqueous secondary battery
JP2009120480A (en) Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
JP2003081637A (en) Lithium - manganese compound oxide for secondary battery, production method therefor and nonaqueous electrolytic solution secondary battery
SG171958A1 (en) Process for making fluorinated lithium vanadium polyanion powders for batteries
JP2008052970A (en) Manufacturing method of electrode material, positive electrode material, and battery
US10205168B2 (en) Sodium transition metal silicates
JP2006155941A (en) Method of manufacture for electrode active material
JP4496150B2 (en) Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide
JP5011518B2 (en) Method for producing positive electrode material for secondary battery, and secondary battery
JPWO2018163518A1 (en) Positive electrode active material and battery
KR101352793B1 (en) Cathode Material for Secondary Battery and Manufacturing Method of the Same
AU2019204947B2 (en) High power electrode materials
JP5900852B2 (en) Iron-containing composite phosphate fluoride, method for producing the same, and secondary battery using the same as a positive electrode active material
JP3647758B2 (en) Non-aqueous battery positive electrode material, method for producing the same, and battery using the same
JP2002117831A (en) Manufacturing method of positive electrode active material and manufacturing method of nonaqueous electrolyte secondary battery
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2001257003A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350