JP2003081637A - Lithium - manganese compound oxide for secondary battery, production method therefor and nonaqueous electrolytic solution secondary battery - Google Patents

Lithium - manganese compound oxide for secondary battery, production method therefor and nonaqueous electrolytic solution secondary battery

Info

Publication number
JP2003081637A
JP2003081637A JP2001268615A JP2001268615A JP2003081637A JP 2003081637 A JP2003081637 A JP 2003081637A JP 2001268615 A JP2001268615 A JP 2001268615A JP 2001268615 A JP2001268615 A JP 2001268615A JP 2003081637 A JP2003081637 A JP 2003081637A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
manganese composite
secondary battery
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001268615A
Other languages
Japanese (ja)
Other versions
JP4253142B2 (en
Inventor
Hisashi Takahashi
恒 高橋
Takashi Endo
孝志 遠藤
Hiroki Hashiba
裕樹 橋場
Takehiro Noguchi
健宏 野口
Tatsuji Numata
達治 沼田
Masahito Shirakata
雅人 白方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
NEC Corp
Original Assignee
Japan Metals and Chemical Co Ltd
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd, NEC Corp filed Critical Japan Metals and Chemical Co Ltd
Priority to JP2001268615A priority Critical patent/JP4253142B2/en
Publication of JP2003081637A publication Critical patent/JP2003081637A/en
Application granted granted Critical
Publication of JP4253142B2 publication Critical patent/JP4253142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spinel type lithium - manganese compound oxide which is suitable as the positive pole material of a high energy density secondary battery, and is usable as a practical battery, and to provide an effective method for producing the oxide. SOLUTION: The lithium - manganese compound oxide for a secondary battery is expressed by the general formula of Lix My Mn2-y O4+δ(M is one or more kinds of transition metals selected from Ni, Co, Cr, Fe and Cu, and 0.9<=x<=1.2, 0.2<=y<=1.0, and 0<; δ<=0.5 are satisfied), and has a structure of a low-crystalline spinel single phase in which the half width of the (111) face in X-ray diffraction is >=0.8 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二次電池用リチウムマ
ンガン複合酸化物およびその製造方法と、非水電解液二
次電池に関し、とくに、二次電池用正極材として用いら
れる好適な高エネルギー密度を有する低結晶性5V級スピ
ネル型二次電池用リチウムマンガン酸化物およびその製
造方法についての提案である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium-manganese composite oxide for a secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery, and particularly to a high energy suitable for use as a positive electrode material for a secondary battery. This is a proposal for a low-crystallinity 5V class lithium manganese oxide for spinel secondary batteries and a manufacturing method thereof.

【0002】[0002]

【従来の技術】リチウム二次電池は、小型、軽量かつ高
エネルギー密度を有することから、パーソナルコンピュ
ーター、携帯電話等のポータブル電子機器用電源として
利用されている。
2. Description of the Related Art Lithium secondary batteries are used as power sources for portable electronic devices such as personal computers and mobile phones because of their small size, light weight and high energy density.

【0003】現在、リチウム二次電池の正極材として
は、高電圧・高エネルギー密度を有するLiCoO2が広く利
用されているが、最近、さらなる高エネルギー密度化を
目指して開発したスピネル型リチウムマンガン複合酸化
物(LiMn2O4)の研究が盛んである。とくに、この酸化
物のMnの一部を遷移金属で置換した5V級のスピネル型リ
チウム二次電池用正極材の研究が盛んに行なわれてい
る。なお、リチウムマンガン複合酸化物は、その主原料
となるマンガンの資源量が豊富であり、経済性の面から
も優れた材料として期待されている。
At present, LiCoO 2 having a high voltage and a high energy density is widely used as a positive electrode material of a lithium secondary battery, but recently, a spinel type lithium manganese composite which has been developed aiming at a higher energy density. Research on oxides (LiMn 2 O 4 ) is active. In particular, much research has been done on a positive electrode material for a 5V class spinel type lithium secondary battery in which a part of Mn of this oxide is replaced with a transition metal. The lithium manganese oxide is rich in the amount of manganese, which is the main raw material, and is expected as an excellent material in terms of economy.

【0004】かかるスピネル型リチウムマンガン複合酸
化物は、この酸化物のスピネル構造中の8aサイトに位置
するLiを置換遷移金属のレドックスを用いて脱・挿入す
ると、約5Vに平坦な充放電プラトーを有する正極材とし
て機能するようになる。一方で、スピネル構造中の空き
サイトである16cサイトに、Mnのレドックスを用いてLi
を脱・挿入(ドープ)させると、約3Vに平坦な充放電プ
ラトーを有する3V級正極材としても機能させることがで
きるので、適用範囲が拡がるという特長がある。
Such a spinel type lithium manganese composite oxide has a flat charge / discharge plateau at about 5 V when Li located at the 8a site in the spinel structure of this oxide is removed / inserted using a redox of a substituted transition metal. It comes to function as a positive electrode material. On the other hand, the 16c site, which is an empty site in the spinel structure, is converted into Li using the Mn redox.
By removing / doping (doping), it can also function as a 3V class positive electrode material having a flat charge / discharge plateau at about 3V, which has the advantage of expanding the applicable range.

【0005】上述したように、従来のスピネル型リチウ
ムマンガン複合酸化物は、スピネル構造中へのLiの脱・
挿入により、5Vおよび3Vの両方の領域をカバーすること
が可能であり、電池容量の大きな正極材として有用であ
る。しかしながら、5V領域および3V領域では、充放電プ
ラトー間に約2Vの電位差があり、実際の電池を考えると
非常に使い勝手が悪いという問題点があった。
As described above, in the conventional spinel type lithium manganese composite oxide, desorption of Li into the spinel structure
By inserting, it is possible to cover both 5V and 3V regions, and it is useful as a positive electrode material having a large battery capacity. However, in the 5V region and the 3V region, there is a potential difference of about 2V between the charge and discharge plateaus, which is very inconvenient when considering an actual battery.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明の目的
は、高エネルギー密度二次電池の正極材料として好適
で、実用電池として使用可能なスピネル型リチウムマン
ガン複合酸化物およびそれの有効な製造方法を提案する
こと、ならびに非水電解液二次電池を提供することにあ
る。
Therefore, an object of the present invention is a spinel type lithium manganese composite oxide suitable as a positive electrode material of a high energy density secondary battery and usable as a practical battery, and an effective production method thereof. And to provide a non-aqueous electrolyte secondary battery.

【0007】[0007]

【課題を解決するための手段】発明者らは、上掲の目的
の実現に向け鋭意研究を行なった。その結果、5Vおよび
3Vで平坦な充・放電プラトーを崩し、緩やかな傾きを持
たせて充放電プラトーギャップを小さくできれば、従来
技術が抱えている上述した課題を克服できるものと考え
た。
[Means for Solving the Problems] The inventors of the present invention have conducted earnest research to realize the above-mentioned object. As a result, 5V and
We thought that if the flat charge / discharge plateau at 3V was broken and the charge / discharge plateau gap could be made smaller by providing a gentle slope, the above-mentioned problems of the conventional technology could be overcome.

【0008】通常、スピネル型リチウムマンガン複合酸
化物の充放電プラトーは、結晶性が高いと平坦になり、
低いと傾きを持つようになる。この結晶性は、合成時の
焼成温度により制御することが可能であり、焼成温度が
高いほど結晶性は高くなり、焼成温度が低いほど結晶性
は低くなるという特性がある。そこで、発明者らは、リ
チウムマンガン複合酸化物を低温で合成し、充放電プラ
トーに傾きをもたせ、次いで高温で焼成することによ
り、低結晶性の5V級電池容量をもつスピネル型リチウム
マンガン複合酸化物の単一相を合成できることを知見
し、本発明に想到した。
Normally, the charge / discharge plateau of spinel type lithium manganese composite oxide becomes flat when the crystallinity is high,
If it is low, it will have a slope. This crystallinity can be controlled by the firing temperature at the time of synthesis. The higher the firing temperature, the higher the crystallinity, and the lower the firing temperature, the lower the crystallinity. Therefore, the inventors synthesized a lithium manganese composite oxide at a low temperature, provided a charge / discharge plateau with an inclination, and then baked it at a high temperature, thereby producing a spinel-type lithium manganese composite oxide having a low crystalline 5V class battery capacity. The inventors have found that a single phase of a product can be synthesized, and have conceived the present invention.

【0009】本発明は、一般式がLixMyMn2-yO4+δ(M
は、Ni、Co、Cr、FeおよびCuのうちから選ばれるいずれ
か1種または2種以上の遷移金属、0.9≦x≦1.2、0.2≦y
≦1.0、0<δ≦0.5)で表わされ、X線回折における(111)
面の半価幅が0.8°以上の低結晶性スピネル型単一相で
あることを特徴とする二次電池用リチウムマンガン複合
酸化物である。
The present invention has a general formula of Li x M y Mn 2-y O 4 + δ (M
Is any one or two or more kinds of transition metals selected from Ni, Co, Cr, Fe and Cu, 0.9 ≦ x ≦ 1.2, 0.2 ≦ y
≦ 1.0, 0 <δ ≦ 0.5) and (111) in X-ray diffraction
A lithium-manganese composite oxide for a secondary battery, which is a low crystalline spinel type single phase having a half-value width of 0.8 ° or more.

【0010】また、本発明は、一般式がLixMyMn2-yO
4+δ(Mは、Ni、Co、Cr、FeおよびCuのうちから選ばれ
るいずれか1種または2種以上の遷移金属、0.9≦x≦1.
2、0.2≦y≦1.0、0<δ≦0.5)で表わされ、放電容量が
2.5〜5.0Vの電位範囲において200mAh/g以上であること
を特徴とする二次電池用リチウムマンガン複合酸化物で
ある。
In the present invention, the general formula is Li x M y Mn 2-y O
4 + δ (M is any one or two or more transition metals selected from Ni, Co, Cr, Fe and Cu, 0.9 ≤ x ≤ 1.
2, 0.2 ≦ y ≦ 1.0, 0 <δ ≦ 0.5), and the discharge capacity is
A lithium-manganese composite oxide for a secondary battery, which is 200 mAh / g or more in a potential range of 2.5 to 5.0 V.

【0011】また、本発明は、一般式がLixMyMn2-yO
4+δ(Mは、Ni、Co、Cr、FeおよびCuのうちから選ばれ
るいずれか1種または2種以上の遷移金属、0.9≦x≦1.
2、0.2≦y≦1.0、0<δ≦0.5)で表わされ、X線回折にお
ける(111)面の半価幅が0.8°以上の低結晶性スピネル型
単一相であり、かつ2.5〜5.0Vの電位範囲において200mA
h/g以上の放電容量をもつことを特徴とする二次電池用
リチウムマンガン複合酸化物である。
In the present invention, the general formula is Li x M y Mn 2-y O
4 + δ (M is any one or two or more transition metals selected from Ni, Co, Cr, Fe and Cu, 0.9 ≤ x ≤ 1.
2, 0.2 ≦ y ≦ 1.0, 0 <δ ≦ 0.5), a low crystalline spinel type single phase with a (111) plane half width of 0.8 ° or more in X-ray diffraction, and 2.5 to 200mA in 5.0V potential range
A lithium-manganese composite oxide for a secondary battery, which has a discharge capacity of h / g or more.

【0012】さらに、本発明は、上記〜のいずれ
か1つに記載のリチウムマンガン複合酸化物を製造する
にあたって、Li硝酸塩とMn硝酸塩と、そしてM金属(N
i、Co、Cr、FeおよびCuのうちから選ばれるいずれか1種
または2種以上の遷移金属)硝酸塩との混合水溶液に、
カチオン担持体として非イオン性水溶性高分子を加え、
その後、これらの混合水溶液を80〜300℃で加熱し、自
己反応を起こさせることにより合成することを特徴とす
るリチウムマンガン複合酸化物の製造方法である。
Further, in the present invention, in producing the lithium manganese composite oxide according to any one of the above items 1 to 3, Li nitrate, Mn nitrate, and M metal (N
i, Co, Cr, Fe and Cu, any one kind or two or more kinds of transition metals) in a mixed aqueous solution with nitrate,
Add a nonionic water-soluble polymer as a cation carrier,
Thereafter, the mixed aqueous solution is heated at 80 to 300 ° C. to cause a self-reaction to synthesize the lithium-manganese composite oxide.

【0013】そして、本発明は、上記〜のいずれ
か1つに記載のリチウムマンガン複合酸化物を製造する
にあたって、Li硝酸塩とMn硝酸塩と、そしてM金属(N
i、Co、Cr、FeおよびCuのうちから選ばれるいずれか1種
または2種以上の遷移金属)硝酸塩との混合水溶液中
に、カチオン担持体として非イオン性水溶性高分子を加
え、その後、得られた混合水溶液を80〜300℃で加熱す
ることで自己反応を起こさせ、次いで200〜500℃で焼成
することにより合成することを特徴とするリチウムマン
ガン複合酸化物の製造方法である。
Then, in the present invention, in producing the lithium-manganese composite oxide according to any one of the above items 1 to 3, Li nitrate, Mn nitrate, and M metal (N
i, Co, Cr, Fe and Cu any one kind or two or more kinds of transition metals selected from among) a mixed aqueous solution with a nitrate, a nonionic water-soluble polymer is added as a cation carrier, and then, The method for producing a lithium manganese composite oxide is characterized in that a self-reaction is caused by heating the obtained mixed aqueous solution at 80 to 300 ° C., and then the mixture is baked at 200 to 500 ° C. to synthesize.

【0014】また、本発明は、二次電池が、前記リチ
ウムマンガン複合酸化物を活物質とする正極と、炭素質
材料またはリチウム吸蔵物質を活物質とする負極と、非
水電解液とで構成されることを特徴とする非水電解液二
次電池を提案する。
Further, according to the present invention, a secondary battery comprises a positive electrode using the lithium manganese composite oxide as an active material, a negative electrode using a carbonaceous material or a lithium storage material as an active material, and a non-aqueous electrolyte. A non-aqueous electrolyte secondary battery is proposed.

【0015】[0015]

【発明の実施の形態】以下、まず本発明に係るリチウム
マンガン複合酸化物製造方法について説明する。この製
造方法の特徴は、低温での自己反応法(液体−液体均一
混合系でリチウムイオンとマンガンイオンを反応させる
方法であって、特許第2977909号に開示の方法)によっ
て合成することにある。即ち、この合成法は、Li硝酸
塩、Mn硝酸塩およびMn置換元素として上記遷移金属の硝
酸塩との混合水溶液に、金属イオンを含まない非イオン
水溶性高分子をカチオン担持体として添加し、100〜200
℃という低い温度で前記混合水溶液の水分を加熱除去し
て自己反応を起こさせる方法である。
BEST MODE FOR CARRYING OUT THE INVENTION First, a method for producing a lithium manganese composite oxide according to the present invention will be described below. The characteristic of this manufacturing method is that it is synthesized by a low temperature self-reaction method (a method of reacting lithium ions and manganese ions in a liquid-liquid homogeneous mixture system, which is disclosed in Japanese Patent No. 2977909). That is, this synthetic method, Li nitrate, Mn nitrate and a mixed aqueous solution of the transition metal nitrate as a Mn substitution element, a nonionic water-soluble polymer containing no metal ion is added as a cation carrier, 100-200
In this method, the water content of the mixed aqueous solution is removed by heating at a low temperature of ° C to cause a self reaction.

【0016】上記混合水溶液中のLi硝酸塩としては、硝
酸リチウム(LiNO3)を用いる。この理由は、硝酸イオ
ンは、低温で分解するために他のアニオン(硫酸イオ
ン、塩素イオンなど)と比較して除去が容易であり、焼
成品中に残留しないためである。
Lithium nitrate (LiNO 3 ) is used as the Li nitrate in the mixed aqueous solution. The reason for this is that nitrate ions are decomposed at a low temperature, so that they are easier to remove than other anions (sulfate ions, chlorine ions, etc.) and do not remain in the baked product.

【0017】Mn硝酸塩としては、硝酸マンガン(Mn(N
O3)2)を用いる。この理由は、硝酸マンガンの硝酸イオ
ンが、カチオン担持体である水溶性高分子と反応して、
容易にニトロ化合物を生成するからである。
As the Mn nitrate, manganese nitrate (Mn (N
O 3 ) 2 ) is used. The reason for this is that the nitrate ion of manganese nitrate reacts with the water-soluble polymer that is the cation carrier,
This is because a nitro compound is easily produced.

【0018】また、出発原料として、Ni、Co、Cr、Feお
よびCuのうちから選ばれるいずれか1種または2種以上の
遷移金属からなるMn置換元素の硝酸塩を用いる。これら
の遷移金属は、リチウムマンガン複合酸化物の結晶構造
中に均一に配位されると、結晶構造を安定化する作用が
ある。なお、これらの遷移金属は、置換するMnとほぼイ
オン半径が同じ元素であり、合成過程において3価の硝
酸塩を安定した形態でとり得るため望ましい。その結
果、5V級の大容量をもつスピネル型リチウムマンガン複
合酸化物の合成が可能となり、また、低温で合成するこ
とにより、充放電プラトーギャップを小さくすることが
できるようになる。
Further, as a starting material, a nitrate of an Mn-substituting element composed of one or more transition metals selected from Ni, Co, Cr, Fe and Cu is used. When these transition metals are uniformly coordinated in the crystal structure of the lithium-manganese composite oxide, they have a function of stabilizing the crystal structure. Note that these transition metals are elements having almost the same ionic radius as Mn to be substituted, and they are desirable because they can take a trivalent nitrate in a stable form in the synthesis process. As a result, it becomes possible to synthesize a spinel-type lithium manganese composite oxide having a large capacity of 5 V class, and by synthesizing at low temperature, the charge-discharge plateau gap can be reduced.

【0019】なお、上記製造方法において、金属イオン
を含まない非イオン水溶性高分子からなるカチオン担持
体を用いる理由は、カチオン担持体を添加しないと、加
熱による混合水溶液中の水分蒸発に伴って、溶解度の差
により各元素の硝酸塩が分離析出してしまうからであ
る。カチオン担持体としては、カチオンを担持し、固定
する機能を有する物質であればよく、例えば、小麦デン
プンなどのデンプン質、マンナン(こんにゃく等)、ア
ガー(寒天)などの海藻類、トロロアオイやアラビアゴ
ムなどの植物粘質物、デキストランなどの微生物による
粘質物、にかわやゼラチンなどのタンパク質に代表され
る天然高分子、ピスコースやメチルセルロース(MC)な
どのセルロース系、可溶性デンプンやジアルデヒドデン
プンなどのデンプン系に代表される半合成品、およびポ
リビニルアルコール(PVA)などに代表される合成品があ
る。なかでも、金属ニトロ化し易い有機物でOH基を有す
るPVAやMC、アガーなどから選ばれる1種以上を用いるこ
とが好ましい。
In the above manufacturing method, the reason why the cation carrier made of a nonionic water-soluble polymer containing no metal ion is used is that if the cation carrier is not added, the water content in the mixed aqueous solution is evaporated by heating. This is because nitrates of each element are separated and deposited due to the difference in solubility. As the cation carrier, any substance having a function of supporting and fixing cations may be used, and examples thereof include starchy substances such as wheat starch, seaweeds such as mannan (konjac and the like) and agar (agar), Trolooi and gum arabic. Such as plant mucilages, microbial mucilages such as dextran, natural polymers represented by proteins such as glue and gelatin, cellulosics such as viscose and methylcellulose (MC), and starches such as soluble starch and dialdehyde starch. There are representative semi-synthetic products and synthetic products such as polyvinyl alcohol (PVA). Among them, it is preferable to use one or more selected from PVA, MC, agar, etc., which are organic substances that are easily metal-nitrated and have an OH group.

【0020】本発明において、金属イオンを含まない非
イオン水溶性高分子を用いる理由は、カリウムやナトリ
ウムなどの金属イオンが残留すると、金属イオンが複合
酸化物の結晶構造中に取り込まれるか、新たな化合物が
生成してしまうからである。
In the present invention, the reason why the nonionic water-soluble polymer containing no metal ion is used is that if a metal ion such as potassium or sodium remains, the metal ion is incorporated into the crystal structure of the complex oxide or is newly added. This is because various compounds are produced.

【0021】加熱温度については、80℃未満ではニトロ
化合物の分解、燃焼が起こらず、複合酸化物を合成する
ことができないので、80℃以上とすることが望ましい。
一方、上記温度の上限は、水分が蒸発し、かつニトロ化
合物が分解する温度であればよいので、使用する水溶性
高分子の種類に応じて300℃以下の範囲とすることが望
ましい。より好ましくは、100℃〜200℃の温度範囲であ
る。
When the heating temperature is lower than 80 ° C., decomposition or combustion of the nitro compound does not occur and the composite oxide cannot be synthesized. Therefore, it is desirable to set the heating temperature to 80 ° C. or higher.
On the other hand, the upper limit of the temperature may be a temperature at which water evaporates and the nitro compound decomposes, and therefore, it is desirable to set the temperature in the range of 300 ° C. or lower depending on the type of the water-soluble polymer used. More preferably, the temperature range is 100 ° C to 200 ° C.

【0022】上記温度領域で加熱することによって、混
合水溶液中の2種以上のカチオンは、水分の蒸発に伴
い、カチオン担持体に均一に混合された状態に固定され
る。一方、硝酸イオンは、カチオン担持体と加熱反応し
てニトロ化合物を生成する。その結果、上記加熱を続け
ると、上記ニトロ化合物が分解燃焼し、その熱エネルギ
ーによってカチオン同士が容易に反応し、複合酸化物が
合成される。
By heating in the above-mentioned temperature range, two or more kinds of cations in the mixed aqueous solution are fixed in a state of being uniformly mixed with the cation carrier as the water vaporizes. On the other hand, nitrate ions react with the cation carrier by heating to produce a nitro compound. As a result, when the heating is continued, the nitro compound decomposes and burns, and the thermal energy causes cations to easily react with each other to synthesize a composite oxide.

【0023】さらに、本発明では、上述した複合酸化物
の合成過程に加えて、さらに、200〜500℃の温度で再加
熱処理(焼成)を行なうことにも特徴がある。上述の合
成過程では、硝酸やカチオン担持体として添加した有機
物が、未反応のまま合成製品粉末中に残存する場合があ
り、これらの不純物の存在は、電池特性に影響を与える
ことから、再熱処理を行ない、完全にスピネル化させ
て、リチウムマンガン複合酸化物の単一相を形成させる
ことが望ましい。
Furthermore, the present invention is characterized in that, in addition to the above-mentioned process of synthesizing the composite oxide, a reheating treatment (baking) is further performed at a temperature of 200 to 500 ° C. In the above-mentioned synthetic process, nitric acid and organic substances added as a cation carrier may remain in the synthetic product powder unreacted, and the presence of these impurities affects the battery characteristics. It is desirable to perform a spinelization to completely form a single phase of the lithium-manganese composite oxide.

【0024】前記再熱処理温度に制限を設けたのは、20
0℃未満では、上述のとおり未反応物質が合成粉末中に
残存し、500℃以上では結晶性が高くなり、充放電プラ
トーギャップが大きくなるためである。
The limit for the reheat treatment temperature is 20.
This is because if the temperature is lower than 0 ° C., unreacted substances remain in the synthetic powder as described above, and if the temperature is 500 ° C. or higher, the crystallinity becomes high and the charge / discharge plateau gap becomes large.

【0025】上述した方法の採用によって得られる本発
明に係るリチウムマンガン複合酸化物の第1のものは、
一般式がLixMyMn2-y O4+δ(ただし、Mは、Ni、Co、C
r、FeおよびCuのうちから選ばれるいずれか1種または2
種以上の遷移金属、0.9≦x≦1.2、0.2≦y≦1.0、0<δ≦
0.5)で表されるものである。この酸化物の特徴は、X線
回折における(111)面の半価幅が0.8°以上の低結晶性ス
ピネル単一相である。上記一般式において、x、y、δを
上記のように限定する理由は、xについては、0.9以下で
はスピネル単一相が得られず、また1.2以上では容量低
下が大きくなるためであり、また、yについては、0.2以
下では5V域での容量が小さく、1.0以上ではスピネル単
一相が得られないためであり、そしてδについては、0
以下では5V域及び3V域のプラトーが平坦で、電位ギャッ
プが大きくなり、0.5以上では5V域の容量低下が大きく
なるためである。
The first lithium manganese composite oxide according to the present invention obtained by adopting the above-mentioned method is
The general formula is Li x M y Mn 2-y O 4 + δ (where M is Ni, Co, C
Any one or two selected from r, Fe and Cu
More than one kind of transition metal, 0.9 ≦ x ≦ 1.2, 0.2 ≦ y ≦ 1.0, 0 <δ ≦
0.5). This oxide is characterized by a low crystalline spinel single phase having a (111) plane full width at half maximum of 0.8 ° or more in X-ray diffraction. In the above general formula, the reason for limiting x, y, and δ as described above is that for x, a spinel single phase cannot be obtained at 0.9 or less, and a capacity decrease becomes large at 1.2 or more. , Y is 0.2 or less, the capacity in the 5V region is small, and 1.0 or more, a spinel single phase cannot be obtained, and δ is 0.
This is because the plateaus in the 5V region and the 3V region are flat and the potential gap becomes large below, and the capacitance decrease in the 5V region becomes large at 0.5 or more.

【0026】また、本発明では、結晶性を示す半価幅に
ついては、X線回折における(111)面のピークにおいて半
価幅が0.8°以上であり、ブロード状を示すものに特定
したが、この理由は、0.8°以下では、結晶性が高くな
り5V域及び3V域のプラトーが平坦となって電位ギャップ
が大きくなるためである。
In the present invention, the full width at half maximum showing crystallinity is specified as a broad half having a full width at half maximum of 0.8 ° or more at the peak of the (111) plane in X-ray diffraction. The reason for this is that at 0.8 ° or less, the crystallinity becomes high, the plateaus in the 5V region and 3V region become flat, and the potential gap becomes large.

【0027】本発明に係るリチウムマンガン複合酸化物
の第2のものは、構成が、上記の一般式で表わされ、さ
らに2.5〜5.0Vの電位範囲において、200mAh/g以上の放
電容量をもつ酸化物であり、本発明に係るリチウムマン
ガン複合酸化物の第3のものは、X線回折における(111)
面の半価幅と放電容量とが、ともに上記第1および第2の
条件を満足する酸化物である。
The second lithium manganese composite oxide according to the present invention has a structure represented by the above general formula, and further has a discharge capacity of 200 mAh / g or more in a potential range of 2.5 to 5.0 V. An oxide, the third one of the lithium-manganese composite oxide according to the present invention is (111) in X-ray diffraction.
An oxide in which the full width at half maximum and the discharge capacity both satisfy the first and second conditions described above.

【0028】本発明に係る上記リチウムマンガン複合酸
化物を正極活物質として使用することにより、高密度、
高エネルギー密度を有し、実用電池として好適な二次電
池を提供することができる。その際、負極活物質には、
炭素質材料またはリチウム吸蔵物質等を用い、電解液と
しては非水電解液を用いる。非水電解液は、一般にリチ
ウム塩を電解質とし、これを有機溶媒に溶解して調整さ
れる。本発明では、電解質として6フッ化りん酸リチウ
ム(LiPF6)を用い、有機溶媒としてエチレンカーボネ
ートとジメチルカーボネートの混合溶液を用いた。この
他にも、電解質としては、LiClO4、LiAsF6、LiBF4、LiS
O3CF3、LiN(SO2CF3)2等やこれらの混合物が用いられ
る。また、有機溶媒としては、ジエチルカーボネート、
プロピレンカーボネートおよびその混合物等を用いるこ
とができる。
By using the above-mentioned lithium manganese composite oxide according to the present invention as a positive electrode active material, high density,
A secondary battery having a high energy density and suitable as a practical battery can be provided. At that time, in the negative electrode active material,
A carbonaceous material or a lithium occlusion substance is used, and a nonaqueous electrolytic solution is used as the electrolytic solution. The non-aqueous electrolyte is generally prepared by dissolving a lithium salt as an electrolyte and dissolving this in an organic solvent. In the present invention, lithium hexafluorophosphate (LiPF 6 ) is used as the electrolyte, and a mixed solution of ethylene carbonate and dimethyl carbonate is used as the organic solvent. Other electrolytes include LiClO 4 , LiAsF 6 , LiBF 4 , and LiS.
O 3 CF 3 , LiN (SO 2 CF 3 ) 2 or the like or a mixture thereof is used. Further, as the organic solvent, diethyl carbonate,
Propylene carbonate and a mixture thereof can be used.

【0029】[0029]

【実施例】(実施例1)LiNO3:0.1モルとMn(NO3)2・6H2
O:0.15モルおよびNi(NO3)2・6H2O:0.05モルを純水30ml
に溶解し、混合水溶液を得た。この混合水溶液にカチオ
ン担持体としてPVAの20%溶液を33g添加し、充分混合し
た後、乾燥器に移して150℃で2時間加熱、乾燥して自己
反応を起こさせて、黒褐色粉末を得た。さらに、300℃
で5時間焼成して合成粉末を得た。この合成粉末を、X線
回折により同定したところ、低結晶性スピネル型単一相
であることが確認できた。また、(111)面の半価幅は、
1.09°であった。
EXAMPLES (Example 1) LiNO 3: 0.1 mol of Mn (NO 3) 2 · 6H 2
O: 0.15 mol and Ni (NO 3) 2 · 6H 2 O: 0.05 mol of pure water 30ml
To obtain a mixed aqueous solution. To this mixed aqueous solution, 33 g of 20% PVA solution as a cation carrier was added, mixed well, transferred to a dryer and heated at 150 ° C. for 2 hours and dried to cause a self-reaction to obtain a blackish brown powder. . Furthermore, 300 ℃
The powder was baked for 5 hours to obtain a synthetic powder. When this synthetic powder was identified by X-ray diffraction, it was confirmed to be a low crystalline spinel type single phase. The full width at half maximum of the (111) plane is
It was 1.09 °.

【0030】(実施例2)LiNO3:0.1モルとMn(NO3)2・6H
2O:0.15モルおよびNi(NO3)2・6H2O:0.05モルを純水30m
lに溶解し、混合水溶液を得た。この混合水溶液にカチ
オン担持体としてPVAの20%溶液を33g添加し、充分混合
した後、乾燥器に移して150℃で2時間加熱、乾燥して自
己反応を起こさせて黒褐色粉末を得た。さらに、400℃
で5時間焼成し、合成粉末を得た。この合成粉末を、X線
回折により同定したところ、低結晶性スピネル型単一相
であることが確認できた。また、(111)面の半価幅は、
1.06°であった。
[0030] (Example 2) LiNO 3: 0.1 mol of Mn (NO 3) 2 · 6H
2 O: 0.15 mol and Ni (NO 3 ) 2 .6H 2 O: 0.05 mol, pure water 30 m
It was dissolved in 1 to obtain a mixed aqueous solution. 33 g of a 20% solution of PVA as a cation carrier was added to this mixed aqueous solution, mixed well, transferred to a dryer and heated at 150 ° C. for 2 hours and dried to cause a self reaction to obtain a blackish brown powder. Furthermore, 400 ℃
It was baked for 5 hours to obtain a synthetic powder. When this synthetic powder was identified by X-ray diffraction, it was confirmed to be a low crystalline spinel type single phase. The full width at half maximum of the (111) plane is
It was 1.06 °.

【0031】(実施例3)LiNO3:0.1モルとMn(NO3)2・6H
2O:0.15モルおよびNi(NO3)2・6H2O:0.05モルを純水30m
lに溶解し、混合水溶液を得た。この混合水溶液にカチ
オン担持体としてPVAの20%溶液を33g添加し、充分混合
した後、乾燥器に移して150℃で2時間加熱、乾燥して自
己反応を起こさせて黒褐色粉末を得た。さらに、500℃
で5時間焼成し、合成粉末を得た。この合成粉末を、X線
回折により同定したところ、低結晶性スピネル型単一相
であることが確認できた。また、(111)面の半価幅は、
0.87°であった。
[0031] (Example 3) LiNO 3: 0.1 mol of Mn (NO 3) 2 · 6H
2 O: 0.15 mol and Ni (NO 3 ) 2 .6H 2 O: 0.05 mol, pure water 30 m
It was dissolved in 1 to obtain a mixed aqueous solution. 33 g of a 20% solution of PVA as a cation carrier was added to this mixed aqueous solution, mixed well, transferred to a dryer and heated at 150 ° C. for 2 hours and dried to cause a self reaction to obtain a blackish brown powder. Furthermore, 500 ℃
It was baked for 5 hours to obtain a synthetic powder. When this synthetic powder was identified by X-ray diffraction, it was confirmed to be a low crystalline spinel type single phase. The full width at half maximum of the (111) plane is
It was 0.87 °.

【0032】(比較例)LiNO3:0.1モルとMn(NO3)2・6H2
O:0.15モルおよびNi(NO3)2・6H2O:0.05モルを純水30ml
に溶解し、混合水溶液を得た。この混合水溶液にカチオ
ン担持体としてPVAの20%溶液を33g添加し、充分混合し
た後、乾燥器に移して150℃で2時間加熱乾燥して自己反
応を起こさせて黒褐色粉末を得た。さらに、700℃で5時
間焼成し、合成粉末を得た。この合成粉末を、X線回折
により同定したところ、低結晶性スピネル型単一相であ
ることが確認できた。また、(111)面の半価幅は、0.19
°であった。
Comparative Example LiNO 3 : 0.1 mol and Mn (NO 3 ) 2 .6H 2
O: 0.15 mol and Ni (NO 3) 2 · 6H 2 O: 0.05 mol of pure water 30ml
To obtain a mixed aqueous solution. 33 g of a 20% PVA solution as a cation carrier was added to this mixed aqueous solution, mixed well, transferred to a drier and dried by heating at 150 ° C. for 2 hours to cause a self-reaction to obtain a blackish brown powder. Further, it was baked at 700 ° C. for 5 hours to obtain a synthetic powder. When this synthetic powder was identified by X-ray diffraction, it was confirmed to be a low crystalline spinel type single phase. The full width at half maximum of the (111) plane is 0.19.
It was °.

【0033】上記各実施例および比較例にて合成した粉
末を、それぞれ正極活物質として用い、3極式のガラス
型試験セルを組んで電気化学的測定を行った。
The powder synthesized in each of the above Examples and Comparative Examples was used as a positive electrode active material, and an electrochemical measurement was performed by setting up a three-electrode type glass type test cell.

【0034】図1に各実施例および比較例にて合成した
粉末のX線回折図を示す。各実施例および比較例にて合
成した粉末は、いずれもスピネル型構造の単一相である
が、各実施例のピークはブロード状であり、結晶性が低
いことがわかる。
FIG. 1 shows an X-ray diffraction pattern of the powders synthesized in each Example and Comparative Example. The powders synthesized in each of the examples and the comparative examples all have a single phase of spinel type structure, but the peaks of each example are broad and it is understood that the crystallinity is low.

【0035】表1に、各実施例および比較例で得られた
サンプルの初期放電容量およびエネルギー密度を示す。
なお、本測定では、対極として金属Liを用いた。各合成
粉末は、いずれも2.5V−4.9Vの電位範囲において、放電
容量が200mAh/g以上と大きく、エネルギー密度も700Wh/
kgと高い値を示した。
Table 1 shows the initial discharge capacities and energy densities of the samples obtained in the respective examples and comparative examples.
In this measurement, metallic Li was used as the counter electrode. Each of the synthetic powders has a large discharge capacity of 200 mAh / g or more and an energy density of 700 Wh / g in the potential range of 2.5 V to 4.9 V.
It showed a high value of kg.

【0036】[0036]

【表1】 [Table 1]

【0037】図2に、各実施例および比較例で得られた
サンプルの初期放電曲線を示す。実施例では、5V域の放
電プラトーが崩れており、3V域の放電プラトーと緩やか
な曲線を描いている。つまり、5V域と3V域の放電プラト
ーのギャップが小さくなっていることがわかる。一方、
比較例では、5V域および3V域の放電プラトーがそれぞれ
平坦であり、大きなギャップを持つことがわかる。
FIG. 2 shows initial discharge curves of the samples obtained in the respective examples and comparative examples. In the example, the discharge plateau in the 5V range is broken, and a gentle curve is drawn with the discharge plateau in the 3V range. That is, it can be seen that the gap between the discharge plateaus in the 5V region and the 3V region is small. on the other hand,
In the comparative example, it can be seen that the discharge plateaus in the 5V region and the 3V region are flat and have a large gap.

【0038】[0038]

【発明の効果】以上、説明したように本発明によれば、
放電容量およびエネルギー密度の大きいスピネル型リチ
ウムマンガン複合酸化物を製造することができる。この
ため、該リチウムマンガン複合酸化物を正極材として用
いることにより、実用電池として使用可能な高エネルギ
ー密度を有するリチウム二次電池を提供することができ
る。
As described above, according to the present invention,
It is possible to manufacture a spinel type lithium manganese composite oxide having a large discharge capacity and energy density. Therefore, by using the lithium manganese composite oxide as a positive electrode material, it is possible to provide a lithium secondary battery having a high energy density that can be used as a practical battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例および比較例で得られたス
ピネル型リチウムマンガン複合酸化物のX線回折図であ
る。
FIG. 1 is an X-ray diffraction diagram of spinel type lithium manganese composite oxides obtained in Examples of the present invention and Comparative Examples.

【図2】 本発明の実施例および比較例で得られたス
ピナル型リチウムマンガン複合酸化物の初期放電曲線で
ある。
FIG. 2 is an initial discharge curve of a spinal type lithium manganese composite oxide obtained in Examples and Comparative Examples of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠藤 孝志 茨城県つくば市東光台5丁目9番6号 日 本重化学工業株式会社筑波研究所内 (72)発明者 橋場 裕樹 富山県高岡市吉久1丁目1番1号 日本重 化学工業株式会社高岡工業所内 (72)発明者 野口 健宏 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 沼田 達治 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 白方 雅人 東京都港区芝五丁目7番1号 日本電気株 式会社内 Fターム(参考) 4G048 AA04 AB02 AB05 AC06 AD06 AE05 5H029 AJ03 AK03 AL06 AM03 AM05 AM07 CJ02 CJ08 DJ17 HJ02 HJ13 HJ18 HJ19 5H050 AA08 BA17 CA09 CB07 FA19 GA02 GA10 HA02 HA13 HA18 HA19    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takashi Endo             5-9-6 Tokodai, Tsukuba-shi, Ibaraki             Inside the Tsukuba Research Laboratory, Honju Chemical Industry Co., Ltd. (72) Inventor Hiroki Hashiba             1-1-1 Yoshihisa, Takaoka City, Toyama Prefecture             Takaoka Industrial Co., Ltd. (72) Inventor Takehiro Noguchi             5-7 Shiba 5-1, Minato-ku, Tokyo NEC Corporation             Inside the company (72) Inventor Tatsuharu Numata             5-7 Shiba 5-1, Minato-ku, Tokyo NEC Corporation             Inside the company (72) Inventor Masato Shirokata             5-7 Shiba 5-1, Minato-ku, Tokyo NEC Corporation             Inside the company F-term (reference) 4G048 AA04 AB02 AB05 AC06 AD06                       AE05                 5H029 AJ03 AK03 AL06 AM03 AM05                       AM07 CJ02 CJ08 DJ17 HJ02                       HJ13 HJ18 HJ19                 5H050 AA08 BA17 CA09 CB07 FA19                       GA02 GA10 HA02 HA13 HA18                       HA19

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一般式がLixMyMn2-yO4+δ(Mは、Ni、C
o、Cr、FeおよびCuのうちから選ばれるいずれか1種また
は2種以上の遷移金属、0.9≦x≦1.2、0.2≦y≦1.0、0<
δ≦0.5)で表わされ、X線回折における(111)面の半価
幅が0.8°以上の低結晶性スピネル型単一相であること
を特徴とする二次電池用リチウムマンガン複合酸化物。
1. The general formula is Li x M y Mn 2-y O 4 + δ (M is Ni, C
o, Cr, Fe, and any one or more transition metals selected from Cu, 0.9 ≦ x ≦ 1.2, 0.2 ≦ y ≦ 1.0, 0 <
Lithium-manganese composite oxide for secondary batteries characterized by δ ≦ 0.5) and a low crystalline spinel type single phase having a (111) plane half width of 0.8 ° or more in X-ray diffraction. .
【請求項2】 一般式がLixMyMn2-yO4+δ(Mは、Ni、C
o、Cr、FeおよびCuのうちから選ばれるいずれか1種また
は2種以上の遷移金属、0.9≦x≦1.2、0.2≦y≦1.0、0<
δ≦0.5)で表わされ、放電容量が2.5〜5.0Vの電位範囲
において200mAh/g以上であることを特徴とする二次電池
用リチウムマンガン複合酸化物。
2. The general formula is Li x M y Mn 2-y O 4 + δ (M is Ni, C
o, Cr, Fe, and any one or more transition metals selected from Cu, 0.9 ≦ x ≦ 1.2, 0.2 ≦ y ≦ 1.0, 0 <
A lithium manganese composite oxide for a secondary battery, which is represented by δ ≦ 0.5) and has a discharge capacity of 200 mAh / g or more in a potential range of 2.5 to 5.0 V.
【請求項3】 一般式がLixMyMn2-yO4+δ(Mは、Ni、C
o、Cr、FeおよびCuのうちから選ばれるいずれか1種また
は2種以上の遷移金属、0.9≦x≦1.2、0.2≦y≦1.0、0<
δ≦0.5)で表わされ、X線回折における(111)面の半価
幅が0.8°以上の低結晶性スピネル型単一相であり、か
つ2.5〜5.0Vの電位範囲において200mAh/g以上の放電容
量をもつことを特徴とする二次電池用リチウムマンガン
複合酸化物。
3. The general formula is Li x M y Mn 2-y O 4 + δ (M is Ni, C
o, Cr, Fe, and any one or more transition metals selected from Cu, 0.9 ≦ x ≦ 1.2, 0.2 ≦ y ≦ 1.0, 0 <
δ ≦ 0.5), a low crystalline spinel type single phase with a (111) plane half-value width of 0.8 ° or more in X-ray diffraction, and 200 mAh / g or more in the potential range of 2.5 to 5.0 V. A lithium-manganese composite oxide for a secondary battery, which has a discharge capacity of
【請求項4】 請求項1〜3のいずれか1項に記載のリチ
ウムマンガン複合酸化物を製造するにあたって、Li硝酸
塩とMn硝酸塩と、そしてM金属(Ni、Co、Cr、Fe、およ
びCuのうちから選ばれるいずれか1種または2種以上の遷
移金属)硝酸塩との混合水溶液に、カチオン担持体とし
て非イオン性水溶性高分子を加え、その後、これらの混
合水溶液を80〜300℃で加熱し、自己反応を起こさせる
ことにより合成することを特徴とするリチウムマンガン
複合酸化物の製造方法。
4. In producing the lithium-manganese composite oxide according to claim 1, Li nitrate and Mn nitrate, and M metal (Ni, Co, Cr, Fe, and Cu A nonionic water-soluble polymer as a cation carrier is added to a mixed aqueous solution of one or more transition metal) nitrates selected from among them, and then these mixed aqueous solutions are heated at 80 to 300 ° C. Then, a method for producing a lithium-manganese composite oxide is characterized in that it is synthesized by causing a self-reaction.
【請求項5】 請求項1〜3のいずれか1項に記載のリチ
ウムマンガン複合酸化物を製造するにあたって、Li硝酸
塩とMn硝酸塩と、そしてM金属(Ni、Co、Cr、Fe、およ
びCuのうちから選ばれるいずれか1種または2種以上の遷
移金属)硝酸塩との混合水溶液中に、カチオン担持体と
して非イオン性水溶性高分子を加え、その後、得られた
混合水溶液を80〜300℃で加熱することで自己反応を起
こさせ、次いで200〜500℃で焼成することにより合成す
ることを特徴とするリチウムマンガン複合酸化物の製造
方法。
5. In producing the lithium manganese composite oxide according to claim 1, Li nitrate and Mn nitrate, and M metal (Ni, Co, Cr, Fe, and Cu One or two or more transition metals selected from among them) In a mixed aqueous solution with a nitrate, a nonionic water-soluble polymer is added as a cation carrier, and then the resulting mixed aqueous solution is heated at 80 to 300 ° C. A method for producing a lithium-manganese composite oxide, characterized in that the lithium-manganese composite oxide is synthesized by heating at 200 ° C. to cause a self-reaction and then firing at 200 to 500 ° C.
【請求項6】 二次電池が、請求項1〜3のいずれか1項
に記載のリチウムマンガン複合酸化物を活物質とする正
極と、炭素質在庁またはリチウム吸蔵物質を活物質とす
る負極と、非水電解液とで構成されることを特徴とする
非水電解液二次電池。
6. A secondary battery, a positive electrode using the lithium manganese composite oxide according to any one of claims 1 to 3 as an active material, and a negative electrode using a carbonaceous office or a lithium storage material as an active material. And a non-aqueous electrolyte solution.
JP2001268615A 2001-09-05 2001-09-05 Lithium manganese composite oxide for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery Expired - Lifetime JP4253142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001268615A JP4253142B2 (en) 2001-09-05 2001-09-05 Lithium manganese composite oxide for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001268615A JP4253142B2 (en) 2001-09-05 2001-09-05 Lithium manganese composite oxide for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003081637A true JP2003081637A (en) 2003-03-19
JP4253142B2 JP4253142B2 (en) 2009-04-08

Family

ID=19094566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001268615A Expired - Lifetime JP4253142B2 (en) 2001-09-05 2001-09-05 Lithium manganese composite oxide for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4253142B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077334A1 (en) * 2002-03-08 2003-09-18 Nec Corporation Positive electrode active material for secondary cell, positive electrode for secondary cell using same, and secondary cell
CN1321881C (en) * 2005-09-23 2007-06-20 北京科技大学 Method for preparing Li, Ni, Mn oxide material by adopting low-heat solid phase reaction
JP2008156163A (en) * 2006-12-25 2008-07-10 Nippon Denko Kk Spinel type lithium manganese oxide and method for manufacturing the same
JP2008529253A (en) * 2005-02-02 2008-07-31 アイユーシーエフ エイチワイユー (インダストリー ユニヴァーシティー コオペレイション ファウンデイション ハンヤン ユニヴァーシティー) 3V-class spinel composite oxide as positive electrode active material for lithium secondary battery, its production method by carbonate coprecipitation method, and lithium secondary battery using the same
CN100418254C (en) * 2003-08-08 2008-09-10 三洋电机株式会社 Nonaqueous electrolyte secondary battery
JP2011519126A (en) * 2008-04-16 2011-06-30 エンビア・システムズ・インコーポレイテッド High energy lithium ion secondary battery
JP2011210536A (en) * 2010-03-30 2011-10-20 Dainippon Printing Co Ltd Manufacturing method of electrode active material
WO2012132155A1 (en) 2011-03-31 2012-10-04 戸田工業株式会社 Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
WO2012157143A1 (en) * 2011-05-19 2012-11-22 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion batteries and method for producing same
WO2013027432A1 (en) * 2011-08-23 2013-02-28 Jx日鉱日石金属株式会社 Method for producing positive electrode active material for lithium ion batteries
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2014010909A (en) * 2012-06-27 2014-01-20 Asahi Kasei Corp Composite oxide and production method therefor, and nonaqueous secondary battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
KR20170030411A (en) * 2015-09-09 2017-03-17 삼성전자주식회사 Cathodes active material for lithium ion batteries, and the batteries with them
US9725321B2 (en) 2011-09-21 2017-08-08 Hyundai Motor Company Compositions and methods for manufacturing a cathode for lithium secondary battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
JP2018113130A (en) * 2017-01-10 2018-07-19 日揮触媒化成株式会社 Lithium manganate, positive electrode including the lithium manganate, and nonaqueous electrolyte secondary battery including the same
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179566B2 (en) 2002-03-08 2007-02-20 Nec Corporation Positive electrode active material for secondary cell, positive electrode for secondary cell using same, and secondary cell
WO2003077334A1 (en) * 2002-03-08 2003-09-18 Nec Corporation Positive electrode active material for secondary cell, positive electrode for secondary cell using same, and secondary cell
CN100418254C (en) * 2003-08-08 2008-09-10 三洋电机株式会社 Nonaqueous electrolyte secondary battery
US9553313B2 (en) 2005-02-02 2017-01-24 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) 3V class spinel complex oxides as cathode active materials for lithium secondary batteries, method for preparing the same by carbonate coprecipitation, and lithium secondary batteries using the same
US8956759B2 (en) 2005-02-02 2015-02-17 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University 3V class spinel complex oxides as cathode active materials for lithium secondary batteries, method for preparing the same by carbonate coprecipitation, and lithium secondary batteries using the same
JP2008529253A (en) * 2005-02-02 2008-07-31 アイユーシーエフ エイチワイユー (インダストリー ユニヴァーシティー コオペレイション ファウンデイション ハンヤン ユニヴァーシティー) 3V-class spinel composite oxide as positive electrode active material for lithium secondary battery, its production method by carbonate coprecipitation method, and lithium secondary battery using the same
CN1321881C (en) * 2005-09-23 2007-06-20 北京科技大学 Method for preparing Li, Ni, Mn oxide material by adopting low-heat solid phase reaction
JP4673287B2 (en) * 2006-12-25 2011-04-20 日本電工株式会社 Spinel type lithium manganese oxide and method for producing the same
JP2008156163A (en) * 2006-12-25 2008-07-10 Nippon Denko Kk Spinel type lithium manganese oxide and method for manufacturing the same
JP2011519126A (en) * 2008-04-16 2011-06-30 エンビア・システムズ・インコーポレイテッド High energy lithium ion secondary battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2011210536A (en) * 2010-03-30 2011-10-20 Dainippon Printing Co Ltd Manufacturing method of electrode active material
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
WO2012132155A1 (en) 2011-03-31 2012-10-04 戸田工業株式会社 Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP2012243572A (en) * 2011-05-19 2012-12-10 Jx Nippon Mining & Metals Corp Positive electrode active material for lithium ion battery, and method for manufacturing the same
WO2012157143A1 (en) * 2011-05-19 2012-11-22 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion batteries and method for producing same
WO2013027432A1 (en) * 2011-08-23 2013-02-28 Jx日鉱日石金属株式会社 Method for producing positive electrode active material for lithium ion batteries
US9725321B2 (en) 2011-09-21 2017-08-08 Hyundai Motor Company Compositions and methods for manufacturing a cathode for lithium secondary battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
JP2014010909A (en) * 2012-06-27 2014-01-20 Asahi Kasei Corp Composite oxide and production method therefor, and nonaqueous secondary battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
KR20170030411A (en) * 2015-09-09 2017-03-17 삼성전자주식회사 Cathodes active material for lithium ion batteries, and the batteries with them
KR102568790B1 (en) 2015-09-09 2023-08-21 삼성전자주식회사 Cathodes active material for lithium ion batteries, and the batteries with them
JP2018113130A (en) * 2017-01-10 2018-07-19 日揮触媒化成株式会社 Lithium manganate, positive electrode including the lithium manganate, and nonaqueous electrolyte secondary battery including the same

Also Published As

Publication number Publication date
JP4253142B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP2003081637A (en) Lithium - manganese compound oxide for secondary battery, production method therefor and nonaqueous electrolytic solution secondary battery
JP6237331B2 (en) Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP4773964B2 (en) Boron-substituted lithium insertion compounds, electrode active materials, batteries and electrochromic devices
CN114341059B (en) Sodium layered oxide as cathode material of sodium ion battery and method for producing same
KR100805910B1 (en) Olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
EP1341724B1 (en) Synthesis of lithium transition metal sulphides
Iqbal et al. Effect of bication (Cu-Cr) substitution on the structure and electrochemical performance of LiMn2O4 spinel cathodes at low and high current rates
JPH08255632A (en) Non-aqueous electrolyte secondary battery, positive electrode active material for battery, and manufacture thereof
JP5011518B2 (en) Method for producing positive electrode material for secondary battery, and secondary battery
JP3647758B2 (en) Non-aqueous battery positive electrode material, method for producing the same, and battery using the same
US5807532A (en) Method of producing spinel type limn204
JP2001185148A (en) Positive electrode material for 5 v-class lithium secondary battery and manufacturing method therefor
JP7163624B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode active material
JP2010108912A (en) Non-aqueous electrolyte secondary battery, positive electrode active material used in the battery, and method of manufacturing the positive electrode active material
JP2001508391A (en) Preparation method of lithium manganese oxide
US6652605B1 (en) Process for preparation of a lithiated or overlithiated transition metal oxide, active positive electrode materials containing this oxide, and a battery
JP2001185148A5 (en)
JPH10321228A (en) Positive electrode active material for lithium battery, its manufacture, and lithium battery using it
JPH0521067A (en) Nonaqueous electrolytic battery
JP2001064020A (en) Production of lithium manganate
JP2001257003A (en) Lithium secondary battery
JP2002246024A (en) Lithium secondary battery
JPH0935711A (en) Lithium secondary battery
JP4209160B2 (en) Lithium secondary battery
JPH11265717A (en) Spinel type lithium manganese oxide for secondary battery and its manufacture

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040114

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090123

R150 Certificate of patent or registration of utility model

Ref document number: 4253142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term