JP2001185148A5 - - Google Patents

Download PDF

Info

Publication number
JP2001185148A5
JP2001185148A5 JP1999369572A JP36957299A JP2001185148A5 JP 2001185148 A5 JP2001185148 A5 JP 2001185148A5 JP 1999369572 A JP1999369572 A JP 1999369572A JP 36957299 A JP36957299 A JP 36957299A JP 2001185148 A5 JP2001185148 A5 JP 2001185148A5
Authority
JP
Japan
Prior art keywords
composite oxide
potential
spinel
lithium
discharge capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1999369572A
Other languages
Japanese (ja)
Other versions
JP2001185148A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP36957299A priority Critical patent/JP2001185148A/en
Priority claimed from JP36957299A external-priority patent/JP2001185148A/en
Publication of JP2001185148A publication Critical patent/JP2001185148A/en
Publication of JP2001185148A5 publication Critical patent/JP2001185148A5/ja
Pending legal-status Critical Current

Links

Description

【特許請求の範囲】
【請求項1】
組成式がLiMn1.5Ni0.5からなり、4.5V以上の高電位レベルにおける電位平坦性(電位幅/放電初期電位−放電末期電位)が0.1V以下を示すと共に、放電容量が少なくとも125mAh/g以上の特性を有することを特徴とする5V級リチウム二次電池用正極材。
【請求項
Liの硝酸塩と、MnおよびNiの硝酸塩と混合水溶液中に、金属イオンを含まない非イオン水溶性高分子をカチオン担持体として添加し、その後、前記混合水溶液の水分を加熱除去することによって、放電容量が125mAh/g以上の、LiMn1.5Ni0.5スピネル型複合酸化物を合成することを特徴とする5V級リチウム二次電池用正極材の製造方法。
【請求項
請求項に記載の方法において、水分を加熱除去して得た複合酸化物粉末を、さらに高温度で加熱処理することを特徴とする5V級リチウム二次電池用正極材の製造方法。
[Claims]
(1)
The composition formula is LiMn 1.5 Ni 0.5 O 4 , the potential flatness (potential width / initial discharge potential−discharge final potential) at a high potential level of 4.5 V or more shows 0.1 V or less, and discharge is performed. A positive electrode material for a 5V-class lithium secondary battery, having a capacity of at least 125 mAh / g or more.
[Claim 2 ]
By adding a nonionic water-soluble polymer containing no metal ion as a cation carrier to a mixed aqueous solution of a nitrate of Li and a nitrate of Mn and Ni, and then removing the water of the mixed aqueous solution by heating, A method for producing a positive electrode material for a 5V class lithium secondary battery, comprising synthesizing a LiMn 1.5 Ni 0.5 O 4 spinel-type composite oxide having a discharge capacity of 125 mAh / g or more.
[Claim 3 ]
3. The method for producing a positive electrode material for a 5V-class lithium secondary battery according to claim 2 , wherein the composite oxide powder obtained by removing water by heating is further heated at a high temperature.

【発明の詳細な説明】
【0001】
【産業上の利用分野】
本発明は、二次電池用リチウム正極材およびその製造方法に関し、特に、5V級の電位を示し、放電容量の大きいスピネル型リチウムマンガン複合酸化物からなる二次電池正極材およびその製造方法についての提案である。
【0002】
【従来の技術】
近年、携帯電話の急速な普及と共に4V級のリチウムイオン二次電池の生産量が急増している。リチウムイオン二次電池は、4Vの起電力が発生し、ニッケル水素電池等の二次電池に比べ、起電力が約3倍高く、携帯電話等の軽量化に寄与するというのが急速普及の主な理由である。リチウムイオン二次電池の正極材として、資源、安全性等に配慮したスピネル型リチウムマンガン酸化物も開発されている。
【0003】
最近、このリチウム二次電池の起電力をさらに高めるための研究が盛んになり、5V級の起電力を有するリチウム二次電池用正極材が検討されている。この二次電池は、スピネル型リチウムマンガン複合酸化物にニッケルやクロム等の遷移金属元素を複合させたものであって、4.5V以上の起電力が得られることが知られている。ところが、遷移金属元素を含む複合酸化物は、たしかに4.5V以上もの起電力を発生させるものの、放電容量が能力の1/3程度しか発現しないという問題点があった。
【0004】
例えば、遷移金属を含むスピネル型リチウムマンガン複合酸化物を正極活物質とするリチウムマンガン二次電池は、理論的には130mAh/g以上の放電容量を示すはずである。しかしながら、現実にはその1/3程度の放電容量しか得られていないのが実情である。この理由は、おそらく、粉末焼結に起因する結晶欠陥または異相の生成によるものではないかと推測される。
【0005】
これに対し、従来、4.5V以上の起電力を示すリチウム二次電池の正極活物質として、スピネル型リチウムマンガン複合酸化物にクロムを必須添加成分とし、さらにニッケルまたはコバルトを添加してなる高容量スピネル型リチウムマンガン複合酸化物正極活物質が提案されている(特開平11−73962号公報)。この複合酸化物は、基本的に、LiMn1.6Ni0.4またはLiMn1.2Cr0.8 の組成を有し、ニッケルまたはクロムを含有することで4.5V以上(5V級)の起電力を有すると同時に、電位の低下が少ないことが特徴である。しかし、放電容量を低下させないためには、その組成をLiMn1.5Ni0.5またはLiMn1.0Cr1.0とすることが必要であると考えられる。すなわち、リチウム・マンガン・ニッケル複合酸化物であれば、マンガン分1.5に対してニッケルを約0.5程度、リチウムマンガンクロム複合酸化物であれば、マンガン分1に対してクロムを約1程度の割合で複合させた酸化物を製造すればよいことになる。しかし、従来の一般的な粉末混合焼結法(固相法)のような方法や、上記特開平11−73962号公報に開示のような方法では、単一相が得られにくく、たとえ十分に反応を起こさせて単一相を得た場合でも結晶欠陥のない複合酸化物を得ることは困難であった。いわゆる結晶性の低いものしか得られないために電位平坦性が悪く、かつサイクル特性の悪いものしか得られなかった。
【0006】
【発明が解決しようとする課題】
本発明の第1の目的は、優れた電位平坦性を有し、かつ、高電位部分での放電特性ならびにサイクル特性に優れた5V級スピネリチウムマンガン複合酸化物を提供することにある。本発明の第2の目的は、単一相で結晶欠陥のないLiMn1.5Ni0.5 構造を有する遷移金属としてNiを含むスピネル型複合酸化物を、高い均一反応性を確保して製造する方法を提案することにある。
【0007】
【課題を解決するための手段】
発明者らは、上記目的を達成するために鋭意研究した結果、従来技術が抱えている問題点が、主として粉末混合焼結法(固相法)によって製造していることに由来するものであるという知見に基づき、該複合酸化物を液相合成法(自己反応法)によって合成することに想到した。その結果として下記要旨構成にかかるスピネル型複合酸化物を開発とに成功した。
【0008】
即ち、本発明は、組成式がLiMn1.5Ni0.5からなり、4.5V以上の高電位レベルにおける電位平坦性(電位幅/放電初期電位−放電末期電位)が0.1V以下を示すと共に、放電容量が少なくとも125mAh/g以上の特性を有することを特徴とする5V級リチウム二次電池用正極材である。
0009
上記正極材は、次のような製造方法の適用によって製造することができる。すなわち、Liの硝酸塩と、MnおよびNiの硝酸塩と混合水溶液中に、金属イオンを含まない非イオン水溶性高分子をカチオン担持体として添加し、その後、前記混合水溶液の水分を加熱除去することによって、放電容量が125mAh/g以上の、LiMn1.5Ni0.5スピネル型複合酸化物を合成することを特徴とする5V級リチウム二次電池用正極材の製造方法である。
0010
なお、上記製造方法においては、Li、Mn及びNiの硝酸塩混合水溶液に非イオン水溶性高分子をカチオン担持体として添加混合した後、水分を加熱除去して複合酸化物粉末を得た後、さらに400℃以上の高温で再加熱処理することによって合成することが好ましい。
0011
本発明において、上記の非イオン水溶性高分子としては、ニトロ化しやすい有機物でOH基を有する高分子化合物を用いることが望ましい。そして、上記混合水溶液は100〜200℃温度にて加熱して水分を除去することが望ましく、さらに、複合酸化物粉末の高温での加熱処理は、400℃以上、複合酸化物の分解温度未満の温度範囲で行われることが望ましい。
0012
【発明の実施の形態】
本発明にかかる二次電池正極材は単一相で、結晶欠陥のないLiMn 1.5 Ni 0.5 の組成式を有するスピネル型複合酸化物あり、この種のスピネル型複合酸化物は、5V級の電位を有し、とくに4.5V以上の高電位での放電容量が125mAh/g以上で、電位平坦性が0.1V以下と、極めて電位低下の小さい複合酸化物である点に特徴がある。
0013
本発明にかかるスピネル型複合酸化物において、組成をLiMn1.5Ni0.5のものに限定した理由は、5V級の電位を示し理論的に最大の放電容量を得ることができるからである。
0014
そして、上記組成式の酸化物は、結晶性の高い単一相にて構成されることが好ましい。このような単一相で構成された複合酸化物は、放電容量が高くかつ電位平坦性が優れているからである。
0015
本発明にかかる上記スピネル型複合酸化物において、上述した電位平坦性とは、[電位幅/初期放電電位−放電末期電位]をいい、この数値が小さければ小さいほどプラトー域での放電初期(図4中の(a)と放電末期(図4中の(b))における電位の低下が小さいことになり、このような電位平坦性が小さい電池用正極材を用いて電池を構成した場合には、充放電の繰り返しによる電圧低下が少なくなる。ここで、電位平坦性を0.1V以下に限定した理由は、電池のエネルギー密度が高くなり、かつ電圧変動の小さい電池が得られるからである。
0016
次に、本発明にかかるスピネル型複合酸化物は、4.5V以上の電位を発現する高電位部分での放電容量が125mAh/g以上を示すものでなければならない。この理由は、このような高放電容量をもつスピネル型複合酸化物をリチウム二次電池用正極材とした場合、リチウム・マンガン・ニッケル複合酸化物がもつ、ほぼ最大限の能力(高放電容量、高電位)を発現できると共に、高電位で、放電による電圧低下が小さいという作用を発揮するのに効果的だからである。なお、かかるスピネル型複合酸化物中のニッケルは、いずれも正確に0.5である必要はなく、若干の組成幅があってもよいことはもちろんである。また、この複合酸化物は、5V級の正極材としてはもちろんのこと、4V級のリチウム二次電池用正極材等に混合して用いることができる。
0017
このような、本発明のスピネル複合酸化物は、先に本出願人が提案した(特願平11−279347号)液相合成法(自己反応法)により作製することができる。この先行提案にかかる複合酸化物の製造方法の特徴は、硝酸塩を形成可能なリチウム、マンガン、ニッケルまたは遷移金属元素の硝酸塩の混合水溶液に、非イオン水溶性高分子をカチオン担持体として添加混合し、その後、水分を比較的低い温度で加熱して除去することによって、自然に反応を起こさせて短時間に複合酸化物を合成することにある。
0018
かかる製造方法において、脱水のための加熱温度は80℃以上とする。この理由は、温度が80℃未満ではニトロ化合物の分解,燃焼が起こらず、複合酸化物を合成することができないからである。一方、上限の温度は、水分が蒸発しかつニトロ化合物が分解する温度であればよいので、使用する水溶性高分子に応じて、250℃以下の範囲内とすることが望ましい。より好ましくは、100〜200度の温度領域がよい。
0019
上記温度領域内で加熱することによって、混合水溶液中の2種以上のカチオンは、水分の蒸発に伴い、カチオン担持体に均一混合された状態で固定される。一方、硝酸イオンは、この加熱によってカチオン担持体と反応してニトロ化合物を生成する。その結果、上記加熱を続けると、上記ニトロ化合物が分解燃焼し、その熱エネルギーによってカチオン同士が反応し、ニッケルが容易に0.5またはそれ以上のリチウム・マンガン・ニッケル複合酸化物が合成されることになる。
0020
このようにして得られた複合酸化物粉末は、微細でかつ比表面積の大きな粉末である。しかしながら、合成直後の酸化物粉末は、不純物としてCおよびNを含んでおり、これらの不純物を除去することが望ましい場合がある。
0021
そこで、このような不純物を除去したリチウム・マンガン・ニッケル複合酸化物の単一相結晶(かつ格子欠陥のない結晶)からなる複合酸化物を製造する方法として、本発明においては、上述した複合酸化物の合成反応に加えてさらに、合成した複合酸化物を再熱処理(焼成)することが好ましい。この再熱処理は、上述したように、400℃以上、複合酸化物の分解温度未満で行うことが望ましい。このように、再熱処理の温度に制限を設けたのは、比較的低い温度(100℃〜200℃)の加熱だけでは、結晶配列にゆがみが残留する場合があるので、このような結晶のゆがみや欠陥を規整して、ほぼ完全に結晶化した複合化酸化物とする処理が必要だからである。
0022
なお、上記製造方法において、硝酸塩を用いる理由は、硝酸イオンは、カチオン担持体である非イオン性高分子と反応して、ニトロ化合物を生成するため、また、低温で分解するために他のアニオン(硫酸イオン、塩素イオン等)と比較して生成物残存した場合でも除去が容易になるためである。また、本発明方法において、カチオン担持体を用いる理由は、カチオン担持体を添加しないと、加熱による混合・水溶液中の水分蒸発に伴って、溶解度の差により各元素の硝酸塩が分離析出してしまうからである。
0023
このカチオン担持体は、カチオンを担持,固定する機能を有する物質であり、金属イオンを含まない非イオン水溶性高分子であればよい。例えば、小麦デンプンなどのデンプン質、マンナン(こんにゃく等)、アガー(寒天)などの海藻頬、トロロアオイやアラビアゴムなどの植物粘質物、デキストランなどの微生物による粘質物、にかわやゼラチンなどのタンパク質に代表される天然高分子、ビスコースやメチルセルロース(MC)などのセルロース系、可溶性デンプンやジアルデヒドデンプンなどのデンプン系に代表される半合成品、およびポリビニルアルコール(PVA)などに代表される合成品がある。なかでも、ニトロ化しやすい有機物でOH基を有する、例えば、PVAやMC、アガーなどから選ばれる1種以上を用いることが好ましい。
0024
なお、金属イオンを含まない非イオン水溶性高分子を用いる理由は、カリウムやナトリウムなどの金属イオンが残留すると、所望の複合酸化物の結晶構造中に取り込まれるか、あるいは新たな化合物が生成してしまうからである。
0025
Liの硝酸塩としては、LiNOが用いられ、Mnの硝酸塩としては、Mn(NO・6HO、Niの硝酸塩としては2価のNi(NOが用いられる。
0026
本発明方法において、複合酸化物は、以下のような反応過程を経て合成されるものと考えられる。
1 まず、リチウム、マンガンおよびニッケルの混合硝酸塩水溶液のカチオンが、加熱による水分の蒸発に伴い、徐々にカチオン担持体に担持・固定され、反応し易い均一な状態となる。
一方で、混合水溶破中の硝酸イオンは、カチオン担持体と加熱により反応してニトロ化合物を生成する。
そして、上記のカチオンを担持したニトロ化合物は、さらなる加熱により熱分解,燃焼して発熱する。この時の熱エネルギーによって、カチオンどうしが反応して、スピネル型複合酸化物、またはスピネル型複合酸化物の前駆体となる。
0027
【実施例】
(実施例1)この実施例による複合酸化物は、5V級のリチウム電池の正極材料として利用されるLiMn1.5Ni0.5である。この酸化物の調整は、まず、LiNO:0.1モルとNi(NO・8HO:0.05モルとMn(NO・6HO:0.15モルを純水10mlに溶解し、混合水溶液とした。この混合水溶液にカチオン担持体としてPVAの20%溶液を33g添加し、その後、150℃の乾燥器に移し、2時間加熱乾燥したところ、黒色粉末が得られた。この粉末をX線回折による同定を行ったところ、LiMn1.5Ni0.5単一相であることが確認できた。さらに、上記加熱乾燥後に、温度700℃で5時間の焼成を行い、その焼成粉末をX繰回折によって同定した結果、さらに結晶性の高いLiMn1.5Ni0.5が得られたことを確認した(図1参照)。
0028
(比較例1)比較のために、従来の粉末焼結法(固相法)によって実施例1と同一目標組成になるようにLiCO粉末:0.05モル,粒径2mmと、MnO粉末:0.15モル,粒径20μmと、NiO粉末:0.05モル,粒径2μmの混合粉末を撹拌器で1時間撹拌混合し、その後、焼成炉で、750℃で10時間焼成してリチウム・マンガン・ニッケル複合酸化物を得た。得られた粉末をX繰回折によって同定したところ、リチウム・マンガン・ニッケルのスピネル構造ではあったが、目標としたLiMn1.5Ni0.5の単一相が得られておらず、組成が異相としてNiOが存在する結晶性の低いスピネル型複合酸化物であったことがわかった。
0029
(実施例2) 実施例1で得られた黒色粉末と比較例1で得られた粉末とを正極材とする二次電池を作製した。この二次電池は、実施例1と比較例1の正極材を正極として、金属リチウムを負極としてポリエチレン製のセパレータを介して対向させ、三極式のガラスセルに装入し、エチレンカーボネートとジメチルカーボネートの非水電解液を注入して2つのリチウム・マンガン・ニッケル二次電池をそれぞれ作製したものである。作製した電池の評価を行うために、放電容量維持率試験及び充放電サイクル試験を行った。本発明のスピネル型複合酸化物(実施例1)を正極とした二次電池の試験結果を図3、4に、比較例の複合酸化物(比較例1)の結果を図5,6に示す。図3から、本発明の放電容量は、初期充放電容量が130mAh/gであるのに対し、同5の初期充放電容量は85mAh/g程度であり、スピネル単一相の欠陥、結晶欠陥の存在が放電容量に影響を与えていることがわかる。また、図4から本発明のスピネル複合酸化物を用いた二次電池は、125mAh/g以上の放電容量が4.5Vを示し、かつ、[電位/初期放電電位(a)と末期放電電位(b)の差]すなわち電位の平坦性が0.1V以下であり、充分な電池実用性を示したのに対し、図6では、4.3V以上の高電位部分での充放電容量が50mAh/gと低く、電位平坦性も0.3Vと大きいことが確認された。
0030
【発明の効果】
以上説明したように、本発明にかかるスピネル型リチウムマンガン複合酸化物は、単一相で結晶欠陥のない接合酸化物であり、二次電池用正極材として、放電容量が高く、かつ、電位平坦性とサイクル特性とに優れ、しかも高電位領域での繰り返し充放電による電圧低下が少なく、高放電容量を維持できるという効果を有する。また、本発明によれば、結晶欠陥の少ない、単一相のスピネル型複合酸化物を簡便に製造することができる。
DETAILED DESCRIPTION OF THE INVENTION
[0001]
[Industrial applications]
The present invention relates to a lithium cathode material for a secondary battery and a method for producing the same, and particularly relates to a cathode material for a secondary battery comprising a spinel-type lithium manganese composite oxide having a potential of 5 V and a large discharge capacity, and a method for producing the same. It is a proposal.
[0002]
[Prior art]
In recent years, with the rapid spread of mobile phones, the production of 4V-class lithium ion secondary batteries has increased rapidly. Lithium-ion rechargeable batteries generate 4V electromotive force, and the electromotive force is about three times higher than rechargeable batteries such as nickel-metal hydride batteries. That's why. As a positive electrode material of a lithium ion secondary battery, a spinel-type lithium manganese oxide has been developed in consideration of resources, safety, and the like.
[0003]
Recently, studies for further increasing the electromotive force of this lithium secondary battery have been actively conducted, and a positive electrode material for a lithium secondary battery having a 5V-class electromotive force has been studied. This secondary battery is a composite of a spinel-type lithium manganese composite oxide and a transition metal element such as nickel and chromium, and is known to provide an electromotive force of 4.5 V or more. However, although the composite oxide containing the transition metal element certainly generates an electromotive force of 4.5 V or more, there is a problem that the discharge capacity is expressed only about 1/3 of the capacity.
[0004]
For example, a lithium manganese secondary battery using a spinel-type lithium manganese composite oxide containing a transition metal as a positive electrode active material should theoretically exhibit a discharge capacity of 130 mAh / g or more. However, in reality, only about 1/3 of the discharge capacity is obtained. It is presumed that the reason for this is probably due to the formation of crystal defects or foreign phases due to powder sintering.
[0005]
On the other hand, conventionally, as a positive electrode active material of a lithium secondary battery exhibiting an electromotive force of 4.5 V or more, chromium is an essential additive component of spinel-type lithium manganese composite oxide, and nickel or cobalt is further added. A positive electrode active material of a capacity spinel type lithium manganese composite oxide has been proposed (JP-A-11-73962). This composite oxide basically has a composition of LiMn 1.6 Ni 0.4 O 4 or LiMn 1.2 Cr 0.8 O 4 and contains nickel or chromium to have a composition of 4.5 V or more ( It is characterized in that it has an electromotive force of 5V class and at the same time has little decrease in potential. However, in order not to lower the discharge capacity, it is considered necessary to set the composition to LiMn 1.5 Ni 0.5 O 4 or LiMn 1.0 Cr 1.0 O 4 . That is, in the case of a lithium-manganese-nickel composite oxide, nickel is about 0.5 for a manganese content of 1.5 , and in the case of a lithium manganese chromium composite oxide, chromium is about 1 for a manganese content of 1 . What is necessary is just to produce an oxide compounded at a ratio of the order. However, a method such as a conventional general powder mixing and sintering method (solid phase method) and a method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 11-73962 are difficult to obtain a single phase, and even if the method is not sufficient. Even when a single phase was obtained by causing a reaction, it was difficult to obtain a composite oxide having no crystal defects. Since only what is called low crystallinity was obtained, the potential flatness was poor and only those with poor cycle characteristics were obtained.
[0006]
[Problems to be solved by the invention]
A first object of the present invention is to provide a 5V class spinel lithium manganese composite oxide having excellent potential flatness, and excellent discharge characteristics and cycle characteristics in a high potential portion. A second object of the present invention is to provide a spinel-type composite oxide containing Ni as a transition metal having a LiMn 1.5 Ni 0.5 O 4 structure having a single phase and no crystal defects while ensuring high uniform reactivity. It is to propose a manufacturing method.
[0007]
[Means for Solving the Problems]
The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, the problems of the prior art stem mainly from the fact that they are manufactured by a powder mixed sintering method (solid phase method). Based on this finding, the present inventors have conceived of synthesizing the composite oxide by a liquid phase synthesis method (self-reaction method). As a result, we succeeded in developing a spinel-type composite oxide having the following composition.
[0008]
That is, in the present invention, the composition formula is LiMn 1.5 Ni 0.5 O 4 , and the potential flatness (potential width / initial discharge potential−discharge final potential) at a high potential level of 4.5 V or more is 0.1 V. A positive electrode material for a 5V-class lithium secondary battery, which has the following characteristics and a discharge capacity of at least 125 mAh / g.
[ 0009 ]
The positive electrode material can be manufactured by applying the following manufacturing method. That is, a non-ionic water-soluble polymer containing no metal ion is added as a cation carrier to a mixed aqueous solution of a nitrate of Li and a nitrate of Mn and Ni, and thereafter, the water of the mixed aqueous solution is removed by heating. A method for producing a cathode material for a 5V-class lithium secondary battery, comprising synthesizing a LiMn 1.5 Ni 0.5 O 4 spinel-type composite oxide having a discharge capacity of 125 mAh / g or more.
[ 0010 ]
In addition, in the said manufacturing method, after adding and mixing a nonionic water-soluble polymer as a cation carrier to a nitrate mixed aqueous solution of Li, Mn, and Ni, and then removing water to obtain a composite oxide powder, It is preferable to synthesize by reheating at a high temperature of 400 ° C. or higher.
[ 0011 ]
In the present invention, as the nonionic water-soluble polymer, it is desirable to use a polymer compound having an OH group as an organic substance which is easily nitrated. It is desirable that the mixed aqueous solution is heated at a temperature of 100 to 200 ° C. to remove moisture, and the heat treatment of the composite oxide powder at a high temperature is 400 ° C. or higher and lower than the decomposition temperature of the composite oxide. It is desirable to be performed in a temperature range.
[ 0012 ]
BEST MODE FOR CARRYING OUT THE INVENTION
Secondary battery positive electrode material according to the present invention is a single phase, a spinel type composite oxide having a composition formula of no crystal defects LiMn 1.5 Ni 0.5 O 4, a spinel-type composite oxide of this kind Is a composite oxide having a potential of 5 V, a discharge capacity at a high potential of 4.5 V or more, a discharge capacity of 125 mAh / g or more, and a flatness of potential of 0.1 V or less, and a very small decrease in potential. There is a feature.
[ 0013 ]
The reason why the composition of the spinel-type composite oxide according to the present invention is limited to that of LiMn 1.5 Ni 0.5 O 4 is that a potential of 5 V class is exhibited and a theoretical maximum discharge capacity can be obtained. It is.
[ 0014 ]
The oxide of the above composition formula is preferably composed of a single phase having high crystallinity . This is because such a single-phase composite oxide has a high discharge capacity and excellent potential flatness.
[ 0015 ]
In the above spinel-type composite oxide according to the present invention, the above-mentioned potential flatness refers to [potential width / initial discharge potential−end-of-discharge potential], and the smaller this value is, the earlier the initial discharge in the plateau region (see FIG. 4 (a) and at the end of discharge ((b) in FIG. 4), the decrease in potential is small. When a battery is formed using such a battery positive electrode material having a small potential flatness, The reason why the voltage drop due to repetition of charge and discharge is reduced is that the potential flatness is limited to 0.1 V or less because a battery with a high energy density and a small voltage fluctuation can be obtained.
[ 0016 ]
Next, the spinel-type composite oxide according to the present invention must have a discharge capacity of 125 mAh / g or more in a high potential portion where a potential of 4.5 V or more is developed. The reason is that when a spinel-type composite oxide having such a high discharge capacity is used as a cathode material for a lithium secondary battery, the lithium-manganese-nickel composite oxide has almost the maximum capacity (high discharge capacity, This is because it is effective in exhibiting the effect that a high potential can be exhibited, and that the high potential causes a small voltage drop due to discharge. The nickel in such a spinel-type composite oxide does not need to be exactly 0.5, and may have a slight composition width . In addition, this composite oxide can be used not only as a 5V-class positive electrode material but also as a mixture with a 4V-class lithium secondary battery positive electrode material and the like.
[ 0017 ]
Such a spinel composite oxide of the present invention can be produced by a liquid phase synthesis method (self-reaction method) previously proposed by the present applicant (Japanese Patent Application No. 11-279347). The feature of this composite oxide production method according to the prior proposal is that a nonionic water-soluble polymer is added as a cation carrier to a mixed aqueous solution of a nitrate of lithium, manganese, nickel or a transition metal element capable of forming a nitrate. Then, by removing water by heating at a relatively low temperature, a reaction occurs spontaneously to synthesize a composite oxide in a short time.
[ 0018 ]
In such a production method, the heating temperature for dehydration is set to 80 ° C. or higher. The reason for this is that if the temperature is lower than 80 ° C., decomposition and combustion of the nitro compound do not occur, and a composite oxide cannot be synthesized. On the other hand, the upper limit temperature may be a temperature at which water evaporates and the nitro compound decomposes. Therefore, the upper limit temperature is desirably within 250 ° C. depending on the water-soluble polymer used. More preferably, a temperature range of 100 to 200 degrees is good.
[ 0019 ]
By heating in the above temperature range, two or more kinds of cations in the mixed aqueous solution are fixed in a state of being uniformly mixed with the cation carrier as the water evaporates. On the other hand, nitrate ions react with the cation carrier by this heating to generate nitro compounds. As a result, if the heating is continued, the nitro compound is decomposed and burned, and the cations react with each other due to the thermal energy, and nickel is easily synthesized into a lithium-manganese-nickel composite oxide of 0.5 or more. Will be.
[ 0020 ]
The composite oxide powder thus obtained is fine and has a large specific surface area. However, the oxide powder immediately after synthesis contains C and N as impurities, and it may be desirable to remove these impurities.
[ 0021 ]
Accordingly, in the present invention , as a method for producing a composite oxide composed of a single-phase crystal (and a crystal having no lattice defects) of a lithium-manganese-nickel composite oxide from which such impurities have been removed, the above-described composite oxide is used. In addition to the synthesis reaction of the product, it is preferable to further heat-treat (fire) the synthesized composite oxide. As described above, this reheat treatment is desirably performed at 400 ° C. or higher and lower than the decomposition temperature of the composite oxide. As described above, the temperature of the re-heat treatment is limited only by heating at a relatively low temperature (100 ° C. to 200 ° C.), since distortion may remain in the crystal arrangement. This is because it is necessary to treat the composite oxide which is almost completely crystallized by controlling the defects and defects.
[ 0022 ]
In the above production method, nitrate is used because nitrate ion reacts with a nonionic polymer serving as a cation carrier to generate a nitro compound, and decomposes at a low temperature with another anion. This is because the removal even if (sulfate ions, chlorine ions, etc.) product as compared to the remained is facilitated. In the method of the present invention, the reason for using a cation carrier is that, if the cation carrier is not added, nitrate of each element is separated and precipitated due to a difference in solubility, due to mixing by heating and evaporation of water in an aqueous solution. Because.
[ 0023 ]
The cation carrier is a substance having a function of supporting and fixing cations, and may be a nonionic water-soluble polymer containing no metal ions. For example, starchy substances such as wheat starch, seaweed cheeks such as mannan (konjac), agar (agar), plant sticky substances such as trolley mallow and gum arabic, sticky substances derived from microorganisms such as dextran, and proteins such as glue and gelatin. Natural polymers, cellulosics such as viscose and methylcellulose (MC), semisynthetic products such as starch such as soluble starch and dialdehyde starch, and synthetic products such as polyvinyl alcohol (PVA). is there. Among them, it is preferable to use one or more kinds of organic substances which are easily nitrated and have an OH group, for example, selected from PVA, MC, agar and the like.
[ 0024 ]
The reason for using a nonionic water-soluble polymer that does not contain metal ions is that if metal ions such as potassium and sodium remain, they are taken into the crystal structure of the desired composite oxide or a new compound is formed. It is because.
[ 0025 ]
LiNO 3 is used as the nitrate of Li, Mn (NO 3 ) 2 .6H 2 O is used as the nitrate of Mn, and divalent Ni (NO 3 ) 2 is used as the nitrate of Ni.
[ 0026 ]
In the method of the present invention, the composite oxide is considered to be synthesized through the following reaction process.
1. First, the cations of the mixed nitrate aqueous solution of lithium, manganese and nickel are gradually supported and fixed on the cation carrier as the water evaporates due to the heating, resulting in a uniform state that is easy to react.
On the other hand, nitrate ions in the mixed aqueous solution react with the cation carrier by heating to produce a nitro compound.
(3 ) The nitro compound carrying the cation is thermally decomposed and burned by further heating to generate heat. The heat energy at this time causes the cations to react with each other to form a spinel-type composite oxide or a precursor of the spinel-type composite oxide.
[ 0027 ]
【Example】
(Example 1) The composite oxide according to this example is LiMn 1.5 Ni 0.5 O 4 used as a positive electrode material of a 5V class lithium battery. The adjustment of the oxides, first, LiNO 3: 0.1 mol of Ni (NO 3) 2 · 8H 2 O: 0.05 mol of Mn (NO 3) 2 · 6H 2 O: 0.15 mol of pure It was dissolved in 10 ml of water to obtain a mixed aqueous solution. To this mixed aqueous solution, 33 g of a 20% PVA solution as a cation carrier was added, and then transferred to a dryer at 150 ° C. and dried by heating for 2 hours to obtain a black powder. When this powder was identified by X-ray diffraction, it was confirmed that the powder was a single phase of LiMn 1.5 Ni 0.5 O 4 . Furthermore, after the above-mentioned heating and drying, calcination was performed at a temperature of 700 ° C. for 5 hours, and the calcination powder was identified by X-ray diffraction. As a result, LiMn 1.5 Ni 0.5 O 4 having higher crystallinity was obtained. Was confirmed (see FIG. 1).
[ 0028 ]
(Comparative Example 1) For comparison, a conventional powder sintering method (solid phase method) was used to obtain the same target composition as in Example 1 so that Li 2 CO 3 powder: 0.05 mol, particle size 2 mm, and MnO 2 2 powder: 0.15 mol, particle size: 20 μm, and NiO powder: 0.05 mol, particle size: 2 μm mixed powder were stirred and mixed for 1 hour with a stirrer, and then fired at 750 ° C. for 10 hours in a firing furnace. Thus, a lithium-manganese-nickel composite oxide was obtained. When the obtained powder was identified by X-ray diffraction, it had a spinel structure of lithium, manganese, and nickel, but the target single phase of LiMn 1.5 Ni 0.5 O 4 was not obtained. It was found that the composition was a spinel-type composite oxide having low crystallinity in which NiO was present as a heterogeneous phase.
[ 0029 ]
(Example 2) A secondary battery using the black powder obtained in Example 1 and the powder obtained in Comparative Example 1 as positive electrode materials was produced. This secondary battery was placed in a three-electrode glass cell, using the positive electrode materials of Example 1 and Comparative Example 1 as positive electrodes, metallic lithium as a negative electrode, and a polyethylene separator, and charging the mixture with ethylene carbonate and dimethyl carbonate. Two lithium-manganese-nickel secondary batteries were produced by injecting a non-aqueous electrolyte of carbonate. In order to evaluate the manufactured battery, a discharge capacity retention ratio test and a charge / discharge cycle test were performed. 3 and 4 show the test results of the secondary battery using the spinel-type composite oxide of the present invention (Example 1) as the positive electrode, and FIGS. 5 and 6 show the results of the composite oxide of the comparative example (Comparative Example 1). . From FIG. 3, the initial charge / discharge capacity of the discharge capacity of the present invention is 130 mAh / g, whereas the initial charge / discharge capacity of Example 5 is about 85 mAh / g. It can be seen that the presence affects the discharge capacity. Also, from FIG. 4, the secondary battery using the spinel composite oxide of the present invention has a discharge capacity of 125 Vh / g or more of 4.5 V, and [potential / initial discharge potential (a) and terminal discharge potential ( b) difference], that is, the flatness of the potential was 0.1 V or less, indicating sufficient battery practicability, whereas in FIG. 6, the charge / discharge capacity at the high potential portion of 4.3 V or more was 50 mAh /. g, and the potential flatness was as large as 0.3 V.
[ 0030 ]
【The invention's effect】
As described above, the spinel-type lithium manganese composite oxide according to the present invention is a junction oxide having a single phase and no crystal defects, and has a high discharge capacity and a flat potential as a positive electrode material for a secondary battery. In addition, it has an effect of being excellent in performance and cycle characteristics, and has a small voltage drop due to repeated charging and discharging in a high potential region, and can maintain a high discharge capacity. Further, according to the present invention, a single-phase spinel-type composite oxide having few crystal defects can be easily produced.

JP36957299A 1999-12-27 1999-12-27 Positive electrode material for 5 v-class lithium secondary battery and manufacturing method therefor Pending JP2001185148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36957299A JP2001185148A (en) 1999-12-27 1999-12-27 Positive electrode material for 5 v-class lithium secondary battery and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36957299A JP2001185148A (en) 1999-12-27 1999-12-27 Positive electrode material for 5 v-class lithium secondary battery and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2001185148A JP2001185148A (en) 2001-07-06
JP2001185148A5 true JP2001185148A5 (en) 2006-11-30

Family

ID=18494776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36957299A Pending JP2001185148A (en) 1999-12-27 1999-12-27 Positive electrode material for 5 v-class lithium secondary battery and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2001185148A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581333B2 (en) * 2003-04-01 2010-11-17 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
CN1321881C (en) * 2005-09-23 2007-06-20 北京科技大学 Method for preparing Li, Ni, Mn oxide material by adopting low-heat solid phase reaction
KR101989760B1 (en) 2010-02-23 2019-06-14 도다 고교 가부시끼가이샤 Positive electrode active material precursor particulate powder and positive electrode active material particulate powder, and non-aqueous electrolyte secondary battery
JP6060177B2 (en) * 2011-12-14 2017-01-11 ダウ グローバル テクノロジーズ エルエルシー Lithium battery electrode containing lithium oxalate
JP6061144B2 (en) * 2013-07-22 2017-01-18 トヨタ自動車株式会社 Method for producing non-aqueous electrolyte secondary battery
CN105958039B (en) * 2016-07-12 2018-10-09 广东工业大学 A kind of preparation method and high-voltage lithium ion battery of modified nickel lithium manganate cathode material
JP6748557B2 (en) 2016-10-26 2020-09-02 太陽誘電株式会社 All solid state battery
US11056716B2 (en) 2017-11-02 2021-07-06 Taiyo Yuden Co., Ltd. All solid battery
JP7027125B2 (en) 2017-11-02 2022-03-01 太陽誘電株式会社 All-solid-state battery and its manufacturing method
EP4234488A1 (en) 2020-11-05 2023-08-30 Kaneka Corporation Positive electrode composite active substance, lithium ion secondary battery, composite active substance, method for producing positive electrode composite active substance, and method for producing lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4253142B2 (en) Lithium manganese composite oxide for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
KR100694567B1 (en) Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
KR100326455B1 (en) Positive active material for lithium secondary battery and method of preparing the same
EP1837937B1 (en) Lithium manganese-based composite oxide and method for preparing the same
US8563174B2 (en) Secondary battery material and synthesis method
KR19990084973A (en) Cathode Active Material for Lithium Secondary Battery and Manufacturing Method Thereof
JP3461800B2 (en) Lithium manganese nickel composite oxide and method for producing the same
JP3974396B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2001185148A5 (en)
JP2001185148A (en) Positive electrode material for 5 v-class lithium secondary battery and manufacturing method therefor
JP7163624B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode active material
JP2001508391A (en) Preparation method of lithium manganese oxide
KR100262852B1 (en) A positive active material lixmymn-2-yo4 and its manufacturing method
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
JP2001064020A (en) Production of lithium manganate
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR101598186B1 (en) Synthesizing method of complex metal oxides for cathode active materials and electrode, lithium secondary battery, capacitor thereof
JP4246283B2 (en) Lithium-containing composite metal oxide, its production method and use
KR100393194B1 (en) A process for preparing LixMn2O4 Powder used for cathode of lithium secondary battery
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
KR100467325B1 (en) Synthesis of layered lithium-chromium-manganese oxides as cathode material for lithium batteries
KR100564748B1 (en) Cathode compositions for lithium batteries and method for preparing the same
KR100237311B1 (en) Method of manufacturing cathode active mass and made thereby
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide