JP2001257003A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2001257003A
JP2001257003A JP2000067971A JP2000067971A JP2001257003A JP 2001257003 A JP2001257003 A JP 2001257003A JP 2000067971 A JP2000067971 A JP 2000067971A JP 2000067971 A JP2000067971 A JP 2000067971A JP 2001257003 A JP2001257003 A JP 2001257003A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
lithium
boron compound
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000067971A
Other languages
Japanese (ja)
Inventor
Kazuya Okabe
一弥 岡部
Ryuji Shiozaki
竜二 塩崎
Shuchiku Ko
修竹 黄
Akihiro Fujii
明博 藤井
Hiroshi Yufu
宏 油布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2000067971A priority Critical patent/JP2001257003A/en
Publication of JP2001257003A publication Critical patent/JP2001257003A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery, with a carbon material used as a negative electrode and lithium manganate as a positive electrode, which has an excellent charge/discharge characteristics with large capacity and high energy density with little irreversible capacity even at high temperature, with reduced cycle capacity deterioration of the negative and positive electrodes. SOLUTION: To attain above purpose, a positive electrode is made to include a soluble boron compound in its electrolyte, the boron compound including at least either B2O3, H3BO3, HBO2, H2B4O7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池に
関するものであって、さらに詳しくは、非水電解質電池
に用いる正極活物質に関する。。
The present invention relates to a lithium secondary battery, and more particularly, to a positive electrode active material used for a non-aqueous electrolyte battery. .

【0002】[0002]

【従来の技術】現在、4V級の作動電圧を示すリチウム
二次電池の正極活物質として、LiCoO2、LiNi
2等のα−NaFeO2構造を有する含リチウム酸化物
や、LiMn24等のスピネル構造を有する含リチウム
酸化物等が用いられている。中でも、スピネル構造を有
するLiMn24は、製造コストが低く、安全性に優れ
た正極活物質である。一方、負極活物質には、リチウム
金属、リチウム合金、炭素材料などが用いられている。
炭素材料の中でも、特に黒鉛化の進んだグラファイトを
用い、例えばマンガン酸リチウムを正極に用いると、平
坦な作動電池電圧が得られるので、各種携帯機器の作動
時間を長くすることができる利点がある。
2. Description of the Related Art LiCoO 2 and LiNi are currently used as a positive electrode active material of a lithium secondary battery exhibiting an operating voltage of 4 V class.
Lithium-containing oxides having an α-NaFeO 2 structure such as O 2 and lithium-containing oxides having a spinel structure such as LiMn 2 O 4 are used. Among them, LiMn 2 O 4 having a spinel structure is a positive electrode active material with low manufacturing cost and excellent safety. On the other hand, a lithium metal, a lithium alloy, a carbon material, or the like is used as the negative electrode active material.
Among the carbon materials, if graphite is used, especially graphitized graphite, for example, lithium manganate is used for the positive electrode, a flat operating battery voltage can be obtained, and thus there is an advantage that the operating time of various portable devices can be extended. .

【0003】しかしながら、正極にLiMn24を用
い、電解液にLiPF4等のハロゲン含有リチウム塩を
用いた場合、前記リチウム塩が微量水分と反応し、フッ
素化水素酸などのハロゲン化水素酸を発生する。このハ
ロゲン化水素酸は、正極のLiMn24を溶解し、負極
の炭素表面にMnF2等の抵抗の高い被膜を形成し、サ
イクル性能を低下させる原因となっていた。
However, the LiMn 2 O 4 used in the positive electrode, when using a halogen-containing lithium salt such as LiPF 4 in the electrolytic solution, the lithium salt reacts with trace water, hydrohalic acids such as hydrofluoric acid Occurs. This hydrohalic acid dissolves LiMn 2 O 4 of the positive electrode, forms a high-resistance film such as MnF 2 on the carbon surface of the negative electrode, and causes a reduction in cycle performance.

【0004】一方、マンガン酸リチウム材料のサイクル
性能を改良するため、特開平4−233161号公報、
特開平5−21067号公報、特開平6−187993
号公報には、スピネル構造を有するマンガン酸リチウム
のMnの一部を他の元素で置換する技術が示されてい
る。しかしながら、特に電池を高温で放置しておくと、
Mnが電解液に溶出し、負極において高抵抗のMnF2
析出が生じるといった上記問題を解決するものではなか
った。
On the other hand, in order to improve the cycle performance of lithium manganate materials, Japanese Patent Application Laid-Open No. 4-233161 discloses
JP-A-5-21067, JP-A-6-187793
Japanese Patent Application Laid-Open Publication No. H11-163873 discloses a technique in which part of Mn of lithium manganate having a spinel structure is replaced with another element. However, especially when batteries are left at high temperatures,
Mn is eluted into the electrolyte, and the high resistance MnF 2
It did not solve the above-mentioned problem that precipitation occurred.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記問題点
に鑑みなされたものであり、炭素材料を負極に用い、マ
ンガン酸リチウムを正極に用いた電池において、負極及
び正極のサイクル容量劣化を改良し、高温においても高
容量、高エネルギー密度で、不可逆容量の少ない充放電
サイクル特性の優れたリチウム二次電池を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and in a battery using a carbon material for a negative electrode and lithium manganate for a positive electrode, deterioration of cycle capacity of the negative electrode and the positive electrode is reduced. It is an object of the present invention to provide a lithium secondary battery which is improved, has a high capacity and a high energy density even at a high temperature, and has excellent charge / discharge cycle characteristics with little irreversible capacity.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、正極にリチウム含有マンガン酸化物を用
いたリチウム二次電池において、前記正極は、電解液に
溶解可能なホウ素化合物を含むことを特徴とするリチウ
ム二次電池である。また、前記ホウ素化合物が、B
23、H3BO3、HBO2、H247から選ばれる少な
くとも1つ以上を含むホウ素化合物であることを特徴と
するリチウム二次電池である。
In order to solve the above-mentioned problems, the present invention provides a lithium secondary battery using a lithium-containing manganese oxide for a positive electrode, wherein the positive electrode contains a boron compound soluble in an electrolytic solution. It is a lithium secondary battery characterized by the above-mentioned. Further, the boron compound is represented by B
A lithium secondary battery comprising a boron compound containing at least one selected from 2 O 3 , H 3 BO 3 , HBO 2 , and H 2 B 4 O 7 .

【0007】負極に炭素材料を用いた場合、炭素材料へ
のリチウムの吸蔵・放出反応は、電解液と炭素表面との
間に生じる被膜状態によって大きく支配される。リチウ
ム金属負極をモデルに説明すると、リチウム金属表面
に、緻密でイオン導伝性の高い被膜があると、優れた電
池特性を示すが、逆に厚くイオン伝導性の低い被膜があ
ると、電池のレート特性や、サイクル特性が悪くなる。
ここで、前者の被膜成分は炭酸リチウムや酸化リチウム
等であり、後者の被膜成分はフッ化リチウムやMnF2
等であることが知られている。同様のことが炭素材料の
表面に生じる被膜についても言える。即ち、炭素材料の
界面抵抗を増大させる要因の一つに、炭素材料表面に、
フッ化リチウムやMnF2等のイオン伝導度の低い被膜
が形成されることが挙げられる。
When a carbon material is used for the negative electrode, the reaction of absorbing and releasing lithium into and from the carbon material is largely governed by the state of the film formed between the electrolyte and the carbon surface. Explaining the lithium metal negative electrode as a model, if a lithium metal surface has a dense and highly ion-conductive coating, it exhibits excellent battery characteristics. The rate characteristics and cycle characteristics deteriorate.
Here, the former film component is lithium carbonate, lithium oxide, or the like, and the latter film component is lithium fluoride or MnF 2.
And so on. The same can be said for a coating formed on the surface of a carbon material. That is, one of the factors that increase the interfacial resistance of the carbon material is that the carbon material surface
For example, a film having low ionic conductivity such as lithium fluoride and MnF 2 may be formed.

【0008】本発明者らは、上記の点について研究を進
めた結果、正極が、電解液に溶解可能なホウ素化合物を
含み、前記ホウ素化合物がB23、H3BO3、HB
2、H247から選ばれる少なくとも1つ以上を含む
ことによって、サイクル寿命性能が大幅に改善されるこ
とを見いだした。
The present inventors have conducted research on the above points, and as a result, the positive electrode contains a boron compound soluble in an electrolytic solution, and the boron compound is composed of B 2 O 3 , H 3 BO 3 , HB
By including at least one selected from O 2 and H 2 B 4 O 7, it was found that the cycle life performance was significantly improved.

【0009】ホウ素化合物を正極に添加する方法として
は、正極活物質であるリチウム含有マンガン酸化物にH
3BO3を混合してから電極を作成する方法が挙げられ
る。しかしながらH3BO3は、リチウムと反応する水素
原子を多く含み、電池内において不可逆な副反応を起こ
す虞れがあるため、正極を100℃〜140℃、あるい
はそれ以上の温度で熱処理を施すことが好ましい。前記
熱処理によって、H3BO3はHBO2やH247等に変
化するものと考えられる。
As a method for adding a boron compound to a positive electrode, a lithium-containing manganese oxide, which is a positive electrode active material, is added with H
3 How to create the electrodes from a mixture of BO 3 and the like. However, H 3 BO 3 contains a large amount of hydrogen atoms that react with lithium, and may cause irreversible side reactions in the battery. Therefore, heat treatment of the positive electrode at a temperature of 100 ° C. to 140 ° C. or higher is required. Is preferred. By the heat treatment, H 3 BO 3 is considered to change the HBO 2 and H 2 B 4 O 7 and the like.

【0010】また、前記熱処理温度を300℃〜350
℃以上、あるいはそれ以上の温度とするとさらに好まし
い。この場合、H3BO3はB23に形態変化すると考え
られ、前記副反応はさらに抑制される。
Further, the heat treatment temperature is set at 300.degree.
It is more preferable to set the temperature to not less than ℃ or more. In this case, it is considered that H 3 BO 3 changes its form to B 2 O 3 , and the side reaction is further suppressed.

【0011】また、前記熱処理温度を400℃〜700
℃とすると最も好ましい。この場合、H3BO3はB23
に形態変化し、B23の一部はさらに、リチウム含有マ
ンガン酸化物のMnがBと置換する反応に寄与する。
Further, the heat treatment temperature is set at 400.degree.
C is most preferable. In this case, H 3 BO 3 becomes B 2 O 3
And a part of B 2 O 3 further contributes to a reaction in which Mn of the lithium-containing manganese oxide substitutes for B.

【0012】但し、結着剤等の有機物を含む電極状態で
熱処理を行う場合には、前記結着剤等の有機物の変質を
避けるため、熱処理温度を100℃〜200℃とするこ
とが好ましい。
However, when heat treatment is performed in an electrode state containing an organic substance such as a binder, the heat treatment temperature is preferably set to 100 ° C. to 200 ° C. in order to avoid deterioration of the organic substance such as the binder.

【0013】B23は、空気中の水分と反応しやすいた
め、前記熱処理は、できるだけ製造プロセスの後段で行
うことが好ましい。
Since B 2 O 3 easily reacts with the moisture in the air, it is preferable that the heat treatment is performed as late as possible in the manufacturing process.

【0014】しかし実際には、本発明の効果を得るため
に必要なホウ素化合物の添加量は微量であるので、上述
したホウ素化合物の組成によって、電池性能はほとんど
左右されない。
However, in practice, since the amount of the boron compound required to obtain the effects of the present invention is very small, the battery performance is hardly influenced by the composition of the boron compound.

【0015】[0015]

【発明の実施の形態】本発明は、活物質の出発原料、製
造方法、正極、負極、電解質、セパレータ及び電池形
状、その他に関する下記の記述により限定されるもので
はない。
DETAILED DESCRIPTION OF THE INVENTION The present invention is not limited by the following description of the starting material of the active material, the production method, the positive electrode, the negative electrode, the electrolyte, the shape of the separator and the battery, and the like.

【0016】本発明電池に用いる負極炭素材料として
は、リチウムを吸蔵・放出可能な炭素材料であればよ
く、例えばエックス線回折法より見積もられる面間隔
(d002)が0.3354〜0.3369nmで、c軸
方向の結晶子の大きさ(Lc)が10nm以上である炭
素粒子が好ましい。
The negative electrode carbon material used in the battery of the present invention may be any carbon material capable of occluding and releasing lithium. For example, when the plane spacing (d 002 ) estimated by X-ray diffraction is 0.3354-0.3369 nm. And carbon particles having a crystallite size (Lc) of 10 nm or more in the c-axis direction are preferable.

【0017】正極活物質としては、LiMn24のMn
の部位を他元素で置換した酸化物を使用してもよい。前
記他元素としては、Li,B,V,Al,Ni,Co,
Mg,Cr,Tb等の元素が好適に置換が可能である。
As the positive electrode active material, Mn of LiMn 2 O 4
An oxide obtained by substituting the site with another element may be used. The other elements include Li, B, V, Al, Ni, Co,
Elements such as Mg, Cr, and Tb can be suitably substituted.

【0018】セパレータとしては、イオンの透過度が優
れ、機械的強度のある絶縁性薄膜を用いることができ
る。耐有機溶剤性と疎水性の点から、ポリプロピレン、
ポリエチレン等オレフィン系ポリマー、ポリフッ化ビニ
リデン、ポリテトラフルオロエチレン等を原料とするシ
ート、微孔膜、不織布等が用いられる。セパレータの孔
径は、一般に電池に用いられる範囲のものであり、例え
ば0.01〜1μmである。また、その厚さについても
同様に、一般に電池に用いられる範囲のものであり、例
えば20〜40μmである。
As the separator, an insulating thin film having excellent ion permeability and mechanical strength can be used. In terms of organic solvent resistance and hydrophobicity, polypropylene,
Sheets, microporous membranes, nonwoven fabrics and the like made from olefin polymers such as polyethylene, polyvinylidene fluoride, polytetrafluoroethylene and the like are used. The pore size of the separator is in a range generally used for a battery, and is, for example, 0.01 to 1 μm. Similarly, the thickness is in the range generally used for batteries, for example, 20 to 40 μm.

【0019】電解質支持塩としては、高いリチウムイオ
ン伝導性を示すLiPF6、LiBF4、LiAsF6
LiOSO2CF3等を用いることができる。これら含フ
ッ素電解質塩は、非水電解液中に通常0.6M〜2.0
M好ましくは0.8M〜1.2Mの濃度に溶解して使用
される。
Examples of the electrolyte supporting salt include LiPF 6 , LiBF 4 , LiAsF 6 , which exhibit high lithium ion conductivity.
LiOSO 2 CF 3 or the like can be used. These fluorinated electrolyte salts are usually contained in a non-aqueous electrolyte at a concentration of 0.6M to 2.0M.
M, preferably dissolved in a concentration of 0.8M to 1.2M.

【0020】電解液溶媒としては、高誘電率溶媒と低粘
度溶媒を組み合わせて使用することが好ましい。高誘電
率溶媒としては、例えば、エチレンカーボネート(E
C)、プロフピレンカーボネート(PC)等の環状カー
ボネート類が好適に挙げられる。これら高誘電率溶媒は
単独で使用してもよく、また2種類以上の組み合わせで
使用してもよい。低粘度溶媒としては、例えば、ジメチ
ルカーボネート(DMC)、メチルエチルカーボネート
(MEC)、ジメチルカーボネート(DMC)などの鎖
状カーボネート類、γーブチロラクトンなどのラクトン
類が挙げられる。これら低粘度溶媒は単独で使用しても
よく、また2種類以上で組み合わせて使用してもよい。
As the electrolyte solvent, it is preferable to use a combination of a high dielectric constant solvent and a low viscosity solvent. Examples of the high dielectric constant solvent include ethylene carbonate (E
C) and cyclic carbonates such as propylene carbonate (PC) are preferred. These high dielectric constant solvents may be used alone or in combination of two or more. Examples of the low-viscosity solvent include chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC), and lactones such as γ-butyrolactone. These low viscosity solvents may be used alone or in combination of two or more.

【0021】[0021]

【実施例】以下、実施例に基づき、本発明をさらに詳細
に説明する。
The present invention will be described below in further detail with reference to examples.

【0022】(本発明電池1)酢酸リチウム二水和物、
酢酸マンガン(II)四水和物を、Li:Mnの元素比
が1.10:1.9となるように混合し、これを酢酸に
加え、熱を加えながら撹拌し、完全に溶解させた。次
に、酢酸を蒸発させ、混合塩を得た。この混合塩を空気
中500℃で仮焼成した後、850℃で本焼成した。焼
成後、粉砕し、粉末を得た。前記粉末をエックス線回折
法により分析したところ、スピネル構造を有するマンガ
ン酸リチウムが得られていることが確認された。この粒
子に対し、H3BO3をマンガン酸リチウムの0.1%重
量比加え、混合攪拌した。前記粉末を正極活物質として
用い、次のようにして図1に示す容量17mAhのコイ
ン型リチウム電池を試作した。
(Invention Battery 1) Lithium acetate dihydrate,
Manganese (II) acetate tetrahydrate was mixed such that the element ratio of Li: Mn was 1.10: 1.9, and this was added to acetic acid, stirred while applying heat, and completely dissolved. . Next, the acetic acid was evaporated to obtain a mixed salt. The mixed salt was calcined in air at 500 ° C. and then calcined at 850 ° C. After firing, the powder was pulverized to obtain a powder. When the powder was analyzed by X-ray diffraction, it was confirmed that lithium manganate having a spinel structure was obtained. H 3 BO 3 was added to the particles at a weight ratio of 0.1% of lithium manganate, and the mixture was stirred. Using the powder as a positive electrode active material, a coin-type lithium battery having a capacity of 17 mAh shown in FIG. 1 was prototyped as follows.

【0023】正極1は、前記混合粉末、アセチレンブラ
ック及びポリテトラフルオロエチレン粉末を、重量比8
5:10:5で混合し、トルエンを加えて十分混練し
た。これをローラープレスにより、厚さ0.8mmのシ
ート状に成形した。次に、前記シートを直径16mmの
円形に打ち抜き、減圧下90℃で40時間熱処理し正極
1を得た。正極1は、正極集電体6の付いた正極缶4に
圧着して用いた。
The positive electrode 1 comprises the above mixed powder, acetylene black and polytetrafluoroethylene powder in a weight ratio of 8%.
The mixture was mixed at 5: 10: 5, and toluene was added and kneaded well. This was formed into a sheet having a thickness of 0.8 mm by a roller press. Next, the sheet was punched into a circle having a diameter of 16 mm, and heat-treated at 90 ° C. for 40 hours under reduced pressure to obtain a positive electrode 1. The positive electrode 1 was used by being pressed against a positive electrode can 4 having a positive electrode current collector 6.

【0024】負極2は、人造黒鉛及びポリテトラフルオ
ロエチレン粉末を、重量比95:5で混合し、トルエン
を加えて十分混練した。これをローラープレスにより厚
み0.1mmのシート状に成形した。次に、前記シート
を直径16mmの円形に打ち抜き、減圧下200℃で1
5時間乾燥して負極2を得た。前記人造黒鉛は、平均粒
径6μm、エックス線回折法による面間隔(d002
0.337nm、c軸方向の結晶子の大きさ(Lc)が
55nmのものを用いた。負極2は、負極集電体7の付
いた負極缶5に圧着して用いた。
In the negative electrode 2, artificial graphite and polytetrafluoroethylene powder were mixed at a weight ratio of 95: 5, and toluene was added and kneaded sufficiently. This was formed into a sheet having a thickness of 0.1 mm by a roller press. Next, the sheet was punched into a circle having a diameter of 16 mm,
After drying for 5 hours, negative electrode 2 was obtained. The artificial graphite has an average particle size of 6 μm and a plane spacing (d 002 ) determined by X-ray diffraction.
0.337 nm and a crystallite size (Lc) of 55 nm in the c-axis direction were used. The negative electrode 2 was used by being pressed against a negative electrode can 5 provided with a negative electrode current collector 7.

【0025】電解液は、エチレンカーボネート及びジエ
チルカーボネートを、体積比1:1で混合した溶剤に、
LiPF6を1mol/lの濃度で溶解したものを用い
た。セパレータ3は、ポリプロピレン製微多孔膜を用い
た。上記正極1、負極2、セパレータ3及び電解液を用
い、直径20mm、厚さ1.6mmのコイン型リチウム
電池を作製した。この電池を本発明電池1とする。
The electrolytic solution is prepared by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1.
LiPF 6 dissolved at a concentration of 1 mol / l was used. As the separator 3, a microporous film made of polypropylene was used. Using the positive electrode 1, the negative electrode 2, the separator 3, and the electrolytic solution, a coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced. This battery is referred to as Battery 1 of the invention.

【0026】(本発明電池2)正極を減圧下100℃で
40時間熱処理したこと以外は、本発明電池1と同様に
して、コイン型リチウム電池を試作した。この電池を本
発明電池2とする。
(Inventive Battery 2) A coin-type lithium battery was prototyped in the same manner as in Inventive Battery 1, except that the positive electrode was heat-treated under reduced pressure at 100 ° C. for 40 hours. This battery is referred to as Battery 2 of the invention.

【0027】(本発明電池3)正極を減圧下140℃で
40時間熱処理したこと以外は、本発明電池1と同様に
して、コイン型リチウム電池を試作した。この電池を本
発明電池3とする。
(Battery 3 of the Present Invention) A coin-type lithium battery was prototyped in the same manner as Battery 1 of the present invention, except that the positive electrode was heat-treated under reduced pressure at 140 ° C. for 40 hours. This battery is referred to as Battery 3 of the invention.

【0028】(本発明電池4)正極を減圧下300℃で
40時間熱処理したこと以外は、本発明電池1と同様に
して、コイン型リチウム電池を試作した。この電池を本
発明電池4とする。
(Inventive Battery 4) A coin-type lithium battery was prototyped in the same manner as in Inventive Battery 1, except that the positive electrode was heat-treated at 300 ° C. for 40 hours under reduced pressure. This battery is referred to as Battery 4 of the invention.

【0029】(本発明電池5〜8)負極は、人造黒鉛に
代えて、厚み0.1mmの金属リチウムを用いたこと以
外は、本発明電池1〜4と同様にして電池を製作した。
この電池をそれぞれ本発明電池5〜8とする。
(Batteries 5 to 8 of the Present Invention) Batteries were produced in the same manner as the batteries of the present invention 1 to 4 except that the negative electrode was made of metal lithium having a thickness of 0.1 mm instead of artificial graphite.
The batteries are referred to as batteries 5 to 8 of the present invention, respectively.

【0030】(比較電池1)正極にH3BO3を添加しな
かったこと以外は、本発明電池1と同様にして、コイン
型リチウム電池を試作した。この電池を比較電池1とす
る。
(Comparative Battery 1) A coin-type lithium battery was prototyped in the same manner as Battery 1 of the present invention except that H 3 BO 3 was not added to the positive electrode. This battery is referred to as Comparative Battery 1.

【0031】(比較電池2)正極を減圧下300℃で4
0時間熱処理したこと以外は、比較電池1と同様にし
て、コイン型リチウム電池を試作した。この電池を比較
電池1とする。
(Comparative Battery 2) The positive electrode was heated at 300 ° C. under reduced pressure for 4 hours.
A coin-type lithium battery was prototyped in the same manner as Comparative Battery 1 except that the heat treatment was performed for 0 hour. This battery is referred to as Comparative Battery 1.

【0032】(比較電池3,4)負極は、人造黒鉛に代
えて、厚み0.1mmの金属リチウムを用いたこと以外
は、比較電池1、2と同様にして電池を製作した。この
電池をそれぞれ比較電池3,4とする。
(Comparative Batteries 3 and 4) Batteries were produced in the same manner as Comparative Batteries 1 and 2, except that 0.1-mm thick metallic lithium was used instead of artificial graphite for the negative electrode. These batteries are referred to as comparative batteries 3 and 4, respectively.

【0033】正極の単極に近い挙動を観察するため、負
極に金属リチウムを用いた本発明電池5〜8及び比較電
池3,4を用いて、充放電試験を行なった。充電は、電
流0.05mA、終止電圧4.2Vの定電流充電とし、
放電は、電流0.05mA、終止電圧3.0Vの定電流
放電とした。試験温度は25℃とした。1サイクル目の
充電容量に対する放電容量の比を初期充放電効率とし
て、表1に示した。なお、参考のため、正極の熱処理温
度から推定されるホウ素化合物の形態を表1に併せて示
した。
In order to observe the behavior of the positive electrode close to that of a single electrode, a charge / discharge test was performed using batteries 5 to 8 of the present invention and comparative batteries 3 and 4 using metallic lithium for the negative electrode. Charging is constant current charging with a current of 0.05 mA and a final voltage of 4.2 V.
The discharge was a constant current discharge with a current of 0.05 mA and a final voltage of 3.0 V. The test temperature was 25 ° C. Table 1 shows the ratio of the discharge capacity to the charge capacity in the first cycle as the initial charge / discharge efficiency. For reference, the form of the boron compound estimated from the heat treatment temperature of the positive electrode is also shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】本発明電池1〜4及び比較電池1,2を用
いて、充放電試験を行なった。充電は、電流1mA、終
止電圧4.2Vの定電流充電とし、放電は、電流1m
A、終止電圧3.0Vの定電流放電とした。試験温度は
25℃とした。5サイクル目の放電容量の結果を表2に
示した。また、放電容量が初期の80%に低下した時点
のサイクル数を測定し、サイクル寿命として示した。な
お、参考のため、正極の熱処理温度から推定されるホウ
素化合物の形態を表1に併せて示した。
Using the batteries 1 to 4 of the present invention and the comparative batteries 1 and 2, a charge / discharge test was performed. Charging was performed at a constant current of 1 mA and a final voltage of 4.2 V, and discharging was performed at a current of 1 m.
A, constant current discharge with a final voltage of 3.0 V was performed. The test temperature was 25 ° C. Table 2 shows the results of the discharge capacity at the fifth cycle. Further, the number of cycles at the time when the discharge capacity was reduced to 80% of the initial value was measured and indicated as a cycle life. For reference, the form of the boron compound estimated from the heat treatment temperature of the positive electrode is also shown in Table 1.

【0036】[0036]

【表2】 [Table 2]

【0037】表1、2において、初期の充放電効率及び
5サイクル目の放電容量については、電池間の差がほと
んどみられない。これは、添加したホウ素化合物が0.
1%と少なく、電池性能に影響を与える程度の量ではな
いためと考えられる。
In Tables 1 and 2, there is almost no difference between the batteries in the initial charge / discharge efficiency and the discharge capacity at the fifth cycle. This is because the added boron compound is 0.1.
This is probably because the amount was as small as 1%, which is not an amount that would affect battery performance.

【0038】また、表2より明らかなように、ホウ素化
合物を添加した本発明電池は、比較電池に比べて、優れ
たサイクル性能を示した。サイクル寿命について本発明
電池1〜4を比較すると、熱処理温度が高いほどサイク
ル寿命がやや高くなってはいるが、明確な差を示す程度
であるとはいえない。これは、ホウ素化合物はいずれの
組成であっても、電解液に溶解することで効果を奏する
ためであり、各ホウ素化合物の組成や粒子の形状には依
存しないためと考えられる。
Further, as is apparent from Table 2, the battery of the present invention to which the boron compound was added exhibited excellent cycle performance as compared with the comparative battery. When the batteries 1 to 4 of the present invention are compared with respect to the cycle life, the higher the heat treatment temperature is, the longer the cycle life is, but it cannot be said that the difference shows a clear difference. This is because the boron compound is effective in dissolving in the electrolytic solution regardless of the composition, and it is considered that the boron compound does not depend on the composition of each boron compound or the shape of the particles.

【0039】次に、サイクル寿命確認後の本発明電池1
〜4を解体し、電解液、正極及び負極を取り出した。正
極及び負極は、ジメチレンカーボネートで洗浄後、真空
乾燥して試験サンプルを得た。これらの試験サンプルを
硝酸で溶解させ、残分をろ過後、ICP発行分光分析に
よる成分分析を行った結果、ホウ素は正極よりむしろ電
解液と負極から多く検出された。
Next, the battery 1 of the present invention after the cycle life was confirmed
To 4, and the electrolyte, the positive electrode and the negative electrode were taken out. The positive electrode and the negative electrode were washed with dimethylene carbonate, and then dried under vacuum to obtain a test sample. After dissolving these test samples with nitric acid and filtering the residue, the components were analyzed by ICP-issued spectroscopy. As a result, boron was detected more in the electrolyte and the negative electrode than in the positive electrode.

【0040】また、本発明電池1〜4および比較電池
1,2から取り出した負極に対し、エックス線光電子分
光法(XPS)によりアルゴンエッチングをしながら、
深さ方向の分析を行い、MnF2の存在量を比較したと
ころ、本発明電池の負極から検出されたMnF2の量
は、比較電池の負極から検出されたMnF2の量に比
べ、はるかに少ない量であった。
The negative electrodes taken out from the batteries 1 to 4 of the present invention and the comparative batteries 1 and 2 were subjected to argon etching by X-ray photoelectron spectroscopy (XPS),
Analyzed in the depth direction, it was compared abundance of MnF 2, the amount of MnF 2 detected from the negative electrode of the present battery, compared to the amount of MnF 2 detected from the negative electrode of the comparison battery, much It was a small amount.

【0041】[0041]

【発明の効果】以上のように、本発明の正極活物質を用
いることにより、サイクル特性が向上した。このメカニ
ズムについては必ずしも明らかではないが、次のように
考えられる。即ち、正極に添加されたホウ素化合物は電
解液中に溶解し、フッ化水素等の遊離酸と反応する。こ
れにより、電池内の遊離酸濃度が低下するため、遊離酸
によるマンガンの溶解が抑制される。その結果、高抵抗
被膜成分であるMnF2が炭素負極表面に形成されなく
なるものと考えられる。
As described above, the cycle characteristics were improved by using the positive electrode active material of the present invention. Although this mechanism is not always clear, it is considered as follows. That is, the boron compound added to the positive electrode is dissolved in the electrolytic solution and reacts with a free acid such as hydrogen fluoride. As a result, the concentration of free acid in the battery decreases, so that the dissolution of manganese by free acid is suppressed. As a result, it is considered that MnF 2 which is a high resistance coating component is not formed on the surface of the carbon negative electrode.

【0042】ホウ素化合物が溶解するときのホウ素化合
物の組成や、フッ酸との反応のメカニズムについては明
らかではないが、ホウ素が、最終的には負極炭素表面上
に電解液分解物の被膜と共に析出している事、このホウ
素を含む炭素表面上の被膜は、これらは、MnF2等の
被膜と異なり、低抵抗であり、充放電サイクルを繰り返
しても抵抗の増加がすくないことが、上述の結果からわ
かる。
Although the composition of the boron compound when the boron compound is dissolved and the mechanism of the reaction with the hydrofluoric acid are not clear, boron is finally deposited on the carbon surface of the negative electrode together with a film of the decomposition product of the electrolytic solution. The above results indicate that the coatings on the boron-containing carbon surface have low resistance, unlike coatings such as MnF 2 , and that the resistance does not increase easily even after repeated charge / discharge cycles. Understand from.

【0043】上記実施例では、負極材料として人造黒鉛
を用いたリチウム二次電池について実施例を挙げたが、
その他の負極材料を用いた場合にも本発明の効果が確認
されている。
In the above embodiment, the lithium secondary battery using artificial graphite as the negative electrode material has been described.
The effects of the present invention have been confirmed when other negative electrode materials are used.

【0044】以上述べたように、本発明は、正極活物質
の主構成物質であるマンガン酸リチウムにホウ素化合物
を添加する事により、容量を低下させることなく、サイ
クル特性を向上させることができる。また、これらの材
料は安全性に優れ、安価であるので、正極材料の優れた
改質の方法であり、その結果得られる電池は、高容量、
高エネルギー密度で、優れた充放電サイクル特性を示
す。
As described above, according to the present invention, by adding a boron compound to lithium manganate, which is the main constituent material of the positive electrode active material, the cycle characteristics can be improved without lowering the capacity. In addition, since these materials are excellent in safety and inexpensive, they are excellent methods for reforming the cathode material, and the resulting batteries have high capacity,
High energy density and excellent charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電池の断面図である。FIG. 1 is a sectional view of a battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 Positive electrode 2 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 明博 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 (72)発明者 油布 宏 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 Fターム(参考) 5H029 AJ02 AJ03 AJ05 AK03 AL07 AL12 AM03 AM04 AM05 AM07 BJ03 DJ08 EJ05 HJ02 5H050 AA02 AA07 AA08 BA16 BA17 CA09 CB08 CB12 DA02 DA09 EA12 HA02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akihiro Fujii 2-3-1-21, Kosobe-cho, Takatsuki-shi, Osaka Inside Yuasa Corporation (72) Inventor Hiroshi Yufu 2-3-1-21, Kosobe-cho, Takatsuki-shi, Osaka No. F-term in Yuasa Corporation (reference) 5H029 AJ02 AJ03 AJ05 AK03 AL07 AL12 AM03 AM04 AM05 AM07 BJ03 DJ08 EJ05 HJ02 5H050 AA02 AA07 AA08 BA16 BA17 CA09 CB08 CB12 DA02 DA09 EA12 HA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極にリチウム含有マンガン酸化物を用い
たリチウム二次電池において、前記正極は、電解液に溶
解可能なホウ素化合物を含むことを特徴とするリチウム
二次電池。
1. A lithium secondary battery using a lithium-containing manganese oxide for a positive electrode, wherein the positive electrode contains a boron compound soluble in an electrolytic solution.
【請求項2】前記ホウ素化合物が、B23、H3BO3
HBO2、H247から選ばれる少なくとも1つ以上を
含むホウ素化合物であることを特徴とする請求項1記載
のリチウム二次電池。
2. The method according to claim 1, wherein said boron compound is B 2 O 3 , H 3 BO 3 ,
HBO 2, H 2 B 4 lithium secondary battery according to claim 1, wherein the from O 7 selected a boron compound comprising at least one or more.
JP2000067971A 2000-03-13 2000-03-13 Lithium secondary battery Pending JP2001257003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000067971A JP2001257003A (en) 2000-03-13 2000-03-13 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000067971A JP2001257003A (en) 2000-03-13 2000-03-13 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2001257003A true JP2001257003A (en) 2001-09-21

Family

ID=18587087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000067971A Pending JP2001257003A (en) 2000-03-13 2000-03-13 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2001257003A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175456A (en) * 2012-01-27 2013-09-05 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
EP2654109A1 (en) 2012-04-18 2013-10-23 Nichia Corporation Positive electrode composition for nonaqueous electrolyte secondary battery
WO2014156110A1 (en) * 2013-03-27 2014-10-02 株式会社Gsユアサ Non-aqueous electrolyte secondary cell
JP2014192077A (en) * 2013-03-28 2014-10-06 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2014191957A (en) * 2013-03-27 2014-10-06 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2014207093A (en) * 2013-04-11 2014-10-30 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2014207094A (en) * 2013-04-11 2014-10-30 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
US9774037B2 (en) 2013-10-17 2017-09-26 Nichia Corporation Positive electrode composition for non-aqueous electrolyte secondary battery, method of manufacturing thereof, and non-aqueous electrolyte secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175456A (en) * 2012-01-27 2013-09-05 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2013175458A (en) * 2012-01-27 2013-09-05 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
CN103456916B (en) * 2012-04-18 2017-06-30 日亚化学工业株式会社 Nonaqueous electrolytic solution secondary battery positive electrode composition
EP2654109A1 (en) 2012-04-18 2013-10-23 Nichia Corporation Positive electrode composition for nonaqueous electrolyte secondary battery
KR20130117340A (en) 2012-04-18 2013-10-25 니치아 카가쿠 고교 가부시키가이샤 Positive electrode composition for nonaqueous electrolyte secondary battery
CN103456916A (en) * 2012-04-18 2013-12-18 日亚化学工业株式会社 Positive electrode composition for nonaqueous electrolyte secondary battery
US20130277604A1 (en) * 2012-04-18 2013-10-24 Kousuke SHIMOKITA Positive electrode composition for nonaqueous electrolyte secondary battery
US10454097B2 (en) 2012-04-18 2019-10-22 Nichia Corporation Positive electrode composition for nonaqueous electrolyte secondary battery
US9742002B2 (en) 2012-04-18 2017-08-22 Nichia Corporation Positive electrode composition for nonaqueous electrolyte secondary battery
WO2014156110A1 (en) * 2013-03-27 2014-10-02 株式会社Gsユアサ Non-aqueous electrolyte secondary cell
CN105190983A (en) * 2013-03-27 2015-12-23 株式会社杰士汤浅国际 Non-aqueous electrolyte secondary cell
JP2014191957A (en) * 2013-03-27 2014-10-06 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2014192077A (en) * 2013-03-28 2014-10-06 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2014207094A (en) * 2013-04-11 2014-10-30 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2014207093A (en) * 2013-04-11 2014-10-30 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
US9774037B2 (en) 2013-10-17 2017-09-26 Nichia Corporation Positive electrode composition for non-aqueous electrolyte secondary battery, method of manufacturing thereof, and non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP4292761B2 (en) Method for producing positive electrode material for lithium secondary battery
KR100309773B1 (en) Positive active material for lithium secondary battery and method of preparing the same
JP3611188B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5303612B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5114998B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2006128115A (en) Negative electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery having this
JP3611190B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR20130081228A (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP7271848B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JPWO2018163518A1 (en) Positive electrode active material and battery
CN107104232B (en) Positive electrode active material and battery
CN113571705A (en) Cathode material, preparation method thereof and lithium ion battery
JP2011249293A (en) Lithium transition metal compound and its manufacturing method, and lithium ion battery
JP7059381B2 (en) Positive electrode active material and lithium ion battery
JP2001185146A (en) Lithium secondary battery
JP2001257003A (en) Lithium secondary battery
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JP7142301B2 (en) POSITIVE ACTIVE MATERIAL AND BATTERY INCLUDING SAME
JP7142302B2 (en) POSITIVE ACTIVE MATERIAL AND BATTERY INCLUDING SAME
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP2001243954A (en) Positive electrode material for lithium secondary battery
JP2002008653A (en) Negative electrode material for lithium secondary battery and electrode for lithium secondary battery and lithium secondary battery and manufacturing method of negative electrode material for lithium secondary battery
JP2002170566A (en) Lithium secondary cell
JP3994497B2 (en) Non-aqueous electrolyte battery
JP3373069B2 (en) Non-aqueous secondary battery and method for producing positive electrode active material thereof