JPH10321228A - Positive electrode active material for lithium battery, its manufacture, and lithium battery using it - Google Patents

Positive electrode active material for lithium battery, its manufacture, and lithium battery using it

Info

Publication number
JPH10321228A
JPH10321228A JP9143268A JP14326897A JPH10321228A JP H10321228 A JPH10321228 A JP H10321228A JP 9143268 A JP9143268 A JP 9143268A JP 14326897 A JP14326897 A JP 14326897A JP H10321228 A JPH10321228 A JP H10321228A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
active material
electrode active
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9143268A
Other languages
Japanese (ja)
Inventor
So Arai
創 荒井
Yoji Sakurai
庸司 櫻井
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9143268A priority Critical patent/JPH10321228A/en
Publication of JPH10321228A publication Critical patent/JPH10321228A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the discharge capacity and enhance the safety without generating a heat in the full charge of a battery by regulating the lithium occupying ratio in the transition metal main body layer of the layered structure of a positive electrode active material consisting of a composite oxide mainly composed of Li and Ni to a specified value or less. SOLUTION: A positive electrode active material has a composition of a complex oxide represented by the formula Lix Ni1-y My 0z . In the formula, (x), (y), and (z) represent 0$ x<=1.1, 0<=y<=0.5, and 1.8<=z<=2.2, respectively, and M represents a transition metal other than Ni or at least one element selected from elements belonging to the IVB, VB, VIB, and VIIB groups. The Li occupying ratio in the transition metal main body layer in the layefed structure of this composite oxide is limited to less than 0.5%. The element M is selected from silicon, titanium, vanadium, chromium, manganese, iron, germanium, zirconium, niobium, molybdenum, ruthenium, palladium, tin, tellurium, hafnium, tungsten, iridium, platinum and lead.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はリチウム電池用正極活物
質とその製造方法、及びそれを用いるリチウム電池、さ
らに詳細には、放電容量が大きくまた安全性に優れたリ
チウム電池を提供する技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a lithium battery and a method for producing the same, and a lithium battery using the same, and more particularly to a technique for providing a lithium battery having a large discharge capacity and excellent safety. Things.

【0002】[0002]

【従来の技術及び問題点】リチウムなどのアルカリ金属
及びその化合物を負極活物質とする非水電解液電池は、
負極金属イオンの正極活物質へのインサーションもしく
はインターカレーション反応によって、その大放電容量
と充放電可逆性を両立させている。従来からこれらの正
極活物質には、二硫化チタンなどの硫化物が提案されて
いるが、これらは電圧が2V程度と低く、放電エネルギ
ーが小さいという欠点があった。この問題を解決するた
めに、4V級の電圧を示す正極活物質LiXNi1-YY
Z(0≦X≦1.1、0≦Y≦0.5、1.8≦Z≦
2.2、Mはニッケル以外の元素)が開発されている。
これにより大容量を実現することができるが、同時にリ
チウム脱離によって高い酸化数状態の化合物を電池内に
収容することになり、電池全体の安全性に問題が生じる
場合があるという問題点があった。即ち、特に満充電時
など電圧が高い状態で、環境温度が高くなった場合や電
池が内部短絡を起こしたような場合に、電池が発熱した
り、極端な場合には発煙や発火が見られると言う安全性
上の問題があった。
2. Description of the Related Art A non-aqueous electrolyte battery using an alkali metal such as lithium or a compound thereof as a negative electrode active material is disclosed in US Pat.
The large discharge capacity and charge / discharge reversibility are both achieved by the insertion or intercalation reaction of the negative electrode metal ions into the positive electrode active material. Conventionally, sulfides such as titanium disulfide have been proposed for these positive electrode active materials, but these have the drawback that the voltage is as low as about 2 V and the discharge energy is small. To solve this problem, the positive electrode active indicating the 4V-grade voltage substance Li X Ni 1-Y M Y
O Z (0 ≦ X ≦ 1.1, 0 ≦ Y ≦ 0.5, 1.8 ≦ Z ≦
2.2, M is an element other than nickel).
This makes it possible to realize a large capacity, but at the same time, a compound having a high oxidation state is accommodated in the battery due to lithium elimination, which may cause a problem in the safety of the whole battery. Was. That is, when the voltage is high, particularly when the battery is fully charged, when the environmental temperature becomes high or when the battery causes an internal short circuit, the battery generates heat, and in extreme cases, smoke or ignition is observed. There was a safety problem.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記のよう
な現状の課題を解決し、放電容量が大きく安全性に優れ
たリチウム電池用正極活物質とその製造方法、及びそれ
を用いるリチウム電池を提供することにある。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned current problems and has a large discharge capacity and excellent safety for a lithium battery, a method for producing the same, and a lithium battery using the same. Is to provide.

【0004】[0004]

【問題点を解決するための手段】かかる目的を達成する
ために本発明によるリチウム電池用正極活物質は、組成
式LiXNi1-YYZ(0≦X≦1.1、0≦Y≦0.
5、1.8≦Z≦2.2、Mはニッケル以外の遷移金属
あるいはIVB族、VB族、VIB族、VIIB族に属
する元素から選ばれる1種類以上の元素)で与えられる
複酸化物であって、その層構造中の遷移金属主体層にお
けるリチウム占有率が0.5%以上であることを特徴と
しており、特に前記元素Mが珪素、チタン、バナジウ
ム、クロム、マンガン、鉄、ゲルマニウム、ジルコニウ
ム、ニオブ、モリブデン、ルテニウム、パラジウム、
錫、テルル、ハフニウム、タングステン、イリジウム、
白金、鉛であることを特徴としている。
A positive active material according to the present invention in order to achieve the Means for solving the problem] Such object is the composition formula Li X Ni 1-Y M Y O Z (0 ≦ X ≦ 1.1,0 ≦ Y ≦ 0.
5, 1.8 ≦ Z ≦ 2.2, M is a transition metal other than nickel or one or more elements selected from the group consisting of elements belonging to the IVB, VB, VIB, and VIIB groups). The lithium occupancy of the transition metal main layer in the layer structure is 0.5% or more, and in particular, the element M is silicon, titanium, vanadium, chromium, manganese, iron, germanium, zirconium. , Niobium, molybdenum, ruthenium, palladium,
Tin, tellurium, hafnium, tungsten, iridium,
It is characterized by platinum and lead.

【0005】また原子比でLi/(Ni+M)>1とな
るようにリチウム化合物とニッケル化合物と元素Mの化
合物を混合してその混合物を熱処理した後にLiXNi
1-YYZ以外のリチウム化合物を除去することにより
前記リチウム電池用正極活物質を製造することを特徴と
している。
[0005] In atomic ratio Li / (Ni + M)> 1 and so as lithium compound Li after heat treatment of the mixture by mixing a nickel compound and a compound of an element M X Ni
It is characterized by producing a positive active material for the lithium battery by removing the 1-Y M Y O Z other than lithium compounds.

【0006】また本発明のリチウム電池は、前記リチウ
ム電池用正極活物質、特に前記リチウム電池用正極活物
質の製造方法により製造された前記リチウム電池用正極
活物質を含む正極を有しリチウム金属またはリチウム化
合物を含む負極を有しリチウムイオンが前記正極および
前記負極と電気化学反応をするための移動を行い得る物
質を電解質物質として有することを特徴としている。
The lithium battery of the present invention has a positive electrode containing the positive electrode active material for a lithium battery, particularly a positive electrode containing the positive electrode active material for a lithium battery produced by the method for producing the positive electrode active material for a lithium battery. It is characterized by having a negative electrode containing a lithium compound and having, as an electrolyte material, a substance capable of performing movement for lithium ions to perform an electrochemical reaction with the positive electrode and the negative electrode.

【0007】本発明をさらに詳しく説明する。発明者
は、放電容量が大きく安全性に優れたリチウム電池用正
極活物質とその製造方法、及びそれを用いるリチウム電
池を鋭意探索した結果、前記のリチウム電池用正極活物
質とその製造方法、及びそれを用いるリチウム電池によ
り、従来よりも放電容量が大きく安全性に優れたリチウ
ム電池用正極活物質とリチウム電池を製造、実現できる
ことを確かめ、その認識の下に本発明を完成した。
The present invention will be described in more detail. The inventor has conducted a keen search for a lithium battery positive electrode active material having a large discharge capacity and excellent safety and a method for manufacturing the same, and a lithium battery using the same. It has been confirmed that a lithium battery using the same can produce and realize a positive electrode active material for a lithium battery and a lithium battery which have a larger discharge capacity than the conventional one and are excellent in safety.

【0008】本発明のリチウム電池用正極活物質の製造
方法によって、従来の正極活物質の製造方法に比べて放
電容量が大きい電池を構成できる理由は、現在のところ
完全に明らかではないが、例えば以下のようなものが考
えられる。すなわち、組成式LiXNi1-YYZ(0≦
X≦1.1、0≦Y≦0.5、1.8≦Z≦2.2、M
はニッケル以外の遷移金属あるいはIVB族、VB族、
VIB族、VIIB族に属する元素から選ばれる1種類
以上の元素)で与えられる複酸化物において、その層構
造中の遷移金属主体層におけるリチウム占有率が0.5
%未満である場合は、特に満充電時など電圧が高い状態
で、環境温度が高くなった場合や電池が内部短絡を起こ
したような場合に、層構造中のニッケル、元素Mとリチ
ウムが自由混合を起こし、ニッケル、元素Mとリチウム
がランダムに配列した岩塩構造に変化するために、電池
が発熱したり、極端な場合には発煙や発火が見られる
が、0.5%以上である場合は、層構造中のニッケル、
元素Mとリチウムが自由混合しにくくなり、元素Mとリ
チウムがランダムに配列した岩塩構造への変化が抑制さ
れるためと考えられる。
The reason why the method for producing a positive electrode active material for a lithium battery of the present invention can constitute a battery having a larger discharge capacity than the conventional method for producing a positive electrode active material is not completely clear at present, but for example, The following can be considered. That is, the composition formula Li X Ni 1-Y M Y O Z (0 ≦
X ≦ 1.1, 0 ≦ Y ≦ 0.5, 1.8 ≦ Z ≦ 2.2, M
Represents a transition metal other than nickel or a group IVB or VB,
In a complex oxide given by one or more elements selected from the group VIB and the group VIIB), the lithium occupation ratio of the transition metal main layer in the layer structure is 0.5.
%, The nickel, element M, and lithium in the layer structure are free when the environmental temperature is high or the battery is short-circuited under high voltage, particularly when fully charged. Batteries generate heat due to mixing and change to a rock salt structure in which nickel, element M, and lithium are randomly arranged. In extreme cases, smoke or ignition is observed. Is nickel in the layer structure,
This is presumably because the element M and lithium are less likely to be freely mixed, and a change to a rock salt structure in which the element M and lithium are randomly arranged is suppressed.

【0009】遷移金属主体層におけるリチウム占有率は
0.5%以上であればよく、特に上限はないが、高すぎ
ると容量特性が低下する場合もあるので、好ましくは4
0%以下である。ニッケルの一部を、ニッケル以外の遷
移金属あるいはIVB族、VB族、VIB族、VIIB
族に属する元素Mで置換することは必ずしも必要ではな
いが、これにより遷移金属主体層におけるリチウム占有
率を容易に0.5%以上にすることができる。これはし
ばしばこれらの元素Mはリチウムと酸素を含む化合物、
例えばLiPMOQ(P、Qは正数)のような化合物を作
り、LiXNiOZと固溶して、遷移金属主体層における
リチウム占有率を高くすることができるためと考えられ
る。
The lithium occupation ratio in the transition metal main layer may be 0.5% or more, and there is no particular upper limit. However, if it is too high, the capacity characteristics may be reduced.
0% or less. A part of nickel is replaced with a transition metal other than nickel or a group IVB, VB, VIB, or VIIB.
Although it is not always necessary to substitute the element M belonging to the group, the lithium occupancy in the transition metal main layer can be easily increased to 0.5% or more. This is often because these elements M are compounds containing lithium and oxygen,
For example, it is considered that a compound such as Li P MO Q (where P and Q are positive numbers) is prepared and solid-dissolved with Li X NiO Z to increase the lithium occupancy in the transition metal main layer.

【0010】また特に前記元素Mが珪素、チタン、バナ
ジウム、クロム、マンガン、鉄、ゲルマニウム、ジルコ
ニウム、ニオブ、モリブデン、ルテニウム、パラジウ
ム、錫、テルル、ハフニウム、タングステン、イリジウ
ム、白金、鉛である場合、これらは4価のカチオンにな
ってLiXNiOZと固溶しやすく、遷移金属主体層にお
けるリチウム占有率を高めたり安定させたりすることが
できる。特に比較的資源豊富である珪素、チタン、バナ
ジウム、クロム、マンガン、鉄、ゲルマニウム、ジルコ
ニウム、モリブデン、錫、タングステン、鉛が好まし
い。
In particular, when the element M is silicon, titanium, vanadium, chromium, manganese, iron, germanium, zirconium, niobium, molybdenum, ruthenium, palladium, tin, tellurium, hafnium, tungsten, iridium, platinum or lead, These become tetravalent cations and easily form a solid solution with Li x NiO Z, and can increase or stabilize the lithium occupancy in the transition metal main layer. Particularly, silicon, titanium, vanadium, chromium, manganese, iron, germanium, zirconium, molybdenum, tin, tungsten, and lead, which are relatively rich in resources, are preferable.

【0011】また安定なリチウムとの固溶体Li2MO3
が知られているという観点から、珪素、チタン、マンガ
ン、鉄、ゲルマニウム、ジルコニウム、モリブデン、ル
テニウム、パラジウム、錫、テルル、ハフニウム、イリ
ジウム、白金、鉛が好ましく、資源性を併せて考える
と、チタン、マンガン、鉄、ジルコニウム、モリブデ
ン、珪素、ゲルマニウム、錫、鉛が特に好ましい。一
方、これら元素Mの含有量が高いと、容量特性が低下す
るので、元素Mの置換量に相当するYは0≦Y≦0.5
を満たす必要があり、好ましくは0≦Y≦0.3であ
る。0.5<Yである場合は、充放電容量が少なくなる
という問題点が生じる。
Also, a solid solution Li 2 MO 3 with stable lithium
From the viewpoint that is known, silicon, titanium, manganese, iron, germanium, zirconium, molybdenum, ruthenium, palladium, tin, tellurium, hafnium, iridium, platinum, lead are preferable, and titanium is considered in consideration of resource properties. , Manganese, iron, zirconium, molybdenum, silicon, germanium, tin and lead are particularly preferred. On the other hand, when the content of the element M is high, the capacity characteristics are deteriorated. Therefore, Y corresponding to the substitution amount of the element M is 0 ≦ Y ≦ 0.5.
Must be satisfied, and preferably 0 ≦ Y ≦ 0.3. When 0.5 <Y, there is a problem that the charge / discharge capacity is reduced.

【0012】また原子比でLi/(Ni+M)>1とな
るようにリチウム化合物とニッケル化合物と元素Mの化
合物を混合してその混合物を熱処理した後にLiXNi
1-YYZ以外のリチウム化合物を除去して前記リチウ
ム電池用正極活物質を製造することにより、過剰のリチ
ウムを反応系中に入れて、遷移金属主体層におけるリチ
ウム占有率を高めたり調節したりすることができる。L
i/(Ni+M)>4で得られる効果はLi/(Ni+
M)=4と同等であり、Li/(Ni+M)>4の場合
はLiXNi1-YYZ以外のリチウム化合物の量が増え
るだけであるため、経済的な観点から1<Li/(Ni
+M)≦4である。またLi/(Ni+M)≦1である
場合には、遷移金属主体層におけるリチウム占有率が
0.5%未満になることが多く、また容量特性が低くな
ることが多いので、1<Li/(Ni+M)が好まし
い。
[0012] In atomic ratio Li / (Ni + M)> 1 and so as lithium compound Li after heat treatment of the mixture by mixing a nickel compound and a compound of an element M X Ni
By 1-Y M Y O Z to remove lithium compounds other than to produce a positive active material for the lithium battery, excess lithium placed in the reaction system, and increasing the lithium occupancy in the transition metal-based layer And can be adjusted. L
The effect obtained when i / (Ni + M)> 4 is Li / (Ni +
M) = 4, and when Li / (Ni + M)> 4, the amount of lithium compound other than Li x Ni 1-Y M Y O Z only increases, so from the economic viewpoint, 1 <Li / (Ni
+ M) ≦ 4. When Li / (Ni + M) ≦ 1, the lithium occupation ratio in the transition metal main layer is often less than 0.5%, and the capacitance characteristic is often low, so that 1 <Li / ( Ni + M) is preferred.

【0013】原子比でLi/(Ni+M)>1となるよ
うにリチウム化合物とニッケル化合物と元素Mの化合物
を混合してその混合物を熱処理するにあたっては、焼成
温度を500℃から1000℃、好ましくは650℃か
ら850℃として焼成する。雰囲気としては、大気中な
いし酸素中が好ましく、経済的な観点からは大気中の方
がより望ましい。焼成時間については、短いとLiX
1-YYZの合成が不完全になり、また長いと酸素の
脱離などが起こり得るので最適時間が存在する。仕込み
量にも大きく依存するが、1時間以上100時間以内と
することが望ましい。
When the lithium compound, the nickel compound and the compound of the element M are mixed and the mixture is heat-treated so that the atomic ratio of Li / (Ni + M)> 1, the firing temperature is from 500 ° C. to 1000 ° C., preferably The firing is performed at 650 ° C. to 850 ° C. The atmosphere is preferably in the air or oxygen, and more preferably in the air from an economic viewpoint. Regarding the firing time, if it is short, Li X N
Synthesis of i 1-Y M Y O Z may be incomplete, also optimum time there is longer and so release of oxygen may occur. Although it largely depends on the charged amount, it is desirable that the time is 1 hour or more and 100 hours or less.

【0014】焼成が終了した段階では、試料にLiX
1-YYZ以外のりチウム化合物が混入している場合
が多い。これは出発物質にもよるが、多くが酸化リチウ
ム、水酸化リチウムないし炭酸リチウムのように、未反
応のリチウムが雰囲気と反応して生じたものである。こ
れらは電池反応には寄与しないばかりか、電解液に溶解
して電池特性に悪影響を及ぼすこともあるので、これら
を除去することが望ましい。
At the stage when the firing is completed, Li x N
i 1-Y M Y if O Z other than glue lithium compound is mixed frequently. Although this depends on the starting materials, most of them are formed by reaction of unreacted lithium with the atmosphere, such as lithium oxide, lithium hydroxide or lithium carbonate. These not only do not contribute to the battery reaction, but also dissolve in the electrolyte to adversely affect the battery characteristics. Therefore, it is desirable to remove them.

【0015】除去の方法としては、化合物の分離・精製
に用いられる既知の方法をとることができるが、LiX
Ni1-YYZに及ぼす影響を少なくする必要がある。
このような方法として、溶解度の違いを利用した洗浄方
法があげられる。即ちここで生成する未反応リチウム化
合物の多くは、LiXNi1-YYZに比べて溶媒への溶
解度が高いことを利用して、試料全体を溶媒に分散さ
せ、撹拌して未反応リチウム化合物を溶解させ、濾過な
どの方法により、LiXNi1-YYZのみを固体として
取り出すことができる。溶媒としては、未反応リチウム
化合物の溶解度が高く、LiXNi1-YYZの溶解度が
低い物が望ましく、水、アルコールを始めとする有機溶
媒、酸、アルカリなどがあげられる。特に経済的な観点
から水が望ましい。
[0015] As a method for removal may take known methods used for separation and purification of the compounds, Li X
It is necessary to reduce the effect on Ni 1-Y M Y O Z .
As such a method, there is a washing method utilizing a difference in solubility. In other words, many of the unreacted lithium compounds generated here have a higher solubility in the solvent than Li x Ni 1-Y M Y O Z , and the entire sample is dispersed in the solvent and stirred. the reaction of lithium compounds are dissolved, by a method such as filtration, only Li X Ni 1-Y M Y O Z can be taken out as a solid. As the solvent, high solubility of the unreacted lithium compound, Li X Ni 1-Y M Y O Z things low solubility is desirable, water, organic solvents, including alcohols, acids, alkaline and the like. Water is particularly desirable from an economic viewpoint.

【0016】本製造方法によって得られた正極活物質を
用いて電池正極を形成するには、前記複酸化物粉末とポ
リテトラフルオロエチレンのごとき結着剤粉末との混合
物をステンレス等の支持体上に圧着成形する、或いは、
かかる混合物粉末に導電性を付与するためアセチレンブ
ラックのような導電性粉末を混合し、これにさらにポリ
テトラフルオロエチレンのような結着剤粉末を所要に応
じて加え、この混合物を金属容器にいれる、あるいはス
テンレスなどの支持体に圧着成形する、あるいは有機溶
剤等の溶媒中に分散してスラリー状にして金属基板上に
塗布する、等の手段によって形成される。
In order to form a battery positive electrode using the positive electrode active material obtained by the present manufacturing method, a mixture of the above-mentioned double oxide powder and a binder powder such as polytetrafluoroethylene is coated on a support such as stainless steel. Crimping, or
A conductive powder such as acetylene black is mixed to impart conductivity to the mixture powder, and a binder powder such as polytetrafluoroethylene is further added as necessary, and the mixture is placed in a metal container. Alternatively, it is formed by means such as compression molding on a support such as stainless steel, or dispersing in a solvent such as an organic solvent to form a slurry and applying the slurry on a metal substrate.

【0017】本製造方法によって得られた正極活物質を
用いる電池では、負極活物質としてリチウムを用いる場
合は、一般のリチウム電池のそれと同様にシート上にし
て、またそのシートをニッケル、ステンレス等の導電体
網に圧着して負極として形成される。また負極活物質と
しては、リチウム以外にリチウム−アルミニウム合金等
のリチウム合金を用いることができる。さらに炭素な
ど、いわゆるロッキングチェア電池(リチウムイオン電
池)用の負極を用いることもでき、充電反応により正極
から供給されるリチウムイオンを電気化学的に挿入し、
炭素−リチウム負極などとすることもできる。また充放
電を繰り返し行うことで二次電池として用いることもで
きる。
In the battery using the positive electrode active material obtained by this manufacturing method, when lithium is used as the negative electrode active material, it is formed on a sheet similarly to that of a general lithium battery, and the sheet is made of nickel, stainless steel or the like. A negative electrode is formed by pressure bonding to a conductor net. As the negative electrode active material, a lithium alloy such as a lithium-aluminum alloy can be used in addition to lithium. Further, a negative electrode for a rocking chair battery (lithium ion battery) such as carbon can be used, and lithium ions supplied from the positive electrode by a charging reaction are electrochemically inserted,
A carbon-lithium negative electrode or the like can also be used. The battery can be used as a secondary battery by repeating charging and discharging.

【0018】本製造方法によって得られた正極活物質を
用いる電池では、電解液として、例えばジメトキシエタ
ン、ジエトキシエタン、2−メチルテトラヒドロフラ
ン、エチレンカーボネート、プロピレンカーボネート、
メチルホルメート、ジメチルスルホキシド、アセトニト
リル、ブチロラクトン、ジメチルホルムアミド、ジメチ
ルカーボネート、ジエチルカーボネート、スルホラン、
エチルメチルカーボネート等の有機溶媒に、LiAsF
6、LiBF4、LiPF6、LiAlCl4、LiClO
4等のルイス酸を溶解した非水電解質溶媒、或いは固体
電解質等が使用できる。
In a battery using the positive electrode active material obtained by this production method, as an electrolytic solution, for example, dimethoxyethane, diethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, propylene carbonate,
Methyl formate, dimethyl sulfoxide, acetonitrile, butyrolactone, dimethylformamide, dimethyl carbonate, diethyl carbonate, sulfolane,
LiAsF in an organic solvent such as ethyl methyl carbonate
6 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiClO
A nonaqueous electrolyte solvent in which a Lewis acid such as 4 is dissolved, or a solid electrolyte can be used.

【0019】さらにセパレータ、電池ケース等の構造材
料等の他の要素についても従来公知の各種材料が使用で
き、特に制限はない。
As for other elements such as a structural material such as a separator and a battery case, various conventionally known materials can be used, and there is no particular limitation.

【0020】[0020]

【実施例】以下実施例によって本発明のリチウム電池用
正極活物質の製造方法をさらに具体的に説明するが、本
発明はこれらによりなんら制限されるものではない。な
お、実施例において電池の作成及び測定はアルゴン雰囲
気下のドライボックス内で行った。
EXAMPLES Hereinafter, the method for producing the positive electrode active material for a lithium battery of the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. In the examples, preparation and measurement of the battery were performed in a dry box under an argon atmosphere.

【0021】[0021]

【実施例1】図1は本発明によるリチウム電池用正極活
物質の製造方法によって得られた正極活物質を用いる電
池の一具体例であるコイン型電池の断面図であり、図中
1は封口板、2はガスケット、3は正極ケース、4は負
極、5はセパレータ、6は正極合剤ペレットを示す。
EXAMPLE 1 FIG. 1 is a cross-sectional view of a coin-type battery which is a specific example of a battery using a positive electrode active material obtained by a method for producing a positive electrode active material for a lithium battery according to the present invention. Reference numeral 2 denotes a gasket, 3 denotes a positive electrode case, 4 denotes a negative electrode, 5 denotes a separator, and 6 denotes a positive electrode mixture pellet.

【0022】正極活物質は、次にようにして製造した試
料aを用いた。まず水酸化リチウム一水和物2モルと硝
酸ニッケル六水和物0.9モルと硝酸マンガン六水和物
0.1モル(原子比でLi:Ni:Mn=20:9:
1、Li/(Ni+Mn)=2)を混合し、大気中で7
00℃で10時間熱処理することにより、LiNi0.9
Mn0.12とそれ以外のリチウム化合物との混合物を得
た。次にこの混合物に25℃、1リットルの水を加えて
混合物を洗浄し、LiNi0.9Mn0.12以外のリチウ
ム化合物を水溶液中に溶かし、濾過によって除去するこ
とにより、LiNi0.9Mn0.12を得た。X線回折に
より、LiNi0.9Mn0.12は層構造を持ち、遷移金
属主体層におけるリチウム占有率が1.0%であること
が判明した。この試料をaとする。
As the positive electrode active material, a sample a produced as follows was used. First, 2 mol of lithium hydroxide monohydrate, 0.9 mol of nickel nitrate hexahydrate and 0.1 mol of manganese nitrate hexahydrate (at an atomic ratio of Li: Ni: Mn = 20: 9:
1, Li / (Ni + Mn) = 2) and mix in air.
LiNi 0.9 by heat treatment at 00 ° C. for 10 hours.
A mixture of Mn 0.1 O 2 and another lithium compound was obtained. Next, 1 liter of water was added to the mixture at 25 ° C. to wash the mixture, a lithium compound other than LiNi 0.9 Mn 0.1 O 2 was dissolved in the aqueous solution, and the mixture was removed by filtration to remove LiNi 0.9 Mn 0.1 O 2 . Obtained. X-ray diffraction revealed that LiNi 0.9 Mn 0.1 O 2 had a layered structure, and the lithium occupancy in the transition metal main layer was 1.0%. This sample is designated as a.

【0023】この正極活物質試料aを真空乾燥した後、
粉砕して粉末とし、導電剤(アセチレンブラック)、結
着剤(ポリテトラフルオロエチレン)と共に混合の上、
ロール成形し、正極合剤ペレット6(厚さ0.5mm、
直径15mm)とした。
After vacuum drying this positive electrode active material sample a,
After pulverized to a powder, mixed with a conductive agent (acetylene black) and a binder (polytetrafluoroethylene),
Roll forming, positive electrode mixture pellet 6 (0.5 mm thick,
(Diameter 15 mm).

【0024】次にステンレス製の封口板1上に金属リチ
ウムの負極4を加圧配置したものをポリプロピレン製ガ
スケット2の凹部に挿入し、負極4の上にポリプロピレ
ン製で微孔性のセパレータ5、正極合剤ペレット6をこ
の順序に配置し、電解液としてエチレンカーボネートと
ジメチルカーボネートの等容積混合溶媒にLiPF6
溶解させた1規定溶液を適量注入して含浸させた後に、
ステンレス製の正極ケース3を被せてかしめることによ
り、厚さ2mm、直径23mmのコイン型電池を作製し
た。
Next, a negative electrode 4 made of metallic lithium and placed under pressure on a sealing plate 1 made of stainless steel is inserted into a concave portion of a gasket 2 made of polypropylene, and a polypropylene microporous separator 5 is placed on the negative electrode 4. After arranging the positive electrode mixture pellets 6 in this order, injecting and impregnating an appropriate amount of a 1 N solution of LiPF 6 dissolved in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate as an electrolytic solution,
A coin-type battery having a thickness of 2 mm and a diameter of 23 mm was produced by covering and swaging a stainless steel positive electrode case 3.

【0025】このようにして作製した試料aを正極活物
質とする電池を、0.5mA/cm2の電流密度で4.
3Vまで充電し、その後3.0Vまで放電させた際の放
電容量を表に示す。放電容量が大きく、高エネルギー密
度電池として利用できる利点を有している。
A battery using the thus prepared sample a as a positive electrode active material was prepared at a current density of 0.5 mA / cm 2 .
The discharge capacity when charged to 3V and then discharged to 3.0V is shown in the table. It has the advantage that it has a large discharge capacity and can be used as a high energy density battery.

【0026】またこの電池を0.1mA/cm2の電流
密度で、4.3Vまで充電し、そのままで電池を解体
し、正極活物質を含む正極合剤ペレットを取り出し、3
00度まで加熱した際の吸発熱を観察したところ、発熱
はなく、吸熱のみが認められた。従って電池が満充電の
際にも発熱を起こすことはなく、安全性の高い電池を実
現できることが明らかである。
The battery was charged to 4.3 V at a current density of 0.1 mA / cm 2 , the battery was disassembled as it was, and a positive electrode mixture pellet containing a positive electrode active material was taken out.
Observation of heat absorption and heating upon heating to 00 degrees revealed no heat generation and only heat absorption. Therefore, even when the battery is fully charged, no heat is generated, and it is clear that a highly safe battery can be realized.

【0027】[0027]

【実施例2】実施例2では、以下のような製造方法によ
り得た正極活物質の試料bを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
一水和物2モルと硝酸ニッケル六水和物0.8モルと硝
酸マンガン六水和物0.2モル(原子比でLi:Ni:
Mn=10:4:1、Li/(Ni+Mn)=2)を混
合し、大気中で700℃で10時間熱処理することによ
り、LiNi0.8Mn0.22とそれ以外のリチウム化合
物との混合物を得た。次にこの混合物に25℃、1リッ
トルの水を加えて混合物を洗浄し、LiNi0.8Mn0.2
2以外のリチウム化合物を水溶液中に溶かし、濾過に
よって除去することにより、LiNi0. 8Mn0.22
得た。X線回折により、LiNi0.9Mn0.12は層構
造を持ち、遷移金属主体層におけるリチウム占有率が
6.2%であることが判明した。この試料をbとする。
Example 2 In Example 2, a lithium battery was fabricated in the same manner as in Example 1, except that the positive electrode active material sample b obtained by the following manufacturing method was used. First, 2 mol of lithium hydroxide monohydrate, 0.8 mol of nickel nitrate hexahydrate and 0.2 mol of manganese nitrate hexahydrate (atomic ratio of Li: Ni:
Mn = 10: 4: 1, Li / (Ni + Mn) = 2) were mixed and heat-treated at 700 ° C. in the air for 10 hours to obtain a mixture of LiNi 0.8 Mn 0.2 O 2 and other lithium compounds. Was. Next, 1 liter of water was added to the mixture at 25 ° C. to wash the mixture, and LiNi 0.8 Mn 0.2
Dissolved O 2 than the lithium compound in an aqueous solution, are removed by filtration, to obtain a LiNi 0. 8 Mn 0.2 O 2. X-ray diffraction revealed that LiNi 0.9 Mn 0.1 O 2 had a layer structure, and the lithium occupancy in the transition metal main layer was 6.2%. This sample is designated as b.

【0028】このようにして作製した試料bを正極活物
質とする電池を、0.5mA/cm2の電流密度で4.
3Vまで充電し、その後3.0Vまで放電させた際の放
電容量を表に示す。放電容量が大きく、高エネルギー密
度電池として利用できる利点を有している。
A battery using the thus prepared sample b as a positive electrode active material was prepared at a current density of 0.5 mA / cm 2 .
The discharge capacity when charged to 3V and then discharged to 3.0V is shown in the table. It has the advantage that it has a large discharge capacity and can be used as a high energy density battery.

【0029】またこの電池を0.1mA/cm2の電流
密度で、4.3Vまで充電し、そのままで電池を解体
し、正極活物質を含む正極合剤ペレットを取り出し、こ
れを300度まで加熱した際の吸発熱を観察したとこ
ろ、発熱はなく、吸熱のみが認められた。従って電池が
満充電の際にも発熱を起こすことはなく、安全性の高い
電池を実現できることが明らかである。
The battery was charged to 4.3 V at a current density of 0.1 mA / cm 2 , the battery was disassembled as it was, a positive electrode mixture pellet containing a positive electrode active material was taken out, and this was heated to 300 ° C. Observation of endothermic and exothermic results showed that there was no exotherm, but only endothermic. Therefore, even when the battery is fully charged, no heat is generated, and it is clear that a highly safe battery can be realized.

【0030】[0030]

【実施例3】実施例3では、以下のような製造方法によ
り得た正極活物質の試料cを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
一水和物2モルと硝酸ニッケル六水和物0.9モルと硝
酸マンガン六水和物0.1モル(原子比でLi:Ni:
Ti=20:9:1、Li/(Ni+Mn)=2)を混
合し、大気中で700℃で10時間熱処理することによ
り、LiNi0.9Ti0.12とそれ以外のリチウム化合
物との混合物を得た。次にこの混合物に25℃、1リッ
トルの水を加えて混合物を洗浄し、LiNi0.9Ti0.1
2以外のリチウム化合物を水溶液中に溶かし、濾過に
よって除去することにより、LiNi0. 9Ti0.12
得た。X線回折により、LiNi0.9Ti0.12は層構
造を持ち、遷移金属主体層におけるリチウム占有率が
3.9%であることが判明した。この試料をcとする。
Example 3 In Example 3, a lithium battery was produced in the same manner as in Example 1, except that the sample c of the positive electrode active material obtained by the following manufacturing method was used. First, 2 mol of lithium hydroxide monohydrate, 0.9 mol of nickel nitrate hexahydrate and 0.1 mol of manganese nitrate hexahydrate (at an atomic ratio of Li: Ni:
Ti = 20: 9: 1, Li / (Ni + Mn) = 2) were mixed and heat-treated at 700 ° C. in the air for 10 hours to obtain a mixture of LiNi 0.9 Ti 0.1 O 2 and other lithium compounds. Was. Next, 1 liter of water was added to the mixture at 25 ° C. to wash the mixture, and LiNi 0.9 Ti 0.1
Dissolved O 2 than the lithium compound in an aqueous solution, are removed by filtration, to obtain a LiNi 0. 9 Ti 0.1 O 2. X-ray diffraction revealed that LiNi 0.9 Ti 0.1 O 2 had a layer structure, and the lithium occupation ratio in the transition metal main layer was 3.9%. This sample is designated as c.

【0031】このようにして作製した試料cを正極活物
質とする電池を、0.5mA/cm2の電流密度で4.
3Vまで充電し、その後3.0Vまで放電させた際の放
電容量を表に示す。放電容量が大きく、高エネルギー密
度電池として利用できる利点を有している。
A battery using the thus prepared sample c as a positive electrode active material was prepared at a current density of 0.5 mA / cm 2 .
The discharge capacity when charged to 3V and then discharged to 3.0V is shown in the table. It has the advantage that it has a large discharge capacity and can be used as a high energy density battery.

【0032】またこの電池を0.1mA/cm2の電流
密度で、4.3Vまで充電し、そのままで電池を解体
し、正極活物質を含む正極合剤ペレットを取り出し、こ
れを300度まで加熱した際の吸発熱を観察したとこ
ろ、発熱はなく、吸熱のみが認められた。従って電池が
満充電の際にも発熱を起こすことはなく、安全性の高い
電池を実現できることが明らかである。
The battery was charged to 4.3 V at a current density of 0.1 mA / cm 2 , the battery was disassembled as it was, a positive electrode mixture pellet containing a positive electrode active material was taken out, and this was heated to 300 ° C. Observation of endothermic and exothermic results showed that there was no exotherm, but only endothermic. Therefore, even when the battery is fully charged, no heat is generated, and it is clear that a highly safe battery can be realized.

【0033】[0033]

【実施例4】実施例3では、以下のような製造方法によ
り得た正極活物質の試料dを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
一水和物1モルと硝酸ニッケル六水和物0.9モルと硝
酸マンガン六水和物0.1モル(原子比でLi:Ni:
Ti=10:9:1、Li/(Ni+Mn)=1)を混
合し、大気中で700℃で10時間熱処理することによ
り、LiNi0.9Mn0.12とそれ以外のリチウム化合
物との混合物を得た。次にこの混合物に25℃、1リッ
トルの水を加えて混合物を洗浄し、LiNi0.9Mn0.1
2以外のリチウム化合物を水溶液中に溶かし、濾過に
よって除去することにより、LiNi0. 9Mn0.12
得た。X線回折により、LiNi0.9Mn0.12は層構
造を持ち、遷移金属主体層におけるリチウム占有率が
0.5%であることが判明した。この試料をdとする。
Example 4 In Example 3, a lithium battery was manufactured in the same manner as in Example 1, except that a sample d of a positive electrode active material obtained by the following manufacturing method was used. First, 1 mol of lithium hydroxide monohydrate, 0.9 mol of nickel nitrate hexahydrate and 0.1 mol of manganese nitrate hexahydrate (at an atomic ratio of Li: Ni:
Ti = 10: 9: 1, Li / (Ni + Mn) = 1) were mixed and heat-treated at 700 ° C. in the air for 10 hours to obtain a mixture of LiNi 0.9 Mn 0.1 O 2 and other lithium compounds. Was. Next, 1 liter of water was added to the mixture at 25 ° C. to wash the mixture, and LiNi 0.9 Mn 0.1
Dissolved O 2 than the lithium compound in an aqueous solution, are removed by filtration, to obtain a LiNi 0. 9 Mn 0.1 O 2. X-ray diffraction revealed that LiNi 0.9 Mn 0.1 O 2 had a layer structure, and the lithium occupation ratio in the transition metal main layer was 0.5%. This sample is referred to as d.

【0034】このようにして作製した試料dを正極活物
質とする電池を、0.5mA/cm2の電流密度で4.
3Vまで充電し、その後3.0Vまで放電させた際の放
電容量を表に示す。放電容量が大きく、高エネルギー密
度電池として利用できる利点を有しているが、実施例1
〜3の電池に比べるとやや放電容量が小さいことが分か
った。
A battery using the thus prepared sample d as a positive electrode active material was prepared at a current density of 0.5 mA / cm 2 .
The discharge capacity when charged to 3V and then discharged to 3.0V is shown in the table. Example 1 has an advantage that it has a large discharge capacity and can be used as a high energy density battery.
It was found that the discharge capacity was slightly smaller than those of the batteries of Nos. 1 to 3.

【0035】またこの電池を0.1mA/cm2の電流
密度で、4.3Vまで充電し、そのままで電池を解体
し、正極活物質を含む正極合剤ペレットを取り出し、こ
れを300度まで加熱した際の吸発熱を観察したとこ
ろ、発熱はなく、吸熱のみが認められた。従って電池が
満充電の際にも発熱を起こすことはなく、安全性の高い
電池を実現できることが明らかである。
The battery was charged to 4.3 V at a current density of 0.1 mA / cm 2 , the battery was disassembled as it was, a positive electrode mixture pellet containing a positive electrode active material was taken out, and this was heated to 300 ° C. Observation of endothermic and exothermic results showed that there was no exotherm, but only endothermic. Therefore, even when the battery is fully charged, no heat is generated, and it is clear that a highly safe battery can be realized.

【0036】実施例1〜5では、具体的なX、Y、Mを
有する組成式LiXNi1-YYZ(0≦X≦1.1、0
≦Y≦0.5、1.8≦Z≦2.2、Mはニッケル以外
の遷移金属あるいはIVB族、VB族、VIB族、VI
IB族に属する元素から選ばれる1種類以上の元素)で
与えられる複酸化物であるリチウム電池用正極活物質と
その製造方法、及びそれを用いる電池の具体例について
示したが、組成式LiXNi1-YYZ(0≦X≦1.
1、0≦Y≦0.5、1.8≦Z≦2.2、Mは遷移金
属、IVB族、VB族、VIB族、VIIBに属する元
素)で与えられる複酸化物であるリチウム電池用正極活
物質とその製造方法、及びそれを用いる電池の他の場合
であっても、その層構造中の遷移金属主体層におけるリ
チウム占有率が0.5%以上であることを特徴としてお
り、特に前記元素Mが珪素、チタン、バナジウム、クロ
ム、マンガン、鉄、ゲルマニウム、ジルコニウム、ニオ
ブ、モリブデン、ルテニウム、パラジウム、錫、テル
ル、ハフニウム、タングステン、イリジウム、白金、鉛
であり、また特に原子比でLi/(Ni+M)>1とな
るようにリチウム化合物とニッケル化合物と元素Mの化
合物を混合してその混合物を熱処理した後にLiXNi
1-YYZ以外のリチウム化合物を除去することにより
前記リチウム電池用正極活物質を製造することを特徴と
する場合は、同様の効果を生じることはいうまでもな
い。
In Examples 1 to 5, the composition formula Li X Ni 1 -Y M Y O Z having specific X, Y and M (0 ≦ X ≦ 1.1, 0
≦ Y ≦ 0.5, 1.8 ≦ Z ≦ 2.2, M is a transition metal other than nickel or a group IVB, VB, VIB, VI
One or more kinds of elements) lithium battery positive electrode active material is a composite oxide given by the manufacturing method thereof selected from the elements belonging to Group IB, and is shown a specific example of the battery using the same, composition formula Li X Ni 1-Y M Y O Z (0 ≦ X ≦ 1.
1, 0 ≦ Y ≦ 0.5, 1.8 ≦ Z ≦ 2.2, where M is a transition metal, an element belonging to the group IVB, VB, VIB, or VIIB), which is a double oxide provided for a lithium battery. Even in other cases of the positive electrode active material and the method for producing the same, and batteries using the same, the lithium occupancy of the transition metal-based layer in the layer structure is characterized by being 0.5% or more, particularly The element M is silicon, titanium, vanadium, chromium, manganese, iron, germanium, zirconium, niobium, molybdenum, ruthenium, palladium, tin, tellurium, hafnium, tungsten, iridium, platinum, lead, and especially Li in atomic ratio. / (Ni + M)> 1 and comprising as a mixture of compounds of the lithium compound and the nickel compound and the element M Li after heat treatment of the mixture X Ni
1-Y M Y O if by removing the lithium compound other than Z is characterized by producing a positive active material for the lithium battery, it is needless to say that produces a similar effect.

【0037】[0037]

【比較例1】比較例1では、以下のような製造方法によ
り得た正極活物質の試料eを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
一水和物1モルと硝酸ニッケル六水和物1.0モル(原
子比でLi:Ni=2:1、Li/Ni=2)を混合
し、大気中で700℃で10時間熱処理することによ
り、LiNiO2とそれ以外のリチウム化合物との混合
物を得た。次にこの混合物に25℃、1リットルの水を
加えて混合物を洗浄し、LiNiO2以外のリチウム化
合物を水溶液中に溶かし、濾過によって除去することに
より、LiNiO2を得た。X線回折により、LiNi
2は層構造を持ち、遷移金属主体層におけるリチウム
占有率が0.0%であることが判明した。この試料をe
とする。
Comparative Example 1 In Comparative Example 1, a lithium battery was fabricated in the same manner as in Example 1, except that a positive electrode active material sample e obtained by the following manufacturing method was used. First, 1 mol of lithium hydroxide monohydrate and 1.0 mol of nickel nitrate hexahydrate (atomic ratio: Li: Ni = 2: 1, Li / Ni = 2) were mixed at 700 ° C. in the atmosphere. By subjecting the mixture to heat treatment for an hour, a mixture of LiNiO 2 and another lithium compound was obtained. Next, 1 liter of water was added to the mixture at 25 ° C. to wash the mixture, and a lithium compound other than LiNiO 2 was dissolved in an aqueous solution and removed by filtration to obtain LiNiO 2 . By X-ray diffraction, LiNi
O 2 has a layer structure, and the lithium occupancy in the transition metal main layer was found to be 0.0%. This sample is e
And

【0038】このようにして作製した試料eを正極活物
質とする電池を、0.5mA/cm2の電流密度で4.
3Vまで充電し、その後3.0Vまで放電させた際の放
電容量を表に示す。
A battery using the thus prepared sample e as a positive electrode active material was prepared at a current density of 0.5 mA / cm 2 .
The discharge capacity when charged to 3V and then discharged to 3.0V is shown in the table.

【0039】またこの電池を0.1mA/cm2の電流
密度で、4.3Vまで充電し、そのままで電池を解体
し、正極活物質を含む正極合剤ペレットを取り出し、こ
れを300度まで加熱した際の吸発熱を観察したとこ
ろ、強い発熱が認められた。従って満充電の際に電池が
発熱を起こす可能性が高く、電池の安全性が低いことが
分かった。この電池と比較すると、本発明の実施例で製
造した正極活物質を有する電池は、安全性が高いことが
分かる。
The battery was charged to 4.3 V at a current density of 0.1 mA / cm 2 , the battery was disassembled as it was, a positive electrode mixture pellet containing a positive electrode active material was taken out, and this was heated to 300 ° C. Observation of heat absorption and heat generation at the time of the heat treatment revealed strong heat generation. Therefore, it was found that the battery is likely to generate heat when fully charged, and the safety of the battery was low. Compared with this battery, it can be seen that the battery having the positive electrode active material manufactured in Examples of the present invention has higher safety.

【0040】[0040]

【比較例2】比較例2では、以下のような製造方法によ
り得た正極活物質の試料fを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
一水和物2モルと硝酸ニッケル六水和物0.9モルと硝
酸コバルト六水和物0.1モル(原子比でLi:Ni:
Co=2:0.9:0.1、Li/(Ni+Co)=
2)を混合し、大気中で700℃で10時間熱処理する
ことにより、LiNi0. 9Co0.12とそれ以外のリチ
ウム化合物との混合物を得た。次にこの混合物に25
℃、1リットルの水を加えて混合物を洗浄し、LiNi
0.9Co0.12以外のリチウム化合物を水溶液中に溶か
し、濾過によって除去することにより、LiNi0.9
0.12を得た。X線回折により、LiNi0.9Co0.1
2は層構造を持ち、遷移金属主体層におけるリチウム
占有率が0.0%であることが判明した。この試料をf
とする。
Comparative Example 2 In Comparative Example 2, a lithium battery was produced in the same manner as in Example 1, except that a positive electrode active material sample f obtained by the following production method was used. First, 2 mol of lithium hydroxide monohydrate, 0.9 mol of nickel nitrate hexahydrate and 0.1 mol of cobalt nitrate hexahydrate (atomic ratio of Li: Ni:
Co = 2: 0.9: 0.1, Li / (Ni + Co) =
2) were mixed, by heat treatment for 10 hours at 700 ° C. in air to obtain a mixture of LiNi 0. 9 Co 0.1 O 2 and other lithium compounds. Then add 25
The mixture was washed by adding 1 liter of water
By dissolving lithium compounds other than 0.9 Co 0.1 O 2 in an aqueous solution and removing them by filtration, LiNi 0.9 C
o 0.1 O 2 was obtained. By X-ray diffraction, LiNi 0.9 Co 0.1
O 2 has a layer structure, and the lithium occupancy in the transition metal main layer was found to be 0.0%. This sample is called f
And

【0041】このようにして作製した試料fを正極活物
質とする電池を、0.5mA/cm2の電流密度で4.
3Vまで充電し、その後3.0Vまで放電させた際の放
電容量を表に示す。
A battery using the thus prepared sample f as a positive electrode active material was prepared at a current density of 0.5 mA / cm 2 .
The discharge capacity when charged to 3V and then discharged to 3.0V is shown in the table.

【0042】またこの電池を0.1mA/cm2の電流
密度で、4.3Vまで充電し、そのままで電池を解体
し、正極活物質を含む正極合剤ペレットを取り出し、こ
れを300度まで加熱した際の吸発熱を観察したとこ
ろ、強い発熱が認められた。従って満充電の際に電池が
発熱を起こす可能性が高く、電池の安全性が低いことが
分かった。この電池と比較すると、本発明の実施例で製
造した正極活物質を有する電池は、安全性が高いことが
分かる。
The battery was charged to 4.3 V at a current density of 0.1 mA / cm 2 , the battery was disassembled as it was, a positive electrode mixture pellet containing a positive electrode active material was taken out, and this was heated to 300 ° C. Observation of heat absorption and heat generation at the time of the heat treatment revealed strong heat generation. Therefore, it was found that the battery is likely to generate heat when fully charged, and the safety of the battery was low. Compared with this battery, it can be seen that the battery having the positive electrode active material manufactured in Examples of the present invention has higher safety.

【0043】 [0043]

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
放電容量が大きくまた安全性に優れたリチウム電池を実
現することができ、携帯用の種々の電子機器の電源を始
め、様々な分野に利用できるという利点を有する。
As described above, according to the present invention,
A lithium battery having a large discharge capacity and excellent safety can be realized, and has an advantage that it can be used in various fields including a power source of various portable electronic devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例におけるコイン型電池の構成例
を示す断面図。
FIG. 1 is a sectional view showing a configuration example of a coin-type battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 封口板 2 ガスケット 3 正極ケース 4 負極 5 セパレータ 6 正極合剤ペレット DESCRIPTION OF SYMBOLS 1 Sealing plate 2 Gasket 3 Positive electrode case 4 Negative electrode 5 Separator 6 Positive electrode mixture pellet

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】組成式LiXNi1-YYZ(0≦X≦1.
1、0≦Y≦0.5、1.8≦Z≦2.2、Mはニッケ
ル以外の遷移金属あるいはIVB族、VB族、VIB
族、VIIB族に属する元素から選ばれる1種類以上の
元素)で与えられる複酸化物であって、その層構造中の
遷移金属主体層におけるリチウム占有率が0.5%以上
であることを特徴とするリチウム電池用正極活物質。
A composition formula Li x Ni 1-Y M Y O Z (0 ≦ X ≦ 1.
1, 0 ≦ Y ≦ 0.5, 1.8 ≦ Z ≦ 2.2, M is a transition metal other than nickel or a group IVB, group VB, VIB
, A complex oxide given by one or more elements selected from elements belonging to Group VIIB and Group VIIB), wherein the lithium occupancy of the transition metal main layer in the layer structure is 0.5% or more. Positive electrode active material for lithium batteries.
【請求項2】前記元素Mが珪素、チタン、バナジウム、
クロム、マンガン、鉄、ゲルマニウム、ジルコニウム、
ニオブ、モリブデン、ルテニウム、パラジウム、錫、テ
ルル、ハフニウム、タングステン、イリジウム、白金、
鉛であることを特徴とする請求項1記載のリチウム電池
用正極活物質。
2. The method according to claim 1, wherein said element M is silicon, titanium, vanadium,
Chromium, manganese, iron, germanium, zirconium,
Niobium, molybdenum, ruthenium, palladium, tin, tellurium, hafnium, tungsten, iridium, platinum,
The positive electrode active material for a lithium battery according to claim 1, wherein the positive electrode active material is lead.
【請求項3】原子比でLi/(Ni+M)>1となるよ
うにリチウム化合物とニッケル化合物と元素Mの化合物
を混合してその混合物を熱処理した後にLiXNi1-Y
YZ以外のリチウム化合物を除去することにより、請求
項1請求項2記載のLiXNi1-YYZを製造すること
を特徴とするリチウム電池用正極活物質の製造方法。
3. A mixture of a lithium compound, a nickel compound, and a compound of an element M so that the atomic ratio of Li / (Ni + M)> 1 is obtained, and the mixture is heat-treated, and then Li X Ni 1 -Y M
Y O by removing the Z other than lithium compounds, method for producing a cathode active material for a lithium battery, characterized in that to produce the Li X Ni 1-Y M Y O Z of Claim 1 Claim 2 wherein.
【請求項4】請求項1、2記載のリチウム電池用正極活
物質を含む正極を有しリチウム金属またはリチウム化合
物を含む負極を有しリチウムイオンが前記正極および前
記負極と電気化学反応をするための移動を行い得る物質
を電解質物質として有することを特徴とするリチウム電
池。
4. A positive electrode comprising the positive electrode active material for a lithium battery according to claim 1, further comprising a negative electrode comprising lithium metal or a lithium compound, wherein lithium ions undergo an electrochemical reaction with the positive electrode and the negative electrode. A lithium battery comprising, as an electrolyte substance, a substance capable of transferring ions.
【請求項5】前記リチウム電池用正極活物質が請求項3
に記載のリチウム電池用正極活物質の製造方法により製
造されたものであることを特徴とする請求項4記載のリ
チウム電池。
5. The positive electrode active material for a lithium battery according to claim 3, wherein
The lithium battery according to claim 4, which is manufactured by the method for manufacturing a positive electrode active material for a lithium battery according to (1).
JP9143268A 1997-05-16 1997-05-16 Positive electrode active material for lithium battery, its manufacture, and lithium battery using it Pending JPH10321228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9143268A JPH10321228A (en) 1997-05-16 1997-05-16 Positive electrode active material for lithium battery, its manufacture, and lithium battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9143268A JPH10321228A (en) 1997-05-16 1997-05-16 Positive electrode active material for lithium battery, its manufacture, and lithium battery using it

Publications (1)

Publication Number Publication Date
JPH10321228A true JPH10321228A (en) 1998-12-04

Family

ID=15334806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9143268A Pending JPH10321228A (en) 1997-05-16 1997-05-16 Positive electrode active material for lithium battery, its manufacture, and lithium battery using it

Country Status (1)

Country Link
JP (1) JPH10321228A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002041419A1 (en) * 2000-11-20 2002-05-23 Chuo Denki Kogyo Co., Ltd. Nonaqueous electrolyte secondary cell and positive electrode active material
WO2004034489A3 (en) * 2002-09-13 2005-03-03 Max Planck Ges Zur Novel electrodes for li-based electrochemical energy storage devices and a li-based electrochemical storage device
JP2008277309A (en) * 2000-02-14 2008-11-13 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method thereof
JP2010108793A (en) * 2008-10-31 2010-05-13 Idemitsu Kosan Co Ltd Positive electrode for all-solid lithium secondary battery, and all-solid lithium secondary battery
JP2010129481A (en) * 2008-11-28 2010-06-10 Mitsui Mining & Smelting Co Ltd Positive electrode for nonaqueous electrolyte secondary battery
JP2011187174A (en) * 2010-03-04 2011-09-22 Agc Seimi Chemical Co Ltd Method for manufacturing positive electrode active material for lithium ion secondary battery
US8758942B2 (en) 2008-02-28 2014-06-24 Samsung Sdi Co., Ltd. Cathode active material, and cathode and lithium including the same
WO2019131234A1 (en) * 2017-12-26 2019-07-04 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277309A (en) * 2000-02-14 2008-11-13 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method thereof
WO2002041419A1 (en) * 2000-11-20 2002-05-23 Chuo Denki Kogyo Co., Ltd. Nonaqueous electrolyte secondary cell and positive electrode active material
US6811925B2 (en) 2000-11-20 2004-11-02 Chuo Denki Kogyo Co., Ltd. Nonaqueous electrolyte secondary cell and a tungsten or molybdenum substituted lithium positive electrode active material
WO2004034489A3 (en) * 2002-09-13 2005-03-03 Max Planck Ges Zur Novel electrodes for li-based electrochemical energy storage devices and a li-based electrochemical storage device
EP2214230A1 (en) * 2002-09-13 2010-08-04 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Novel electrodes for Li-based electrochemical energy storage devices and Li-based electrochemical storage device including such an electrode
US8758942B2 (en) 2008-02-28 2014-06-24 Samsung Sdi Co., Ltd. Cathode active material, and cathode and lithium including the same
JP2010108793A (en) * 2008-10-31 2010-05-13 Idemitsu Kosan Co Ltd Positive electrode for all-solid lithium secondary battery, and all-solid lithium secondary battery
JP2010129481A (en) * 2008-11-28 2010-06-10 Mitsui Mining & Smelting Co Ltd Positive electrode for nonaqueous electrolyte secondary battery
JP2011187174A (en) * 2010-03-04 2011-09-22 Agc Seimi Chemical Co Ltd Method for manufacturing positive electrode active material for lithium ion secondary battery
WO2019131234A1 (en) * 2017-12-26 2019-07-04 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JPWO2019131234A1 (en) * 2017-12-26 2020-12-24 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
US11831013B2 (en) 2017-12-26 2023-11-28 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell

Similar Documents

Publication Publication Date Title
JP5114998B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JPH10507031A (en) Method for synthesizing alkali metal intercalated manganese oxide material and electrode for electrochemical cell using this material
KR101977995B1 (en) Positive electrode active material coated with boron compounds for lithium secondary battery and preparation method thereof
KR20080015034A (en) Lithium ion secondary battery
JPH09330720A (en) Lithium battery
JPH08306360A (en) Manufacture of cathode active material for nonaqueous battery
JP2008277309A (en) Positive electrode active material for lithium secondary battery, and manufacturing method thereof
JP3649996B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3503688B2 (en) Lithium secondary battery
JP2005158737A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
JP2001023617A (en) Manufacture of lithium secondary battery
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JPH10321228A (en) Positive electrode active material for lithium battery, its manufacture, and lithium battery using it
JP2001068113A (en) Positive electrode active material for lithium battery, its manufacturing method, and lithium battery
JPH09259879A (en) Manufacture of positive electrode active material for lithium battery
JP3625629B2 (en) Nickel oxide cathode material manufacturing method and battery using nickel oxide manufactured by the method
JP7272052B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP3625630B2 (en) Method for producing cobalt oxide positive electrode material, and battery using cobalt oxide positive electrode material produced by the method
JP2004284845A (en) Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery
JPH06111822A (en) Lithium battery
KR20130022018A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP3130531B2 (en) Non-aqueous solvent secondary battery
JPH08227713A (en) Manufacture of positive active material for nonaqueous electrolytic battery
JP2005353330A (en) Nonaqueous electrolyte electrochemical cell