JP2011187174A - Method for manufacturing positive electrode active material for lithium ion secondary battery - Google Patents

Method for manufacturing positive electrode active material for lithium ion secondary battery Download PDF

Info

Publication number
JP2011187174A
JP2011187174A JP2010048128A JP2010048128A JP2011187174A JP 2011187174 A JP2011187174 A JP 2011187174A JP 2010048128 A JP2010048128 A JP 2010048128A JP 2010048128 A JP2010048128 A JP 2010048128A JP 2011187174 A JP2011187174 A JP 2011187174A
Authority
JP
Japan
Prior art keywords
positive electrode
group
electrode active
active material
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010048128A
Other languages
Japanese (ja)
Inventor
Yukimitsu Wakasugi
幸満 若杉
Koji Tatsumi
功司 巽
Takeshi Kawasato
健 河里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Seimi Chemical Ltd
Original Assignee
AGC Seimi Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Seimi Chemical Ltd filed Critical AGC Seimi Chemical Ltd
Priority to JP2010048128A priority Critical patent/JP2011187174A/en
Publication of JP2011187174A publication Critical patent/JP2011187174A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a positive electrode active material excelling in charge-discharge cycle durability, low in the amount of free alkali and having high discharge capacity, high filling property and high volume capacity density. <P>SOLUTION: The method for manufacturing the positive electrode active material includes carrying out water contact treatment of a lithium composite oxide expressed by general formula: Li<SB>a</SB>Ni<SB>b</SB>Co<SB>c</SB>Mn<SB>d</SB>M<SB>e</SB>O<SB>2</SB>(a element M is at least one kind of element selected from a group consisting of transition metal elements other than Ni, Co and Mn, and Al and group 2 elements, and a, b, c, d and e are 0.9≤a≤1.2, 0≤b≤1, 0≤c≤1, 0≤d<1, 0≤e≤0.3, a+b+c+d+e=2), then separating treatment water from the lithium composite oxide, bringing the lithium composite oxide separated from the treatment water, into contact with a solution of a compound of a group 3 element or a group 4 element to stick 0.02-0.9 mol% of the group 3 element or group 4 element to the lithium composite oxide, and then heating it at 600-1,000°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウムイオン二次電池等の非水電解質二次電池に用いる正極活物質の製造方法に関する。   The present invention relates to a method for producing a positive electrode active material used for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.

近年、パソコン、携帯電話等の情報関連機器や通信機器の急速な発達が進むにつれて、小型、軽量でかつ高エネルギー密度を有するリチウム二次電池等の非水電解質二次電池に対する要求が高まっている。非水電解質二次電池用の正極活物質には、LiCoO、LiNi0.8Co0.2、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3などのリチウムと遷移金属の複合酸化物(本発明において、単にリチウム複合酸化物ということがある)が知られている。
なかでも、リチウムコバルト複合酸化物(LiCoO)を正極活物質として用いて、リチウム合金、またはグラファイトもしくはカーボンファイバー等のカーボンを負極として用いたリチウム二次電池は、4V級の高い電圧が得られるため、高エネルギー密度を有する電池として特に広く使用されている。
In recent years, with the rapid development of information-related equipment and communication equipment such as personal computers and mobile phones, there is an increasing demand for non-aqueous electrolyte secondary batteries such as lithium secondary batteries that are small, lightweight, and have high energy density. . The positive electrode active materials for non-aqueous electrolyte secondary batteries include LiCoO 2 , LiNi 0.8 Co 0.2 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0. 2 Composite oxides of lithium and transition metals such as 2 Mn 0.3 O 2 (in the present invention, sometimes simply referred to as lithium composite oxide) are known.
Among them, a lithium secondary battery using lithium cobalt composite oxide (LiCoO 2 ) as a positive electrode active material and using a lithium alloy or carbon such as graphite or carbon fiber as a negative electrode can obtain a high voltage of 4 V class. Therefore, it is particularly widely used as a battery having a high energy density.

また、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3、LiNiO、LiNi0.8Co0.2などのリチウム複合酸化物は高価なCoの含有量が少ないため、低コストの材料として期待されている。さらに、これらのリチウム複合酸化物は、正極活物質として用いた際に、Niの含有量が多いほど、単位重量あたりの放電容量が大きく、エネルギー密度の高い電池を製造することができることが知られている。 Also, lithium composite oxidation such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 Since the product has a low content of expensive Co, it is expected as a low-cost material. Furthermore, when these lithium composite oxides are used as a positive electrode active material, it is known that the higher the Ni content, the larger the discharge capacity per unit weight and the higher the energy density. ing.

しかし、いずれのリチウム複合酸化物においても、放電容量、充填性、単位体積あたりの放電容量に関する体積容量密度、充放電を繰り返すことによる放電容量の減少に関する充放電サイクル耐久性、充電した状態で長時間放置した際の気体発生量に関する保存特性、および電極作製時の集電体への塗工状態に関する塗工性に関係する遊離アルカリ量などは不十分なものであり、全て満足するものは得られていない。   However, in any lithium composite oxide, the discharge capacity, the filling property, the volume capacity density related to the discharge capacity per unit volume, the charge / discharge cycle durability related to the decrease in the discharge capacity due to repeated charge / discharge, and the long state in the charged state. The storage characteristics related to the amount of gas generated when left for a long time and the amount of free alkali related to the coating properties related to the state of application to the current collector during electrode preparation are insufficient, and all satisfying requirements are obtained. It is not done.

これらの問題を解決するために、従来、種々の検討がなされてきた。例えば、リチウム複合酸化物を水洗して、その粒子の表面に存在するリチウム化合物を除去した正極活物質が提案されている(特許文献1〜特許文献4参照)。
また、リチウム複合酸化物の粒子表面に、チタン化合物またはジルコニウム化合物を被覆した正極活物質が提案されている(特許文献5〜特許文献7参照)。
In order to solve these problems, various studies have been made conventionally. For example, a positive electrode active material in which a lithium composite oxide is washed with water and a lithium compound present on the surface of the particles is removed has been proposed (see Patent Documents 1 to 4).
Moreover, the positive electrode active material which coat | covered the titanium compound or the zirconium compound on the particle | grain surface of lithium complex oxide is proposed (refer patent document 5-patent document 7).

特開平8−138669号公報JP-A-8-138669 特開2003−017054号公報JP 2003-017054 A 特開2007−273106号公報JP 2007-273106 A 特開2008−277087号公報JP 2008-277087 A 特開2002−151078号公報JP 2002-151078 A 特開2005−310744号公報JP 2005-310744 A 特開2006−156032号公報JP 2006-156032 A

上記のように、従来、種々の検討が行われているが、放電容量、充填性、体積容量密度、充放電サイクル耐久性および遊離アルカリ量などの各特性を全て満足する正極活物質は、未だ得られていない。
例えば、特許文献1〜特許文献4に記載の正極活物質は、リチウム複合酸化物の粒子表面を水洗することにより、粒子表面のアルカリ化合物を除去でき、遊離アルカリ量の減少が見られるが、正極活物質の粒子表面からリチウム、ニッケル、コバルトまたはマンガンのイオンが溶出して、結晶構造が不安定になり、充放電サイクル耐久性の極端な悪化が見られ、実用に耐えられるものではなかった。
As described above, various studies have been made heretofore, but a positive electrode active material that satisfies all the characteristics such as discharge capacity, filling property, volume capacity density, charge / discharge cycle durability, and free alkali amount has not yet been developed. Not obtained.
For example, the positive electrode active material described in Patent Documents 1 to 4 can remove the alkali compound on the particle surface by washing the particle surface of the lithium composite oxide with water, and a decrease in the amount of free alkali is observed. Lithium, nickel, cobalt, or manganese ions were eluted from the surface of the active material particles, the crystal structure became unstable, and the charge / discharge cycle durability was extremely deteriorated.

また、特許文献5〜特許文献7に記載の正極活物質は、充放電サイクル耐久性の向上は見られるが、遊離アルカリ量が高くなるため、電池の正極活物質として用いた場合、電極に加工する際に、正極活物質を分散させたスラリーがゲル状になったり、集電体から正極活物質が剥落したり、塗工性の悪化が見られる。また、保存特性も悪く、充放電を繰り返すにつれて、電池内部に気体が発生して電池が膨らみ、実用に耐えられるものではなかった。被覆処理した正極活物質の遊離アルカリ量が増加するのは、被覆処理に用いる化合物が母材のリチウム複合酸化物と反応して、リチウム複合酸化物の粒子表面に、リチウムを含んだアルカリ化合物が生成するためであると考えられる。   Moreover, although the positive electrode active material of patent document 5-patent document 7 can improve charge-discharge cycle durability, since the amount of free alkalis becomes high, when used as a positive electrode active material of a battery, it is processed into an electrode. In this case, the slurry in which the positive electrode active material is dispersed becomes a gel, the positive electrode active material is peeled off from the current collector, and the coating property is deteriorated. In addition, the storage characteristics were poor, and as charging / discharging was repeated, gas was generated inside the battery and the battery swelled and could not withstand practical use. The amount of free alkali in the coated positive electrode active material increases because the compound used in the coating treatment reacts with the lithium composite oxide of the base material, and lithium-containing alkali compounds are formed on the surface of the lithium composite oxide particles. It is thought that it is for generating.

遊離アルカリ量が高い正極活物質は、上記のように、これを溶媒に分散させたスラリーから電極に加工しようとする際に、ゲル状になりやすく、集電体から正極活物質が剥落して、塗工性が悪いという問題があり、さらに、遊離アルカリ量が高い正極活物質を電池の正極として用いて、充電状態で長期間保存したり、長期に渡って充放電を繰り返したりすると、電解液の分解反応が進行して、発熱を伴いつつ、二酸化炭素などの気体および水が生成して、電池の膨張、破裂に繋がり、保存特性が悪いという問題があった。   As described above, the positive electrode active material having a high amount of free alkali is likely to be gelled when the slurry is dispersed in a solvent to form an electrode, and the positive electrode active material is peeled off from the current collector. If the positive electrode active material having a high free alkali amount is used as the positive electrode of the battery and stored for a long time in a charged state or repeatedly charged and discharged for a long time, There was a problem that the decomposition reaction of the liquid progressed, and gas such as carbon dioxide and water were generated with heat generation, leading to expansion and rupture of the battery, and poor storage characteristics.

本発明は、充放電サイクル耐久性に優れ、遊離アルカリ量が低く、高い放電容量、高い充填性および高い体積容量密度を有する正極活物質の製造方法、該製造方法により得られる正極活物質を使用する正極およびリチウムイオン二次電池の製造方法の提供を目的とする。   The present invention uses a positive electrode active material that is excellent in charge / discharge cycle durability, has a low amount of free alkali, has a high discharge capacity, high fillability, and high volume capacity density, and a positive electrode active material obtained by the production method An object of the present invention is to provide a positive electrode and a method for manufacturing a lithium ion secondary battery.

本発明者らは、鋭意研究を続けたところ、所定の組成を有するリチウム複合酸化物の粒子を水に接触処理させた後、このリチウム複合酸化物から処理水を分離し、次いで、該リチウム複合酸化物を、3族元素または4族元素の化合物の溶液に接触させて、所定量の3族元素または4族元素の所定量をリチウム複合酸化物に付着させた後、所定の範囲の温度で加熱して得られる正極活物質が上記課題を達成できることを見出した。   As a result of intensive research, the present inventors contacted the lithium composite oxide particles having a predetermined composition with water, and then separated the treated water from the lithium composite oxide. The oxide is brought into contact with a solution of a Group 3 element or a Group 4 element compound, and a predetermined amount of the Group 3 element or the Group 4 element is attached to the lithium composite oxide, and then at a temperature in a predetermined range. It discovered that the positive electrode active material obtained by heating can achieve the said subject.

すなわち、本発明は、下記を要旨とするものである。
(1)一般式LiNiCoMn(M元素は、Ni、CoおよびMn以外の遷移金属元素、Alならびに2族元素からなる群から選ばれる少なくとも一種の元素である。a、b、c、dおよびeはそれぞれ、0.9≦a≦1.2、0≦b≦1、0≦c≦1、0≦d<1、0≦e≦0.3、a+b+c+d+e=2である。)で表されるリチウム複合酸化物を、水に接触処理させた後、該リチウム複合酸化物から処理水を分離し、次いで、処理水を分離したリチウム複合酸化物を、3族元素または4族元素の化合物の溶液に接触させて、リチウム複合酸化物に対して0.02〜0.9mol%の3族元素または4族元素を付着させた後、600〜1000℃で加熱することを特徴とするリチウムイオン二次電池用正極活物質の製造方法。
(2)加熱する温度が600〜950℃である、上記(1)に記載の製造方法。
(3)3族元素または4族元素が、ランタン、チタン、ジルコニウムおよびハフニウムからなる群から選ばれる少なくとも1種の元素である上記(1)または(2)に記載の製造方法。
(4)3族元素または4族元素の化合物の溶液に接触させて付着させた、3族元素または4族元素の量が、リチウム複合酸化物に対して0.02〜0.5mol%である、上記(1)〜(3)のいずれかに記載の製造方法。
(5)処理水を分離したリチウム複合酸化物を、60〜200℃で乾燥した後、3族元素または4族元素の化合物の溶液に接触させる、上記(1)〜(4)のいずれかに記載の製造方法。
(6)3族元素または4族元素の化合物の溶液が、炭酸ジルコニウムアンモニウム、酢酸ランタンおよび乳酸チタンからなる群から選ばれる少なくとも1種の化合物の水溶液である、上記(1)〜(5)のいずれかに記載の製造方法。
(7)正極活物質の遊離アルカリ量が、0.7mol%以下である、上記(1)〜(6)のいずれかに記載の製造方法。
(8)一般式LiNiCoMnで表されるリチウム複合酸化物において、a、b、c、dおよびeが、それぞれ、0.95≦a≦1.1、0.3≦b≦0.9、0≦c≦0.5、0.1≦d≦0.5、0≦e≦0.1である、上記(1)〜(7)のいずれかに記載の製造方法。
(9)正極活物質が粒子状であり、かつ平均粒子径が3〜25μmである上記(1)〜(8)のいずれかに記載の製造方法。
(10)正極活物質の比表面積が0.1〜1.5m/gである上記(1)〜(9)のいずれかに記載の製造方法。
(11)正極活物質のプレス密度が2.7〜3.8g/cmである上記(1)〜(10)のいずれかに記載の製造方法。
(12)上記(1)〜(11)のいずれかに記載の製造方法で得られる正極活物質、導電剤、バインダーおよび溶媒を混合して、得られるスラリーを金属箔に塗布した後、加熱により溶媒を除去することを特徴とするリチウムイオン二次電池用正極の製造方法。
(13)上記(12)に記載の製造方法で得られる正極に、セパレータ、および負極を積層して、これを電池ケースに収納した後、電解液を注入することを特徴とするリチウムイオン二次電池の製造方法。
That is, the present invention has the following gist.
(1) General formula Li a Ni b Co c Mn d Me O 2 (M element is at least one element selected from the group consisting of transition metal elements other than Ni, Co and Mn, Al and Group 2 elements) A, b, c, d and e are 0.9 ≦ a ≦ 1.2, 0 ≦ b ≦ 1, 0 ≦ c ≦ 1, 0 ≦ d <1, 0 ≦ e ≦ 0.3, a + b + c + d + e, respectively. = 2) is contacted with water, the treated water is separated from the lithium composite oxide, and then the treated lithium is separated from the lithium composite oxide by 3 After contact with a solution of a group element or group 4 element compound to attach 0.02 to 0.9 mol% of a group 3 element or group 4 element to the lithium composite oxide, heating at 600 to 1000 ° C. Positive electrode active for lithium ion secondary battery Method of manufacturing quality.
(2) The manufacturing method as described in said (1) whose temperature to heat is 600-950 degreeC.
(3) The production method according to (1) or (2), wherein the Group 3 element or Group 4 element is at least one element selected from the group consisting of lanthanum, titanium, zirconium, and hafnium.
(4) The amount of the Group 3 element or the Group 4 element attached to the group 3 element or the Group 4 element compound in contact with the solution is 0.02 to 0.5 mol% with respect to the lithium composite oxide. The production method according to any one of (1) to (3) above.
(5) The lithium composite oxide from which the treated water is separated is dried at 60 to 200 ° C., and then contacted with a solution of a compound of a group 3 element or a group 4 element. The manufacturing method as described.
(6) The solution of the group 3 element or group 4 element compound is an aqueous solution of at least one compound selected from the group consisting of ammonium zirconium carbonate, lanthanum acetate, and titanium lactate. The manufacturing method in any one.
(7) The manufacturing method in any one of said (1)-(6) whose amount of free alkalis of a positive electrode active material is 0.7 mol% or less.
(8) In the lithium composite oxide represented by the general formula Li a Ni b Co c Mn d Me O 2 , a, b, c, d, and e are 0.95 ≦ a ≦ 1.1, 0.3 ≦ b ≦ 0.9, 0 ≦ c ≦ 0.5, 0.1 ≦ d ≦ 0.5, 0 ≦ e ≦ 0.1, any of (1) to (7) above The manufacturing method as described.
(9) The production method according to any one of (1) to (8), wherein the positive electrode active material is in the form of particles and the average particle size is 3 to 25 μm.
(10) The production method according to any one of (1) to (9), wherein the positive electrode active material has a specific surface area of 0.1 to 1.5 m 2 / g.
(11) The manufacturing method according to any one of (1) to (10), wherein the positive electrode active material has a press density of 2.7 to 3.8 g / cm 3 .
(12) After mixing the positive electrode active material obtained by the manufacturing method in any one of said (1)-(11), a electrically conductive agent, a binder, and a solvent and apply | coating the obtained slurry to metal foil, it is heated. The manufacturing method of the positive electrode for lithium ion secondary batteries characterized by removing a solvent.
(13) A lithium ion secondary characterized by laminating a separator and a negative electrode on a positive electrode obtained by the production method described in (12) above, storing the battery in a battery case, and then injecting an electrolytic solution. Battery manufacturing method.

本発明によれば、リチウムイオン二次電池の正極として有用である、充放電サイクル耐久性に優れ、遊離アルカリ量が低く、高い放電容量、充填性および体積容量密度を有する正極活物質が得られる製造方法が提供される。
なお、本発明では、後記するように、正極活物質の粒子表面や粒子の粒界に存在するアルカリ化合物の存在量を、遊離アルカリ量を測定することにより評価するが、本発明により得られる正極活物質は、この遊離アルカリ量が低く、正極活物質のスラリーのゲル化を防ぎ、塗工性を向上させ、かつ電解液の分解反応に伴う気体の発生を抑制し、電池の膨張などを防ぎ、保存特性を向上できる。
ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material which is useful as a positive electrode of a lithium ion secondary battery, is excellent in charging / discharging cycle durability, has a low amount of free alkalis, and has high discharge capacity, filling property and volume capacity density is obtained. A manufacturing method is provided.
In the present invention, as will be described later, the amount of the alkali compound present on the particle surface of the positive electrode active material or the grain boundary of the particle is evaluated by measuring the amount of free alkali. The positive electrode obtained by the present invention The active material has a low amount of free alkali, prevents gelation of the positive electrode active material slurry, improves coating properties, suppresses the generation of gas accompanying the decomposition reaction of the electrolyte, and prevents the battery from expanding. , Storage characteristics can be improved.

本発明で得られる正極活物質が、何故に上記の優れた特性を有するかについて、そのメカニズムは必ずしも明らかではないが、次のように推定される。
一般に、リチウム複合酸化物は、リチウム源と、ニッケル、コバルトおよびマンガンなどを含む遷移金属源とを混合して得られる、原料混合物を焼成して得られるが、該リチウム複合酸化物の表面近傍には、結晶格子の格子点から外れて存在するリチウム原子や、反応が不十分で残存したリチウム化合物が存在する。上記リチウム原子や、残存したリチウム化合物は、大気中に含まれる水分や二酸化炭素と反応し、アルカリ化合物を形成する。このようなリチウム複合酸化物からなる正極活物質を使用した場合、電極作製時にスラリーのゲル化を生じ電極塗工ができなかったり、電池を作製して充放電を繰り返すと、上記アルカリ化合物が、粒子表面や粒子の粒界から電解液中に溶出し、正極活物質の組成が変化したり、電解液の分解を促進したりするため、充放電サイクル耐久性や保存特性といった電池性能の劣化の原因となる。一方、アルカリ化合物を除去するために、リチウム複合酸化物の粒子表面や粒子の粒界を単に水や酸性水溶液で洗浄などを行った場合には、リチウム複合酸化物の粒子表面からはアルカリの他に、リチウム、ニッケル、コバルト、マンガンなどの成分も溶出してしまい、結晶構造が不安定になり、充放電サイクル耐久性が悪化する。
The reason why the positive electrode active material obtained in the present invention has the above-mentioned excellent characteristics is not necessarily clear, but is estimated as follows.
In general, a lithium composite oxide is obtained by firing a raw material mixture obtained by mixing a lithium source and a transition metal source containing nickel, cobalt, manganese, and the like. In this case, there are lithium atoms that are deviated from the lattice points of the crystal lattice, and there are remaining lithium compounds that are not sufficiently reacted. The lithium atom and the remaining lithium compound react with moisture and carbon dioxide contained in the atmosphere to form an alkali compound. When a positive electrode active material made of such a lithium composite oxide is used, gelation of the slurry occurs at the time of electrode preparation, electrode coating cannot be performed, or when the battery is repeatedly charged and discharged, the alkali compound is It elutes from the particle surface and grain boundaries into the electrolyte, changing the composition of the positive electrode active material and accelerating the decomposition of the electrolyte, leading to deterioration in battery performance such as charge / discharge cycle durability and storage characteristics. Cause. On the other hand, when the surface of the lithium composite oxide particles and the grain boundaries of the lithium composite oxide are simply washed with water or an acidic aqueous solution in order to remove the alkali compound, other than alkali from the lithium composite oxide particle surface. In addition, components such as lithium, nickel, cobalt, and manganese are also eluted, the crystal structure becomes unstable, and the charge / discharge cycle durability deteriorates.

しかし、本発明においては、リチウム複合酸化物の粒子を水に接触処理させることで、アルカリ化合物を除去し、次いで、3族元素または4族元素の化合物の溶液に接触させることで、3族元素または4族元素の化合物をリチウム複合酸化物の粒子表面に付着させて、結果として、遊離アルカリ量が低く、かつ充放電サイクル耐久性などの電池性能が優れた正極活物質を得ることができるものと思われる。   However, in the present invention, the lithium composite oxide particles are contacted with water to remove the alkali compound, and then are contacted with a solution of a Group 3 element or a Group 4 element compound to obtain a Group 3 element. Alternatively, a group 4 element compound can be adhered to the particle surface of the lithium composite oxide, and as a result, a positive electrode active material having a low free alkali amount and excellent battery performance such as charge / discharge cycle durability can be obtained. I think that the.

リチウム複合酸化物と水とを接触処理させるだけでは、充放電サイクル耐久性が悪化してしまうが、その後に、粒子表面に3族元素または4族元素の化合物を付着させることで、洗浄により変質した粒子表面と粒子表面に付着した化合物との間に、反応を進行させることで、リチウムなどの成分の溶出を抑制して、さらに結晶構造を高度に安定化させることができ、低い遊離アルカリ量と優れた充放電サイクル耐久性を兼ね揃えた正極活物質が得られると推定される。   If the lithium composite oxide and water are merely contact-treated, the charge / discharge cycle durability is deteriorated, but after that, by attaching a compound of a group 3 element or a group 4 element to the particle surface, it is altered by washing. By allowing the reaction to proceed between the particle surface and the compound attached to the particle surface, the elution of components such as lithium can be suppressed, and the crystal structure can be further stabilized. It is estimated that a positive electrode active material having both excellent charge / discharge cycle durability can be obtained.

本発明で原料に用いるリチウム複合酸化物は、一般式LiNiCoMnで表される組成を有する。ここで、a、b、c、dおよびeの定義は、それぞれ上記のとおりであり、なかでも、0.95≦a≦1.1、0.3≦b≦0.9、0≦c≦0.5、0.1≦d≦0.5、0≦e≦0.1であるリチウム複合酸化物が好ましく、0.95≦a≦1.08、0.4≦b≦0.9、0≦c≦0.4、0.1≦d≦0.4、0≦e≦0.05であるリチウム複合酸化物がより好ましく、0.95≦a≦1.05、0.5≦b≦0.9、0≦c≦0.3、0.2≦d≦0.4、0≦e≦0.03であるリチウム複合酸化物が特に好ましい。特にNiの割合が多いリチウム複合酸化物においては、その遊離アルカリ量の値は、非常に大きくなる傾向があり、本発明を適用することで、遊離アルカリ量を大きく減少させることができ、顕著な効果を奏する。なお、原料に用いるリチウム複合酸化物が、コバルト成分を主とするリチウム複合酸化物である場合は、1≦a≦1.05、0≦b≦0.01、0.95≦c≦1、0≦d≦0.01、0≦e≦0.05であるリチウム複合酸化物が好ましく、1≦a≦1.04、b=0、0.96≦c≦1、d=0、0≦e≦0.04であるリチウム複合酸化物がより好ましい。 Lithium composite oxide used as a raw material in the present invention has a composition represented by the general formula Li a Ni b Co c Mn d M e O 2. Here, the definitions of a, b, c, d, and e are as described above. Among them, 0.95 ≦ a ≦ 1.1, 0.3 ≦ b ≦ 0.9, 0 ≦ c ≦ A lithium composite oxide satisfying 0.5, 0.1 ≦ d ≦ 0.5, 0 ≦ e ≦ 0.1 is preferable, 0.95 ≦ a ≦ 1.08, 0.4 ≦ b ≦ 0.9, More preferably, the lithium composite oxide satisfying 0 ≦ c ≦ 0.4, 0.1 ≦ d ≦ 0.4, and 0 ≦ e ≦ 0.05, 0.95 ≦ a ≦ 1.05, 0.5 ≦ b A lithium composite oxide satisfying ≦ 0.9, 0 ≦ c ≦ 0.3, 0.2 ≦ d ≦ 0.4, and 0 ≦ e ≦ 0.03 is particularly preferable. In particular, in the lithium composite oxide having a large proportion of Ni, the value of the free alkali amount tends to be very large, and by applying the present invention, the amount of free alkali can be greatly reduced. There is an effect. When the lithium composite oxide used as a raw material is a lithium composite oxide mainly composed of a cobalt component, 1 ≦ a ≦ 1.05, 0 ≦ b ≦ 0.01, 0.95 ≦ c ≦ 1, A lithium composite oxide satisfying 0 ≦ d ≦ 0.01 and 0 ≦ e ≦ 0.05 is preferable, 1 ≦ a ≦ 1.04, b = 0, 0.96 ≦ c ≦ 1, d = 0, 0 ≦ A lithium composite oxide satisfying e ≦ 0.04 is more preferable.

一般式のM元素は、Ni、CoおよびMn以外の遷移金属元素、Al、Sn、Zn並びにアルカリ土類金属からなる群から選ばれる少なくとも1種の元素である。上記の遷移金属元素とは、周期表の4族、5族、6族、7族、8族、9族、10族または11族の遷移金属を表す。なかでも、M元素は、Al、Ti、Zr、Hf、Nb、Ta、Mg、SnおよびZnからなる群から選ばれる少なくとも1種が好ましい。特に、放電容量、安全性、充放電サイクル耐久性などの見地より、M元素は、Al、Ti、Zr、HfおよびMgからなる群から選ばれる少なくとも1種がより好ましく、Al、ZrおよびMgからなる群から選ばれる少なくとも1種が特に好ましい。但し、放電容量を重視する場合は、一般式にM元素が含まれない、すなわち、e=0が好ましい場合がある。   The M element in the general formula is at least one element selected from the group consisting of transition metal elements other than Ni, Co, and Mn, Al, Sn, Zn, and alkaline earth metals. The above transition metal element represents a transition metal of Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, or Group 11 of the Periodic Table. Among these, the M element is preferably at least one selected from the group consisting of Al, Ti, Zr, Hf, Nb, Ta, Mg, Sn, and Zn. In particular, from the viewpoint of discharge capacity, safety, charge / discharge cycle durability, etc., the M element is more preferably at least one selected from the group consisting of Al, Ti, Zr, Hf and Mg, and from Al, Zr and Mg. Particularly preferred is at least one selected from the group consisting of However, when importance is attached to the discharge capacity, the general formula does not include the M element, that is, e = 0 may be preferable.

本発明で用いるリチウム複合酸化物の製造方法は、固相法、共沈法などを適宜使用でき、特に限定されず、公知のリチウム複合酸化物を用いることができる。例えば、ニッケル源、コバルト源、マンガン源、M元素源として、それぞれの元素の硫酸塩、硝酸塩、炭酸塩、塩化物、水酸化物、酸化物、オキシ水酸化物などを用いることができる。また、ニッケル、コバルト、マンガン、M元素の各元素を任意の組み合わせで共沈させた、共沈水酸化物、共沈酸化物、共沈オキシ水酸化物、共沈炭酸塩などを用いることができる。また、リチウム源としては、特に限定されないが、炭酸リチウムおよび水酸化リチウムからなる群から選ばれる少なくとも1種が好ましく、なかでも炭酸リチウムがより好ましい。リチウム源の平均粒径は2〜25μmが好ましい。また、リチウム源などを含む原料の混合物に対して、必要に応じて水を混合することがある。上記した各元素源を混合した混合物を焼成したり、その他公知の方法を用いたりすることで、リチウム複合酸化物を得ることができる。   The method for producing the lithium composite oxide used in the present invention can appropriately use a solid phase method, a coprecipitation method or the like, and is not particularly limited, and a known lithium composite oxide can be used. For example, as the nickel source, cobalt source, manganese source, and M element source, sulfate, nitrate, carbonate, chloride, hydroxide, oxide, oxyhydroxide, and the like of each element can be used. Moreover, coprecipitated hydroxide, coprecipitated oxide, coprecipitated oxyhydroxide, coprecipitated carbonate, etc., in which each element of nickel, cobalt, manganese, and M element is coprecipitated in any combination can be used. . Further, the lithium source is not particularly limited, but at least one selected from the group consisting of lithium carbonate and lithium hydroxide is preferable, and lithium carbonate is more preferable. The average particle size of the lithium source is preferably 2 to 25 μm. In addition, water may be mixed as necessary to a mixture of raw materials including a lithium source. Lithium composite oxide can be obtained by baking the mixture which mixed each element source mentioned above, or using another well-known method.

本発明において、リチウム複合酸化物は、好ましくは粒子状であり、その平均粒子径は、3〜25μmが好ましく、5〜20μmがより好ましい。また、リチウム複合酸化物の比表面積は、BET法により測定され、0.1〜1.5m/gが好ましく、0.15〜1.2m/gがより好ましく、0.2〜1.0m/gが特に好ましい。 In the present invention, the lithium composite oxide is preferably particulate, and the average particle size is preferably 3 to 25 μm, more preferably 5 to 20 μm. The specific surface area of the lithium composite oxide is measured by the BET method, preferably 0.1~1.5m 2 / g, more preferably 0.15~1.2m 2 / g, 0.2~1. 0 m 2 / g is particularly preferred.

本発明では、リチウム複合酸化物を水に接触処理させて、リチウム複合酸化物からアルカリ化合物を溶出させる。リチウム複合酸化物を水に接触処理させる方法としては、特に限定されるものではなく、リチウム複合酸化物を流水で洗浄する方法、リチウム複合酸化物を水中に分散させ、攪拌することで接触する方法でもよい。また、複数回接触させてもよい。接触に用いる水の量は、特に限定されないが、リチウム複合酸化物100gに対して、水10000g以下が好ましく、水5000g以下がより好ましく、水1000g以下がさらに好ましく、水500g以下が特に好ましい。また、下限については、水10gが好ましく、水50gがより好ましい。リチウム複合酸化物と水との接触時間は、特に限定されないが、10秒〜24時間が好ましく、30秒〜12時間がより好ましく、1分〜3時間が特に好ましい。接触に用いる水の量や接触時間は、電池特性に影響を及ぼすものではないが、多量の水を用いると排水処理の問題が生じたり、長時間接触させると生産性が低下したりする場合がある。   In the present invention, the lithium composite oxide is contacted with water to elute the alkali compound from the lithium composite oxide. The method of contacting the lithium composite oxide with water is not particularly limited, and the method of washing the lithium composite oxide with running water, the method of contacting the lithium composite oxide by dispersing it in water and stirring it. But you can. Moreover, you may make it contact in multiple times. The amount of water used for contact is not particularly limited, but is preferably 10,000 g or less, more preferably 5000 g or less, even more preferably 1000 g or less, and particularly preferably 500 g or less of water with respect to 100 g of the lithium composite oxide. As for the lower limit, 10 g of water is preferable, and 50 g of water is more preferable. The contact time between the lithium composite oxide and water is not particularly limited, but is preferably 10 seconds to 24 hours, more preferably 30 seconds to 12 hours, and particularly preferably 1 minute to 3 hours. The amount of water used for contact and the contact time do not affect the battery characteristics, but if a large amount of water is used, there may be a problem with wastewater treatment, or productivity may be reduced if contacted for a long time. is there.

リチウム複合酸化物の接触に用いる水は、イオン交換水または純水が好ましい。また、リチウム複合酸化物からアルカリ化合物の溶出を促進するため、接触後の水が酸性にならない範囲で、接触に用いる水に少量の有機酸または無機酸を添加してもよい。添加する有機酸としては、酢酸、蓚酸、クエン酸等が挙げられ、無機酸としては、塩酸、硝酸等が挙げられる。   The water used for contacting the lithium composite oxide is preferably ion exchange water or pure water. Further, in order to promote the elution of the alkali compound from the lithium composite oxide, a small amount of an organic acid or an inorganic acid may be added to the water used for the contact within a range in which the water after the contact does not become acidic. Examples of the organic acid to be added include acetic acid, succinic acid, and citric acid, and examples of the inorganic acid include hydrochloric acid and nitric acid.

本発明では、リチウム複合酸化物を、水に接触処理させた後、リチウム複合酸化物に付着ないし含まれていた処理水を分離または除去する。この処理水を分離することにより、リチウム複合酸化物から溶出したアルカリ化合物をリチウム複合酸化物から除去するために行われる。処理水を分離する方法としては、特に限定されるものではないが、処理水はできるだけ分離または除去するのが好ましい。具体的な方法としては、フィルタープレスする方法、デカンテーションする方法、遠心分離する方法、加圧ろ過または吸引ろ過する方法等が挙げられる。   In the present invention, after the lithium composite oxide is contacted with water, the treated water adhering to or contained in the lithium composite oxide is separated or removed. By separating the treated water, the alkaline compound eluted from the lithium composite oxide is removed from the lithium composite oxide. The method for separating the treated water is not particularly limited, but it is preferable to separate or remove the treated water as much as possible. Specific methods include a filter pressing method, a decantation method, a centrifugal separation method, a pressure filtration method or a suction filtration method, and the like.

さらに、処理水を分離して得られたリチウム複合酸化物を、大気中または減圧下で好ましくは60〜200℃、より好ましくは80〜150℃で、30分〜24時間乾燥することで、できるだけ水分を取り除くことが好ましい。水分を十分に取り除くことで、粉末状とすることができ、次工程で、リチウム複合酸化物と3族元素または4族元素の化合物の溶液とを接触させるときに、ハンドリングしやすいため、好ましい。   Furthermore, the lithium composite oxide obtained by separating the treated water is preferably dried at 30 to 24 hours in the air or under reduced pressure, preferably at 60 to 200 ° C., more preferably at 80 to 150 ° C., for 30 minutes to 24 hours. It is preferable to remove moisture. By sufficiently removing the water, it can be made into a powder form, which is preferable because it is easy to handle when the lithium composite oxide is brought into contact with the solution of the group 3 element or group 4 element compound in the next step.

次いで、処理水を分離して得られたリチウム複合酸化物を、3族元素または4族元素の化合物の溶液に接触させた後、600〜1000℃で加熱することで、本発明の正極活物質を得ることができる。なお、本発明において、周期表の3族元素または4族元素の化合物の溶液を付着用溶液ということがある。3族元素および4族元素としては、スカンジウム、イットリウム、ランタン、チタン、ジルコニウムおよびハフニウムからなる群から選ばれる少なくとも1種の元素が好ましく、ランタン、チタン、ジルコニウムおよびハフニウムからなる群から選ばれる少なくとも1種の元素がより好ましく、ランタン、チタンおよびジルコニウムからなる群から選ばれる少なくとも1種の元素がさらに好ましく、ランタンまたはジルコニウムが特に好ましい。   Next, the lithium composite oxide obtained by separating the treated water is brought into contact with a solution of a group 3 element or group 4 element compound, and then heated at 600 to 1000 ° C., whereby the positive electrode active material of the present invention. Can be obtained. In the present invention, a solution of a group 3 element or group 4 element compound in the periodic table may be referred to as an adhesion solution. The Group 3 element and Group 4 element are preferably at least one element selected from the group consisting of scandium, yttrium, lanthanum, titanium, zirconium and hafnium, and at least one selected from the group consisting of lanthanum, titanium, zirconium and hafnium. More preferably, at least one element selected from the group consisting of lanthanum, titanium and zirconium is more preferable, and lanthanum or zirconium is particularly preferable.

3族元素または4族元素の化合物としては、特に限定されないが、水酸化物、炭酸塩、リン酸塩、硝酸塩、硫酸塩、炭素数2〜8のカルボン酸塩、ハロゲン化物およびアンモニウム塩を用いることができ、なかでも、水酸化物、炭酸塩、硫酸塩、酢酸塩、プロピオン酸塩、シュウ酸塩、マロン酸塩、コハク酸塩、乳酸塩、リンゴ酸塩、クエン酸塩、グリオキシル酸塩、ブドウ酸塩、ピルビン酸塩、酒石酸塩、アセト酢酸塩、ハロゲン化物およびアンモニウム塩からなる群から選ばれる少なくとも1種が好ましく、炭酸塩、酢酸塩、シュウ酸塩、乳酸塩、クエン酸塩、グリオキシル酸塩、酒石酸塩およびアンモニウム塩からなる群から選ばれる少なくとも1種が特に好ましい。より具体的には、炭酸ジルコニウムアンモニウム、酢酸ランタンおよび乳酸チタンからなる群から選ばれる少なくとも1種の化合物が好ましい。   Although it does not specifically limit as a compound of a 3 group element or a 4 group element, A hydroxide, carbonate, a phosphate, nitrate, a sulfate, a C2-C8 carboxylate, a halide, and an ammonium salt are used. Can, among others, hydroxide, carbonate, sulfate, acetate, propionate, oxalate, malonate, succinate, lactate, malate, citrate, glyoxylate , At least one selected from the group consisting of glucose, pyruvate, tartrate, acetoacetate, halide and ammonium salt, carbonate, acetate, oxalate, lactate, citrate, Particularly preferred is at least one selected from the group consisting of glyoxylate, tartrate and ammonium salt. More specifically, at least one compound selected from the group consisting of ammonium zirconium carbonate, lanthanum acetate and titanium lactate is preferred.

本発明において、リチウム複合酸化物に対して、3族元素または4族元素を付着させる量は、0.02〜0.9mol%であり、なかでも0.02〜0.5mol%が好ましく、0.05〜0.5mol%がより好ましく、0.05〜0.3mol%がさらに好ましく、0.05〜0.1mol%が特に好ましい。なお、3族元素および4族元素の両者を付着させる場合、または3族元素または4族元素をそれぞれ2種類以上の元素を付着させる場合は、それらの元素の合計量を意味する。3族元素または4族元素の付着量が上記の範囲内にあると、さらに優れた充放電サイクル耐久性を有して、かつ特に遊離アルカリ量が低く、放電容量の高い正極活物質が得られる傾向がある。   In the present invention, the amount of the Group 3 element or Group 4 element attached to the lithium composite oxide is 0.02 to 0.9 mol%, preferably 0.02 to 0.5 mol%, 0.05 to 0.5 mol% is more preferable, 0.05 to 0.3 mol% is further preferable, and 0.05 to 0.1 mol% is particularly preferable. In addition, when attaching both a group 3 element and a group 4 element, or when attaching two or more types of elements to a group 3 element or a group 4 element, the total amount of those elements is meant. When the adhesion amount of the group 3 element or the group 4 element is within the above range, a positive electrode active material having further excellent charge / discharge cycle durability, a particularly low free alkali amount, and a high discharge capacity can be obtained. Tend.

本発明では、3族元素または4族元素の付着量は、リチウム複合酸化物の量に対して少量であるが、最終的に得られた正極活物質に含まれる3族元素または4族元素の量を誘導結合プラズマ(ICP)発光分析法により容易に測定することができる。また、原料に用いるリチウム複合酸化物に3族元素または4族元素が含まれる場合においては、正極活物質に含まれる3族元素および4族元素の量から、付着溶液に接触させる前に予め含まれていた3族元素および4族元素の量を差し引いた値とする。   In the present invention, the adhesion amount of the group 3 element or the group 4 element is small with respect to the amount of the lithium composite oxide, but the group 3 element or the group 4 element contained in the finally obtained positive electrode active material. The amount can be easily measured by inductively coupled plasma (ICP) emission spectrometry. In addition, in the case where the lithium composite oxide used as a raw material contains a Group 3 element or a Group 4 element, it is included in advance from the amount of the Group 3 element and the Group 4 element contained in the positive electrode active material before contacting the adhesion solution. The value obtained by subtracting the amount of the Group 3 element and Group 4 element.

本発明において使用される上記3族元素または4族元素の付着用溶液は、特に限定されないが、安全性、ハンドリングのし易さ、コスト等の見地より、水性溶液が好ましく、水溶液がより好ましい。水性溶液とは、水を主体とする溶液を意味し、水の他にアルコール、グリコール、ケトン等の有機溶媒を含む。
本発明において、3族元素または4族元素の化合物の付着用溶液は、炭酸ジルコニウムアンモニウム、酢酸ランタンおよび乳酸チタンからなる群から選ばれる少なくとも1種の化合物の水溶液であるのが特に好ましい。
The solution for attaching the Group 3 element or Group 4 element used in the present invention is not particularly limited, but an aqueous solution is preferable and an aqueous solution is more preferable from the viewpoint of safety, ease of handling, cost, and the like. The aqueous solution means a solution mainly composed of water, and includes an organic solvent such as alcohol, glycol, and ketone in addition to water.
In the present invention, the adhesion solution for the group 3 element or group 4 element compound is particularly preferably an aqueous solution of at least one compound selected from the group consisting of ammonium zirconium carbonate, lanthanum acetate and titanium lactate.

本発明において、付着用溶液に含まれる3族元素および4族元素の含有量は、特に限定されないが、0.01〜30質量%が好ましく、0.1〜15質量%がより好ましく、0.1〜10質量%が特に好ましい。リチウム複合酸化物に接触させる付着用溶液の量は、特に限定されないが、リチウム複合酸化物100gに対して、100g以下が好ましく、50g以下がより好ましく、30g以下がさらに好ましく、20g以下が特に好ましい。また、リチウム複合酸化物に接触させる付着用溶液の量は、特に限定されないが、リチウム複合酸化物100gに対して、0.5g以上が好ましく、1g以上がより好ましい。次の加熱工程において、短時間で少ないエネルギーで加熱処理できるため、リチウム複合酸化物の3族元素および4族元素の付着が不十分になり、得られる本発明の特性を損なわない限りにおいて付着用溶液の使用量は少ないのが好ましい。
リチウム複合酸化物を付着用溶液に接触させる温度は、0〜100℃が好ましく、0〜50℃がより好ましい。
In the present invention, the content of the Group 3 element and Group 4 element contained in the adhesion solution is not particularly limited, but is preferably 0.01 to 30% by mass, more preferably 0.1 to 15% by mass, and 1-10 mass% is especially preferable. The amount of the adhesion solution brought into contact with the lithium composite oxide is not particularly limited, but is preferably 100 g or less, more preferably 50 g or less, still more preferably 30 g or less, and particularly preferably 20 g or less with respect to 100 g of the lithium composite oxide. . Further, the amount of the adhesion solution brought into contact with the lithium composite oxide is not particularly limited, but is preferably 0.5 g or more and more preferably 1 g or more with respect to 100 g of the lithium composite oxide. In the next heating step, heat treatment can be performed in a short time with less energy, so that the adhesion of the Group 3 element and the Group 4 element of the lithium composite oxide becomes insufficient, so long as the properties of the present invention obtained are not impaired. The amount of solution used is preferably small.
The temperature at which the lithium composite oxide is brought into contact with the adhesion solution is preferably 0 to 100 ° C, more preferably 0 to 50 ° C.

リチウム複合酸化物を付着用溶液に接触させる方法は、特に限定されず、例えば、ビーカーやステンレス層などにいれた付着用溶液に、リチウム複合酸化物を加えて、攪拌翼などの攪拌手段を使用して混合したり、レーディゲミキサーまたはソリッドエアーを用いて、ポンプで水溶液を循環して、付着用溶液を噴霧しながら、付着用溶液とリチウム複合酸化物とを混合したり、スプレードライヤーを用いて、付着用溶液をリチウム複合酸化物に噴霧したりすることで接触させることができる。   The method of bringing the lithium composite oxide into contact with the adhesion solution is not particularly limited. For example, the lithium composite oxide is added to the adhesion solution in a beaker or a stainless steel layer, and a stirring means such as a stirring blade is used. Mix the adhering solution and lithium composite oxide while spraying the adhering solution using a Ladige mixer or solid air, and mixing the adhering solution and the lithium composite oxide. It can be contacted by spraying the adhesion solution onto the lithium composite oxide.

本発明において、水を分離して得られたリチウム含有複合酸化物を、付着用溶液と接触させた後、600〜1000℃で加熱することで、本発明の正極活物質が得られる。なかでも、この加熱処理温度は、600〜950℃が好ましく、700〜800℃がより好ましい。加熱雰囲気も特に限定されないが、酸素含有雰囲気下で行うのが好ましく、大気中での加熱がより好ましい。加熱処理時間は、特に限定されないが、10分〜24時間が好ましく、30分〜12時間がより好ましい。加熱処理条件が上記の範囲にあると、生産効率性が向上して、かつ設備コストが安価で済むために好ましい。
本発明により得られる正極活物質のプレス密度は2.7〜3.8g/cmが好ましく、2.8〜3.6g/cmがより好ましい。なお、本発明においてプレス密度とは、正極材料の粉末5gを1.91t/cmの圧力でプレスしたときの見かけのプレス密度をいう。
In this invention, after making the lithium containing complex oxide obtained by isolate | separating water contact with the solution for adhesion, the positive electrode active material of this invention is obtained by heating at 600-1000 degreeC. Especially, this heat processing temperature has preferable 600-950 degreeC, and 700-800 degreeC is more preferable. The heating atmosphere is not particularly limited, but it is preferably performed in an oxygen-containing atmosphere, and heating in the air is more preferable. Although heat processing time is not specifically limited, 10 minutes-24 hours are preferable, and 30 minutes-12 hours are more preferable. It is preferable for the heat treatment conditions to be in the above-mentioned range because the production efficiency is improved and the equipment cost is low.
The press density of the positive electrode active material obtained by the present invention is preferably 2.7~3.8g / cm 3, more preferably 2.8~3.6g / cm 3. In the present invention, the press density means an apparent press density when 5 g of the positive electrode material powder is pressed at a pressure of 1.91 t / cm 2 .

また、本発明により得られる正極活物質は好ましくは粒子状である。正極活物質の平均粒子径は、3〜25μmが好ましく、5〜20μmがより好ましい。また、正極活物質の比表面積は、BET法により測定され、0.1〜1.5m/gが好ましく、0.15〜1.2m/gがより好ましく、0.20〜1.0m/gが特に好ましい。本発明において、平均粒子径とは、レーザー散乱粒度分布測定装置(例えば、日機装社製マイクロトラックHRAX−100などを用いる)により得られた体積粒度分布の累積50%の値を意味する。本発明では、この平均粒子径を平均粒子径D50または単にD50ということがある。また、後述するD10は累積10%の値、D90は累積90%の値を意味する。また、正極活物質の粒子が二次粒子からなる場合は、二次粒子の平均粒子径を表し、正極活物質の粒子が一次粒子である場合は、一次粒子の平均粒子径を表す。なお、正極活物質の粒子形状は、原料に用いるリチウム複合酸化物の形状に影響される。 The positive electrode active material obtained by the present invention is preferably in the form of particles. The average particle size of the positive electrode active material is preferably 3 to 25 μm, more preferably 5 to 20 μm. The specific surface area of the positive electrode active material is measured by the BET method, preferably 0.1~1.5m 2 / g, more preferably 0.15~1.2m 2 / g, 0.20~1.0m 2 / g is particularly preferred. In the present invention, the average particle size means a cumulative 50% value of a volume particle size distribution obtained by a laser scattering particle size distribution measuring apparatus (for example, using Microtrack HRAX-100 manufactured by Nikkiso Co., Ltd.). In the present invention, this average particle diameter may be referred to as average particle diameter D50 or simply D50. Further, D10, which will be described later, means a cumulative 10% value, and D90 means a cumulative 90% value. In addition, when the positive electrode active material particles are secondary particles, it represents the average particle size of the secondary particles, and when the positive electrode active material particles are the primary particles, it represents the average particle size of the primary particles. Note that the particle shape of the positive electrode active material is affected by the shape of the lithium composite oxide used as a raw material.

本発明における遊離アルカリ量は、正極活物質の粒子表面および粒子の粒界に存在するアルカリ化合物の量と関係する値である。該遊離アルカリ量は、正極材料の粉末5gに水100gを混合して30分攪拌し、ろ過して得られたろ液と、ろ物に水10gを3回かけ洗いした洗液とを合わせた液中におけるアルカリを0.02mol/Lの塩酸でpH4.0まで滴定したときに使用される塩酸量より求められる。本発明で得られる正極活物質の遊離アルカリ量は、0.7mol%以下が好ましく、0.6mol%以下がより好ましく、0.5mol%以下が特に好ましい。正極活物質の粒子表面および粒子の粒界に存在するアルカリ化合物とは、具体的には炭酸リチウム、水酸化リチウム等を意味する。   The amount of free alkali in the present invention is a value related to the amount of alkali compound present on the particle surface and grain boundaries of the positive electrode active material. The amount of the free alkali is a liquid obtained by mixing 5 g of the positive electrode material powder with 100 g of water and stirring for 30 minutes and filtering, and a washing solution obtained by washing the filtrate with 10 g of water three times. It is determined from the amount of hydrochloric acid used when the alkali in the solution is titrated to pH 4.0 with 0.02 mol / L hydrochloric acid. The amount of free alkali of the positive electrode active material obtained in the present invention is preferably 0.7 mol% or less, more preferably 0.6 mol% or less, and particularly preferably 0.5 mol% or less. The alkali compound present on the particle surface of the positive electrode active material and the grain boundary of the particle specifically means lithium carbonate, lithium hydroxide, and the like.

本発明で得られる正極活物質からリチウムイオン二次電池用の正極を製造する場合には、まず、正極活物質の粉末に、アセチレンブラック、黒鉛、ケッチェンブラックなどのカーボン系導電材と結合材を混合する。前記結合材には、好ましくは、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアミド、カルボキシメチルセルロース、アクリル樹脂等が用いられる。本発明により得られる正極活物質の粉末、導電材および結合材を溶媒、または分散媒を使用して、スラリーまたは混練物とせしめる。これをアルミニウム箔、ステンレス箔などの正極集電体に塗布などにより担持せしめてリチウムイオン二次電池用の正極が製造される。   When manufacturing a positive electrode for a lithium ion secondary battery from the positive electrode active material obtained in the present invention, first, a carbon-based conductive material such as acetylene black, graphite, ketjen black, and a binder are added to the positive electrode active material powder. Mix. For the binder, polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin, or the like is preferably used. The positive electrode active material powder, conductive material and binder obtained by the present invention are made into a slurry or a kneaded product using a solvent or a dispersion medium. This is supported on a positive electrode current collector such as an aluminum foil or a stainless steel foil by coating or the like to produce a positive electrode for a lithium ion secondary battery.

本発明で得られる正極活物質を用いたリチウムイオン二次電池において、セパレータとしては、多孔質ポリエチレン、多孔質ポリプロピレンのフィルムなどが使用される。また、電池の電解質溶液の溶媒としては、種々の溶媒が使用できるが、なかでも炭酸エステルが好ましい。炭酸エステルは環状、鎖状いずれも使用できる。環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート(EC)などが例示される。鎖状炭酸エステルとしては、ジメチルカーボネート、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート、メチルイソプロピルカーボネートなどが例示される。
本発明では、上記炭酸エステルを単独で、または2種以上を混合して使用できる。また、他の溶媒と混合して使用してもよい。また、負極活物質の材料によっては、鎖状炭酸エステルと環状炭酸エステルを併用すると、放電特性、サイクル耐久性、充放電効率が改良できる場合がある。
In the lithium ion secondary battery using the positive electrode active material obtained in the present invention, a porous polyethylene film, a porous polypropylene film, or the like is used as the separator. Various solvents can be used as the solvent for the electrolyte solution of the battery, and among them, carbonate ester is preferable. The carbonate ester can be either cyclic or chain. Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate (EC). Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate, methyl isopropyl carbonate, and the like.
In this invention, the said carbonate ester can be used individually or in mixture of 2 or more types. Moreover, you may mix and use with another solvent. Moreover, depending on the material of the negative electrode active material, when a chain carbonate ester and a cyclic carbonate ester are used in combination, discharge characteristics, cycle durability, and charge / discharge efficiency may be improved.

また、本発明で得られる正極活物質を用いたリチウムイオン二次電池においては、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(例えば、アトケム社製:商品名カイナー)またはフッ化ビニリデン−パーフルオロプロピルビニルエーテル共重合体を含むゲルポリマー電解質を電解質に用いてもよい。上記の電解質溶媒またはポリマー電解質に添加される溶質としては、ClO 、CFSO 、BF 、PF 、AsF 、SbF 、CFCO 、(CFSOなどをアニオンとするリチウム塩のいずれか1種以上が好ましく使用される。電解質溶媒またはポリマー電解質に含有されるリチウム塩の濃度は、0.2〜2.0mol/l(リットル)が好ましく、0.5〜1.5mol/lが特に好ましい。この濃度範囲の場合、イオン伝導度が大きく、電解質の電気伝導度が増大する。 In the lithium ion secondary battery using the positive electrode active material obtained in the present invention, a vinylidene fluoride-hexafluoropropylene copolymer (for example, product name: Kyner manufactured by Atchem Co.) or vinylidene fluoride-perfluoropropyl is used. A gel polymer electrolyte containing a vinyl ether copolymer may be used as the electrolyte. Solutes added to the electrolyte solvent or polymer electrolyte include ClO 4 , CF 3 SO 3 , BF 4 , PF 6 , AsF 6 , SbF 6 , CF 3 CO 2 , (CF 3 Any one or more of lithium salts having SO 2 ) 2 N or the like as an anion is preferably used. The concentration of the lithium salt contained in the electrolyte solvent or polymer electrolyte is preferably 0.2 to 2.0 mol / l (liter), particularly preferably 0.5 to 1.5 mol / l. In this concentration range, the ionic conductivity is large, and the electrical conductivity of the electrolyte is increased.

本発明で得られる正極活物質を用いたリチウムイオン二次電池において、負極活物質には、リチウムイオンを吸蔵、放出可能な材料が用いられる。この負極活物質を形成する材料は特に限定されないが、例えばリチウム金属、リチウム合金、炭素材料、周期表14、または15族の金属を主体とした酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物などが挙げられる。炭素材料としては、種々の熱分解条件で有機物を熱分解したものや人造黒鉛、天然黒鉛、土壌黒鉛、膨張黒鉛、鱗片状黒鉛などを使用できる。また、酸化物としては、酸化スズを主体とする化合物が使用できる。負極集電体としては、銅箔、ニッケル箔などが用いられる。かかる負極は、上記活物質を有機溶媒と混練してスラリーとし、該スラリーを金属箔集電体に塗布、乾燥、プレスして得ることにより好ましくは製造される。
本発明で得られる正極活物質を用いたリチウム電池の形状には特に制約はない。シート状、フィルム状、折り畳み状、巻回型有底円筒形、ボタン形などが用途に応じて選択される。
In the lithium ion secondary battery using the positive electrode active material obtained in the present invention, a material capable of inserting and extracting lithium ions is used as the negative electrode active material. The material for forming the negative electrode active material is not particularly limited. For example, an oxide, a carbon compound, a silicon carbide compound, or a silicon oxide compound mainly composed of lithium metal, lithium alloy, carbon material, periodic table 14 or group 15 metal. , Titanium sulfide, boron carbide compounds and the like. As the carbon material, those obtained by pyrolyzing an organic substance under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, flake graphite, and the like can be used. As the oxide, a compound mainly composed of tin oxide can be used. As the negative electrode current collector, a copper foil, a nickel foil, or the like is used. Such a negative electrode is preferably produced by kneading the active material with an organic solvent to form a slurry, and applying the slurry to a metal foil current collector, drying, and pressing.
There is no restriction | limiting in particular in the shape of the lithium battery using the positive electrode active material obtained by this invention. A sheet shape, a film shape, a folded shape, a wound-type bottomed cylindrical shape, a button shape, or the like is selected depending on the application.

以下に本発明を具体的に説明するが、本発明はこれらの実施例に限定されないことはもちろんである。以下の例1〜例4、例10、例11、例13、例14、例16、例20、例24および例26が実施例であり、例5〜例9、例12、例15、例17〜19例21〜例23、例25および例27〜例29が比較例である。   The present invention will be specifically described below, but the present invention is of course not limited to these examples. Examples 1 to 4, Example 10, Example 11, Example 13, Example 14, Example 16, Example 20, Example 24 and Example 26 are examples, and Examples 5 to 9, Example 12, Example 15, and Example 26 are examples. Examples 17 to 19 Examples 21 to 23, Example 25, and Examples 27 to 29 are comparative examples.

[例1]
ニッケル、コバルト、マンガンの原子比がNi:Co:Mn=5:2:3となるように硫酸ニッケルと硫酸コバルトと硫酸マンガンを溶解した水溶液に、水溶液のpHが11.0、温度が50℃になるように、硫酸アンモニウム水溶液と、水酸化ナトリウム水溶液とを、撹拌しながら連続的に供給して、共沈物を析出させた。オーバーフロー方式で反応系内の液量を調節し、オーバーフローした共沈スラリーをろ過、水洗し、次いで80℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物の粉末を得た。該複合水酸化物の粉末の比表面積は6.5m/g、平均粒子径D50は11.5μmであった。
得られた複合水酸化物の粉末に炭酸リチウムの粉末を混合し、大気雰囲気中で、900℃で10時間、焼成した後、粉砕することにより、Li1.02(Ni0.5Co0.2Mn0.30.98の組成を有するリチウム複合酸化物の粉末を得た。該粉末について、CuKα線を使用した粉末X線回折スペクトルを測定したところ、菱面体晶系(R−3m)の類似構造であることがわかった。測定には、リガク社製RINT 2100型を用いた。また、上記粉末について、走査型電子顕微鏡(以下、SEMという)を用いて、粒子を観察したところ、多数の一次粒子が凝集した二次粒子であった。
[Example 1]
In an aqueous solution in which nickel sulfate, cobalt sulfate, and manganese sulfate are dissolved so that the atomic ratio of nickel, cobalt, and manganese is Ni: Co: Mn = 5: 2: 3, the pH of the aqueous solution is 11.0, and the temperature is 50 ° C. Then, an aqueous solution of ammonium sulfate and an aqueous solution of sodium hydroxide were continuously supplied with stirring to precipitate a coprecipitate. The amount of liquid in the reaction system was adjusted by the overflow method, and the overflowed coprecipitation slurry was filtered, washed with water, and then dried at 80 ° C. to obtain a nickel cobalt manganese composite hydroxide powder. The composite hydroxide powder had a specific surface area of 6.5 m 2 / g and an average particle diameter D50 of 11.5 μm.
Lithium carbonate powder was mixed with the obtained composite hydroxide powder, calcined in the atmosphere at 900 ° C. for 10 hours, and then pulverized to obtain Li 1.02 (Ni 0.5 Co 0. to obtain a powder of the lithium composite oxide having a composition of 2 Mn 0.3) 0.98 O 2. When the powder X-ray diffraction spectrum using CuKα ray was measured for the powder, it was found to have a rhombohedral (R-3m) similar structure. For measurement, RINT 2100 type manufactured by Rigaku Corporation was used. Further, when the particles were observed with respect to the powder using a scanning electron microscope (hereinafter referred to as SEM), they were secondary particles in which a large number of primary particles were aggregated.

次いで、イオン交換水500gに上記リチウム複合酸化物の粉末100gを加えて得られるスラリー状の液を10分間攪拌した。次いで、得られた液を5C番のろ紙を用いて吸引ろ過して液を分離して粒状物を得た。上記粒状物を送風乾燥機にて120℃5時間乾燥させ乾燥粉を得た。
次いで、ジルコニウム含量が14.1質量%の炭酸ジルコニウムアンモニウム水溶液(日本軽金属社製ベイコート20)0.68gにイオン交換水を加えて14gとしてジルコニウム水溶液を調製した。使用した炭酸ジルコニウムアンモニウムの化学式は(NH[Zr(CO(OH)]で表わされる。なお、該ジルコニウム水溶液中のジルコニウムの濃度は、0.68質量%であった。該ジルコニウム水溶液7gを上記乾燥粉に室温で噴霧した後、800℃にて5時間加熱処理し、篩に通して正極活物質を得た。攪拌、分離、噴霧、加熱の操作は全て大気雰囲気中で行った。リチウム複合酸化物に付着させたジルコニウムの量は、リチウム複合酸化物に対して0.05mol%であった。得られた正極活物質の平均粒径D50は11.9μm、比表面積は0.27m/gであった。また、ICPを用いて、上記正極活物質に含まれるジルコニウム量を測定したところ、正極活物質に対して0.05mol%であった。
Next, a slurry-like liquid obtained by adding 100 g of the lithium composite oxide powder to 500 g of ion-exchanged water was stirred for 10 minutes. Subsequently, the obtained liquid was subjected to suction filtration using No. 5C filter paper, and the liquid was separated to obtain a granular material. The granular material was dried at 120 ° C. for 5 hours with an air dryer to obtain a dry powder.
Next, an aqueous zirconium zirconium carbonate solution having a zirconium content of 14.1% by mass (Baitcoat 20 manufactured by Nippon Light Metal Co., Ltd.) (0.68 g) was added with ion-exchanged water to prepare a zirconium aqueous solution as 14 g. The chemical formula of the ammonium zirconium carbonate used is represented by (NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 ]. The zirconium concentration in the zirconium aqueous solution was 0.68% by mass. After spraying the zirconium aqueous solution 7g on the said dry powder at room temperature, it heat-processed at 800 degreeC for 5 hours, and passed the sieve, and obtained the positive electrode active material. Stirring, separation, spraying, and heating were all performed in an air atmosphere. The amount of zirconium deposited on the lithium composite oxide was 0.05 mol% with respect to the lithium composite oxide. The obtained positive electrode active material had an average particle diameter D50 of 11.9 μm and a specific surface area of 0.27 m 2 / g. Further, when the amount of zirconium contained in the positive electrode active material was measured using ICP, it was 0.05 mol% with respect to the positive electrode active material.

上記正極活物質の粉末5gと水100gとを混合した後、30分撹拌して得られたスラリーをろ過して、ろ液を0.02mol/Lの塩酸でpHが4.0に至るまで滴定した。滴定に使用した塩酸量から正極活物質の遊離アルカリ量を求めたところ、遊離アルカリ量は0.34mol%であった。
上記正極活物質の粉末と、アセチレンブラックと、ポリフッ化ビニリデン粉末とを90/5/5の質量比で混合し、N−メチルピロリドンを添加してスラリーを作製し、これを厚さ20μmのアルミニウム箔にドクターブレードを用いて片面塗工した。得られたアルミニウムシートを乾燥し、ロールプレス圧延を3回行うことによりリチウム電池用の正極体シートを作製した。
After mixing 5 g of the positive electrode active material powder and 100 g of water, the slurry obtained by stirring for 30 minutes is filtered, and the filtrate is titrated with 0.02 mol / L hydrochloric acid until the pH reaches 4.0. did. When the amount of free alkali of the positive electrode active material was determined from the amount of hydrochloric acid used for titration, the amount of free alkali was 0.34 mol%.
The positive electrode active material powder, acetylene black, and polyvinylidene fluoride powder are mixed at a mass ratio of 90/5/5, and N-methylpyrrolidone is added to prepare a slurry, which is made of aluminum having a thickness of 20 μm. The foil was coated on one side using a doctor blade. The obtained aluminum sheet was dried and roll press rolled three times to produce a positive electrode sheet for a lithium battery.

次に、前記の正極体シートを正極に用い、厚さ500μmの金属リチウム箔を負極に用い、負極集電体にニッケル箔20μmを用い、セパレータには厚さ25μmの多孔質ポリプロピレンを用い、さらに電解液には、濃度1MのLiPF/EC+DEC(1:1)溶液(LiPFを溶質とするECとDECとの体積比(1:1)の混合溶液を意味する)を用いてステンレス製簡易密閉セル型リチウム電池をアルゴングローブボックス内で組み立てた。 Next, the positive electrode sheet is used as a positive electrode, a metal lithium foil having a thickness of 500 μm is used as a negative electrode, a nickel foil of 20 μm is used as a negative electrode current collector, and a porous polypropylene having a thickness of 25 μm is used as a separator. For the electrolyte, a 1M LiPF 6 / EC + DEC (1: 1) solution (meaning a mixed solution of EC and DEC with a volume ratio (1: 1) of LiPF 6 as a solute) is used. A sealed cell type lithium battery was assembled in an argon glove box.

上記簡易密閉セル型リチウム電池を、25℃にて正極活物質1gにつき180mAの電流で上限電圧4.3Vとし、CCCVモード3時間(180mAの一定電流で充電を行い、電池電圧が上限電圧に達した後は上限電圧の一定電圧で充電を行った。合計の充電時間を3時間とする)で充電した後、正極活物質1gにつき75mAの電流値で2.75Vまで放電して、初期放電容量を求めた。また、この電池について、同じ条件で充電と放電を繰り返し、充放電サイクル試験を30回行った。その結果、25℃、2.75〜4.3Vに置ける正極活物質の初期放電容量は160.0mAh/gであり、30回充放電サイクル後の容量維持率は99.6%であった。   The above-mentioned simple sealed cell type lithium battery is charged at a current of 180 mA per 1 g of the positive electrode active material at 25 ° C. with an upper limit voltage of 4.3 V, and charged at a constant current of CCCV mode for 3 hours (180 mA, the battery voltage reaches the upper limit voltage After that, the battery was charged at a constant voltage of the upper limit voltage (the total charging time was 3 hours), and then discharged to 2.75 V at a current value of 75 mA per 1 g of the positive electrode active material to obtain an initial discharge capacity. Asked. Moreover, about this battery, charge and discharge were repeated on the same conditions, and the charge / discharge cycle test was done 30 times. As a result, the initial discharge capacity of the positive electrode active material placed at 25 ° C. and 2.75 to 4.3 V was 160.0 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 99.6%.

[例2]
炭酸ジルコニウムアンモニウム1.34gにイオン交換水を加えてジルコニウムの濃度が1.35質量%であるジルコニウム水溶液を14g調製し、そのうち7gを噴霧して、リチウム複合酸化物に付着させたジルコニウムの量を、リチウム複合酸化物に対して0.10mol%としたこと以外は、例1と同様にして、正極活物質を合成して、各特性を測定した。その結果、得られた正極活物質の平均粒径D50は11.9μm、比表面積は0.35m/gであり、正極活物質に含まれるジルコニウム量は、正極活物質に対して0.10mol%であった。また、遊離アルカリ量は0.34mol%であった。初期放電容量は156.4mAh/gであり、30回充放電サイクル後の容量維持率は99.6%であった。
[Example 2]
14 g of an aqueous zirconium solution having a zirconium concentration of 1.35% by mass was prepared by adding ion-exchanged water to 1.34 g of ammonium zirconium carbonate, and 7 g of the zirconium aqueous solution was sprayed to determine the amount of zirconium adhered to the lithium composite oxide. The positive electrode active material was synthesized in the same manner as in Example 1 except that the amount was 0.10 mol% with respect to the lithium composite oxide, and each characteristic was measured. As a result, the average particle diameter D50 of the obtained positive electrode active material was 11.9 μm, the specific surface area was 0.35 m 2 / g, and the amount of zirconium contained in the positive electrode active material was 0.10 mol relative to the positive electrode active material. %Met. Moreover, the amount of free alkalis was 0.34 mol%. The initial discharge capacity was 156.4 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 99.6%.

[例3]
炭酸ジルコニウムアンモニウム4.02gにイオン交換水を加えてジルコニウムの濃度が4.05質量%であるジルコニウム水溶液を14g調製し、そのうち7gを噴霧して、リチウム複合酸化物に付着させたジルコニウムの量を、リチウム複合酸化物に対して0.30mol%としたこと以外は、例1と同様にして、正極活物質を合成して、各特性を測定した。その結果、得られた正極活物質の平均粒径D50は12.0μm、比表面積は0.26m/gであり、正極活物質に含まれるジルコニウム量は、正極活物質に対して0.30mol%であった。また、遊離アルカリ量は0.52mol%であった。初期放電容量は152.0mAh/gであり、30回充放電サイクル後の容量維持率は99.4%であった。
[Example 3]
Ion-exchanged water was added to 4.02 g of ammonium zirconium carbonate to prepare 14 g of an aqueous zirconium solution having a zirconium concentration of 4.05% by mass, 7 g of which was sprayed to determine the amount of zirconium deposited on the lithium composite oxide. The positive electrode active material was synthesized in the same manner as in Example 1 except that the amount was 0.30 mol% with respect to the lithium composite oxide, and each characteristic was measured. As a result, the average particle diameter D50 of the obtained positive electrode active material was 12.0 μm, the specific surface area was 0.26 m 2 / g, and the amount of zirconium contained in the positive electrode active material was 0.30 mol relative to the positive electrode active material. %Met. Moreover, the amount of free alkalis was 0.52 mol%. The initial discharge capacity was 152.0 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 99.4%.

[例4]
炭酸ジルコニウムアンモニウム6.70gにイオン交換水を加えてジルコニウムの濃度が6.75質量%であるジルコニウム水溶液を14g調製し、そのうち7gを噴霧して、リチウム複合酸化物に付着させたジルコニウムの量を、リチウム複合酸化物に対して0.50mol%としたこと以外は、例1と同様にして、正極活物質を合成して、各特性を測定した。その結果、得られた正極活物質の平均粒径D50は13.0μm、比表面積は0.26m/gであり、正極活物質に含まれるジルコニウム量は、正極活物質に対して0.50mol%であった。また、遊離アルカリ量は0.61mol%であった。初期放電容量は151.6mAh/gであり、30回充放電サイクル後の容量維持率は99.4%であった。
[Example 4]
Ion exchange water was added to 6.70 g of ammonium zirconium carbonate to prepare 14 g of a zirconium aqueous solution having a zirconium concentration of 6.75% by mass, 7 g of which was sprayed to determine the amount of zirconium adhered to the lithium composite oxide. The positive electrode active material was synthesized in the same manner as in Example 1 except that the amount was 0.50 mol% with respect to the lithium composite oxide, and each characteristic was measured. As a result, the average particle diameter D50 of the obtained positive electrode active material was 13.0 μm, the specific surface area was 0.26 m 2 / g, and the amount of zirconium contained in the positive electrode active material was 0.50 mol with respect to the positive electrode active material. %Met. Moreover, the amount of free alkalis was 0.61 mol%. The initial discharge capacity was 151.6 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 99.4%.

[例5]
炭酸ジルコニウムアンモニウム0.14gにイオン交換水を加えてジルコニウムの濃度が0.14質量%であるジルコニウム水溶液を14g調製し、そのうち7gを噴霧して、リチウム複合酸化物に付着させたジルコニウムの量を、リチウム複合酸化物に対して0.01mol%としたこと以外は、例1と同様にして、正極活物質を合成して、各特性を測定した。その結果、得られた正極活物質の平均粒径D50は12.2μm、比表面積は0.35m/gであり、正極活物質に含まれるジルコニウム量は、正極活物質に対して0.01mol%であった。また、遊離アルカリ量は0.34mol%であった。初期放電容量は157.8mAh/gであり、30回充放電サイクル後の容量維持率は96.7%であった。
[Example 5]
Ion exchange water was added to 0.14 g of ammonium zirconium carbonate to prepare 14 g of an aqueous zirconium solution having a zirconium concentration of 0.14% by mass, 7 g of which was sprayed to determine the amount of zirconium deposited on the lithium composite oxide. The positive electrode active material was synthesized in the same manner as in Example 1 except that the amount was 0.01 mol% with respect to the lithium composite oxide, and each characteristic was measured. As a result, the average particle diameter D50 of the obtained positive electrode active material was 12.2 μm, the specific surface area was 0.35 m 2 / g, and the amount of zirconium contained in the positive electrode active material was 0.01 mol with respect to the positive electrode active material. %Met. Moreover, the amount of free alkalis was 0.34 mol%. The initial discharge capacity was 157.8 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 96.7%.

[例6]
炭酸ジルコニウムアンモニウム13.4gにイオン交換水を加えてジルコニウムの濃度が13.50質量%であるジルコニウム水溶液を14g調製し、そのうち7gを噴霧して、リチウム複合酸化物に付着させたジルコニウムの量を、リチウム複合酸化物に対して1.0mol%としたこと以外は、例1と同様にして、正極活物質を合成して、各特性を測定した。その結果、得られた正極活物質の平均粒径D50は12.4μm、比表面積は0.29m/gであり、正極活物質に含まれるジルコニウム量は、正極活物質に対して1.0mol%であった。また、遊離アルカリ量は0.77mol%であった。初期放電容量は148.0mAh/gであり、30回充放電サイクル後の容量維持率は98.8%であった。
[Example 6]
Ion exchange water was added to 13.4 g of ammonium zirconium carbonate to prepare 14 g of an aqueous zirconium solution having a zirconium concentration of 13.50% by mass, 7 g of which was sprayed to determine the amount of zirconium adhered to the lithium composite oxide. The positive electrode active material was synthesized in the same manner as in Example 1 except that the amount was 1.0 mol% with respect to the lithium composite oxide, and each characteristic was measured. As a result, the average particle diameter D50 of the obtained positive electrode active material was 12.4 μm, the specific surface area was 0.29 m 2 / g, and the amount of zirconium contained in the positive electrode active material was 1.0 mol with respect to the positive electrode active material. %Met. Moreover, the amount of free alkalis was 0.77 mol%. The initial discharge capacity was 148.0 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 98.8%.

[例7]
例1において、ジルコニウム水溶液を噴霧しなかったこと以外は例1と同様にして、正極活物質を合成した。
得られた正極活物質のD50は13.1μm、比表面積は0.34m/gであった。また、ICPにて正極活物質に含まれるジルコニウム量を測定したが、ジルコニウムは検出されなかった。また、遊離アルカリ量は0.30mol%であった。初期放電容量は159.3mAh/gであり、30回充放電サイクル後の容量維持率は87.9%であった。
[Example 7]
In Example 1, a positive electrode active material was synthesized in the same manner as in Example 1 except that the zirconium aqueous solution was not sprayed.
D50 of the obtained positive electrode active material was 13.1 μm, and the specific surface area was 0.34 m 2 / g. Further, the amount of zirconium contained in the positive electrode active material was measured by ICP, but zirconium was not detected. Moreover, the amount of free alkalis was 0.30 mol%. The initial discharge capacity was 159.3 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 87.9%.

[例8]
例2において、イオン交換水への接触、ろ過、乾燥処理を行わなかったこと以外は、例2と同様にして正極活物質を合成した。すなわち、例1で得られたリチウム複合酸化物に、例2と同様にして、ジルコニウム水溶液を作製、噴霧、加熱処理をして、正極活物質を得た。
得られた正極活物質のD50は12.1μm、比表面積は0.48m/gであり、正極活物質に含まれるジルコニウム量は、正極活物質に対して0.10mol%であった。また、遊離アルカリ量は0.82mol%であった。該正極活物質を用いて例1と同様の操作で電極シートを作製したところ、塗工性が悪く、塗工、乾燥、ローラープレス後の電極の一部に剥離が見られた。剥離の無かった電極部位を用いて電池を作製したところ、初期放電容量は165.0mAh/gであり、30回充放電サイクル後の容量維持率は98.3%であった。
[Example 8]
In Example 2, a positive electrode active material was synthesized in the same manner as in Example 2 except that contact with ion exchange water, filtration, and drying treatment were not performed. That is, the lithium composite oxide obtained in Example 1 was prepared, sprayed, and heat-treated in the same manner as in Example 2 to obtain a positive electrode active material.
D50 of the obtained positive electrode active material was 12.1 μm, the specific surface area was 0.48 m 2 / g, and the amount of zirconium contained in the positive electrode active material was 0.10 mol% with respect to the positive electrode active material. Moreover, the amount of free alkalis was 0.82 mol%. When an electrode sheet was prepared using the positive electrode active material in the same manner as in Example 1, the coatability was poor, and peeling was observed on part of the electrode after coating, drying and roller pressing. When a battery was produced using the electrode part that did not peel, the initial discharge capacity was 165.0 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 98.3%.

[例9]
例1において、イオン交換水と接触させず、かつジルコニウム水溶液を噴霧しなかったこと以外は例1と同様にして、正極活物質を合成した。すなわち、例1で得られたLi1.02(Ni0.5Co0.2Mn0.30.98の組成を有するリチウム複合酸化物をそのまま正極活物質として用いて、各特性を測定した。この正極活物質のD50は11.6μm、比表面積は0.34m/gであった。また、遊離アルカリ量は0.67mol%であった。該正極活物質を用いて例1と同様の操作で電極シートを作製したところ、塗工性が悪く、塗工、乾燥、ローラープレス後の電極の一部に剥離が見られた。剥離の無かった電極部位を用いて電池を作製したところ、初期放電容量は167.0mAh/gであり、30回充放電サイクル後の容量維持率は97.5%であった。
[Example 9]
A positive electrode active material was synthesized in the same manner as in Example 1 except that it was not contacted with ion-exchanged water and no zirconium aqueous solution was sprayed. That is, the lithium composite oxide having the composition of Li 1.02 (Ni 0.5 Co 0.2 Mn 0.3 ) 0.98 O 2 obtained in Example 1 was used as a positive electrode active material as it was. Was measured. D50 of this positive electrode active material was 11.6 μm, and the specific surface area was 0.34 m 2 / g. Moreover, the amount of free alkalis was 0.67 mol%. When an electrode sheet was prepared using the positive electrode active material in the same manner as in Example 1, the coatability was poor, and peeling was observed on part of the electrode after coating, drying and roller pressing. When a battery was produced using the electrode part that did not peel, the initial discharge capacity was 167.0 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 97.5%.

[例10]
例1において、加熱処理温度を700℃としたこと以外は例1と同様にして、正極活物質を合成した。
得られた正極活物質のD50は12.6μm、比表面積は0.44m/gであり、正極活物質に含まれるジルコニウム量は、正極活物質に対して0.10mol%であった。また、遊離アルカリ量は0.54mol%であった。初期放電容量は159.1mAh/gであり、30回充放電サイクル後の容量維持率は98.0%であった。
[Example 10]
In Example 1, a positive electrode active material was synthesized in the same manner as in Example 1 except that the heat treatment temperature was 700 ° C.
D50 of the obtained positive electrode active material was 12.6 μm, the specific surface area was 0.44 m 2 / g, and the amount of zirconium contained in the positive electrode active material was 0.10 mol% with respect to the positive electrode active material. Moreover, the amount of free alkalis was 0.54 mol%. The initial discharge capacity was 159.1 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 98.0%.

[例11]
例1において、加熱処理温度を900℃としたこと以外は例1と同様にして、正極活物質を合成した。
得られた正極活物質のD50は13.1μm、比表面積は0.25m/gであり、正極活物質に含まれるジルコニウム量は、正極活物質に対して0.10mol%であった。また、遊離アルカリ量は0.30mol%であった。初期放電容量は156.2mAh/gであり、30回充放電サイクル後の容量維持率は98.5%であった。
[Example 11]
In Example 1, a positive electrode active material was synthesized in the same manner as in Example 1 except that the heat treatment temperature was 900 ° C.
D50 of the obtained positive electrode active material was 13.1 μm, the specific surface area was 0.25 m 2 / g, and the amount of zirconium contained in the positive electrode active material was 0.10 mol% with respect to the positive electrode active material. Moreover, the amount of free alkalis was 0.30 mol%. The initial discharge capacity was 156.2 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 98.5%.

[例12]
例1において、加熱処理温度を500℃としたこと以外は例1と同様にして、正極活物質を合成した。
得られた正極活物質のD50は12.4μm、比表面積は0.64m/gであり、正極活物質に含まれるジルコニウム量は、正極活物質に対して0.10mol%であった。また、遊離アルカリ量は0.63mol%であった。初期放電容量は163.3mAh/gであり、30回充放電サイクル後の容量維持率は97.7%であった。
[Example 12]
In Example 1, a positive electrode active material was synthesized in the same manner as in Example 1 except that the heat treatment temperature was 500 ° C.
D50 of the obtained positive electrode active material was 12.4 μm, the specific surface area was 0.64 m 2 / g, and the amount of zirconium contained in the positive electrode active material was 0.10 mol% with respect to the positive electrode active material. Moreover, the amount of free alkalis was 0.63 mol%. The initial discharge capacity was 163.3 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 97.7%.

[例13]
例1において、ジルコニウム水溶液の代わりに、酢酸ランタン1.5水和物(和光純薬製)0.18gをイオン交換水に溶解して調製した、ランタンの濃度が0.52質量%であるランタン水溶液を用いたこと以外は例1と同様にして、正極活物質を得た。なお、調製したランタン水溶液は14gであり、その半分である7gのランタン水溶液を、100gのリチウム複合酸化物に、例1と同様にして、噴霧した。
得られた正極活物質のD50は13.0μm、比表面積は0.30m/gであり、正極活物質に含まれるランタン量は、正極活物質に対して0.025mol%であった。また、遊離アルカリ量は0.29mol%であった。初期放電容量は159.1mAh/gであり、30回充放電サイクル後の容量維持率は98.3%であった。
[Example 13]
In Example 1, lanthanum having a lanthanum concentration of 0.52% by mass, prepared by dissolving 0.18 g of lanthanum acetate hemihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) in ion-exchanged water instead of zirconium aqueous solution A positive electrode active material was obtained in the same manner as in Example 1 except that an aqueous solution was used. The prepared lanthanum aqueous solution was 14 g, and 7 g of lanthanum aqueous solution, which is half of the aqueous solution, was sprayed on 100 g of lithium composite oxide in the same manner as in Example 1.
D50 of the obtained positive electrode active material was 13.0 μm, the specific surface area was 0.30 m 2 / g, and the amount of lanthanum contained in the positive electrode active material was 0.025 mol% with respect to the positive electrode active material. Moreover, the amount of free alkalis was 0.29 mol%. The initial discharge capacity was 159.1 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 98.3%.

[例14]
例13において、酢酸ランタン1.5水和物(和光純薬製)の量を0.36gとして、ランタンの濃度が1.04質量%であるランタン水溶液を調製し、リチウム複合酸化物に付着させたランタンの量を、リチウム複合酸化物に対して0.05mol%としたこと以外は例13と同様にして、正極活物質を得た。
得られた正極活物質のD50は13.5μm、比表面積は0.28m/gであり、正極活物質に含まれるランタン量は、正極活物質に対して0.05mol%であった。また、遊離アルカリ量は0.29mol%であった。初期放電容量は156.8mAh/gであり、30回充放電サイクル後の容量維持率は98.5%であった。
[Example 14]
In Example 13, the amount of lanthanum acetate hemihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was 0.36 g, and an aqueous lanthanum solution having a lanthanum concentration of 1.04% by mass was prepared and adhered to the lithium composite oxide. A positive electrode active material was obtained in the same manner as in Example 13 except that the amount of lanthanum was 0.05 mol% with respect to the lithium composite oxide.
D50 of the obtained positive electrode active material was 13.5 μm, the specific surface area was 0.28 m 2 / g, and the amount of lanthanum contained in the positive electrode active material was 0.05 mol% with respect to the positive electrode active material. Moreover, the amount of free alkalis was 0.29 mol%. The initial discharge capacity was 156.8 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 98.5%.

[例15]
例14において、イオン交換水への接触、ろ過、乾燥処理をしなかったこと以外は、例14と同様にして正極活物質を合成した。
得られた正極活物質のD50は12.8μm、比表面積は0.43m/gであり、正極活物質に含まれるランタン量は、正極活物質に対して0.05mol%であった。また、遊離アルカリ量は0.85mol%であった。該正極活物質を用いて例1と同様の操作で電極シートを作製したところ、塗工性が悪く、塗工、乾燥、ローラープレス後の電極の一部に剥離が見られた。剥離の無かった電極部位を用いて電池を作製したところ、初期放電容量は165.3mAh/gであり、30回充放電サイクル後の容量維持率は96.6%であった。
[Example 15]
In Example 14, a positive electrode active material was synthesized in the same manner as in Example 14 except that contact with ion-exchanged water, filtration, and drying treatment were not performed.
D50 of the obtained positive electrode active material was 12.8 μm, the specific surface area was 0.43 m 2 / g, and the amount of lanthanum contained in the positive electrode active material was 0.05 mol% with respect to the positive electrode active material. Moreover, the amount of free alkalis was 0.85 mol%. When an electrode sheet was prepared using the positive electrode active material in the same manner as in Example 1, the coatability was poor, and peeling was observed on part of the electrode after coating, drying and roller pressing. When a battery was produced using the electrode part that did not peel, the initial discharge capacity was 165.3 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 96.6%.

[例16]
ニッケル、コバルト、マンガンの原子比がNi:Co:Mn=6:2:2となるように硫酸ニッケルと硫酸コバルトと硫酸マンガンを溶解した水溶液に、水溶液のpHが11.0、温度が50℃になるように、硫酸アンモニウム水溶液と、水酸化ナトリウム水溶液とを、撹拌しながら連続的に供給して、共沈物を析出させた。オーバーフロー方式で反応系内の液量を調節し、オーバーフローした共沈スラリーをろ過、水洗し、ついで80℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物の粉末を得た。該複合水酸化物の粉末の比表面積は5.6m/g、平均粒子径D50は11.8μmであった。
[Example 16]
In an aqueous solution in which nickel sulfate, cobalt sulfate, and manganese sulfate are dissolved so that the atomic ratio of nickel, cobalt, and manganese is Ni: Co: Mn = 6: 2: 2, the pH of the aqueous solution is 11.0 and the temperature is 50 ° C. Then, an aqueous solution of ammonium sulfate and an aqueous solution of sodium hydroxide were continuously supplied with stirring to precipitate a coprecipitate. The amount of liquid in the reaction system was adjusted by an overflow method, the overflowed coprecipitation slurry was filtered, washed with water, and then dried at 80 ° C. to obtain a nickel cobalt manganese composite hydroxide powder. The composite hydroxide powder had a specific surface area of 5.6 m 2 / g and an average particle diameter D50 of 11.8 μm.

こうして得られた複合水酸化物の粉末に水酸化リチウムの粉末を混合し、大気雰囲気中で、500℃で10時間、焼成した。得られた焼成物を再び混合して、900℃で24時間、焼成した後、粉砕することにより、Li1.02(Ni0.6Co0.2Mn0.20.98の組成を有するリチウム複合酸化物の粉末を得た。このリチウム複合酸化物の粒子に関して、SEMで観察すると、多数の一次粒子が凝集した二次粒子であり、二次粒子の形状は、ほぼ球状または楕円状であった。このリチウム複合酸化物を用いた他は、例2と同様にしてイオン交換水に接触させた後、ろ過、乾燥した後、ジルコニウム水溶液を噴霧し、加熱処理をして正極活物質を得た。リチウム複合酸化物に付着させたジルコニウムの量は、リチウム複合酸化物に対して0.10mol%であった。
得られた正極活物質のD50は14.0μm、比表面積は0.27m/gであり、正極活物質に含まれるジルコニウム量は、正極活物質に対して0.10mol%であった。また、遊離アルカリ量は0.39mol%であった。初期放電容量は165.0mAh/gであり、30回充放電サイクル後の容量維持率は93.3%であった。
The composite hydroxide powder thus obtained was mixed with lithium hydroxide powder and calcined at 500 ° C. for 10 hours in an air atmosphere. The obtained fired product was mixed again, fired at 900 ° C. for 24 hours, and then pulverized to obtain Li 1.02 (Ni 0.6 Co 0.2 Mn 0.2 ) 0.98 O 2 . A lithium composite oxide powder having a composition was obtained. When this lithium composite oxide particle was observed by SEM, it was a secondary particle in which a large number of primary particles were aggregated, and the shape of the secondary particle was almost spherical or elliptical. Except for using this lithium composite oxide, it was brought into contact with ion-exchanged water in the same manner as in Example 2, filtered, dried, sprayed with an aqueous zirconium solution, and heat-treated to obtain a positive electrode active material. The amount of zirconium deposited on the lithium composite oxide was 0.10 mol% with respect to the lithium composite oxide.
D50 of the obtained positive electrode active material was 14.0 μm, the specific surface area was 0.27 m 2 / g, and the amount of zirconium contained in the positive electrode active material was 0.10 mol% with respect to the positive electrode active material. Moreover, the amount of free alkalis was 0.39 mol%. The initial discharge capacity was 165.0 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 93.3%.

[例17]
例16において、ジルコニウム水溶液の噴霧をしなかったこと以外は例16と同様にして、正極活物質を得た。
得られた正極活物質のD50は16.1μm、比表面積は0.22m/gであった。また、ICPにて正極活物質に含まれるジルコニウム量を測定したが、ジルコニウムは検出されなかった。また、遊離アルカリ量は0.54mol%であった。初期放電容量は164.4mAh/gであり、30回充放電サイクル後の容量維持率は79.3%であった。
[Example 17]
In Example 16, a positive electrode active material was obtained in the same manner as in Example 16 except that the zirconium aqueous solution was not sprayed.
D50 of the obtained positive electrode active material was 16.1 μm, and the specific surface area was 0.22 m 2 / g. Further, the amount of zirconium contained in the positive electrode active material was measured by ICP, but zirconium was not detected. Moreover, the amount of free alkalis was 0.54 mol%. The initial discharge capacity was 164.4 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 79.3%.

[例18]
例16において、イオン交換水への接触、ろ過、乾燥処理をしなかったこと以外は、例16と同様にして正極活物質を合成した。
得られた正極活物質のD50は13.6μm、比表面積は0.54m/gであり、正極活物質に含まれるジルコニウム量は、正極活物質に対して0.10mol%であった。また、遊離アルカリ量は1.01mol%であった。該正極活物質を用いて例1と同様の操作で電極シートを作製したところ、塗工性が悪く、塗工、乾燥、ローラープレス後の電極の一部に剥離が見られた。剥離の無かった電極部位を用いて電池を作製したところ、初期放電容量は167.5mAh/gであり、30回充放電サイクル後の容量維持率は93.8%であった。
[Example 18]
In Example 16, a positive electrode active material was synthesized in the same manner as in Example 16 except that contact with ion exchange water, filtration, and drying treatment were not performed.
D50 of the obtained positive electrode active material was 13.6 μm, the specific surface area was 0.54 m 2 / g, and the amount of zirconium contained in the positive electrode active material was 0.10 mol% with respect to the positive electrode active material. Moreover, the amount of free alkalis was 1.01 mol%. When an electrode sheet was prepared using the positive electrode active material in the same manner as in Example 1, the coatability was poor, and peeling was observed on part of the electrode after coating, drying and roller pressing. When a battery was fabricated using the electrode part that did not peel, the initial discharge capacity was 167.5 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 93.8%.

[例19]
例16において、イオン交換水と接触させず、かつジルコニウム水溶液を噴霧しなかったこと以外は例16と同様にして、正極活物質を合成した。すなわち、例16で得られたLi1.02(Ni0.6Co0.2Mn0.20.98の組成を有するリチウム複合酸化物をそのまま正極活物質として用いて、各特性を測定した。この正極活物質のD50は14.2μm、比表面積は0.31m/gであった。また、遊離アルカリ量は1.21mol%であった。該正極活物質を用いて例1と同様の操作で電極シートを作製したところ、塗工性が悪く、塗工、乾燥、ローラープレス後の電極の一部に剥離が見られた。剥離の無かった電極部位を用いて電池を作製したところ、初期放電容量は167.0mAh/gであり、30回充放電サイクル後の容量維持率は93.0%であった。
[Example 19]
In Example 16, a positive electrode active material was synthesized in the same manner as in Example 16 except that it was not contacted with ion-exchanged water and the zirconium aqueous solution was not sprayed. That is, using the lithium composite oxide having the composition of Li 1.02 (Ni 0.6 Co 0.2 Mn 0.2 ) 0.98 O 2 obtained in Example 16 as a positive electrode active material as it is, Was measured. D50 of this positive electrode active material was 14.2 μm, and the specific surface area was 0.31 m 2 / g. Moreover, the amount of free alkalis was 1.21 mol%. When an electrode sheet was prepared using the positive electrode active material in the same manner as in Example 1, the coatability was poor, and peeling was observed on part of the electrode after coating, drying and roller pressing. When a battery was produced using the electrode part that did not peel, the initial discharge capacity was 167.0 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 93.0%.

[例20]
ニッケル、コバルト、マンガンの原子比がNi:Co:Mn=3:3:3となるように硫酸ニッケルと硫酸コバルトと硫酸マンガンを溶解した水溶液に、水溶液のpHが11.0、温度が50℃になるように、硫酸アンモニウム水溶液と、水酸化ナトリウム水溶液とを、撹拌しながら連続的に供給して、共沈物を析出させた。オーバーフロー方式で反応系内の液量を調節し、オーバーフローした共沈スラリーをろ過、水洗し、ついで80℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物の粉末を得た。該複合水酸化物の粉末の比表面積は6.9m/g、平均粒子径D50は10.8μmであった。
[Example 20]
In an aqueous solution in which nickel sulfate, cobalt sulfate, and manganese sulfate are dissolved so that the atomic ratio of nickel, cobalt, and manganese is Ni: Co: Mn = 3: 3: 3, the pH of the aqueous solution is 11.0 and the temperature is 50 ° C. Then, an aqueous solution of ammonium sulfate and an aqueous solution of sodium hydroxide were continuously supplied with stirring to precipitate a coprecipitate. The amount of liquid in the reaction system was adjusted by an overflow method, the overflowed coprecipitation slurry was filtered, washed with water, and then dried at 80 ° C. to obtain a nickel cobalt manganese composite hydroxide powder. The composite hydroxide powder had a specific surface area of 6.9 m 2 / g and an average particle diameter D50 of 10.8 μm.

こうして得られた複合水酸化物の粉末に炭酸リチウムの粉末を混合し、大気雰囲気中で、1000℃で10時間、焼成した後、粉砕することにより、Li1.05(Ni1/3Co1/3Mn1/30.95の組成を有するリチウム複合酸化物の粉末を得た。このリチウム複合酸化物の粒子に関して、SEMで観察すると、多数の一次粒子が凝集した二次粒子であり、二次粒子の形状は、ほぼ球状または楕円状であった。このリチウム複合酸化物を用いたこと以外は、例2と同様にしてイオン交換水に接触させた後、ろ過、乾燥した後、ジルコニウム水溶液を噴霧し、加熱処理をして正極活物質を得た。リチウム複合酸化物に付着させたジルコニウムの量は、リチウム複合酸化物に対して0.10mol%であった。
得られた正極活物質のD50は11.5μm、比表面積は0.32m/gであり、正極活物質に含まれるジルコニウム量は、正極活物質に対して0.10mol%であった。また、遊離アルカリ量は0.21mol%であった。初期放電容量は152.9mAh/gであり、30回充放電サイクル後の容量維持率は98.9%であった。
The composite hydroxide powder thus obtained was mixed with lithium carbonate powder, calcined in air at 1000 ° C. for 10 hours, and then pulverized to obtain Li 1.05 (Ni 1/3 Co 1 / 3 Mn 1/3 ) 0.95 O 2 to obtain a lithium composite oxide powder. When this lithium composite oxide particle was observed by SEM, it was a secondary particle in which a large number of primary particles were aggregated, and the shape of the secondary particle was almost spherical or elliptical. Except for using this lithium composite oxide, it was brought into contact with ion-exchanged water in the same manner as in Example 2, filtered and dried, sprayed with an aqueous zirconium solution, and heat-treated to obtain a positive electrode active material. . The amount of zirconium deposited on the lithium composite oxide was 0.10 mol% with respect to the lithium composite oxide.
D50 of the obtained positive electrode active material was 11.5 μm, the specific surface area was 0.32 m 2 / g, and the amount of zirconium contained in the positive electrode active material was 0.10 mol% with respect to the positive electrode active material. Moreover, the amount of free alkalis was 0.21 mol%. The initial discharge capacity was 152.9 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 98.9%.

[例21]
例20において、ジルコニウム水溶液の噴霧をしなかったこと以外は例20と同様にして、正極活物質を得た。
得られた正極活物質のD50は11.0μm、比表面積は0.35m/gであった。また、ICPにて正極活物質に含まれるジルコニウム量を測定したが、ジルコニウムは検出されなかった。また、遊離アルカリ量は0.19mol%であった。初期放電容量は153.2mAh/gであり、30回充放電サイクル後の容量維持率は94.8%であった。
[Example 21]
In Example 20, a positive electrode active material was obtained in the same manner as in Example 20 except that the zirconium aqueous solution was not sprayed.
D50 of the obtained positive electrode active material was 11.0 μm, and the specific surface area was 0.35 m 2 / g. Further, the amount of zirconium contained in the positive electrode active material was measured by ICP, but zirconium was not detected. Moreover, the amount of free alkalis was 0.19 mol%. The initial discharge capacity was 153.2 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 94.8%.

[例22]
例20において、イオン交換水への接触、ろ過、乾燥処理をしなかったこと以外は、例20と同様にして正極活物質を合成した。
得られた正極活物質のD50は10.8μm、比表面積は0.40m/gであり、正極活物質に含まれるジルコニウム量は、正極活物質に対して0.10mol%であった。また、遊離アルカリ量は1.01mol%であった。該正極活物質を用いて例1と同様の操作で電極シートを作製したところ、塗工性が悪く、塗工、乾燥、ローラープレス後の電極の一部に剥離が見られた。剥離の無かった電極部位を用いて電池を作製したところ、初期放電容量は152.8mAh/gであり、30回充放電サイクル後の容量維持率は99.0%であった。
[Example 22]
In Example 20, a positive electrode active material was synthesized in the same manner as in Example 20 except that contact with ion-exchanged water, filtration, and drying treatment were not performed.
D50 of the obtained positive electrode active material was 10.8 μm, the specific surface area was 0.40 m 2 / g, and the amount of zirconium contained in the positive electrode active material was 0.10 mol% with respect to the positive electrode active material. Moreover, the amount of free alkalis was 1.01 mol%. When an electrode sheet was prepared using the positive electrode active material in the same manner as in Example 1, the coatability was poor, and peeling was observed on part of the electrode after coating, drying and roller pressing. When a battery was produced using the electrode part that did not peel, the initial discharge capacity was 152.8 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 99.0%.

[例23]
例20において、イオン交換水と接触させず、かつジルコニウム水溶液を噴霧しなかったこと以外は、例20と同様にして、正極活物質を合成した。すなわち、例20で得られたLi1.05(Ni1/3Co1/3Mn1/30.95の組成を有するリチウム複合酸化物をそのまま正極活物質として用いて、各特性を測定した。この正極活物質のD50は11.2μm、比表面積は0.35m/gであった。また、遊離アルカリ量は0.35mol%であった。初期放電容量は153.0mAh/gであり、30回充放電サイクル後の容量維持率は97.0%であった。
[Example 23]
In Example 20, a positive electrode active material was synthesized in the same manner as in Example 20 except that it was not brought into contact with ion-exchanged water and the zirconium aqueous solution was not sprayed. That is, using the lithium composite oxide having the composition of Li 1.05 (Ni 1/3 Co 1/3 Mn 1/3 ) 0.95 O 2 obtained in Example 20 as it is as the positive electrode active material, Was measured. D50 of this positive electrode active material was 11.2 μm, and the specific surface area was 0.35 m 2 / g. Moreover, the amount of free alkalis was 0.35 mol%. The initial discharge capacity was 153.0 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 97.0%.

[例24]
例1において、ジルコニウム水溶液の代わりに、チタン含量が8.2質量%の乳酸チタン溶液(マツモト交商社製)0.6gをイオン交換水14gに溶解して調製した、チタンの濃度が0.35質量%であるチタン水溶液を用いたこと以外は例1と同様にして、正極活物質を得た。なお、作製したチタン水溶液は14gであり、その半分である7gのチタン水溶液を、100gのリチウム複合酸化物に、例1と同様にして、噴霧した。
得られた正極活物質のD50は13.0μm、比表面積は0.27m/gであり、正極活物質に含まれるチタンの量は、正極活物質に対して0.05mol%であった。また、遊離アルカリ量は0.33mol%であった。初期放電容量は158.0mAh/gであり、30回充放電サイクル後の容量維持率は98.0%であった。
[Example 24]
In Example 1, in place of the zirconium aqueous solution, a titanium lactate solution having a titanium content of 8.2% by mass (manufactured by Matsumoto Kyosho Co., Ltd.) 0.6 g was dissolved in ion-exchanged water 14 g, and the titanium concentration was 0.35. A positive electrode active material was obtained in the same manner as in Example 1 except that a titanium aqueous solution having a mass% was used. The prepared titanium aqueous solution was 14 g, and 7 g of titanium aqueous solution, which is half of the titanium aqueous solution, was sprayed on 100 g of lithium composite oxide in the same manner as in Example 1.
D50 of the obtained positive electrode active material was 13.0 μm, the specific surface area was 0.27 m 2 / g, and the amount of titanium contained in the positive electrode active material was 0.05 mol% with respect to the positive electrode active material. Moreover, the amount of free alkalis was 0.33 mol%. The initial discharge capacity was 158.0 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 98.0%.

[例25]
例24において、イオン交換水への接触、ろ過、乾燥処理を行わなかったこと以外は、例24と同様にして正極活物質を合成した。得られた正極活物質のD50は11.8μm、比表面積は0.28m/gであり、正極活物質に含まれるチタンの量は、正極活物質に対して0.05mol%であった。また、遊離アルカリ量は0.79mol%であった。該正極活物質を用いて例1と同様の操作で電極シートを作製したところ、塗工性が悪く、塗工、乾燥、ローラープレス後の電極の一部に剥離が見られた。剥離の無かった電極部位を用いて電池を作製したところ、初期放電容量は161.2mAh/gであり、30回充放電サイクル後の容量維持率は99.0%であった。
[Example 25]
In Example 24, a positive electrode active material was synthesized in the same manner as in Example 24 except that contact with ion-exchanged water, filtration, and drying treatment were not performed. D50 of the obtained positive electrode active material was 11.8 μm, the specific surface area was 0.28 m 2 / g, and the amount of titanium contained in the positive electrode active material was 0.05 mol% with respect to the positive electrode active material. Moreover, the amount of free alkalis was 0.79 mol%. When an electrode sheet was prepared using the positive electrode active material in the same manner as in Example 1, the coatability was poor, and peeling was observed on part of the electrode after coating, drying and roller pressing. When a battery was produced using the electrode part without peeling, the initial discharge capacity was 161.2 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 99.0%.

[例26]
コバルト、アルミニウム、マグネシウム、ジルコニウムの原子比がCo:Al:Mg:Zr=0.969:0.015:0.015:0.001となるように硫酸コバルトと硫酸アルミニウムと硫酸マグネシウムと硫酸ジルコニウムを溶解した水溶液に、pHが11.0、温度が50℃になるように、硫酸アンモニウム水溶液と、水酸化ナトリウム水溶液とを、攪拌しながら連続的に供給して、共沈物を析出させた。オーバーフロー方式で反応系内の液量を調節し、オーバーフローした共沈スラリーをろ過、水洗し、ついで80℃で乾燥することにより、コバルトアルミニウムマグネシウムジルコニウム複合水酸化物の粉末を得た。該複合水酸化物の粉末の比表面積は5.0m/g、平均粒子径D50は12.7μmであった。
こうして得られた複合水酸化物に炭酸リチウムを所定量混合し、大気雰囲気中で、1000℃で15時間焼成した後、粉砕することにより、Li1.02(Co0.969Al0.015Mg0.015Zr0.0010.98の組成を有するリチウム複合酸化物の粉末を得た。このリチウム複合酸化物の粒子に関して、SEMで観察すると、一次粒子からなる、ほぼ球状又は楕円状の粒子であった。
[Example 26]
Cobalt sulfate, aluminum sulfate, magnesium sulfate and zirconium sulfate are used so that the atomic ratio of cobalt, aluminum, magnesium and zirconium is Co: Al: Mg: Zr = 0.969: 0.015: 0.015: 0.001. To the dissolved aqueous solution, an aqueous ammonium sulfate solution and an aqueous sodium hydroxide solution were continuously supplied with stirring so that the pH was 11.0 and the temperature was 50 ° C. to precipitate a coprecipitate. The amount of liquid in the reaction system was adjusted by the overflow method, and the overflowed coprecipitation slurry was filtered, washed with water, and then dried at 80 ° C. to obtain cobalt aluminum magnesium zirconium composite hydroxide powder. The composite hydroxide powder had a specific surface area of 5.0 m 2 / g and an average particle diameter D50 of 12.7 μm.
A predetermined amount of lithium carbonate was mixed with the composite hydroxide thus obtained, calcined at 1000 ° C. for 15 hours in the atmosphere, and then pulverized to obtain Li 1.02 (Co 0.969 Al 0.015 Mg A powder of lithium composite oxide having a composition of 0.015 Zr 0.001 ) 0.98 O 2 was obtained. When this lithium composite oxide particle was observed by SEM, it was a substantially spherical or elliptical particle composed of primary particles.

このリチウム複合酸化物を用いたこと以外は、例2と同様にしてイオン交換水に接触させた後、ろ過、乾燥した後、ジルコニウム水溶液を噴霧し、加熱処理をして正極活物質を得た。正極活物質中に含まれるジルコニウムの量は、ICPによる分析から、0.20mol%であった。リチウム複合酸化物中に含まれるジルコニウムの量が0.10mol%であったことから、リチウム複合酸化物に付着させたジルコニウムの量は、リチウム複合酸化物に対して0.10mol%であった。
得られた正極活物質のD50は13.0μm、比表面積は0.20m/gであった。また、遊離アルカリ量は0.19mol%であった。初期放電容量は148.8mAh/gであり、30回充放電サイクル後の容量維持率は97.0%であった。
Except for using this lithium composite oxide, it was brought into contact with ion-exchanged water in the same manner as in Example 2, filtered and dried, sprayed with an aqueous zirconium solution, and heat-treated to obtain a positive electrode active material. . The amount of zirconium contained in the positive electrode active material was 0.20 mol% from analysis by ICP. Since the amount of zirconium contained in the lithium composite oxide was 0.10 mol%, the amount of zirconium attached to the lithium composite oxide was 0.10 mol% with respect to the lithium composite oxide.
D50 of the obtained positive electrode active material was 13.0 μm, and the specific surface area was 0.20 m 2 / g. Moreover, the amount of free alkalis was 0.19 mol%. The initial discharge capacity was 148.8 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 97.0%.

[例27]
例26において、ジルコニウム水溶液の噴霧をしなかったこと以外は例26と同様にして、正極活物質を得た。
得られた正極活物質のD50は12.6μm、比表面積は0.19m/gであった。また、正極活物質に含まれるジルコニウム量は、正極活物質に対して0.10mol%であった。また、遊離アルカリ量は0.17mol%であった。初期放電容量は148.2mAh/gであり、30回充放電サイクル後の容量維持率は80.0%であった。
[Example 27]
In Example 26, a positive electrode active material was obtained in the same manner as in Example 26 except that the zirconium aqueous solution was not sprayed.
D50 of the obtained positive electrode active material was 12.6 micrometers, and the specific surface area was 0.19 m < 2 > / g. Moreover, the amount of zirconium contained in the positive electrode active material was 0.10 mol% with respect to the positive electrode active material. Moreover, the amount of free alkalis was 0.17 mol%. The initial discharge capacity was 148.2 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 80.0%.

[例28]
例26において、イオン交換水への接触、ろ過、乾燥処理をしなかったこと以外は、例26と同様にして正極活物質を合成した。
得られた正極活物質のD50は13.5μm、比表面積は0.21m/gであり、正極活物質に含まれるジルコニウムの量は、正極活物質に対して0.20mol%であった。すなわち、付着したジルコニウムの量は、0.10mol%であった。また、遊離アルカリ量は0.25mol%であった。初期放電容量は146.6mAh/gであり、30回充放電サイクル後の容量維持率は97.2%であった。
[Example 28]
In Example 26, a positive electrode active material was synthesized in the same manner as in Example 26 except that contact with ion exchange water, filtration, and drying treatment were not performed.
D50 of the obtained positive electrode active material was 13.5 μm, the specific surface area was 0.21 m 2 / g, and the amount of zirconium contained in the positive electrode active material was 0.20 mol% with respect to the positive electrode active material. That is, the amount of attached zirconium was 0.10 mol%. Moreover, the amount of free alkalis was 0.25 mol%. The initial discharge capacity was 146.6 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 97.2%.

[例29]
例26において、イオン交換水と接触させず、かつジルコニウム水溶液を噴霧しなかったこと以外は、例26と同様にして、正極活物質を合成した。すなわち、例26で得られたLi1.02(Co0.969Al0.015Mg0.015Zr0.0010.98の組成を有するリチウム複合酸化物をそのまま正極活物質として用いて、各特性を測定した。この正極活物質のD50は12.5μm、比表面積は0.28m/gであった。また、遊離アルカリ量は0.25mol%であった。初期放電容量は148.9mAh/gであり、30回充放電サイクル後の容量維持率は68.1%であった。
[Example 29]
In Example 26, a positive electrode active material was synthesized in the same manner as in Example 26 except that it was not contacted with ion-exchanged water and no zirconium aqueous solution was sprayed. That is, the lithium composite oxide having the composition of Li 1.02 (Co 0.969 Al 0.015 Mg 0.015 Zr 0.001 ) 0.98 O 2 obtained in Example 26 was used as it is as the positive electrode active material. Each characteristic was measured. D50 of this positive electrode active material was 12.5 μm, and the specific surface area was 0.28 m 2 / g. Moreover, the amount of free alkalis was 0.25 mol%. The initial discharge capacity was 148.9 mAh / g, and the capacity retention rate after 30 charge / discharge cycles was 68.1%.

本発明によれば、リチウムイオン二次電池の正極として有用である、充放電サイクル耐久性に優れ、遊離アルカリ量が低く、高い放電容量、高い充填性および高い体積容量密度を有する正極活物質が得られる製造方法が提供される。また、該製造方法により得られる正極活物質を含む正極およびリチウム二次電池が提供される。さらに、該正極および該リチウム二次電池の製造方法が提供される。   According to the present invention, a positive electrode active material that is useful as a positive electrode of a lithium ion secondary battery, has excellent charge / discharge cycle durability, has a low amount of free alkali, high discharge capacity, high fillability, and high volume capacity density. The resulting manufacturing method is provided. Moreover, the positive electrode containing the positive electrode active material obtained by this manufacturing method and a lithium secondary battery are provided. Furthermore, the manufacturing method of this positive electrode and this lithium secondary battery is provided.

Claims (13)

一般式LiNiCoMn(M元素は、Ni、CoおよびMn以外の遷移金属元素、Alならびに2族元素からなる群から選ばれる少なくとも一種の元素である。a、b、c、dおよびeはそれぞれ、0.9≦a≦1.2、0≦b≦1、0≦c≦1、0≦d<1、0≦e≦0.3、a+b+c+d+e=2である。)で表されるリチウム複合酸化物を水に接触処理させた後、該リチウム複合酸化物から処理水を分離し、次いで、処理水を分離したリチウム複合酸化物を、3族元素または4族元素の化合物の溶液に接触させて、リチウム複合酸化物に対して0.02〜0.9mol%の3族元素または4族元素を付着させた後、600〜1000℃で加熱することを特徴とするリチウムイオン二次電池用正極活物質の製造方法。 General formula Li a Ni b Co c Mn d Me O 2 (M element is at least one element selected from the group consisting of transition metal elements other than Ni, Co and Mn, Al and Group 2 elements. A, b, c, d, and e are 0.9 ≦ a ≦ 1.2, 0 ≦ b ≦ 1, 0 ≦ c ≦ 1, 0 ≦ d <1, 0 ≦ e ≦ 0.3, and a + b + c + d + e = 2, respectively. The lithium composite oxide represented by the formula (1) is contacted with water, and then the treated water is separated from the lithium composite oxide. It is contacted with a solution of a group element compound to deposit 0.02 to 0.9 mol% of a group 3 element or a group 4 element with respect to the lithium composite oxide, and then heated at 600 to 1000 ° C. Manufacturing positive electrode active materials for lithium ion secondary batteries Method. 加熱する温度が600〜950℃である、請求項1に記載の製造方法。   The manufacturing method of Claim 1 whose temperature to heat is 600-950 degreeC. 3族元素または4族元素が、ランタン、チタン、ジルコニウムおよびハフニウムからなる群から選ばれる少なくとも1種の元素である、請求項1または2に記載の製造方法。   The production method according to claim 1 or 2, wherein the Group 3 element or Group 4 element is at least one element selected from the group consisting of lanthanum, titanium, zirconium, and hafnium. 3族元素または4族元素の化合物の溶液に接触させて付着させた、3族元素または4族元素の量が、リチウム複合酸化物に対して0.02〜0.5mol%である、請求項1〜3のいずれかに記載の製造方法。   The amount of the group 3 element or the group 4 element deposited by contacting with the solution of the group 3 element or the compound of the group 4 element is 0.02 to 0.5 mol% with respect to the lithium composite oxide. The manufacturing method in any one of 1-3. 処理水を分離したリチウム複合酸化物を、60〜200℃で乾燥した後、3族元素または4族元素の化合物の溶液に接触させる、請求項1〜4のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein the lithium composite oxide from which the treated water is separated is dried at 60 to 200 ° C and then contacted with a solution of a compound of a group 3 element or a group 4 element. 3族元素または4族元素の化合物の溶液が、炭酸ジルコニウムアンモニウム、酢酸ランタンおよび乳酸チタンからなる群から選ばれる少なくとも1種の化合物の水溶液である、請求項1〜5のいずれかに記載の製造方法。   The production according to any one of claims 1 to 5, wherein the solution of the group 3 element or group 4 element compound is an aqueous solution of at least one compound selected from the group consisting of ammonium zirconium carbonate, lanthanum acetate, and titanium lactate. Method. 正極活物質の遊離アルカリ量が、0.7mol%以下である、請求項1〜6のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-6 whose amount of free alkalis of a positive electrode active material is 0.7 mol% or less. 一般式LiNiCoMnで表されるリチウム複合酸化物において、a、b、c、dおよびeが、それぞれ、0.95≦a≦1.1、0.3≦b≦0.9、0≦c≦0.5、0.1≦d≦0.5、0≦e≦0.1である、請求項1〜7のいずれかに記載の製造方法。 In the general formula Li a Ni b Co c Mn d M lithium composite oxide represented by e O 2, a, b, c, d and e are, respectively, 0.95 ≦ a ≦ 1.1,0.3 The manufacturing method according to claim 1, wherein ≦ b ≦ 0.9, 0 ≦ c ≦ 0.5, 0.1 ≦ d ≦ 0.5, and 0 ≦ e ≦ 0.1. 正極活物質が粒子状であり、かつ平均粒子径が3〜25μmである、請求項1〜8のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 1-8 whose positive electrode active material is a particulate form and whose average particle diameter is 3-25 micrometers. 正極活物質の比表面積が0.1〜1.5m/gである、請求項1〜9のいずれかに記載の製造方法。 The manufacturing method in any one of Claims 1-9 whose specific surface area of a positive electrode active material is 0.1-1.5 m < 2 > / g. 正極活物質のプレス密度が2.7〜3.8g/cmである、請求項1〜10のいずれかに記載の製造方法。 The manufacturing method in any one of Claims 1-10 whose press density of a positive electrode active material is 2.7-3.8 g / cm < 3 >. 請求項1〜11のいずれかに記載の製造方法で得られる正極活物質、導電剤、バインダーおよび溶媒を混合して、得られるスラリーを金属箔に塗布した後、加熱により溶媒を除去することを特徴とするリチウムイオン二次電池用正極の製造方法。   The positive electrode active material obtained by the production method according to claim 1, a conductive agent, a binder and a solvent are mixed, and after applying the resulting slurry to a metal foil, the solvent is removed by heating. A method for producing a positive electrode for a lithium ion secondary battery. 請求項12に記載の製造方法で得られる正極に、セパレータ、および負極を積層して、これを電池ケースに収納した後、電解液を注入することを特徴とするリチウムイオン二次電池の製造方法。   A method for producing a lithium ion secondary battery, comprising: laminating a separator and a negative electrode on a positive electrode obtained by the production method according to claim 12, housing the battery in a battery case, and then injecting an electrolytic solution. .
JP2010048128A 2010-03-04 2010-03-04 Method for manufacturing positive electrode active material for lithium ion secondary battery Pending JP2011187174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010048128A JP2011187174A (en) 2010-03-04 2010-03-04 Method for manufacturing positive electrode active material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010048128A JP2011187174A (en) 2010-03-04 2010-03-04 Method for manufacturing positive electrode active material for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2011187174A true JP2011187174A (en) 2011-09-22

Family

ID=44793254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010048128A Pending JP2011187174A (en) 2010-03-04 2010-03-04 Method for manufacturing positive electrode active material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2011187174A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017253A (en) * 2010-06-09 2012-01-26 Toda Kogyo Corp Lithium composite compound particle powder and method for producing the same, and nonaqueous electrolyte secondary battery
WO2014051089A1 (en) * 2012-09-28 2014-04-03 住友金属鉱山株式会社 Nickel-cobalt compound hydroxide and method and device for producing same, positive electrode active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
EP2763220A4 (en) * 2011-09-26 2015-08-19 Korea Electronics Technology Precursor of cathode active material for a lithium secondary battery, method for manufacturing the precursor, cathode active material, and lithium secondary battery including the cathode active material
WO2015147209A1 (en) * 2014-03-28 2015-10-01 三井金属鉱業株式会社 Method for manufacturing lithium metal complex oxide having layered crystal structure
JPWO2014069469A1 (en) * 2012-10-29 2016-09-08 旭硝子株式会社 Method for producing positive electrode active material
JP2020524384A (en) * 2017-07-13 2020-08-13 エルジー・ケム・リミテッド Method for manufacturing positive electrode active material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321228A (en) * 1997-05-16 1998-12-04 Nippon Telegr & Teleph Corp <Ntt> Positive electrode active material for lithium battery, its manufacture, and lithium battery using it
JP2000327339A (en) * 1999-05-17 2000-11-28 Mitsubishi Cable Ind Ltd Li-Co-BASED COMPOUND OXIDE AND ITS PRODUCTION
JP2003017053A (en) * 2001-06-28 2003-01-17 Ise Chemicals Corp Electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2005187282A (en) * 2003-12-26 2005-07-14 Tosoh Corp Lithium-nickel-manganese composite oxide and its manufacturing method as well as its use
JP2005310800A (en) * 1994-10-27 2005-11-04 Ube Ind Ltd Nonaqueous secondary battery and process for producing the same
WO2009057722A1 (en) * 2007-11-01 2009-05-07 Agc Seimi Chemical Co., Ltd. Process for production of positive electrode active material for lithium ion secondary battery
WO2009157524A1 (en) * 2008-06-26 2009-12-30 Agcセイミケミカル株式会社 Surface-modified lithium-containing complex oxide for positive electrode active material of lithium ion secondary battery and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310800A (en) * 1994-10-27 2005-11-04 Ube Ind Ltd Nonaqueous secondary battery and process for producing the same
JPH10321228A (en) * 1997-05-16 1998-12-04 Nippon Telegr & Teleph Corp <Ntt> Positive electrode active material for lithium battery, its manufacture, and lithium battery using it
JP2000327339A (en) * 1999-05-17 2000-11-28 Mitsubishi Cable Ind Ltd Li-Co-BASED COMPOUND OXIDE AND ITS PRODUCTION
JP2003017053A (en) * 2001-06-28 2003-01-17 Ise Chemicals Corp Electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2005187282A (en) * 2003-12-26 2005-07-14 Tosoh Corp Lithium-nickel-manganese composite oxide and its manufacturing method as well as its use
WO2009057722A1 (en) * 2007-11-01 2009-05-07 Agc Seimi Chemical Co., Ltd. Process for production of positive electrode active material for lithium ion secondary battery
WO2009157524A1 (en) * 2008-06-26 2009-12-30 Agcセイミケミカル株式会社 Surface-modified lithium-containing complex oxide for positive electrode active material of lithium ion secondary battery and method for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017253A (en) * 2010-06-09 2012-01-26 Toda Kogyo Corp Lithium composite compound particle powder and method for producing the same, and nonaqueous electrolyte secondary battery
EP2763220A4 (en) * 2011-09-26 2015-08-19 Korea Electronics Technology Precursor of cathode active material for a lithium secondary battery, method for manufacturing the precursor, cathode active material, and lithium secondary battery including the cathode active material
US9608265B2 (en) 2011-09-26 2017-03-28 Korea Electronics Technology Institute Precursor of cathode active material for a lithium secondary battery, method for manufacturing the precursor, cathode active material, and lithium secondary battery including the cathode active material
WO2014051089A1 (en) * 2012-09-28 2014-04-03 住友金属鉱山株式会社 Nickel-cobalt compound hydroxide and method and device for producing same, positive electrode active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
JPWO2014051089A1 (en) * 2012-09-28 2016-08-25 住友金属鉱山株式会社 Nickel-cobalt composite hydroxide and its production method and production apparatus, positive electrode active material for non-aqueous electrolyte secondary battery, its production method, and non-aqueous electrolyte secondary battery
US10141571B2 (en) 2012-09-28 2018-11-27 Sumitomo Metal Mining Co., Ltd. Nickel-cobalt composite hydroxide and method and device for producing same, cathode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
US10236510B2 (en) 2012-09-28 2019-03-19 Sumitomo Metal Mining Co., Ltd. Nickel-cobalt composite hydroxide and method and device for producing same, cathode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JPWO2014069469A1 (en) * 2012-10-29 2016-09-08 旭硝子株式会社 Method for producing positive electrode active material
WO2015147209A1 (en) * 2014-03-28 2015-10-01 三井金属鉱業株式会社 Method for manufacturing lithium metal complex oxide having layered crystal structure
JPWO2015147209A1 (en) * 2014-03-28 2017-04-13 三井金属鉱業株式会社 Method for producing lithium metal composite oxide having layered crystal structure
JP2020524384A (en) * 2017-07-13 2020-08-13 エルジー・ケム・リミテッド Method for manufacturing positive electrode active material
US11258063B2 (en) 2017-07-13 2022-02-22 Lg Chem, Ltd. Method for preparing positive electrode active material

Similar Documents

Publication Publication Date Title
JP6052333B2 (en) Positive electrode material for lithium ion secondary battery
JP6665060B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP4666653B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP5172835B2 (en) Lithium-containing composite oxide powder and method for producing the same
JP5132308B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP6324051B2 (en) Positive electrode active material for lithium secondary battery, and positive electrode for lithium secondary battery and lithium secondary battery including the same
US8101300B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and its production method
JP5253808B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
EP2826750A1 (en) Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP2006302542A (en) Manufacturing method of lithium-containing composite oxide for lithium secondary battery positive electrode
JPWO2009157524A1 (en) Surface-modified lithium-containing composite oxide for positive electrode active material for lithium ion secondary battery and method for producing the same
JPWO2010090185A1 (en) Surface-modified lithium-containing composite oxide for positive electrode active material for lithium ion secondary battery and method for producing the same
JP6603966B2 (en) Lithium iron manganese composite oxide and lithium ion secondary battery using the same
JP4927369B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
CN108432001B (en) Method for producing positive electrode active material, positive electrode, and lithium ion secondary battery
JP2014116161A (en) Method of producing positive electrode active material for lithium ion secondary battery
JPWO2006123710A1 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP2008226495A (en) Lithium-containing composite oxide particle for nonaqueous secondary battery, and its manufacturing method
JP6481907B2 (en) Lithium iron manganese based composite oxide, positive electrode active material for lithium ion secondary battery using the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011187174A (en) Method for manufacturing positive electrode active material for lithium ion secondary battery
CN109891641B (en) Cobalt oxide, method for preparing same, lithium cobalt oxide, and lithium secondary battery
WO2008013208A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
KR101449421B1 (en) Surface-treated cathode material for oxide-based litium secondary battery with solid super acids and manufacturing method thereof
JPWO2011016334A1 (en) Method for producing positive electrode material for lithium ion secondary battery
JPWO2009099156A1 (en) Method for producing granulated powder for positive electrode active material of lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701