WO2015147209A1 - Method for manufacturing lithium metal complex oxide having layered crystal structure - Google Patents

Method for manufacturing lithium metal complex oxide having layered crystal structure Download PDF

Info

Publication number
WO2015147209A1
WO2015147209A1 PCT/JP2015/059468 JP2015059468W WO2015147209A1 WO 2015147209 A1 WO2015147209 A1 WO 2015147209A1 JP 2015059468 W JP2015059468 W JP 2015059468W WO 2015147209 A1 WO2015147209 A1 WO 2015147209A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium metal
composite oxide
metal composite
surface treatment
oxide powder
Prior art date
Application number
PCT/JP2015/059468
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 鷲田
徹也 光本
仁彦 井手
祥巳 畑
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2016510504A priority Critical patent/JP6546582B2/en
Publication of WO2015147209A1 publication Critical patent/WO2015147209A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a lithium metal composite oxide having a layered crystal structure that can be used as a positive electrode active material of a lithium battery.
  • Lithium batteries especially lithium secondary batteries, have features such as high energy density and long life, so they can be used for home appliances such as video cameras, portable electronic devices such as notebook computers and mobile phones. Used as a power source. Recently, the lithium secondary battery is also applied to a large battery mounted on an electric vehicle (EV), a hybrid electric vehicle (HEV), or the like.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • a lithium secondary battery is a secondary battery with a structure in which lithium is melted as ions from the positive electrode during charging, moves to the negative electrode and is stored, and reversely, lithium ions return from the negative electrode to the positive electrode during discharging. It is known to be caused by the potential of the positive electrode material.
  • lithium manganese oxide (LiMn 2 O 4 ) having a spinel structure and lithium metal composite oxides such as LiCoO 2 , LiNiO 2 and LiMnO 2 having a layered crystal structure are known. It has been.
  • LiCoO 2 has a layered crystal structure in which lithium atom layers and cobalt atom layers are alternately stacked via oxygen atom layers, has a large charge / discharge capacity, and is excellent in diffusibility of lithium ion storage / desorption. Therefore, most of the lithium secondary batteries currently on the market are lithium metal composite oxides having a layered crystal structure such as LiCoO 2 .
  • a lithium metal composite oxide having a layered crystal structure such as LiCoO 2 or LiNiO 2 is represented by a general formula LiMO 2 (M: transition metal).
  • the crystal structure of these lithium metal composite oxides having a layered crystal structure belongs to the space group R-3m ("-" is usually attached to the upper part of "3" and indicates reversal. The same applies hereinafter).
  • the Li ion, Me ion, and oxide ion occupy the 3a site, 3b site, and 6c site, respectively. It is known that a layer composed of Li ions (Li layer) and a layer composed of Me ions (Me layer) exhibit a layered crystal structure in which they are alternately stacked via O layers composed of oxide ions.
  • Patent Document 1 an alkaline solution is added to a mixed aqueous solution of manganese and nickel to coprecipitate manganese and nickel, lithium hydroxide is added, and A manufacturing method for obtaining a lithium metal composite oxide by firing is disclosed.
  • Patent Document 2 a raw material containing a lithium salt compound, a manganese salt compound, a nickel salt compound and a cobalt salt compound is mixed, mixed and stirred in water to prepare a slurry, and this slurry is pulverized.
  • a method for producing a lithium metal composite oxide having a layer structure by granulating and drying a pulverized slurry using a thermal spray dryer or the like and then calcination and pulverization is disclosed.
  • Patent Document 3 proposes a method of improving cycle characteristics and reducing internal resistance by modifying a lithium composite oxide with a compound such as Co.
  • Patent Document 4 after mixing the raw materials for lithium composite oxide, the surface of the composite oxide particles produced through the steps of firing, crushing, heat treatment and classification, Al, Mg, Sn, It is disclosed that the internal resistance can be lowered and high output can be obtained by using a surface-modified metal compound film containing at least one of Ti, Zn and Zr as a positive electrode active material. .
  • a lithium metal composite oxide having a layered crystal structure When a lithium metal composite oxide having a layered crystal structure is used as the positive electrode active material of a lithium secondary battery, it can be used at a high voltage, with a charge voltage of 4.3 V or less on a metal lithium basis, or charged and discharged at a voltage exceeding 4.3 V. Otherwise, the surface of the lithium metal composite oxide is changed due to the reaction with the electrolytic solution, which causes a problem that the life characteristics of the battery are deteriorated. As an example of means for solving such a problem, it is conceivable to coat the particle surface of the lithium metal composite oxide with an oxide. However, if the surface of the lithium metal composite oxide particles is covered with an oxide, a new problem arises that the output characteristics of the battery are degraded. Thus, regarding the lithium metal composite oxide having a layered crystal structure, it is not easy to achieve both life characteristics and output characteristics.
  • the present invention relates to a method for producing a lithium metal composite oxide having a layered crystal structure, and when used as a positive electrode active material of a lithium secondary battery, it can suppress a reaction with an electrolyte and improve a battery life characteristic.
  • the present invention is to provide a new method for producing a lithium metal composite oxide capable of making output characteristics equivalent or higher.
  • the present invention relates to a surface treatment step of performing a surface treatment of a lithium metal composite oxide powder using a surface treatment agent containing at least one of aluminum, titanium and zirconium, and a lithium metal composite oxide after the surface treatment.
  • a method for producing a lithium metal composite oxide having a layered crystal structure comprising a heat treatment step for heat treating the powder, wherein in the heat treatment step, the surface-treated lithium metal composite oxide powder is heated at a temperature in an oxygen-containing atmosphere.
  • a method for producing a lithium metal composite oxide having a layered crystal structure, characterized in that heat treatment is performed so as to maintain at 700 to 950 ° C. is proposed.
  • a surface layer containing at least one of aluminum, titanium and zirconium can be formed on the surface of the lithium metal composite oxide particles.
  • the life characteristics can be improved by suppressing the reaction with the electrolytic solution, and the output characteristics are equivalent or more.
  • the obtained lithium metal composite oxide is particularly excellent as a positive electrode active material of a battery mounted on a vehicle, in particular, an electric vehicle (EV: Electric Vehicle) or a hybrid electric vehicle (HEV: Hybrid Electric Vehicle). It will be a thing.
  • EV Electric Vehicle
  • HEV Hybrid Electric Vehicle
  • a method for producing a lithium metal composite oxide (hereinafter referred to as “the present lithium metal composite oxide”) according to an example of the present embodiment (hereinafter referred to as “the present production method”) contains at least one of aluminum, titanium, and zirconium.
  • a surface treatment step of performing a surface treatment of a lithium metal composite oxide powder (referred to as “matrix lithium metal composite oxide powder”) using the surface treatment agent to be treated, and heat treating the lithium metal composite oxide powder after the surface treatment
  • the present manufacturing method since the present manufacturing method only needs to include the surface treatment step and the heat treatment step, it may further include other steps. For example, a crushing step may be inserted after the heat treatment step, or a crushing step or a classification step may be inserted before the surface treatment step. Moreover, you may add another process.
  • the lithium metal composite oxide which is a product of this production method, is not particularly limited in composition as long as it is a lithium metal composite oxide having a layered crystal structure. That is, the lithium metal composite oxide may be a lithium metal composite oxide having a layered crystal structure in which lithium atomic layers and metal atomic layers are alternately stacked via oxygen atomic layers.
  • the lithium metal composite oxide having a layered crystal structure has a common problem, and the effects of surface treatment and heat treatment are the same, so there is no need to limit the composition.
  • in-vehicle batteries in particular, electric vehicles (EVs) and hybrid electric vehicles (HEVs) are described.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • the following lithium metal composite oxide preferable as a positive electrode active material of a lithium secondary battery to be mounted on) will be described as an example.
  • lithium metal composite oxide As an example of the present lithium metal composite oxide, a lithium metal composite oxide having a layered crystal structure represented by the general formula (1): Li 1 + x M 1-x O 2 can be given.
  • “1 + x” in the above formula (1) is 1.00 to 1.07, more preferably 1.01 or more and 1.07 or less, and more preferably 1.02 or more and 1.06 or less.
  • M in the above formula (1) represents Mn, Co, Ni, transition elements existing between Group 3 elements of the periodic table and Group 11 elements and the third period of the periodic table. Any one or more of the typical elements may be used.
  • transition elements existing between the Group 3 elements of the periodic table and the Group 11 elements and typical elements from the third period of the periodic table for example, Al, V, Fe, Ti, Mg, Cr , Ga, In, Cu, Zn, Nb, Zr, Mo, W, Ta, Re, and the like.
  • “M” is, for example, any one of Mn, Co, Ni, Al, V, Fe, Ti, Mg, Cr, Ga, In, Cu, Zn, Nb, Zr, Mo, W, Ta, and Re. That is all you need. Therefore, “M” may be composed of, for example, only three elements of Mn, Co, and Ni, or the three elements may include one or more of the other elements, or may have other structures. .
  • Mn in the above formula (1) contains three elements of Mn, Co and Ni
  • Mn: Co: Ni 0.10 to 0.40: 0.05 to 0.40: 0.30 to 0. More preferably, it is 75.
  • the atomic ratio of the oxygen amount is described as “2” for convenience, but may have some non-stoichiometry.
  • the present lithium metal composite oxide may contain 0.33 wt% or less of S as impurities and 0.17 wt% or less of other elements. This is because an amount of this level is considered to hardly affect the characteristics of the present lithium metal composite oxide.
  • lithium compound as a raw material examples include lithium hydroxide (including LiOH and LiOH.H 2 O), lithium carbonate (Li 2 CO 3 ), lithium nitrate (LiNO 3 ), lithium oxide (Li 2 O), and other fatty acids. Examples thereof include lithium and lithium halide.
  • the kind of manganese compound is not particularly limited. For example, manganese carbonate, manganese nitrate, manganese chloride, manganese dioxide, manganese oxide (iii), trimanganese tetraoxide, and the like can be used, and among these, manganese carbonate and manganese dioxide are preferable. Among these, electrolytic manganese dioxide obtained by an electrolytic method is particularly preferable.
  • the kind of the nickel salt compound is not particularly limited, and for example, nickel carbonate, nickel nitrate, nickel chloride, nickel oxyhydroxide, nickel hydroxide, nickel oxide, etc. can be used, among which nickel carbonate, nickel hydroxide, nickel oxide are used. preferable.
  • the type of the cobalt compound is not particularly limited, and for example, basic cobalt carbonate, cobalt nitrate, cobalt chloride, cobalt oxyhydroxide, cobalt hydroxide, cobalt oxide and the like can be used. Among them, basic cobalt carbonate, cobalt hydroxide Cobalt oxide and cobalt oxyhydroxide are preferred.
  • the type of the aluminum compound is not particularly limited, and for example, aluminum carbonate, aluminum nitrate, aluminum chloride, aluminum oxyhydroxide, aluminum hydroxide, aluminum oxide and the like can be used, and among them, aluminum carbonate, aluminum hydroxide, and aluminum oxide are preferable. .
  • hydroxides, carbonates, nitrates, and the like of the M element in the above formula (1) can be used as raw materials.
  • the base lithium metal composite oxide powder is obtained by mixing raw materials, granulating and drying as necessary, firing, heat treatment as necessary, and further crushing as necessary. Can do.
  • the obtained lithium metal composite oxide powder can also be obtained by subjecting it to a predetermined treatment.
  • the base lithium metal composite oxide powder preferably has a moisture content of 50 to 1000 ppm measured at 110 to 300 ° C. by the Karl Fischer method. If the moisture content is 50 ppm or more, the reaction with the coupling agent among the surface treatment agents can be enhanced, and the surface treatment effect can be enhanced. On the other hand, if the water content is 1000 ppm or less, it is preferable in that the battery characteristics can be made equal or more. From this point of view, the moisture content of the base lithium metal composite oxide powder is preferably 50 to 1000 ppm, more preferably 50 ppm or more and 700 ppm or less, of which 50 ppm or more or 500 ppm or less, and more preferably 400 ppm or less. preferable.
  • the water content measured at 110 to 300 ° C. by the Karl Fischer method is measured in a device at 110 ° C. in a nitrogen atmosphere using a Karl Fischer moisture meter (for example, CA-100 manufactured by Mitsubishi Chemical Corporation). This is the amount of water released when a sample is heated for 45 minutes, then heated to 300 ° C. and heated at 300 ° C. for 45 minutes.
  • the water measured at 110 to 300 ° C. by the Karl Fischer method is considered to be mainly water chemically bonded to the inside of the base lithium metal composite oxide powder particles.
  • Examples of means for adjusting the moisture content of the base lithium metal composite oxide powder to the above range include drying, dehumidification, and humidity control. However, it is not limited to such a method.
  • the nickel compound is preliminarily mixed and the nickel compound and the aluminum compound are pulverized and classified before mixing the raw materials.
  • the maximum particle size (Dmax) of the nickel compound is preferably adjusted to be 10 ⁇ m or less, particularly 5 ⁇ m or less, and more preferably 4 ⁇ m or less.
  • the granulation method may be either wet or dry as long as various raw materials are dispersed in the granulated particles without being separated. Extrusion granulation method, rolling granulation method, fluidized granulation method, mixed granulation method, spraying method A dry granulation method, a pressure molding granulation method, or a flake granulation method using a roll or the like may be used. However, when wet granulation is performed, it is necessary to sufficiently dry before firing.
  • a drying method at this time it may be dried by a known drying method such as a spray heat drying method, a hot air drying method, a vacuum drying method, a freeze drying method, etc., among which the spray heat drying method is preferable.
  • the spray heat drying method is preferably carried out using a heat spray dryer (spray dryer) (referred to herein as “spray drying method”).
  • a coprecipitated powder to be fired by, for example, a so-called coprecipitation method (referred to herein as “coprecipitation method”).
  • coprecipitation method after the raw material is dissolved in a solution, the coprecipitation powder can be obtained by adjusting the conditions such as pH and causing precipitation.
  • the powder strength is relatively low, and voids tend to occur between the particles. Therefore, when the spray drying method is adopted, the crushing strength after the crushing step after the firing step, which will be described later, is higher than that of a conventional crushing method, for example, a crushing method using a coarse crusher having a rotation speed of about 1000 rpm. It is preferable to employ a high grinding method.
  • the firing step for obtaining the base lithium metal composite oxide powder it is preferable to perform preliminary firing at 500 to 840 ° C., if necessary, followed by main firing at 700 to 1000 ° C. It is also possible to perform the main baking at 700 to 1000 ° C. without performing the preliminary baking.
  • a gas for example, CO 2
  • a carbonate such as lithium carbonate (Li 2 CO 3 ), manganese carbonate, nickel carbonate, basic cobalt carbonate or the like
  • grains can be raised or it can adjust to the desired particle size by baking at high temperature rather than temporary baking.
  • Temporary baking is performed at a temperature of 500 to 840 ° C. in a baking furnace in an air atmosphere, an oxygen gas atmosphere, an atmosphere in which an oxygen partial pressure is adjusted, a carbon dioxide gas-containing atmosphere, or other atmosphere (: This means the temperature when a thermocouple is brought into contact with the fired product in the firing furnace.) Especially, 600 ° C. or higher or 840 ° C. or lower, especially 650 ° C. or higher or 750 ° C. or lower, and held for 0.5 to 30 hours It is preferable to perform firing.
  • the kind of baking furnace is not specifically limited. For example, it can be fired using a rotary kiln, a stationary furnace, or other firing furnace.
  • the main firing is performed in a firing furnace in an air atmosphere, an oxygen gas atmosphere, an atmosphere in which an oxygen partial pressure is adjusted, a carbon dioxide gas-containing atmosphere, or other atmosphere, at a temperature of 700 to 1000 ° C. It means the temperature when a thermocouple is brought into contact with the fired product in the furnace.), Preferably 750 ° C. or higher or 950 ° C. or lower, more preferably 800 ° C. or higher or 950 ° C. or lower, and more preferably 850 ° C. or higher. Alternatively, firing is preferably performed at 910 ° C. or lower for 0.5 to 30 hours.
  • a firing condition in which a fired product including a plurality of metal elements can be regarded as a single phase of a lithium metal composite oxide having a target composition is preferable to select a firing condition in which a fired product including a plurality of metal elements can be regarded as a single phase of a lithium metal composite oxide having a target composition.
  • the kind of baking furnace is not specifically limited. For example, it can be fired using a rotary kiln, a stationary furnace, or other firing furnace.
  • the temperature is 700 to 1000 ° C., particularly 750 ° C. or higher or 950 ° C. or lower, particularly 800 ° C. or higher or 950 ° C. or lower, and more preferably 850 ° C. or higher or 910 ° C. or lower. Calcination is preferably performed for 5 hours to 30 hours.
  • the heat treatment after firing is preferably performed when the crystal structure needs to be adjusted.
  • As the heat treatment atmosphere at that time it is preferable to perform the heat treatment under conditions of an oxidizing atmosphere such as an air atmosphere, an oxygen gas atmosphere, or an atmosphere in which the oxygen partial pressure is adjusted.
  • Crushing after firing or heat treatment is preferably performed using a high-speed rotary pulverizer or the like. If pulverization is performed by a high-speed rotary pulverizer, it is possible to pulverize a portion where the particles are aggregated or weakly sintered, and to suppress distortion of the particles. However, the present invention is not limited to a high-speed rotary pulverizer.
  • the pin mill is known as a rotary disk crusher, and is a type of crusher that draws in powder from a raw material supply port by rotating a rotating disk with pins to make the inside negative pressure. Therefore, since the fine particles are light in weight, they are easy to ride on the air current and pass through the clearance in the pin mill, while the coarse particles are reliably crushed. Therefore, when pulverizing with a pin mill, aggregation between particles and weakly sintered portions can be surely solved, and distortion can be suppressed from entering into the particles.
  • the rotational speed of the high-speed rotary pulverizer is preferably 4000 rpm or more, particularly 5000 to 12000 rpm, more preferably 7000 to 10000 rpm.
  • the classification after firing has the technical significance of adjusting the particle size distribution of the agglomerated powder and removing foreign matter, it is preferable to classify by selecting a sieve having a preferred size.
  • the surface treatment agent containing at least one of aluminum, titanium, and zirconium may be brought into contact with the base lithium metal composite oxide powder obtained as described above.
  • an organometallic compound containing at least one of aluminum, titanium, and zirconium such as a titanium coupling agent, an aluminum coupling agent, a zirconium coupling agent, a titanium-aluminum coupling agent, a titanium-zirconium coupling agent, or an aluminum.
  • a surface treatment agent such as zirconium coupling agent or titanium / aluminum / zirconium coupling agent is dispersed in an organic solvent to form a dispersion, and the dispersion and the base lithium metal composite oxide powder obtained as described above Can be mentioned as a surface treatment.
  • the surface treatment agent may be a compound having an organic functional group and a hydrolyzable group in the molecule, and among them, one having phosphorus (P) in the side chain is preferable.
  • the coupling agent having phosphorus (P) in the side chain is particularly excellent in binding property with the binder because of better compatibility with the binder.
  • a surface treatment agent equivalent to 0.1 to 20 parts by mass is preferably brought into contact with 100 parts by mass of the lithium metal composite oxide powder, and in particular, 0.5 parts by mass or more or 10 parts by mass or less. Among them, it is more preferable to contact the lithium metal composite oxide powder with a surface treatment agent of 1 part by mass or more or 5 parts by mass or less, and more preferably 1 part by mass or more and 3 parts by mass or less.
  • the ratio of the total number of moles of aluminum, titanium and zirconium in the surface treatment agent to the number of moles of the lithium metal composite oxide powder ⁇ (M / lithium metal composite oxide powder) ⁇ 100 ( M: Al, Ti, Zr) ⁇ is 0.005 to 4%, particularly 0.04% or more or 2% or less, and more preferably 0.08% or more or 1% or less.
  • the lithium metal composite oxide powder and the surface treatment agent are brought into contact with each other so that the content is 0.08% or more or 0.6% or less.
  • the ratio of the total number of moles of aluminum, titanium and zirconium in the surface treatment agent to the number of moles of nickel in the lithium metal composite oxide powder ⁇ (M / Ni) ⁇ 100 (M: Al, Ti, Zr) ⁇ Is 0.01 to 13%, in particular 0.05% or more or 7% or less, and in particular, 0.1% or more or 3.5% or less. It is preferable that the lithium metal composite oxide powder and the surface treatment agent are brought into contact with each other so as to be 1% or more or 2% or less. When the Ni content is high, the life deterioration at a relatively high voltage becomes relatively large. Therefore, it is preferable to adjust the total amount of aluminum, titanium and zirconium in the surface treatment agent by the ratio with respect to the Ni content.
  • the amount of the dispersion in which the surface treatment agent is dispersed in the organic solvent is 0.2 to 20 parts by mass, particularly 1 to 15 parts by mass, with respect to 100 parts by mass of the lithium metal composite oxide powder. Among them, it is preferable to contact the lithium metal composite oxide powder with an amount of 2 parts by mass or more and 10 parts by mass or less, and among them, an amount of 2 parts by mass or more or 7 parts by mass or less.
  • the amount of the organic solvent to be contacted is large, lithium in the layered crystal structure will be eluted, so the amount of the surface treatment agent or the surface treatment agent is dispersed in the organic solvent. It is preferred to limit the amount of dispersion made as described above.
  • the surface treatment agent is mixed with the atmosphere or oxygen while being mixed with the lithium metal composite oxide.
  • the oxide powder can be contacted.
  • the above-mentioned amount of the surface treatment agent or the dispersion in which the surface treatment agent is dispersed in the organic solvent is not brought into contact with the lithium metal composite oxide powder and mixed at once, but is brought into contact several times. It is preferable to repeat the mixing process.
  • the contact method at this time that is, a method in which the dispersion in which the surface treatment agent is dispersed in the organic solvent is brought into contact with the lithium metal composite oxide powder, for example, the dispersion is sprayed on the lithium metal composite oxide powder. Examples thereof include a method, a dripping method, and a spraying method.
  • the type of mixer used for the surface treatment is not particularly limited. Mixing can be performed using a mixing / kneading stirrer, a container rotating mixer, etc., for example, a planetary mixer, a Henschel mixer, a nauter mixer, a cutter mill, or other mixers.
  • the surface-treated lithium metal composite oxide powder is heated to 700 to 950 ° C. in an atmosphere having an oxygen concentration of 20 to 100% (temperature when a thermocouple is brought into contact with the fired product in the furnace, That is, it means the product temperature.) It is preferable to heat-treat so as to hold for a predetermined time.
  • the organic solvent can be volatilized or the side chain of the surface treatment agent can be decomposed, and aluminum, titanium, or zirconium in the surface treatment agent can be diffused from the surface in a deeper layer direction. The life characteristics are improved, and the output characteristics can be made equal or better.
  • the treatment atmosphere in the heat treatment step is preferably an oxygen-containing atmosphere.
  • an oxygen-containing atmosphere having an oxygen concentration of 20 to 100% is preferable, of which 30% or more or 100% or less, of which 50% or more or 100% or less, of which 70% or more or 100% or less.
  • an oxygen-containing atmosphere of 80% or more or 100% or less is more preferable.
  • the treatment temperature in the heat treatment step is preferably 700 to 950 ° C. (meaning the temperature when a thermocouple is brought into contact with the fired product in the firing furnace).
  • the heat treatment temperature is 700 ° C. or higher, the bond between the lithium metal composite oxide and the surface layer to be formed can be further strengthened, and the output characteristics can be improved.
  • the heat treatment temperature is 950 ° C. or lower, the release of oxygen from the lithium metal composite oxide can be suppressed and the cycle characteristics can be maintained.
  • the heat treatment temperature is preferably 700 to 950 ° C., may be higher than 800 ° C., more preferably 750 ° C. or more and 900 ° C. or less, and more preferably 750 ° C. or more and 850 ° C. or less.
  • the treatment time in the heat treatment step is preferably 0.5 to 20 hours, depending on the treatment temperature, and is preferably 1 hour or more or 10 hours or less, more preferably 3 hours or more or 10 hours or less. Is more preferable.
  • the type of furnace is not particularly limited. For example, it can be fired using a rotary kiln, a stationary furnace, or other firing furnace.
  • the lithium metal composite oxide powder may be pulverized with a pulverization strength at which the change rate of the specific surface area (SSA) before and after pulverization becomes 100 to 250%. Crushing after heat treatment is performed so that the new surface under the surface treatment layer is not exposed too much so as to maintain the effect of the surface treatment. From the viewpoint of changing the specific surface area (SSA) before and after crushing. It is preferable that the rate is 100 to 200%, among which 100% or more and 175% or less, among which 100% or more and 150% or less, and among them, the pulverization is performed so as to be 100% or more and 125% or less. preferable.
  • a crushing apparatus for example, a pin mill
  • a crushing apparatus that crushes with a pin attached to a crushing plate that rotates at a high speed in a relative direction, and a rotation speed of 4000 rpm to 10,000 rpm, particularly 4000 rpm or more or 9000 rpm.
  • a method of grinding at 4000 rpm or more or 8000 rpm or less can be mentioned.
  • Classification after crushing has technical significance of adjusting the particle size distribution of the agglomerated powder and removing foreign substances, and therefore, it is preferable to classify by selecting a sieve having a preferable size.
  • a common feature that the present lithium metal composite oxide obtained by the present manufacturing method can have is that the entire surface or part of the surface of the lithium metal composite oxide particle when observed by TEM, Al element, Ti Lithium metal composite oxide particles containing at least one of element and Zr element, and having a specific surface area (SSA) of 0.2 to 3 m 2 / g, especially 0.2 m 2 / g or more or 2 m 2 / g hereinafter, 0.2 m 2 / g or more or 1.0 m 2 / g or less among them, mention may be made of points even not greater than 0.2 m 2 / g or 0.8 m 2 / g among them.
  • SSA specific surface area
  • the present lithium metal composite oxide when used as a positive electrode active material of a lithium secondary battery due to the presence of at least one of Al element, Ti element and Zr element in the surface layer of the particles, The life characteristics can be improved by suppressing the reaction, and the output characteristics can be made equal or better. Therefore, the present lithium metal composite oxide is suitable for use as a positive electrode active material of a lithium secondary battery, and particularly a battery for vehicle use, particularly an electric vehicle (EV) and a hybrid electric vehicle (HEV: Hybrid). It is particularly excellent as a positive electrode active material for batteries mounted on electric vehicles.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • the lithium metal composite oxide powder is mixed with a conductive material made of carbon black or the like and a binder made of Teflon (Teflon is a registered trademark of DUPONT, USA) binder or the like to mix the positive electrode.
  • Agent can be produced.
  • a positive electrode mixture is used for the positive electrode, for example, a material that can store and desorb lithium such as lithium or carbon is used for the negative electrode, and lithium such as lithium hexafluorophosphate (LiPF 6 ) is used for the non-aqueous electrolyte.
  • a lithium secondary battery can be constituted by using a salt dissolved in a mixed solvent such as ethylene carbonate-dimethyl carbonate.
  • the present invention is not limited to the battery having such a configuration.
  • Lithium batteries equipped with this lithium metal composite oxide as a positive electrode active material exhibit excellent life characteristics (cycle characteristics) when repeatedly used for charge and discharge, and are particularly suitable for electric vehicles (EVs) and EVs. It is particularly excellent in the use of a positive electrode active material of a lithium battery used as a power source for driving a motor mounted on a hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • a “hybrid vehicle” is a vehicle that uses two power sources, an electric motor and an internal combustion engine.
  • the term “lithium battery” is intended to encompass all batteries containing lithium or lithium ions in the battery, such as lithium primary batteries, lithium secondary batteries, lithium ion secondary batteries, and lithium polymer batteries.
  • An aqueous polycarboxylic acid ammonium salt solution (SN Dispersant 5468 manufactured by San Nopco Co., Ltd.) was added as a dispersant to ion-exchanged water.
  • the amount of dispersant added was 6 wt% with respect to nickel hydroxide and aluminum hydroxide.
  • Nickel hydroxide and aluminum hydroxide were added to the above ion-exchanged water, mixed and stirred to prepare a slurry having a solid content concentration of 40 wt%.
  • This slurry was wet pulverized for 60 minutes at 1300 rpm using a wet pulverizer (Nippon Coke SC220 / 70A-VB-ZZ).
  • the average particle size (D50) was 0.56 ⁇ m and the maximum particle size (Dmax) was 1.
  • a pulverized slurry of 9 ⁇ m was obtained.
  • electrolytic manganese dioxide, cobalt oxyhydroxide, lithium carbonate and ion-exchanged water are added to the pulverized slurry containing nickel hydroxide and aluminum hydroxide to prepare a slurry having a solid content concentration of 60 wt%. did.
  • the dispersant was added so as to be 6 wt% with respect to the solid content in the slurry.
  • the slurry was wet pulverized at 1300 rpm for 50 minutes using the same wet pulverizer as described above to obtain a mixed pulverized slurry having an average particle diameter (D50) of 0.45 ⁇ m and a maximum particle diameter (Dmax) of 1.6 ⁇ m. It was.
  • the obtained mixed and pulverized slurry was granulated and dried using a thermal spray dryer (spray dryer, OC-16 manufactured by Okawahara Chemical Co., Ltd.).
  • a two-fluid nozzle was used for spraying, and granulation drying was performed by adjusting the temperature so that the spray pressure was 0.6 MPa, the slurry supply amount was 14 kg / hr, and the outlet temperature of the drying tower was 100 to 110 ° C. .
  • the obtained granulated powder was calcined at 700 ° C. for 5 hours in an air atmosphere using a stationary electric furnace, and then calcined at 910 ° C. for 20 hours in the air.
  • the lithium metal composite oxide powder obtained by firing had a moisture content of 340 ppm measured at 110 to 300 ° C. by the Karl Fischer method.
  • lithium metal composite oxide powder (sample) Li 1.05 Ni 0.46 Co 0.21 Mn 0.27 Al 0.01 O 2 .
  • Example 2 A lithium metal composite oxide powder (sample) was obtained in the same manner as in Example 1 except that the heat treatment temperature after the surface treatment was changed to 910 ° C. in Example 1.
  • Example 3 In Example 1, the amount of isopropyl alcohol used in the surface treatment was changed from 3.8 parts by mass to 5.0 parts by mass, the addition amount of the dispersion was changed from 6.8 parts by mass to 8.0 parts by mass, and In the same manner as in Example 1, except that the heat treatment condition after the surface treatment is changed to “heat treatment is performed so that the product temperature is maintained at 700 ° C. for 5 hours in an atmosphere having an oxygen concentration of 50%”. A powder (sample) was obtained.
  • Example 4 In Example 1, the amount of the aluminum coupling agent used in the surface treatment was changed from 3.0 parts by weight to 1.0 part by weight, the amount of isopropyl alcohol 3.8 parts by weight was changed to 19.0 parts by weight, Further, a lithium metal composite oxide powder (sample) was obtained in the same manner as in Example 1 except that the amount of dispersion added was changed from 6.8 parts by mass to 20.0 parts by mass.
  • Example 5 In Example 1, the amount of the aluminum coupling agent used in the surface treatment was changed from 3.0 parts by weight to 0.5 parts by weight, the amount of isopropyl alcohol was changed from 3.8 parts by weight to 2.5 parts by weight, Further, the amount of the dispersion added was changed from 6.8 parts by mass to 3.0 parts by mass, and the heat treatment temperature after the surface treatment was changed to 810 ° C. (Sample) was obtained.
  • Example 6 In Example 1, the amount of the aluminum coupling agent used in the surface treatment was changed from 3.0 parts by weight to 4.0 parts by weight, the amount of isopropyl alcohol from 3.8 parts by weight was changed to 5.1 parts by weight, The amount of dispersion added was changed from 6.8 parts by mass to 9.1 parts by mass, and the heat treatment conditions after the surface treatment were changed to “maintain the product temperature at 770 ° C. for 5 hours in an atmosphere with an oxygen concentration of 80%. A lithium metal composite oxide powder (sample) was obtained in the same manner as in Example 1 except that the heat treatment was changed.
  • Example 7 In Example 1, 3.0 parts by mass of the aluminum coupling agent used in the surface treatment was changed to 1.0 part by mass of a titanium coupling agent (Ajinomoto Fine Techno Co., Ltd., Plenact KR 46B), and the amount of isopropyl alcohol was changed to 3. In the same manner as in Example 1, except that 8 parts by mass was changed to 5.0 parts by mass, and the addition amount of dispersion 6.8 parts by mass was changed to 6.0 parts by mass, a lithium metal composite oxide powder ( Sample).
  • Example 8 In Example 1, 3.0 parts by mass of the aluminum coupling agent used in the surface treatment was added to a zirconium coupling agent (Kenrich Petrochemicals, Inc. Ken-React®). NZ (registered trademark) 12) The amount was changed to 1.1 parts by mass, the amount of isopropyl alcohol was changed from 3.8 parts by mass to 4.9 parts by mass, and the addition amount of the dispersion was changed from 6.8 parts by mass to 6.0 parts by mass. Except for the above, a lithium metal composite oxide powder (sample) was obtained in the same manner as in Example 1.
  • the addition amount of the dispersant was 6 wt% with respect to the total amount of Ni raw material, Mn raw material, Co raw material, Li raw material and the like described later, and was sufficiently dissolved and mixed in ion-exchanged water.
  • the slurry was adjusted and pulverized with a wet pulverizer at 1300 rpm for 40 minutes, and wet pulverized until the average particle size (D50) became 0.55 ⁇ m.
  • the obtained pulverized slurry was granulated and dried using a thermal spray dryer (spray dryer, OC-16 manufactured by Okawahara Chemical Co., Ltd.). At this time, a rotating disk was used for spraying, and granulation drying was performed by adjusting the temperature so that the rotation speed was 24,000 rpm, the slurry supply amount was 20 kg / hr, and the outlet temperature of the drying tower was 100 ° C.
  • the obtained granulated powder was calcined at 450 ° C. in the atmosphere using a stationary electric furnace. Subsequently, the calcined powder was fired in the atmosphere at 910 ° C. for 20 hours using a stationary electric furnace.
  • the fired lump obtained by firing was put in a mortar and crushed, classified with a sieve having an opening of 53 ⁇ m, and the lithium metal composite oxide powder (sample) under the sieve was collected.
  • the lithium metal composite oxide powder (sample) under the sieve was collected.
  • the lithium metal composite oxide powders (samples) obtained in the examples and comparative examples were measured using an automatic sample feeder for laser diffraction particle size distribution measuring device (“Microtorac SDC” manufactured by Nikkiso Co., Ltd.).
  • the powder (sample) was put into a water-soluble solvent and irradiated with ultrasonic waves of 40 W at a flow rate of 40% for 360 seconds, and then the particle size distribution was measured using a laser diffraction particle size analyzer “MT3000II” manufactured by Nikkiso Co., Ltd. Then, D50 was determined from the obtained volume-based particle size distribution chart.
  • the water-soluble solvent used in the measurement was passed through a 60 ⁇ m filter, the solvent refractive index was 1.33, the particle permeability was transmissive, the particle refractive index was 2.46, the shape was non-spherical, and the measurement range was 0.133. ⁇ 704.0 ⁇ m, the measurement time was 30 seconds, and the average value measured twice was D50.
  • MONOSORB LOOP flow method gas adsorption specific surface area measurement device
  • the inside of the glass cell was replaced for 5 minutes while flowing nitrogen gas at a gas amount of 30 mL / min, and then the treatment was performed in the nitrogen gas atmosphere at 250 ° C. for 10 minutes.
  • the sample (powder) was measured by the BET single point method using the MONOSORB LOOP.
  • the adsorbed gas at the time of measurement was a mixed gas of 30% nitrogen: 70% helium.
  • ⁇ Battery characteristics evaluation> 8.0 g of lithium metal composite oxide powder (sample) obtained in Examples and Comparative Examples and 1.0 g of acetylene black (manufactured by Denki Kagaku Kogyo) were accurately weighed and mixed in a mortar for 10 minutes. Thereafter, 8.3 g of a solution in which 12 wt% of PVDF (manufactured by Kishida Chemical) was dissolved in NMP (N-methylpyrrolidone) was accurately weighed, and a mixture of lithium metal composite oxide powder and acetylene black was added thereto and further mixed. . Thereafter, 5 ml of NMP was added and mixed well to prepare a paste.
  • NMP N-methylpyrrolidone
  • This paste is placed on an aluminum foil as a current collector, coated with an applicator adjusted to a gap of 100 ⁇ m to 280 ⁇ m, dried in a vacuum at 140 ° C. overnight, and then rolled so that the linear pressure becomes 0.3 t / cm 2. Pressed and punched out with a diameter of 16 mm to form a positive electrode. Immediately before producing the battery, it was vacuum-dried at 200 ° C. for 300 minutes or longer to remove the adhering moisture and incorporated into the battery. In addition, an average value of the weight of an aluminum foil having a diameter of 16 mm was obtained in advance, and the weight of the positive electrode mixture was obtained by subtracting the weight of the aluminum foil from the weight of the positive electrode.
  • the content of the positive electrode active material was determined from the mixing ratio of the lithium metal composite oxide powder (positive electrode active material), acetylene black and PVDF.
  • the negative electrode was made of metal Li with a diameter of 19 mm and a thickness of 0.5 mm, and the electrolyte was a mixture of EC and DMC in a volume of 3: 7, and a solvent in which 1 mol / L of LiPF 6 was dissolved as a solute was used.
  • a cell for electrochemical evaluation shown in 1 (TOMCEL (registered trademark)) was prepared.
  • initial activity was performed by the method described below. After constant current and constant potential charging at 0.2C to 25V at 25 ° C, constant current discharging was performed to 0.2V at 0.2C. This was repeated for 2 cycles. The actually set current value was calculated from the content of the positive electrode active material in the positive electrode.
  • Table 1 shows the high-temperature cycle life characteristic values of the examples and the comparative examples as relative values when the high-temperature cycle life characteristic value of the comparative example 1 is 100.
  • (M / lithium metal composite oxide powder) ⁇ 100 means the ratio of the total number of moles of aluminum, titanium and zirconium in the surface treatment agent to the number of moles of the lithium metal composite oxide powder ( M: Al, Ti, Zr), and “(M / Ni) ⁇ 100” is the sum of aluminum, titanium and zirconium in the surface treatment agent relative to the number of moles of nickel in the lithium metal composite oxide powder.
  • Molecular ratio (M: Al, Ti, Zr) ⁇ and "addition amount of surface treatment agent dispersion” means a dispersion lithium metal composite oxide in which the surface treatment agent is dispersed in an organic solvent It means the amount added with respect to 100 parts by mass of the powder.
  • the sintered lithium metal composite oxide powder is a dispersion containing a surface treatment agent containing at least one of aluminum, titanium and zirconium or a surface treatment agent dispersed in an organic solvent.
  • the lithium metal composite oxide was heat-treated in an oxygen atmosphere, preferably in an atmosphere having an oxygen concentration of 20 to 100% and maintained at a temperature of 700 to 950 ° C.
  • a surface layer containing at least one of aluminum, titanium, and zirconium can be formed on the surface of the particles, and when used as a positive electrode active material of a lithium secondary battery, the life of the lithium secondary battery is suppressed and the reaction with the electrolyte is suppressed. It was found that the characteristics could be improved and the output characteristics could be made equal or better.
  • Example is an Example about lithium metal complex oxide which has a layered crystal structure of a specific composition, according to the test result and technical common sense which this inventor performed so far, a layered crystal structure is shown. Since the lithium metal composite oxide has a common problem, and the effects of surface treatment and heat treatment are the same, any lithium metal composite oxide having a layered crystal structure can be used regardless of its composition. It can be considered that the same effect can be obtained in common.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The invention relates to a method for manufacturing a lithium metal complex oxide having a layered crystal structure, and provides a novel method for manufacturing a lithium metal complex oxide which when used as a cathode active material for a lithium secondary battery, can suppress reaction with an electrolyte to improve the lifetime characteristics of the battery and give output characteristics that are equal to or better than the past. After firing, a lithium metal complex oxide powder is treated on its surface using a surface treatment agent including aluminum, titanium, or zirconium or a dispersion of the surface treatment agent, then the surface-treated lithium metal complex oxide powder is heat treated in an oxygen-containing atmosphere while maintained at a temperature of 700 to 950°C.

Description

層状結晶構造を有するリチウム金属複合酸化物の製造方法Method for producing lithium metal composite oxide having layered crystal structure
 本発明は、リチウム電池の正極活物質として用いることができる、層状結晶構造を有するリチウム金属複合酸化物の製造方法に関する。 The present invention relates to a method for producing a lithium metal composite oxide having a layered crystal structure that can be used as a positive electrode active material of a lithium battery.
 リチウム電池、中でもリチウム二次電池は、エネルギー密度が大きく、寿命が長いなどの特徴を有しているため、ビデオカメラ等の家電製品や、ノート型パソコン、携帯電話機等の携帯型電子機器などの電源として用いられている。最近では、該リチウム二次電池は、電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載される大型電池にも応用されている。 Lithium batteries, especially lithium secondary batteries, have features such as high energy density and long life, so they can be used for home appliances such as video cameras, portable electronic devices such as notebook computers and mobile phones. Used as a power source. Recently, the lithium secondary battery is also applied to a large battery mounted on an electric vehicle (EV), a hybrid electric vehicle (HEV), or the like.
 リチウム二次電池は、充電時には正極からリチウムがイオンとして溶け出して負極へ移動して吸蔵され、放電時には逆に負極から正極へリチウムイオンが戻る構造の二次電池であり、その高いエネルギー密度は正極材料の電位に起因することが知られている。 A lithium secondary battery is a secondary battery with a structure in which lithium is melted as ions from the positive electrode during charging, moves to the negative electrode and is stored, and reversely, lithium ions return from the negative electrode to the positive electrode during discharging. It is known to be caused by the potential of the positive electrode material.
 リチウム二次電池の正極活物質としては、スピネル構造をもつリチウムマンガン酸化物(LiMn24)のほか、層状結晶構造をもつLiCoO2、LiNiO2、LiMnO2などのリチウム金属複合酸化物が知られている。例えばLiCoO2は、リチウム原子層とコバルト原子層が酸素原子層を介して交互に積み重なった層状結晶構造を有しており、充放電容量が大きく、リチウムイオン吸蔵脱蔵の拡散性に優れているため、現在、市販されているリチウム二次電池の多くがLiCoO2などの層状結晶構造を有するリチウム金属複合酸化物である。 As positive electrode active materials for lithium secondary batteries, lithium manganese oxide (LiMn 2 O 4 ) having a spinel structure and lithium metal composite oxides such as LiCoO 2 , LiNiO 2 and LiMnO 2 having a layered crystal structure are known. It has been. For example, LiCoO 2 has a layered crystal structure in which lithium atom layers and cobalt atom layers are alternately stacked via oxygen atom layers, has a large charge / discharge capacity, and is excellent in diffusibility of lithium ion storage / desorption. Therefore, most of the lithium secondary batteries currently on the market are lithium metal composite oxides having a layered crystal structure such as LiCoO 2 .
 LiCoO2やLiNiO2など、層状結晶構造を有するリチウム金属複合酸化物は、一般式LiMO2(M:遷移金属)で示される。これら層状結晶構造を有するリチウム金属複合酸化物の結晶構造は、空間群R-3m(「-」は通常「3」の上部に付され、回反を示す。以下、同様。)に帰属し、そのLiイオン、Meイオン及び酸化物イオンは、それぞれ3aサイト、3bサイト及び6cサイトを占有する。そして、Liイオンからなる層(Li層)とMeイオンからなる層(Me層)とが、酸化物イオンからなるO層を介して交互に積み重なった層状結晶構造を呈することが知られている。 A lithium metal composite oxide having a layered crystal structure such as LiCoO 2 or LiNiO 2 is represented by a general formula LiMO 2 (M: transition metal). The crystal structure of these lithium metal composite oxides having a layered crystal structure belongs to the space group R-3m ("-" is usually attached to the upper part of "3" and indicates reversal. The same applies hereinafter). The Li ion, Me ion, and oxide ion occupy the 3a site, 3b site, and 6c site, respectively. It is known that a layer composed of Li ions (Li layer) and a layer composed of Me ions (Me layer) exhibit a layered crystal structure in which they are alternately stacked via O layers composed of oxide ions.
 層状結晶構造を有するリチウム金属複合酸化物の製造方法に関しては、例えば特許文献1において、マンガンとニッケルの混合水溶液中にアルカリ溶液を加えてマンガンとニッケルを共沈させ、水酸化リチウムを加え、ついで焼成することによってリチウム金属複合酸化物を得る製法が開示されている。 Regarding a method for producing a lithium metal composite oxide having a layered crystal structure, for example, in Patent Document 1, an alkaline solution is added to a mixed aqueous solution of manganese and nickel to coprecipitate manganese and nickel, lithium hydroxide is added, and A manufacturing method for obtaining a lithium metal composite oxide by firing is disclosed.
 また、特許文献2には、リチウム塩化合物、マンガン塩化合物、ニッケル塩化合物及びコバルト塩化合物を含む原料を混合し、水中で混合攪拌してスラリーを調製し、このスラリーを粉砕し、得られた粉砕スラリーを熱噴霧乾燥機等を用いて造粒乾燥させた後、焼成して解砕することによって、層構造を有するリチウム金属複合酸化物を製造する方法が開示されている。 Further, in Patent Document 2, a raw material containing a lithium salt compound, a manganese salt compound, a nickel salt compound and a cobalt salt compound is mixed, mixed and stirred in water to prepare a slurry, and this slurry is pulverized. A method for producing a lithium metal composite oxide having a layer structure by granulating and drying a pulverized slurry using a thermal spray dryer or the like and then calcination and pulverization is disclosed.
 ところで、正極活物質は、電気伝導率が一般の導体と比べて低いため、集電体と正極活物質間もしくは活物質相互間の電気伝導率を更に高めるように、より電気伝導率の高い元素で正極活物質を修飾することが提案されている。
 例えば特許文献3には、リチウム複合酸化物をCo等の化合物で修飾することで、サイクル特性を改善し、内部抵抗を低減する方法が提案されている。
 また、特許文献4には、リチウム複合酸化物の原料を混合後、焼成、解砕、熱処理及び分級という工程を経て製造した複合酸化物粒子表面に、所定厚さの、Al、Mg、Sn、Ti、Zn及びZrのうち少なくとも一種を含有する金属化合物膜を表面修飾したものを正極活物質として用いることで、内部抵抗を低くすることができて、高出力が得られることを開示されている。
By the way, since the positive electrode active material has a lower electric conductivity than a general conductor, an element having a higher electric conductivity so as to further increase the electric conductivity between the current collector and the positive electrode active material or between the active materials. It has been proposed to modify the positive electrode active material.
For example, Patent Document 3 proposes a method of improving cycle characteristics and reducing internal resistance by modifying a lithium composite oxide with a compound such as Co.
In Patent Document 4, after mixing the raw materials for lithium composite oxide, the surface of the composite oxide particles produced through the steps of firing, crushing, heat treatment and classification, Al, Mg, Sn, It is disclosed that the internal resistance can be lowered and high output can be obtained by using a surface-modified metal compound film containing at least one of Ti, Zn and Zr as a positive electrode active material. .
特開平8-171910号公報JP-A-8-171910 特開2013-232400号公報JP 2013-232400 A 特開2002-151083号公報JP 2002-151083 A 特開2005-310744号公報JP 2005-310744 A
 層状結晶構造を有するリチウム金属複合酸化物をリチウム二次電池の正極活物質として使用する場合、高温下、金属リチウム基準で充電電圧4.3V以下で使用したり、4.3Vを超えて充放電させたりすると、電解液との反応によって当該リチウム金属複合酸化物が表面変化するため、電池の寿命特性が低下するという課題を抱えていた。
 かかる課題を解決するための手段の一例として、リチウム金属複合酸化物の粒子表面を酸化物で被覆することが考えられる。しかし、リチウム金属複合酸化物の粒子表面を酸化物で被覆すると、電池の出力特性が低下してしまうという新たな課題が生じることになる。
 このように、層状結晶構造を有するリチウム金属複合酸化物に関しては、寿命特性と出力特性を両立させることは簡単なことではなかった。
When a lithium metal composite oxide having a layered crystal structure is used as the positive electrode active material of a lithium secondary battery, it can be used at a high voltage, with a charge voltage of 4.3 V or less on a metal lithium basis, or charged and discharged at a voltage exceeding 4.3 V. Otherwise, the surface of the lithium metal composite oxide is changed due to the reaction with the electrolytic solution, which causes a problem that the life characteristics of the battery are deteriorated.
As an example of means for solving such a problem, it is conceivable to coat the particle surface of the lithium metal composite oxide with an oxide. However, if the surface of the lithium metal composite oxide particles is covered with an oxide, a new problem arises that the output characteristics of the battery are degraded.
Thus, regarding the lithium metal composite oxide having a layered crystal structure, it is not easy to achieve both life characteristics and output characteristics.
 そこで本発明は、層状結晶構造を有するリチウム金属複合酸化物の製造方法に関し、リチウム二次電池の正極活物質として使用した場合に、電解液との反応を抑えて電池の寿命特性を高めることができると共に、出力特性を同等若しくはそれ以上にすることができる、新たなリチウム金属複合酸化物の製造方法を提供せんとするものである。 Therefore, the present invention relates to a method for producing a lithium metal composite oxide having a layered crystal structure, and when used as a positive electrode active material of a lithium secondary battery, it can suppress a reaction with an electrolyte and improve a battery life characteristic. In addition, the present invention is to provide a new method for producing a lithium metal composite oxide capable of making output characteristics equivalent or higher.
 本発明は、アルミニウム、チタン及びジルコニウムのうちの少なくとも一種を含有する表面処理剤を用いてリチウム金属複合酸化物粉末の表面処理を行う表面処理工程、及び、該表面処理後のリチウム金属複合酸化物粉末を熱処理する熱処理工程を備えた、層状結晶構造を有するリチウム金属複合酸化物の製造方法であって、前記熱処理工程では、表面処理後のリチウム金属複合酸化物粉末を、酸素含有雰囲気下、温度700~950℃下に保持するように熱処理することを特徴とする、層状結晶構造を有するリチウム金属複合酸化物の製造方法を提案する。 The present invention relates to a surface treatment step of performing a surface treatment of a lithium metal composite oxide powder using a surface treatment agent containing at least one of aluminum, titanium and zirconium, and a lithium metal composite oxide after the surface treatment. A method for producing a lithium metal composite oxide having a layered crystal structure, comprising a heat treatment step for heat treating the powder, wherein in the heat treatment step, the surface-treated lithium metal composite oxide powder is heated at a temperature in an oxygen-containing atmosphere. A method for producing a lithium metal composite oxide having a layered crystal structure, characterized in that heat treatment is performed so as to maintain at 700 to 950 ° C. is proposed.
 本発明が提案するリチウム金属複合酸化物の製造方法によれば、リチウム金属複合酸化物粒子の表面に、アルミニウム、チタン及びジルコニウムのうちの少なくとも一種を含有する表面層を形成することができる。これにより、当該リチウム金属複合酸化物粒子をリチウム二次電池の正極活物質として使用した場合に、電解液との反応を抑えて寿命特性を向上させることができると共に、出力特性を同等若しくはそれ以上にすることができる。よって、得られたリチウム金属複合酸化物は、特に車載用の電池、特に電気自動車(EV:Electric Vehicle)やハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)に搭載する電池の正極活物質として特に優れたものとなる。 According to the method for producing a lithium metal composite oxide proposed by the present invention, a surface layer containing at least one of aluminum, titanium and zirconium can be formed on the surface of the lithium metal composite oxide particles. As a result, when the lithium metal composite oxide particles are used as a positive electrode active material of a lithium secondary battery, the life characteristics can be improved by suppressing the reaction with the electrolytic solution, and the output characteristics are equivalent or more. Can be. Therefore, the obtained lithium metal composite oxide is particularly excellent as a positive electrode active material of a battery mounted on a vehicle, in particular, an electric vehicle (EV: Electric Vehicle) or a hybrid electric vehicle (HEV: Hybrid Electric Vehicle). It will be a thing.
実施例の電池特性評価で作製した電気化学評価用セルの構成を説明するための図である。It is a figure for demonstrating the structure of the cell for electrochemical evaluation produced by the battery characteristic evaluation of an Example.
 以下、本発明の実施形態について説明する。但し、本発明が下記実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiment.
<本製造方法>
 本実施形態の一例に係るリチウム金属複合酸化物(以下「本リチウム金属複合酸化物」という)の製造方法(「本製造方法」と称する)は、アルミニウム、チタン及びジルコニウムのうちの少なくとも一種を含有する表面処理剤を用いてリチウム金属複合酸化物粉末(「母体リチウム金属複合酸化物粉末」と称する)の表面処理を行う表面処理工程、及び、該表面処理後のリチウム金属複合酸化物粉末を熱処理する熱処理工程を備えた、層状結晶構造を有するリチウム金属複合酸化物の製造方法である。
<This manufacturing method>
A method for producing a lithium metal composite oxide (hereinafter referred to as “the present lithium metal composite oxide”) according to an example of the present embodiment (hereinafter referred to as “the present production method”) contains at least one of aluminum, titanium, and zirconium. A surface treatment step of performing a surface treatment of a lithium metal composite oxide powder (referred to as “matrix lithium metal composite oxide powder”) using the surface treatment agent to be treated, and heat treating the lithium metal composite oxide powder after the surface treatment A method for producing a lithium metal composite oxide having a layered crystal structure, comprising a heat treatment step.
 本製造方法は、前記表面処理工程及び前記熱処理工程を備えていればよいから、他の工程をさらに備えていても構わない。例えば、前記熱処理工程後に解砕工程を挿入してもよいし、表面処理工程前に解砕工程や分級工程を挿入してもよい。また、その他の工程を追加してもよい。 Since the present manufacturing method only needs to include the surface treatment step and the heat treatment step, it may further include other steps. For example, a crushing step may be inserted after the heat treatment step, or a crushing step or a classification step may be inserted before the surface treatment step. Moreover, you may add another process.
<本リチウム金属複合酸化物>
 本製造方法の製造物である本リチウム金属複合酸化物は、層状結晶構造を有するリチウム金属複合酸化物であれば、特に組成を限定するものではない。すなわち、本リチウム金属複合酸化物は、リチウム原子層と金属原子層とが酸素原子層を介して交互に積み重なった層状結晶構造を有するリチウム金属複合酸化物であればよい。
<The lithium metal composite oxide>
The lithium metal composite oxide, which is a product of this production method, is not particularly limited in composition as long as it is a lithium metal composite oxide having a layered crystal structure. That is, the lithium metal composite oxide may be a lithium metal composite oxide having a layered crystal structure in which lithium atomic layers and metal atomic layers are alternately stacked via oxygen atomic layers.
 層状結晶構造を有するリチウム金属複合酸化物であれば、共通する課題を有しており、また、表面処理及び熱処理による影響も同様であるから、組成を限定する必要はない。
 但し、本欄では、より具体的な一例に基づいて本製造方法を説明した方が分かり易いため、車載用の電池、特に電気自動車(EV:Electric Vehicle)やハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)に搭載するリチウム二次電池の正極活物質として好ましい次のリチウム金属複合酸化物を例に挙げて説明する。
The lithium metal composite oxide having a layered crystal structure has a common problem, and the effects of surface treatment and heat treatment are the same, so there is no need to limit the composition.
However, in this section, it is easier to understand the present manufacturing method based on a more specific example. Therefore, in-vehicle batteries, in particular, electric vehicles (EVs) and hybrid electric vehicles (HEVs) are described. The following lithium metal composite oxide preferable as a positive electrode active material of a lithium secondary battery to be mounted on) will be described as an example.
 本リチウム金属複合酸化物の一例として、一般式(1):Li1+x1-x2で表わされる層状結晶構造を有するリチウム金属複合酸化物を挙げることができる。 As an example of the present lithium metal composite oxide, a lithium metal composite oxide having a layered crystal structure represented by the general formula (1): Li 1 + x M 1-x O 2 can be given.
 上記式(1)中の「1+x」は、1.00~1.07、中でも1.01以上或いは1.07以下、その中でも1.02以上1.06以下であるのがさらに好ましい。 “1 + x” in the above formula (1) is 1.00 to 1.07, more preferably 1.01 or more and 1.07 or less, and more preferably 1.02 or more and 1.06 or less.
 上記式(1)中の「M」は、Mn、Co、Ni、及び、周期律表の第3族元素から第11族元素の間に存在する遷移元素および周期律表の第3周期までの典型元素の何れか1種以上であればよい。
 ここで、周期律表の第3族元素から第11族元素の間に存在する遷移元素および周期律表の第3周期までの典型元素としては、例えばAl、V、Fe、Ti、Mg,Cr、Ga、In、Cu、Zn、Nb、Zr、Mo、W、Ta、Reなどを挙げることができる。
 「M」は、例えばMn、Co、Ni、Al、V、Fe、Ti、Mg,Cr、Ga、In、Cu、Zn、Nb、Zr、Mo、W、Ta及びReのうちの何れか1種以上であればよい。よって、「M」は、例えばMn、Co及びNiの3元素のみから構成されていてもよいし、当該3元素に前記その他の元素の一種以上を含んでいてもよいし、その他の構成でもよい。
“M” in the above formula (1) represents Mn, Co, Ni, transition elements existing between Group 3 elements of the periodic table and Group 11 elements and the third period of the periodic table. Any one or more of the typical elements may be used.
Here, as transition elements existing between the Group 3 elements of the periodic table and the Group 11 elements and typical elements from the third period of the periodic table, for example, Al, V, Fe, Ti, Mg, Cr , Ga, In, Cu, Zn, Nb, Zr, Mo, W, Ta, Re, and the like.
“M” is, for example, any one of Mn, Co, Ni, Al, V, Fe, Ti, Mg, Cr, Ga, In, Cu, Zn, Nb, Zr, Mo, W, Ta, and Re. That is all you need. Therefore, “M” may be composed of, for example, only three elements of Mn, Co, and Ni, or the three elements may include one or more of the other elements, or may have other structures. .
 上記式(1)中の「M」が、Mn、Co及びNiの3元素を含有する場合、Mn、Co及びNiの含有モル比率は、Mn:Co:Ni=0.10~0.45:0.05~0.40:0.30~0.75であるのが好ましく、中でもMn:Co:Ni=0.10~0.40:0.05~0.40:0.30~0.75であるのがさらに好ましい。
 なお、上記一般式(1)(2)において、酸素量の原子比は、便宜上「2」と記載しているが、多少の不定比性を有してもよい。
When “M” in the above formula (1) contains three elements of Mn, Co and Ni, the molar ratio of Mn, Co and Ni is Mn: Co: Ni = 0.10 to 0.45: 0.05 to 0.40: 0.30 to 0.75 is preferable, and Mn: Co: Ni = 0.10 to 0.40: 0.05 to 0.40: 0.30 to 0. More preferably, it is 75.
In the above general formulas (1) and (2), the atomic ratio of the oxygen amount is described as “2” for convenience, but may have some non-stoichiometry.
 本リチウム金属複合酸化物は、不純物としてSを0.33重量%以下、その他の元素をそれぞれ0.17重量%以下であれば含んでいてもよい。この程度の量であれば、本リチウム金属複合酸化物の特性にほとんど影響しないと考えられるからである。 The present lithium metal composite oxide may contain 0.33 wt% or less of S as impurities and 0.17 wt% or less of other elements. This is because an amount of this level is considered to hardly affect the characteristics of the present lithium metal composite oxide.
<原料>
 原料であるリチウム化合物としては、例えば水酸化リチウム(LiOH及びLiOH・H2Oを含む)、炭酸リチウム(LiCO)、硝酸リチウム(LiNO3)、酸化リチウム(Li2O)、その他脂肪酸リチウムやリチウムハロゲン化物等を挙げることができる。
 マンガン化合物の種類は、特に限定するものではない。例えば炭酸マンガン、硝酸マンガン、塩化マンガン、二酸化マンガン、酸化マンガン(iii)、四三酸化マンガンなどを用いることができ、中でも炭酸マンガン、二酸化マンガンが好ましい。その中でも、電解法によって得られる電解二酸化マンガンが特に好ましい。
 ニッケル塩化合物の種類も特に制限はなく、例えば炭酸ニッケル、硝酸ニッケル、塩化ニッケル、オキシ水酸化ニッケル、水酸化ニッケル、酸化ニッケルなどを用いることができ、中でも炭酸ニッケル、水酸化ニッケル、酸化ニッケルが好ましい。
 コバルト化合物の種類も特に制限はなく、例えば塩基性炭酸コバルト、硝酸コバルト、塩化コバルト、オキシ水酸化コバルト、水酸化コバルト、酸化コバルトなどを用いることができ、中でも、塩基性炭酸コバルト、水酸化コバルト、酸化コバルト、オキシ水酸化コバルトが好ましい。
 アルミニウム化合物の種類も特に制限はなく、例えば炭酸アルミニウム、硝酸アルミニウム、塩化アルミニウム、オキシ水酸化アルミニウム、水酸化アルミニウム、酸化アルミニウムなどを用いることができ、中でも炭酸アルミニウム、水酸化アルミニウム、酸化アルミニウムが好ましい。
<Raw material>
Examples of the lithium compound as a raw material include lithium hydroxide (including LiOH and LiOH.H 2 O), lithium carbonate (Li 2 CO 3 ), lithium nitrate (LiNO 3 ), lithium oxide (Li 2 O), and other fatty acids. Examples thereof include lithium and lithium halide.
The kind of manganese compound is not particularly limited. For example, manganese carbonate, manganese nitrate, manganese chloride, manganese dioxide, manganese oxide (iii), trimanganese tetraoxide, and the like can be used, and among these, manganese carbonate and manganese dioxide are preferable. Among these, electrolytic manganese dioxide obtained by an electrolytic method is particularly preferable.
The kind of the nickel salt compound is not particularly limited, and for example, nickel carbonate, nickel nitrate, nickel chloride, nickel oxyhydroxide, nickel hydroxide, nickel oxide, etc. can be used, among which nickel carbonate, nickel hydroxide, nickel oxide are used. preferable.
The type of the cobalt compound is not particularly limited, and for example, basic cobalt carbonate, cobalt nitrate, cobalt chloride, cobalt oxyhydroxide, cobalt hydroxide, cobalt oxide and the like can be used. Among them, basic cobalt carbonate, cobalt hydroxide Cobalt oxide and cobalt oxyhydroxide are preferred.
The type of the aluminum compound is not particularly limited, and for example, aluminum carbonate, aluminum nitrate, aluminum chloride, aluminum oxyhydroxide, aluminum hydroxide, aluminum oxide and the like can be used, and among them, aluminum carbonate, aluminum hydroxide, and aluminum oxide are preferable. .
 その他、上記式(1)中のM元素の水酸化物塩、炭酸塩、硝酸塩などを原料として用いることができる。 In addition, hydroxides, carbonates, nitrates, and the like of the M element in the above formula (1) can be used as raw materials.
<母体リチウム金属複合酸化物粉末>
 本製造方法において、母体リチウム金属複合酸化物粉末は、原料を混合し、必要に応じて造粒、乾燥させた後、焼成、必要に応じて熱処理、さらに必要に応じて解砕して得ることができる。また、入手したリチウム金属複合酸化物粉末を所定の処理を施して得ることもできる。
<Base lithium metal composite oxide powder>
In this production method, the base lithium metal composite oxide powder is obtained by mixing raw materials, granulating and drying as necessary, firing, heat treatment as necessary, and further crushing as necessary. Can do. The obtained lithium metal composite oxide powder can also be obtained by subjecting it to a predetermined treatment.
 母体リチウム金属複合酸化物粉末は、カールフィッシャー法により110~300℃で測定される水分量が50~1000ppmであるのが好ましい。当該水分量が50ppm以上であれば、表面処理剤の中でも特にカップリング剤との反応を高め、表面処理効果を高めることができる。他方、水分量が1000ppm以下であれば、電池特性を同等若しくはそれ以上とすることができる点で好ましい。
 かかる観点から、母体リチウム金属複合酸化物粉末の当該水分量は50~1000ppmであるのが好ましく、中でも50ppm以上或いは700ppm以下、その中でも50ppm以上或いは500ppm以下、その中でもさらに400ppm以下であるのがさらに好ましい。
 なお、カールフィッシャー法により110~300℃で測定される水分量とは、カールフィッシャー水分計(例えば三菱化学株式会社製CA-100)を用いて、窒素雰囲気中で110℃にした装置内で測定サンプル(試料)を45分間加熱した後に、300℃に昇温して300℃で45分間加熱した際に放出される水分量のことである。
 カールフィッシャー法により110~300℃で測定される水分は、母体リチウム金属複合酸化物粉末粒子内部に化学的に結合している水分が主であると考えられる。
The base lithium metal composite oxide powder preferably has a moisture content of 50 to 1000 ppm measured at 110 to 300 ° C. by the Karl Fischer method. If the moisture content is 50 ppm or more, the reaction with the coupling agent among the surface treatment agents can be enhanced, and the surface treatment effect can be enhanced. On the other hand, if the water content is 1000 ppm or less, it is preferable in that the battery characteristics can be made equal or more.
From this point of view, the moisture content of the base lithium metal composite oxide powder is preferably 50 to 1000 ppm, more preferably 50 ppm or more and 700 ppm or less, of which 50 ppm or more or 500 ppm or less, and more preferably 400 ppm or less. preferable.
The water content measured at 110 to 300 ° C. by the Karl Fischer method is measured in a device at 110 ° C. in a nitrogen atmosphere using a Karl Fischer moisture meter (for example, CA-100 manufactured by Mitsubishi Chemical Corporation). This is the amount of water released when a sample is heated for 45 minutes, then heated to 300 ° C. and heated at 300 ° C. for 45 minutes.
The water measured at 110 to 300 ° C. by the Karl Fischer method is considered to be mainly water chemically bonded to the inside of the base lithium metal composite oxide powder particles.
 母体リチウム金属複合酸化物粉末の水分量を上記範囲に調整する手段としては、乾燥、除湿、湿度制御などを挙げることができる。但し、このような方法に限定するものではない。 Examples of means for adjusting the moisture content of the base lithium metal composite oxide powder to the above range include drying, dehumidification, and humidity control. However, it is not limited to such a method.
(混合工程)
 母体リチウム金属複合酸化物粉末を得るための原料の混合は、水や分散剤などの液媒体を加えて湿式混合してスラリー化させるのが好ましい。そして、後述するスプレードライ法を採用する場合には、前述の得られたスラリーを湿式粉砕機で粉砕するのが好ましい。但し、乾式粉砕してもよい。
(Mixing process)
It is preferable to mix the raw materials for obtaining the base lithium metal composite oxide powder by adding a liquid medium such as water or a dispersant and wet-mixing it to form a slurry. And when employ | adopting the spray-drying method mentioned later, it is preferable to grind | pulverize the above-mentioned obtained slurry with a wet grinder. However, dry pulverization may be performed.
 混合工程では、ニッケル原料の粗粉を除いて原料混合時の均質性を高めるため、原料を混合する前に予め、少なくともニッケル化合物を、必要に応じてニッケル化合物とアルミニウム化合物を粉砕及び分級して、ニッケル化合物の最大粒径(Dmax)が10μm以下、中でも5μm以下、その中でも4μm以下になるように調整するのが好ましい。 In the mixing process, in order to improve the homogeneity at the time of raw material mixing by removing the coarse powder of the nickel raw material, at least the nickel compound is preliminarily mixed and the nickel compound and the aluminum compound are pulverized and classified before mixing the raw materials. The maximum particle size (Dmax) of the nickel compound is preferably adjusted to be 10 μm or less, particularly 5 μm or less, and more preferably 4 μm or less.
(造粒)
 原料を混合した後、必要に応じて造粒するのが好ましい。
 造粒方法は、各種原料が分離せずに造粒粒子内で分散していれば湿式でも乾式でもよく、押し出し造粒法、転動造粒法、流動造粒法、混合造粒法、噴霧乾燥造粒法、加圧成型造粒法、或いはロール等を用いたフレーク造粒法でもよい。
 但し、湿式造粒した場合には、焼成前に充分に乾燥させることが必要である。この際の乾燥方法としては、噴霧熱乾燥法、熱風乾燥法、真空乾燥法、フリーズドライ法などの公知の乾燥方法によって乾燥させればよく、中でも噴霧熱乾燥法が好ましい。
 噴霧熱乾燥法は、熱噴霧乾燥機(スプレードライヤー)を用いて行なうのが好ましい(本明細書では「スプレードライ法」と称する)。
 ただし、例えば所謂共沈法によって焼成に供する共沈粉を作製することも可能である(本明細書では「共沈法」と称する)。共沈法では、原料を溶液に溶解した後、pHなどの条件を調整して沈殿させることにより、共沈粉を得ることができる。
(Granulation)
After mixing the raw materials, it is preferable to granulate as necessary.
The granulation method may be either wet or dry as long as various raw materials are dispersed in the granulated particles without being separated. Extrusion granulation method, rolling granulation method, fluidized granulation method, mixed granulation method, spraying method A dry granulation method, a pressure molding granulation method, or a flake granulation method using a roll or the like may be used.
However, when wet granulation is performed, it is necessary to sufficiently dry before firing. As a drying method at this time, it may be dried by a known drying method such as a spray heat drying method, a hot air drying method, a vacuum drying method, a freeze drying method, etc., among which the spray heat drying method is preferable.
The spray heat drying method is preferably carried out using a heat spray dryer (spray dryer) (referred to herein as “spray drying method”).
However, it is also possible to produce a coprecipitated powder to be fired by, for example, a so-called coprecipitation method (referred to herein as “coprecipitation method”). In the coprecipitation method, after the raw material is dissolved in a solution, the coprecipitation powder can be obtained by adjusting the conditions such as pH and causing precipitation.
 なお、スプレードライ法では、粉体強度が相対的に低く、粒子間に空隙(ボイド)が生じる傾向がある。そこで、スプレードライ法を採用する場合には、後述する焼成工程後の解砕工程において、従来の粉砕方法、例えば回転数1000rpm程度の粗粉砕機による解砕方法に比べて、解砕強度がより高い粉砕方法を採用するのが好ましい。 In the spray drying method, the powder strength is relatively low, and voids tend to occur between the particles. Therefore, when the spray drying method is adopted, the crushing strength after the crushing step after the firing step, which will be described later, is higher than that of a conventional crushing method, for example, a crushing method using a coarse crusher having a rotation speed of about 1000 rpm. It is preferable to employ a high grinding method.
(焼成工程)
 母体リチウム金属複合酸化物粉末を得るための焼成工程では、必要に応じて500~840℃で仮焼成した後、700~1000℃で本焼成するのが好ましい。当該仮焼成をせずに、700~1000℃で本焼成することも可能である。
 仮焼成によって、原料に含まれる成分から発生するガス(例えばCO)を抜くことができる。よって、例えば炭酸リチウム(LiCO)や炭酸マンガン、炭酸ニッケル、塩基性炭酸コバルトなどの炭酸塩を原料に用いた場合には、仮焼成することが好ましい。
 そして、本焼成では、仮焼成よりも高温で焼成することにより、粒子の結晶性を上げたり、所望する粒径に調整したりすることができる。
(Baking process)
In the firing step for obtaining the base lithium metal composite oxide powder, it is preferable to perform preliminary firing at 500 to 840 ° C., if necessary, followed by main firing at 700 to 1000 ° C. It is also possible to perform the main baking at 700 to 1000 ° C. without performing the preliminary baking.
By calcining, a gas (for example, CO 2 ) generated from a component contained in the raw material can be extracted. Therefore, for example, when a carbonate such as lithium carbonate (Li 2 CO 3 ), manganese carbonate, nickel carbonate, basic cobalt carbonate or the like is used as a raw material, it is preferably calcined.
And in this baking, the crystallinity of particle | grains can be raised or it can adjust to the desired particle size by baking at high temperature rather than temporary baking.
 仮焼成は、焼成炉にて、大気雰囲気下、酸素ガス雰囲気下、酸素分圧を調整した雰囲気下、或いは二酸化炭素ガス含有雰囲気下、或いはその他の雰囲気下において、500~840℃の温度(:焼成炉内の焼成物に熱電対を接触させた場合の温度を意味する。)、中でも600℃以上或いは840℃以下、その中でも650℃以上或いは750℃以下で、0.5時間~30時間保持するように焼成するのが好ましい。
 焼成炉の種類は特に限定するものではない。例えばロータリーキルン、静置炉、その他の焼成炉を用いて焼成することができる。
Temporary baking is performed at a temperature of 500 to 840 ° C. in a baking furnace in an air atmosphere, an oxygen gas atmosphere, an atmosphere in which an oxygen partial pressure is adjusted, a carbon dioxide gas-containing atmosphere, or other atmosphere (: This means the temperature when a thermocouple is brought into contact with the fired product in the firing furnace.) Especially, 600 ° C. or higher or 840 ° C. or lower, especially 650 ° C. or higher or 750 ° C. or lower, and held for 0.5 to 30 hours It is preferable to perform firing.
The kind of baking furnace is not specifically limited. For example, it can be fired using a rotary kiln, a stationary furnace, or other firing furnace.
 本焼成は、焼成炉にて、大気雰囲気下、酸素ガス雰囲気下、酸素分圧を調整した雰囲気下、或いは二酸化炭素ガス含有雰囲気下、或いはその他の雰囲気下において、700~1000℃温度(:焼成炉内の焼成物に熱電対を接触させた場合の温度を意味する。)、好ましくは750℃以上或いは950℃以下、より好ましくは800℃以上或いは950℃以下、その中でもさらに好ましくは850℃以上或いは910℃以下で0.5時間~30時間保持するように焼成するのが好ましい。この際、複数の金属元素を含む焼成物が、目的組成のリチウム金属複合酸化物の単一相とみなせる焼成条件を選択するのが好ましい。
 焼成炉の種類は特に限定するものではない。例えばロータリーキルン、静置炉、その他の焼成炉を用いて焼成することができる。
The main firing is performed in a firing furnace in an air atmosphere, an oxygen gas atmosphere, an atmosphere in which an oxygen partial pressure is adjusted, a carbon dioxide gas-containing atmosphere, or other atmosphere, at a temperature of 700 to 1000 ° C. It means the temperature when a thermocouple is brought into contact with the fired product in the furnace.), Preferably 750 ° C. or higher or 950 ° C. or lower, more preferably 800 ° C. or higher or 950 ° C. or lower, and more preferably 850 ° C. or higher. Alternatively, firing is preferably performed at 910 ° C. or lower for 0.5 to 30 hours. At this time, it is preferable to select a firing condition in which a fired product including a plurality of metal elements can be regarded as a single phase of a lithium metal composite oxide having a target composition.
The kind of baking furnace is not specifically limited. For example, it can be fired using a rotary kiln, a stationary furnace, or other firing furnace.
 但し、仮焼成せずに本焼成する場合には、700~1000℃、中でも750℃以上或いは950℃以下、その中でも800℃以上或いは950℃以下、その中でもさらに850℃以上或いは910℃以下で0.5時間~30時間保持するように焼成するのが好ましい。 However, when the main baking is performed without pre-baking, the temperature is 700 to 1000 ° C., particularly 750 ° C. or higher or 950 ° C. or lower, particularly 800 ° C. or higher or 950 ° C. or lower, and more preferably 850 ° C. or higher or 910 ° C. or lower. Calcination is preferably performed for 5 hours to 30 hours.
(熱処理)
 焼成後の熱処理は、結晶構造の調整が必要な場合に行うのが好ましい。その際の熱処理雰囲気としては、大気雰囲気下、酸素ガス雰囲気下、酸素分圧を調整した雰囲気下などの酸化雰囲気の条件で熱処理を行うのが好ましい。
(Heat treatment)
The heat treatment after firing is preferably performed when the crystal structure needs to be adjusted. As the heat treatment atmosphere at that time, it is preferable to perform the heat treatment under conditions of an oxidizing atmosphere such as an air atmosphere, an oxygen gas atmosphere, or an atmosphere in which the oxygen partial pressure is adjusted.
(解砕)
 焼成後若しくは熱処理後の解砕は、高速回転粉砕機などを用いて解砕するのが好ましい。高速回転粉砕機によって解砕すれば、粒子どうしが凝集していたり、焼結が弱かったりする部分を解砕することができ、しかも粒子に歪みが入るのを抑えることができる。但し、高速回転粉砕機に限定する訳ではない。
(Disintegration)
Crushing after firing or heat treatment is preferably performed using a high-speed rotary pulverizer or the like. If pulverization is performed by a high-speed rotary pulverizer, it is possible to pulverize a portion where the particles are aggregated or weakly sintered, and to suppress distortion of the particles. However, the present invention is not limited to a high-speed rotary pulverizer.
 高速回転粉砕機の一例としてピンミルを挙げることができる。ピンミルは、円盤回転型粉砕機として知られており、ピンの付いた回転盤が回転することで、内部を負圧にして原料供給口より粉を吸い込む方式の解砕機である。そのため、微細粒子は、重量が軽いため気流に乗りやすく、ピンミル内のクリアランスを通過する一方、粗大粒子は確実に解砕される。そのため、ピンミルで解砕すれば、粒子間の凝集や、弱い焼結部分を確実に解すことができると共に、粒子内に歪みが入るのを抑制することができる。
 高速回転粉砕機の回転数は4000rpm以上、特に5000~12000rpm、さらに好ましくは7000~10000rpmにするのが好ましい。
An example of a high-speed rotary pulverizer is a pin mill. The pin mill is known as a rotary disk crusher, and is a type of crusher that draws in powder from a raw material supply port by rotating a rotating disk with pins to make the inside negative pressure. Therefore, since the fine particles are light in weight, they are easy to ride on the air current and pass through the clearance in the pin mill, while the coarse particles are reliably crushed. Therefore, when pulverizing with a pin mill, aggregation between particles and weakly sintered portions can be surely solved, and distortion can be suppressed from entering into the particles.
The rotational speed of the high-speed rotary pulverizer is preferably 4000 rpm or more, particularly 5000 to 12000 rpm, more preferably 7000 to 10000 rpm.
 焼成後の分級は、凝集粉の粒度分布調整とともに異物除去という技術的意義があるため、好ましい大きさの目開きの篩を選択して分級するのが好ましい。 Since the classification after firing has the technical significance of adjusting the particle size distribution of the agglomerated powder and removing foreign matter, it is preferable to classify by selecting a sieve having a preferred size.
(表面処理工程)
 表面処理工程では、アルミニウム、チタン及びジルコニウムのうちの少なくとも一種を含有する表面処理剤と、上記のようにして得られた母体リチウム金属複合酸化物粉末とを接触させればよい。
 例えば、アルミニウム、チタン及びジルコニウムのうちの少なくとも一種を含む有機金属化合物、例えばチタンカップリング剤又はアルミニウムカップリング剤又はジルコニウムカップリング剤又はチタン・アルミニウムカップリング剤又はチタン・ジルコニウムカップリング剤又はアルミニウム・ジルコニウムカップリング剤又はチタン・アルミニウム・ジルコニウムカップリング剤などの表面処理剤を、有機溶媒に分散させてディスパージョンを作り、該ディスパージョンと、上記のようにして得た母体リチウム金属複合酸化物粉末とを接触させて表面処理を行う方法を挙げることができる。
(Surface treatment process)
In the surface treatment step, the surface treatment agent containing at least one of aluminum, titanium, and zirconium may be brought into contact with the base lithium metal composite oxide powder obtained as described above.
For example, an organometallic compound containing at least one of aluminum, titanium, and zirconium, such as a titanium coupling agent, an aluminum coupling agent, a zirconium coupling agent, a titanium-aluminum coupling agent, a titanium-zirconium coupling agent, or an aluminum. A surface treatment agent such as zirconium coupling agent or titanium / aluminum / zirconium coupling agent is dispersed in an organic solvent to form a dispersion, and the dispersion and the base lithium metal composite oxide powder obtained as described above Can be mentioned as a surface treatment.
 前記の表面処理剤としては、有機官能基と加水分解性基を分子中に有する化合物であればよく、中でも側鎖にリン(P)を有するものが好ましい。側鎖にリン(P)を有するカップリング剤は、バインダーとのなじみがより良いため、バインダーとの結着性に特に優れている。 The surface treatment agent may be a compound having an organic functional group and a hydrolyzable group in the molecule, and among them, one having phosphorus (P) in the side chain is preferable. The coupling agent having phosphorus (P) in the side chain is particularly excellent in binding property with the binder because of better compatibility with the binder.
 前記表面処理工程では、リチウム金属複合酸化物粉末100質量部に対し、0.1~20質量部相当の表面処理剤を接触させるのが好ましく、中でも0.5質量部以上或いは10質量部以下、その中でも1質量部以上或いは5質量部以下、その中でもさらに1質量部以上或いは3質量部以下の表面処理剤をリチウム金属複合酸化物粉末に接触させるのがさらに好ましい。 In the surface treatment step, a surface treatment agent equivalent to 0.1 to 20 parts by mass is preferably brought into contact with 100 parts by mass of the lithium metal composite oxide powder, and in particular, 0.5 parts by mass or more or 10 parts by mass or less. Among them, it is more preferable to contact the lithium metal composite oxide powder with a surface treatment agent of 1 part by mass or more or 5 parts by mass or less, and more preferably 1 part by mass or more and 3 parts by mass or less.
 より具体的には、例えば、前記リチウム金属複合酸化物粉末のモル数に対する、表面処理剤中のアルミニウム、チタン及びジルコニウムの合計モル数の割合{(M/リチウム金属複合酸化物粉末)×100(M:Al、Ti,Zr)}が0.005~4%となるように、中でも0.04%以上或いは2%以下となるように、その中でも0.08%以上或いは1%以下となるように、その中でも特に0.08%以上或いは0.6%以下となるように、リチウム金属複合酸化物粉末と表面処理剤とを接触させることが好ましい。 More specifically, for example, the ratio of the total number of moles of aluminum, titanium and zirconium in the surface treatment agent to the number of moles of the lithium metal composite oxide powder {(M / lithium metal composite oxide powder) × 100 ( M: Al, Ti, Zr)} is 0.005 to 4%, particularly 0.04% or more or 2% or less, and more preferably 0.08% or more or 1% or less. In particular, it is preferable that the lithium metal composite oxide powder and the surface treatment agent are brought into contact with each other so that the content is 0.08% or more or 0.6% or less.
 また、前記リチウム金属複合酸化物粉末中のニッケルのモル数に対する、表面処理剤中のアルミニウム、チタン及びジルコニウムの合計モル数の割合{(M/Ni)×100(M:Al、Ti,Zr)}が0.01~13%となるように、中でも0.05%以上或いは7%以下となるように、その中でも0.1%以上或いは3.5%以下となるように、その中でも特に0.1%以上或いは2%以下となるように、リチウム金属複合酸化物粉末と表面処理剤とを接触させることが好ましい。
 Niの含有量が高いと、相対的に高電圧での寿命劣化が大きくなるため、表面処理剤中のアルミニウム、チタン及びジルコニウムの合計量を含有Ni量に対する比率で調整することが好ましい。
Further, the ratio of the total number of moles of aluminum, titanium and zirconium in the surface treatment agent to the number of moles of nickel in the lithium metal composite oxide powder {(M / Ni) × 100 (M: Al, Ti, Zr) } Is 0.01 to 13%, in particular 0.05% or more or 7% or less, and in particular, 0.1% or more or 3.5% or less. It is preferable that the lithium metal composite oxide powder and the surface treatment agent are brought into contact with each other so as to be 1% or more or 2% or less.
When the Ni content is high, the life deterioration at a relatively high voltage becomes relatively large. Therefore, it is preferable to adjust the total amount of aluminum, titanium and zirconium in the surface treatment agent by the ratio with respect to the Ni content.
 また、表面処理剤を有機溶媒に分散させたディスパージョンの量については、リチウム金属複合酸化物粉末100質量部に対し、0.2~20質量部、中でも1質量部以上或いは15質量部以下、その中でも2質量部以上或いは10質量部以下の量、さらにその中でも2質量部以上或いは7質量部以下の量のディスパージョンをリチウム金属複合酸化物粉末に接触させるのが好ましい。 The amount of the dispersion in which the surface treatment agent is dispersed in the organic solvent is 0.2 to 20 parts by mass, particularly 1 to 15 parts by mass, with respect to 100 parts by mass of the lithium metal composite oxide powder. Among them, it is preferable to contact the lithium metal composite oxide powder with an amount of 2 parts by mass or more and 10 parts by mass or less, and among them, an amount of 2 parts by mass or more or 7 parts by mass or less.
 層状結晶構造を有するリチウム金属複合酸化物の場合、接触させる有機溶媒の量が多いと、層状結晶構造中のリチウムが溶出してしまうため、表面処理剤の量あるいは表面処理剤を有機溶媒に分散させたディスパージョンの量を上記のように制限するのが好ましい。
 また、このように少量の表面処理剤あるいは表面処理剤を有機溶媒に分散させたディスパージョンを、リチウム金属複合酸化物粉末に接触させることにより、大気又は酸素と混ざりながら表面処理剤をリチウム金属複合酸化物粉末に接触させることができる。これにより、粒子表面に酸素を残存させることができるため、後の熱処理時の有機物の酸化反応で消費される酸素の供給に寄与するものと推察することができる。
 この際、上記の量の表面処理剤あるいは表面処理剤を有機溶媒に分散させたディスパージョンは一度にリチウム金属複合酸化物粉末に接触させて混合するのではなく、何回かに分けて接触させて混合する処理を繰り返すのが好ましい。
 この際の接触方法、すなわち、表面処理剤を有機溶媒に分散させたディスパージョンを、リチウム金属複合酸化物粉末に接触させる方法に関しては、例えば、前記ディスパージョンをリチウム金属複合酸化物粉末に噴霧する方法、滴下する方法、或いは、散布する方法を挙げることができる。
In the case of a lithium metal composite oxide having a layered crystal structure, if the amount of the organic solvent to be contacted is large, lithium in the layered crystal structure will be eluted, so the amount of the surface treatment agent or the surface treatment agent is dispersed in the organic solvent. It is preferred to limit the amount of dispersion made as described above.
In addition, by bringing a small amount of a surface treatment agent or a dispersion in which a surface treatment agent is dispersed in an organic solvent into contact with the lithium metal composite oxide powder, the surface treatment agent is mixed with the atmosphere or oxygen while being mixed with the lithium metal composite oxide. The oxide powder can be contacted. As a result, oxygen can be left on the particle surface, which can be assumed to contribute to the supply of oxygen consumed in the oxidation reaction of the organic matter during the subsequent heat treatment.
At this time, the above-mentioned amount of the surface treatment agent or the dispersion in which the surface treatment agent is dispersed in the organic solvent is not brought into contact with the lithium metal composite oxide powder and mixed at once, but is brought into contact several times. It is preferable to repeat the mixing process.
Regarding the contact method at this time, that is, a method in which the dispersion in which the surface treatment agent is dispersed in the organic solvent is brought into contact with the lithium metal composite oxide powder, for example, the dispersion is sprayed on the lithium metal composite oxide powder. Examples thereof include a method, a dripping method, and a spraying method.
 また、表面処理に使用する混合機の種類は特に限定するものではない。混合・混練攪拌機や容器回転型混合機など、例えばプラネタリーミキサー、ヘンシェルミキサー、ナウターミキサー、カッターミル、その他の混合機を用いて混合することができる。 Also, the type of mixer used for the surface treatment is not particularly limited. Mixing can be performed using a mixing / kneading stirrer, a container rotating mixer, etc., for example, a planetary mixer, a Henschel mixer, a nauter mixer, a cutter mill, or other mixers.
 上記のような表面処理剤を用いて表面処理を行う場合、有機溶媒を揮発させるために例えば40~120℃に加熱して乾燥させた後、次工程の熱処理を施すのが好ましい。 When performing the surface treatment using the above-described surface treatment agent, it is preferable to heat and dry the next step after heating to 40 to 120 ° C., for example, in order to volatilize the organic solvent.
(熱処理工程)
 熱処理工程では、表面処理後のリチウム金属複合酸化物粉末を、酸素濃度20~100%の雰囲気下において、700~950℃温度(:炉内の焼成物に熱電対を接触させた場合の温度、すなわち品温を意味する。)を所定時間保持するように熱処理するのが好ましい。
 このような熱処理により、有機溶媒を揮発させたり、表面処理剤の側鎖を分解させたりすることができると共に、表面処理剤中のアルミニウム又はチタン又はジルコニウムを、表面からより深層方向に拡散させることができ、寿命特性が向上すると共に、出力特性を同等若しくはそれ以上にすることができる。
(Heat treatment process)
In the heat treatment step, the surface-treated lithium metal composite oxide powder is heated to 700 to 950 ° C. in an atmosphere having an oxygen concentration of 20 to 100% (temperature when a thermocouple is brought into contact with the fired product in the furnace, That is, it means the product temperature.) It is preferable to heat-treat so as to hold for a predetermined time.
By such heat treatment, the organic solvent can be volatilized or the side chain of the surface treatment agent can be decomposed, and aluminum, titanium, or zirconium in the surface treatment agent can be diffused from the surface in a deeper layer direction. The life characteristics are improved, and the output characteristics can be made equal or better.
 このような熱処理による効果をさらに高める観点から、熱処理工程における処理雰囲気は、酸素含有雰囲気であるのが好ましい。中でも、酸素濃度20~100%の酸素含有雰囲気であるのが好ましく、中でも30%以上或いは100%以下、その中でも50%以上或いは100%以下、さらにその中でも70%以上或いは100%以下、さらにその中でも80%以上或いは100%以下である酸素含有雰囲気であるのがさらに好ましい。 From the viewpoint of further enhancing the effect of such heat treatment, the treatment atmosphere in the heat treatment step is preferably an oxygen-containing atmosphere. Among them, an oxygen-containing atmosphere having an oxygen concentration of 20 to 100% is preferable, of which 30% or more or 100% or less, of which 50% or more or 100% or less, of which 70% or more or 100% or less. Of these, an oxygen-containing atmosphere of 80% or more or 100% or less is more preferable.
 また、熱処理工程における処理温度は、700~950℃(:焼成炉内の焼成物に熱電対を接触させた場合の温度を意味する。)であるのが好ましい。熱処理温度が700℃以上であれば、リチウム金属複合酸化物と形成される表面層の結合をより一層強くすることでき、出力特性を高めることができる。他方、熱処理温度が950℃以下であれば、リチウム金属複合酸化物から酸素が放出されることを抑制してサイクル特性を維持することができる。かかる観点から、熱処理温度は700~950℃であるのが好ましく、800℃より高くてもよく、中でも750℃以上或いは900℃以下、その中でも750℃以上或いは850℃以下であるのがさらに好ましい。 Further, the treatment temperature in the heat treatment step is preferably 700 to 950 ° C. (meaning the temperature when a thermocouple is brought into contact with the fired product in the firing furnace). When the heat treatment temperature is 700 ° C. or higher, the bond between the lithium metal composite oxide and the surface layer to be formed can be further strengthened, and the output characteristics can be improved. On the other hand, if the heat treatment temperature is 950 ° C. or lower, the release of oxygen from the lithium metal composite oxide can be suppressed and the cycle characteristics can be maintained. From this point of view, the heat treatment temperature is preferably 700 to 950 ° C., may be higher than 800 ° C., more preferably 750 ° C. or more and 900 ° C. or less, and more preferably 750 ° C. or more and 850 ° C. or less.
 さらにまた、熱処理工程における処理時間は、処理温度にもよるが、0.5~20時間であるのが好ましく、中でも1時間以上或いは10時間以下、その中でも3時間以上或いは10時間以下であるのがさらに好ましい。
 炉の種類は特に限定するものではない。例えばロータリーキルン、静置炉、その他の焼成炉を用いて焼成することができる。
Furthermore, the treatment time in the heat treatment step is preferably 0.5 to 20 hours, depending on the treatment temperature, and is preferably 1 hour or more or 10 hours or less, more preferably 3 hours or more or 10 hours or less. Is more preferable.
The type of furnace is not particularly limited. For example, it can be fired using a rotary kiln, a stationary furnace, or other firing furnace.
 前記熱処理工程後、解砕前後の比表面積(SSA)の変化率が100~250%となる解砕強度で、リチウム金属複合酸化物粉末を解砕してもよい。
 熱処理後の解砕は、表面処理の効果を保持するように、表面処理層の下の新生面が露出し過ぎないように行うのが良いという観点から、解砕前後の比表面積(SSA)の変化率が100~200%であるのが好ましく、中でも100%以上或いは175%以下、その中でも100%以上或いは150%以下、その中でもさらに100%以上或いは125%以下となるように解砕するのが好ましい。
After the heat treatment step, the lithium metal composite oxide powder may be pulverized with a pulverization strength at which the change rate of the specific surface area (SSA) before and after pulverization becomes 100 to 250%.
Crushing after heat treatment is performed so that the new surface under the surface treatment layer is not exposed too much so as to maintain the effect of the surface treatment. From the viewpoint of changing the specific surface area (SSA) before and after crushing. It is preferable that the rate is 100 to 200%, among which 100% or more and 175% or less, among which 100% or more and 150% or less, and among them, the pulverization is performed so as to be 100% or more and 125% or less. preferable.
 このような解砕方法の好ましい一例として、相対方向に高速回転する粉砕板に取り付けられたピンにより粉砕する解砕装置(例えばピンミル)を使用して、回転数4000rpm~10000rpm、中でも4000rpm以上或いは9000rpm以下、その中でも4000rpm以上或いは8000rpm以下で粉砕する方法を挙げることができる。 As a preferable example of such a crushing method, a crushing apparatus (for example, a pin mill) that crushes with a pin attached to a crushing plate that rotates at a high speed in a relative direction, and a rotation speed of 4000 rpm to 10,000 rpm, particularly 4000 rpm or more or 9000 rpm. Hereinafter, among them, a method of grinding at 4000 rpm or more or 8000 rpm or less can be mentioned.
(分級)
 解砕後の分級は、凝集粉の粒度分布調整とともに異物除去という技術的意義があるため、好ましい大きさの目開きの篩を選択して分級するのが好ましい。
(Classification)
Classification after crushing has technical significance of adjusting the particle size distribution of the agglomerated powder and removing foreign substances, and therefore, it is preferable to classify by selecting a sieve having a preferable size.
<特性・用途>
 本製造方法で得られる本リチウム金属複合酸化物が有することができる共通の特徴として、リチウム金属複合酸化物粒子の表面をTEM観察した時の粒子の表面の全面または一部に、Al元素、Ti元素及びZr元素のうちの少なくとも一種が存在するリチウム金属複合酸化物粒子を含有し、比表面積(SSA)が0.2~3m/g、中でも0.2m/g以上或いは2m/g以下、その中でも0.2m/g以上或いは1.0m/g以下、その中でもさらに0.2m/g或いは0.8m/g以下である点を挙げることができる。
 本リチウム金属複合酸化物は、Al元素、Ti元素及びZr元素のうちの少なくとも一種が粒子の表面層に存在することによって、リチウム二次電池の正極活物質として使用した場合に、電解液との反応を抑えて寿命特性が向上すると共に出力特性を同等若しくはそれ以上にすることができる。
 よって、本リチウム金属複合酸化物は、リチウム二次電池の正極活物質として使用するのに好適であり、特に車載用の電池、特に電気自動車(EV:Electric Vehicle)やハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)に搭載する電池の正極活物質として特に優れている。
<Characteristics / Applications>
A common feature that the present lithium metal composite oxide obtained by the present manufacturing method can have is that the entire surface or part of the surface of the lithium metal composite oxide particle when observed by TEM, Al element, Ti Lithium metal composite oxide particles containing at least one of element and Zr element, and having a specific surface area (SSA) of 0.2 to 3 m 2 / g, especially 0.2 m 2 / g or more or 2 m 2 / g hereinafter, 0.2 m 2 / g or more or 1.0 m 2 / g or less among them, mention may be made of points even not greater than 0.2 m 2 / g or 0.8 m 2 / g among them.
The present lithium metal composite oxide, when used as a positive electrode active material of a lithium secondary battery due to the presence of at least one of Al element, Ti element and Zr element in the surface layer of the particles, The life characteristics can be improved by suppressing the reaction, and the output characteristics can be made equal or better.
Therefore, the present lithium metal composite oxide is suitable for use as a positive electrode active material of a lithium secondary battery, and particularly a battery for vehicle use, particularly an electric vehicle (EV) and a hybrid electric vehicle (HEV: Hybrid). It is particularly excellent as a positive electrode active material for batteries mounted on electric vehicles.
 例えば、本リチウム金属複合酸化物粉体と、カーボンブラック等からなる導電材と、テフロン(テフロンは、米国DUPONT社の登録商標です。)バインダー等からなる結着剤と、を混合して正極合剤を製造することができる。そしてそのような正極合剤を正極に用い、例えば負極にはリチウムまたはカーボン等のリチウムを吸蔵・脱蔵できる材料を用い、非水系電解質には六フッ化リン酸リチウム(LiPF)等のリチウム塩をエチレンカーボネート-ジメチルカーボネート等の混合溶媒に溶解したものを用いてリチウム2次電池を構成することができる。但し、このような構成の電池に限定する意味ではない。 For example, the lithium metal composite oxide powder is mixed with a conductive material made of carbon black or the like and a binder made of Teflon (Teflon is a registered trademark of DUPONT, USA) binder or the like to mix the positive electrode. Agent can be produced. Such a positive electrode mixture is used for the positive electrode, for example, a material that can store and desorb lithium such as lithium or carbon is used for the negative electrode, and lithium such as lithium hexafluorophosphate (LiPF 6 ) is used for the non-aqueous electrolyte. A lithium secondary battery can be constituted by using a salt dissolved in a mixed solvent such as ethylene carbonate-dimethyl carbonate. However, the present invention is not limited to the battery having such a configuration.
 本リチウム金属複合酸化物を正極活物質として備えたリチウム電池は、充放電を繰り返して使用した場合に優れた寿命特性(サイクル特性)を発揮することから、特に電気自動車(EV:Electric Vehicle)やハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)に搭載するモータ駆動用電源として用いるリチウム電池の正極活物質の用途に特に優れている。 Lithium batteries equipped with this lithium metal composite oxide as a positive electrode active material exhibit excellent life characteristics (cycle characteristics) when repeatedly used for charge and discharge, and are particularly suitable for electric vehicles (EVs) and EVs. It is particularly excellent in the use of a positive electrode active material of a lithium battery used as a power source for driving a motor mounted on a hybrid electric vehicle (HEV).
 なお、「ハイブリッド自動車」とは、電気モータと内燃エンジンという2つの動力源を併用した自動車である。
 また、「リチウム電池」とは、リチウム一次電池、リチウム二次電池、リチウムイオン二次電池、リチウムポリマー電池など、電池内にリチウム又はリチウムイオンを含有する電池を全て包含する意である。
A “hybrid vehicle” is a vehicle that uses two power sources, an electric motor and an internal combustion engine.
The term “lithium battery” is intended to encompass all batteries containing lithium or lithium ions in the battery, such as lithium primary batteries, lithium secondary batteries, lithium ion secondary batteries, and lithium polymer batteries.
<語句の説明> 
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
<Explanation of words>
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), “X is preferably greater than X” or “preferably Y”, with the meaning of “X to Y” unless otherwise specified. It also includes the meaning of “smaller”.
In addition, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), it is “preferably greater than X” or “preferably less than Y”. Includes intentions.
 次に、実施例及び比較例に基づいて、本発明について更に説明する。但し、本発明が以下に示す実施例に限定されるものではない。 Next, the present invention will be further described based on examples and comparative examples. However, the present invention is not limited to the following examples.
<実施例1>
 平均粒径(D50)7μmの炭酸リチウムと、平均粒径(D50)23μmで比表面積が40m2/gの電解二酸化マンガンと、平均粒径(D50)22μmの水酸化ニッケルと、平均粒径(D50)14μmのオキシ水酸化コバルトと、平均粒径(D50)1.4μmの水酸化アルミニウムとを、モル比でLi:Mn:Ni:Co:Al=1.05:0.27:0.46:0.21:0.01となるように秤量した。
<Example 1>
Lithium carbonate having an average particle size (D50) of 7 μm, electrolytic manganese dioxide having an average particle size (D50) of 23 μm and a specific surface area of 40 m 2 / g, nickel hydroxide having an average particle size (D50) of 22 μm, an average particle size ( D50) 14 [mu] m cobalt oxyhydroxide and an average particle diameter (D50) of 1.4 [mu] m aluminum hydroxide in a molar ratio of Li: Mn: Ni: Co: Al = 1.05: 0.27: 0.46 : 0.21: 0.01.
 イオン交換水中へ、分散剤としてポリカルボン酸アンモニウム塩水溶液(サンノプコ(株)製SNディスパーサント5468)を添加した。分散剤の添加量は水酸化ニッケルと水酸化アルミニウムに対して、6wt%になるようにした。
 水酸化ニッケルと水酸化アルミニウムを、前述のイオン交換水中に加えて、混合攪拌して固形分濃度40wt%のスラリーを調製した。このスラリーを、湿式粉砕機(日本コークス製SC220/70A-VB-ZZ)を用いて1300rpm、60分間湿式粉砕し、平均粒径(D50)が0.56μm、最大粒径(Dmax)が1.9μmである粉砕スラリーを得た。
 次いで、秤量しておいた電解二酸化マンガン、オキシ水酸化コバルト及び炭酸リチウムとイオン交換水とを、水酸化ニッケル及び水酸化アルミニウムを含む前記粉砕スラリーに加えて、固形分濃度60wt%のスラリーに調整した。その際、分散剤を、スラリー中の固形分量に対して6wt%となるように追加した。
 そのスラリーを、上記と同じ湿式粉砕機を用いて1300rpm、50分間湿式粉砕して、平均粒径(D50)が0.45μm、最大粒径(Dmax)が1.6μmである混合粉砕スラリーを得た。 
 得られた混合粉砕スラリーを、熱噴霧乾燥機(スプレードライヤー、大川原化工機(株)製OC-16)を用いて造粒乾燥させた。この際、噴霧には2流体ノズルを用い、噴霧圧0.6MPa、スラリー供給量14kg/hr、乾燥塔の出口温度100~110℃となるように、温度を調節して造粒乾燥を行なった。
 得られた造粒粉を、静置式電気炉を用いて、大気雰囲気下700℃で5時間仮焼成した後、大気中910℃で20時間焼成した。
An aqueous polycarboxylic acid ammonium salt solution (SN Dispersant 5468 manufactured by San Nopco Co., Ltd.) was added as a dispersant to ion-exchanged water. The amount of dispersant added was 6 wt% with respect to nickel hydroxide and aluminum hydroxide.
Nickel hydroxide and aluminum hydroxide were added to the above ion-exchanged water, mixed and stirred to prepare a slurry having a solid content concentration of 40 wt%. This slurry was wet pulverized for 60 minutes at 1300 rpm using a wet pulverizer (Nippon Coke SC220 / 70A-VB-ZZ). The average particle size (D50) was 0.56 μm and the maximum particle size (Dmax) was 1. A pulverized slurry of 9 μm was obtained.
Next, weighed electrolytic manganese dioxide, cobalt oxyhydroxide, lithium carbonate and ion-exchanged water are added to the pulverized slurry containing nickel hydroxide and aluminum hydroxide to prepare a slurry having a solid content concentration of 60 wt%. did. At that time, the dispersant was added so as to be 6 wt% with respect to the solid content in the slurry.
The slurry was wet pulverized at 1300 rpm for 50 minutes using the same wet pulverizer as described above to obtain a mixed pulverized slurry having an average particle diameter (D50) of 0.45 μm and a maximum particle diameter (Dmax) of 1.6 μm. It was.
The obtained mixed and pulverized slurry was granulated and dried using a thermal spray dryer (spray dryer, OC-16 manufactured by Okawahara Chemical Co., Ltd.). At this time, a two-fluid nozzle was used for spraying, and granulation drying was performed by adjusting the temperature so that the spray pressure was 0.6 MPa, the slurry supply amount was 14 kg / hr, and the outlet temperature of the drying tower was 100 to 110 ° C. .
The obtained granulated powder was calcined at 700 ° C. for 5 hours in an air atmosphere using a stationary electric furnace, and then calcined at 910 ° C. for 20 hours in the air.
 焼成して得られたリチウム金属複合酸化物粉末の、カールフィッシャー法により110~300℃で測定される水分量は340ppmであった。
 焼成して得られたリチウム金属複合酸化物粉末の化学分析を行った結果、リチウム金属複合酸化物粉体(サンプル)Li1.05Ni0.46Co0.21Mn0.27Al0.01であった。
The lithium metal composite oxide powder obtained by firing had a moisture content of 340 ppm measured at 110 to 300 ° C. by the Karl Fischer method.
As a result of chemical analysis of the lithium metal composite oxide powder obtained by firing, lithium metal composite oxide powder (sample) Li 1.05 Ni 0.46 Co 0.21 Mn 0.27 Al 0.01 O 2 .
 次に、表面処理剤としてのアルミニウムカップリング剤(味の素ファインテクノ株式会社 プレンアクトAL-M)3.0質量部と、溶媒としてのイソプロピルアルコール3.8質量部とを混合して、溶媒中にアルミニウムカップリング剤が分散してなるディスパージョンを調製した。その後、焼成して得られたリチウム金属複合酸化物粉末100質量部に対して、前記ディスパージョン6.8質量部を添加して、カッターミル(岩谷産業株式会社製ミルサー720G)を用いて混合した。
 次に、大気下、100℃で1時間、乾燥器内に置いて乾燥を行った。その後、酸素濃度100%の雰囲気下で品温を770℃で5時間維持するように熱処理してリチウム金属複合酸化物粉末を得た。
 熱処理して得られたリチウム金属複合酸化物を目開き53μmの篩で分級して、篩下のリチウム金属複合酸化物粉末(サンプル)を得た。
Next, 3.0 parts by mass of an aluminum coupling agent (Ajinomoto Fine Techno Co., Ltd., Plenact AL-M) as a surface treatment agent and 3.8 parts by mass of isopropyl alcohol as a solvent are mixed, and aluminum is added to the solvent. A dispersion in which a coupling agent was dispersed was prepared. Thereafter, 6.8 parts by mass of the dispersion was added to 100 parts by mass of the lithium metal composite oxide powder obtained by firing and mixed using a cutter mill (Milcer 720G manufactured by Iwatani Corporation). .
Next, it was dried in an oven at 100 ° C. for 1 hour in the atmosphere. Thereafter, heat treatment was performed in an atmosphere having an oxygen concentration of 100% so as to maintain the product temperature at 770 ° C. for 5 hours to obtain a lithium metal composite oxide powder.
The lithium metal composite oxide obtained by the heat treatment was classified with a sieve having an opening of 53 μm to obtain a lithium metal composite oxide powder (sample) under the sieve.
<実施例2>
 実施例1において、表面処理後の熱処理温度を910℃に変更した以外、実施例1と同様にして、リチウム金属複合酸化物粉末(サンプル)を得た。
<Example 2>
A lithium metal composite oxide powder (sample) was obtained in the same manner as in Example 1 except that the heat treatment temperature after the surface treatment was changed to 910 ° C. in Example 1.
<実施例3>
 実施例1において、表面処理で使用したイソプロピルアルコールの量3.8質量部を5.0質量部に変更し、ディスパージョンの添加量6.8質量部を8.0質量部に変更し、さらに、表面処理後の熱処理条件を「酸素濃度50%の雰囲気下で品温を700℃で5時間維持するように熱処理する」に変更した以外、実施例1と同様にして、リチウム金属複合酸化物粉末(サンプル)を得た。
<Example 3>
In Example 1, the amount of isopropyl alcohol used in the surface treatment was changed from 3.8 parts by mass to 5.0 parts by mass, the addition amount of the dispersion was changed from 6.8 parts by mass to 8.0 parts by mass, and In the same manner as in Example 1, except that the heat treatment condition after the surface treatment is changed to “heat treatment is performed so that the product temperature is maintained at 700 ° C. for 5 hours in an atmosphere having an oxygen concentration of 50%”. A powder (sample) was obtained.
<実施例4>
 実施例1において、表面処理で使用したアルミニウムカップリング剤の量3.0質量部を1.0質量部に変更し、イソプロピルアルコールの量3.8質量部を19.0質量部に変更し、さらに、ディスパージョンの添加量6.8質量部を20.0質量部に変更した以外、実施例1と同様にして、リチウム金属複合酸化物粉末(サンプル)を得た。
<Example 4>
In Example 1, the amount of the aluminum coupling agent used in the surface treatment was changed from 3.0 parts by weight to 1.0 part by weight, the amount of isopropyl alcohol 3.8 parts by weight was changed to 19.0 parts by weight, Further, a lithium metal composite oxide powder (sample) was obtained in the same manner as in Example 1 except that the amount of dispersion added was changed from 6.8 parts by mass to 20.0 parts by mass.
<実施例5>
 実施例1において、表面処理で使用したアルミニウムカップリング剤の量3.0質量部を0.5質量部に変更し、イソプロピルアルコールの量3.8質量部を2.5質量部に変更し、さらにディスパージョンの添加量6.8質量部を3.0質量部に変更し、さらに表面処理後の熱処理温度を810℃に変更した以外、実施例1と同様にして、リチウム金属複合酸化物粉末(サンプル)を得た。
<Example 5>
In Example 1, the amount of the aluminum coupling agent used in the surface treatment was changed from 3.0 parts by weight to 0.5 parts by weight, the amount of isopropyl alcohol was changed from 3.8 parts by weight to 2.5 parts by weight, Further, the amount of the dispersion added was changed from 6.8 parts by mass to 3.0 parts by mass, and the heat treatment temperature after the surface treatment was changed to 810 ° C. (Sample) was obtained.
<実施例6>
 実施例1において、表面処理で使用したアルミニウムカップリング剤の量3.0質量部を4.0質量部に変更し、イソプロピルアルコールの量3.8質量部を5.1質量部に変更し、ディスパージョンの添加量6.8質量部を9.1質量部に変更し、さらに、表面処理後の熱処理条件を「酸素濃度80%の雰囲気下で品温を770℃で5時間維持するように熱処理する」に変更した以外、実施例1と同様にして、リチウム金属複合酸化物粉末(サンプル)を得た。
<Example 6>
In Example 1, the amount of the aluminum coupling agent used in the surface treatment was changed from 3.0 parts by weight to 4.0 parts by weight, the amount of isopropyl alcohol from 3.8 parts by weight was changed to 5.1 parts by weight, The amount of dispersion added was changed from 6.8 parts by mass to 9.1 parts by mass, and the heat treatment conditions after the surface treatment were changed to “maintain the product temperature at 770 ° C. for 5 hours in an atmosphere with an oxygen concentration of 80%. A lithium metal composite oxide powder (sample) was obtained in the same manner as in Example 1 except that the heat treatment was changed.
<実施例7>
 実施例1において、表面処理で使用したアルミニウムカップリング剤3.0質量部を、チタンカップリング剤(味の素ファインテクノ株式会社 プレンアクトKR 46B)1.0質量部に変更し、イソプロピルアルコールの量3.8質量部を5.0質量部に変更し、さらにディスパージョンの添加量6.8質量部を6.0質量部に変更した以外、実施例1と同様にして、リチウム金属複合酸化物粉末(サンプル)を得た。
<Example 7>
In Example 1, 3.0 parts by mass of the aluminum coupling agent used in the surface treatment was changed to 1.0 part by mass of a titanium coupling agent (Ajinomoto Fine Techno Co., Ltd., Plenact KR 46B), and the amount of isopropyl alcohol was changed to 3. In the same manner as in Example 1, except that 8 parts by mass was changed to 5.0 parts by mass, and the addition amount of dispersion 6.8 parts by mass was changed to 6.0 parts by mass, a lithium metal composite oxide powder ( Sample).
<実施例8>
 実施例1において、表面処理で使用したアルミニウムカップリング剤3.0質量部を、ジルコニウムカップリング剤(Kenrich Petrochemicals,Inc. Ken-React(登録商標) NZ(登録商標) 12)1.1質量部に変更し、イソプロピルアルコールの量3.8質量部を4.9質量部に変更し、さらにディスパージョンの添加量6.8質量部を6.0質量部に変更した以外、実施例1と同様にして、リチウム金属複合酸化物粉末(サンプル)を得た。
<Example 8>
In Example 1, 3.0 parts by mass of the aluminum coupling agent used in the surface treatment was added to a zirconium coupling agent (Kenrich Petrochemicals, Inc. Ken-React®).   NZ (registered trademark)   12) The amount was changed to 1.1 parts by mass, the amount of isopropyl alcohol was changed from 3.8 parts by mass to 4.9 parts by mass, and the addition amount of the dispersion was changed from 6.8 parts by mass to 6.0 parts by mass. Except for the above, a lithium metal composite oxide powder (sample) was obtained in the same manner as in Example 1.
<比較例1>
 分散剤としてのポリカルボン酸アンモニウム塩水溶液(サンノプコ(株)製SNディスパーサント5468)をイオン交換水へ添加した。分散剤の添加量は、後述するNi原料、Mn原料、Co原料、Li原料などの合計量に対して6wt%となるようにし、イオン交換水中へ十分に溶解混合させた。
 平均粒径(D50)7μmの炭酸リチウムと、平均粒径(D50)23μmで比表面積が40m2/gの電解二酸化マンガンと、平均粒径(D50)22μmの水酸化ニッケルと、平均粒径(D50)14μmのオキシ水酸化コバルトとを、モル比でLi:Mn:Ni:Co=1.04:0.26:0.51:0.19となるように秤量し、固形分濃度50wt%のスラリーに調整し、湿式粉砕機で1300rpm、40分間粉砕して平均粒径(D50)を0.55μmとなるまで湿式粉砕した。
 得られた粉砕スラリーを、熱噴霧乾燥機(スプレードライヤー、大川原化工機(株)製OC-16)を用いて造粒乾燥させた。この際、噴霧には回転ディスクを用い、回転数24000rpm、スラリー供給量20kg/hr、乾燥塔の出口温度100℃となるように温度を調節して造粒乾燥を行なった。
 得られた造粒粉を、静置式電気炉を用いて、大気中450℃で仮焼を行った。続いて、仮焼粉を、静置式電気炉を用いて、大気中910℃で20時間焼成した。
 焼成して得られた焼成塊を乳鉢に入れて解砕し、目開き53μmの篩で分級し、篩下のリチウム金属複合酸化物粉末(サンプル)を回収した。
 回収したリチウム金属複合酸化物粉末(サンプル)の化学分析を行った結果、Li1.04Ni0.52Co0.19Mn0.25であった。
<Comparative Example 1>
An aqueous polycarboxylic acid ammonium salt solution (SN Dispersant 5468 manufactured by San Nopco Co., Ltd.) as a dispersant was added to ion-exchanged water. The addition amount of the dispersant was 6 wt% with respect to the total amount of Ni raw material, Mn raw material, Co raw material, Li raw material and the like described later, and was sufficiently dissolved and mixed in ion-exchanged water.
Lithium carbonate having an average particle size (D50) of 7 μm, electrolytic manganese dioxide having an average particle size (D50) of 23 μm and a specific surface area of 40 m 2 / g, nickel hydroxide having an average particle size (D50) of 22 μm, an average particle size ( D50) 14 μm cobalt oxyhydroxide was weighed so that the molar ratio was Li: Mn: Ni: Co = 1.04: 0.26: 0.51: 0.19, and the solid content concentration was 50 wt%. The slurry was adjusted and pulverized with a wet pulverizer at 1300 rpm for 40 minutes, and wet pulverized until the average particle size (D50) became 0.55 μm.
The obtained pulverized slurry was granulated and dried using a thermal spray dryer (spray dryer, OC-16 manufactured by Okawahara Chemical Co., Ltd.). At this time, a rotating disk was used for spraying, and granulation drying was performed by adjusting the temperature so that the rotation speed was 24,000 rpm, the slurry supply amount was 20 kg / hr, and the outlet temperature of the drying tower was 100 ° C.
The obtained granulated powder was calcined at 450 ° C. in the atmosphere using a stationary electric furnace. Subsequently, the calcined powder was fired in the atmosphere at 910 ° C. for 20 hours using a stationary electric furnace.
The fired lump obtained by firing was put in a mortar and crushed, classified with a sieve having an opening of 53 μm, and the lithium metal composite oxide powder (sample) under the sieve was collected.
As a result of chemical analysis of the collected lithium metal composite oxide powder (sample), it was Li 1.04 Ni 0.52 Co 0.19 Mn 0.25 O 2 .
<表面層の分析>
 リチウム金属複合酸化物(サンプル)の粒子表面付近の断面を、透過型電子顕微鏡(日本電子株式会社製「JEM-ARM200F」)で観察すると共に、EDS(エネルギー分散型X線分析)で分析した。
 この結果、実施例1及び2で得られたリチウム金属複合酸化物(サンプル)については、各粒子の表面にAl元素を多く含む層が存在していることを確認することができた。
<Analysis of surface layer>
A cross section near the particle surface of the lithium metal composite oxide (sample) was observed with a transmission electron microscope (“JEM-ARM200F” manufactured by JEOL Ltd.) and analyzed with EDS (energy dispersive X-ray analysis).
As a result, for the lithium metal composite oxide (sample) obtained in Examples 1 and 2, it was confirmed that a layer containing a large amount of Al element was present on the surface of each particle.
<D50の測定>
 実施例及び比較例で得られたリチウム金属複合酸化物粉末(サンプル)について、レーザー回折粒子径分布測定装置用自動試料供給機(日機装株式会社製「Microtorac SDC」)を用い、リチウム金属複合酸化物粉末(サンプル)を水溶性溶媒に投入し、40%の流速中、40Wの超音波を360秒間照射した後、日機装株式会社製レーザー回折粒度分布測定機「MT3000II」を用いて粒度分布を測定し、得られた体積基準粒度分布のチャートからD50を求めた。
 なお、測定の際の水溶性溶媒は60μmのフィルターを通し、溶媒屈折率を1.33、粒子透過性条件を透過、粒子屈折率2.46、形状を非球形とし、測定レンジを0.133~704.0μm、測定時間を30秒とし、2回測定した平均値をD50とした。
<Measurement of D50>
The lithium metal composite oxide powders (samples) obtained in the examples and comparative examples were measured using an automatic sample feeder for laser diffraction particle size distribution measuring device (“Microtorac SDC” manufactured by Nikkiso Co., Ltd.). The powder (sample) was put into a water-soluble solvent and irradiated with ultrasonic waves of 40 W at a flow rate of 40% for 360 seconds, and then the particle size distribution was measured using a laser diffraction particle size analyzer “MT3000II” manufactured by Nikkiso Co., Ltd. Then, D50 was determined from the obtained volume-based particle size distribution chart.
The water-soluble solvent used in the measurement was passed through a 60 μm filter, the solvent refractive index was 1.33, the particle permeability was transmissive, the particle refractive index was 2.46, the shape was non-spherical, and the measurement range was 0.133. ˜704.0 μm, the measurement time was 30 seconds, and the average value measured twice was D50.
<比表面積の測定>
 リチウム金属複合酸化物粉末(サンプル)0.5gを秤量し、流動方式ガス吸着法比表面積測定装置MONOSORB LOOP(ユアサアイオニクス株式会社製「製品名MS‐18」)用ガラスセルに入れて、前記MONOSORB LOOP用前処理装置にて、30mL/minのガス量で窒素ガスをフローさせながら、5分間ガラスセル内を置換した後、前記窒素ガス雰囲気中で250℃10分間、処理を行った。その後、前記MONOSORB LOOPを用い、サンプル(粉体)をBET一点法にて測定した。
 なお、測定時の吸着ガスは、窒素30%:ヘリウム70%の混合ガスを用いた。
<Measurement of specific surface area>
Lithium metal composite oxide powder (sample) 0.5g was weighed and put into a glass cell for a flow method gas adsorption specific surface area measurement device MONOSORB LOOP ("product name MS-18" manufactured by Yuasa Ionics Co., Ltd.). In the MONOSORB LOOP pretreatment apparatus, the inside of the glass cell was replaced for 5 minutes while flowing nitrogen gas at a gas amount of 30 mL / min, and then the treatment was performed in the nitrogen gas atmosphere at 250 ° C. for 10 minutes. Then, the sample (powder) was measured by the BET single point method using the MONOSORB LOOP.
The adsorbed gas at the time of measurement was a mixed gas of 30% nitrogen: 70% helium.
<電池特性評価>
 実施例及び比較例で得たリチウム金属複合酸化物粉末(サンプル)8.0gと、アセチレンブラック(電気化学工業製)1.0gとを正確に計り取り、10分間乳鉢で混合した。その後、NMP(N-メチルピロリドン)中にPVDF(キシダ化学製)12wt%溶解した液8.3gを正確に計り取り、そこにリチウム金属複合酸化物粉末とアセチレンブラックの混合物を加えてさらに混合した。その後、NMPを5ml加えて十分に混合し、ペーストを作製した。このペーストを集電体であるアルミ箔上にのせ、100μm~280μmのギャップに調整したアプリケーターで塗膜化し、140℃一昼夜真空乾燥した後、線圧が0.3t/cmになるようにロールプレスし、φ16mmで打ち抜き、正極とした。
 電池作製直前に200℃で300min以上真空乾燥し、付着水分を除去し電池に組み込んだ。また、予めφ16mmのアルミ箔の重さの平均値を求めておき、正極の重さからアルミ箔の重さを差し引き正極合材の重さを求めた。また、リチウム金属複合酸化物粉体(正極活物質)とアセチレンブラック、PVDFの混合割合から正極活物質の含有量を求めた。
 負極はφ19mm×厚み0.5mmの金属Liとし、電解液は、ECとDMCを3:7体積混合したものを溶媒とし、これに溶質としてLiPF6を1mol/L溶解させたものを用い、図1に示す電気化学評価用セルTOMCEL(登録商標)を作製した。
<Battery characteristics evaluation>
8.0 g of lithium metal composite oxide powder (sample) obtained in Examples and Comparative Examples and 1.0 g of acetylene black (manufactured by Denki Kagaku Kogyo) were accurately weighed and mixed in a mortar for 10 minutes. Thereafter, 8.3 g of a solution in which 12 wt% of PVDF (manufactured by Kishida Chemical) was dissolved in NMP (N-methylpyrrolidone) was accurately weighed, and a mixture of lithium metal composite oxide powder and acetylene black was added thereto and further mixed. . Thereafter, 5 ml of NMP was added and mixed well to prepare a paste. This paste is placed on an aluminum foil as a current collector, coated with an applicator adjusted to a gap of 100 μm to 280 μm, dried in a vacuum at 140 ° C. overnight, and then rolled so that the linear pressure becomes 0.3 t / cm 2. Pressed and punched out with a diameter of 16 mm to form a positive electrode.
Immediately before producing the battery, it was vacuum-dried at 200 ° C. for 300 minutes or longer to remove the adhering moisture and incorporated into the battery. In addition, an average value of the weight of an aluminum foil having a diameter of 16 mm was obtained in advance, and the weight of the positive electrode mixture was obtained by subtracting the weight of the aluminum foil from the weight of the positive electrode. Further, the content of the positive electrode active material was determined from the mixing ratio of the lithium metal composite oxide powder (positive electrode active material), acetylene black and PVDF.
The negative electrode was made of metal Li with a diameter of 19 mm and a thickness of 0.5 mm, and the electrolyte was a mixture of EC and DMC in a volume of 3: 7, and a solvent in which 1 mol / L of LiPF 6 was dissolved as a solute was used. A cell for electrochemical evaluation shown in 1 (TOMCEL (registered trademark)) was prepared.
(初期活性)
 上記のようにして準備した電気化学用セルを用いて次に記述する方法で初期活性を行った。25℃にて0.2Cで4.3Vまで定電流定電位充電した後、0.2Cで3.0Vまで定電流放電した。これを2サイクル繰り返した。なお、実際に設定した電流値は正極中の正極活物質の含有量から算出した。
(Initial activity)
Using the electrochemical cell prepared as described above, initial activity was performed by the method described below. After constant current and constant potential charging at 0.2C to 25V at 25 ° C, constant current discharging was performed to 0.2V at 0.2C. This was repeated for 2 cycles. The actually set current value was calculated from the content of the positive electrode active material in the positive electrode.
(高温サイクル寿命評価:45℃高温サイクル特性)
 上記のようにして初期活性を行った後の電気化学用セルを用いて下記に記述する方法で充放電試験し、高温サイクル寿命特性を評価した。
 電池を充放電する環境温度を45℃となるようにセットした環境試験機内にセルを入れ、充放電できるように準備し、セル温度が環境温度になるように4時間静置後、充放電範囲を4.3V~3.0Vとし、充電は0.2C定電流定電位、放電は0.2C定電流で1サイクル充放電行った後、1Cにて充放電サイクルを40回行った。
 40サイクル目の放電容量を2サイクル目の放電容量で割り算して求めた数値の百分率(%)を高温サイクル寿命特性値として求めた。
 表1には、各実施例及び比較例の高温サイクル寿命特性値を、比較例1の高温サイクル寿命特性値を100とした場合の相対値として示した。
(High temperature cycle life evaluation: 45 ° C high temperature cycle characteristics)
A charge / discharge test was conducted by the method described below using the electrochemical cell after the initial activity as described above, and the high-temperature cycle life characteristics were evaluated.
Place the cell in an environmental testing machine set so that the environmental temperature for charging and discharging the battery is 45 ° C., prepare to charge and discharge, and let it stand for 4 hours so that the cell temperature becomes the environmental temperature, then charge and discharge range Was set to 4.3 V to 3.0 V, charging was performed at a constant constant potential of 0.2 C and discharging was performed for one cycle at a constant constant current of 0.2 C, and then 40 cycles of charging and discharging were performed at 1 C.
The percentage (%) of the numerical value obtained by dividing the discharge capacity at the 40th cycle by the discharge capacity at the second cycle was determined as the high temperature cycle life characteristic value.
Table 1 shows the high-temperature cycle life characteristic values of the examples and the comparative examples as relative values when the high-temperature cycle life characteristic value of the comparative example 1 is 100.
(出力特性評価試験)
 別途、初期活性を行った後の電気化学用セルを、25℃にてSOC50%に0.2Cで定電流充電した。充電後、3Cの電流値で10秒間放電して、充電後の電位から放電後の電位を引いたものを電位差とし、電位差を3Cの電流値で割ることによって抵抗値を求め、出力特性の指標とした。表1には、比較例1の抵抗値を100.0%とした場合の相対値(%)で示した。数値が小さいほど出力特性が向上したことを示す。
(Output characteristic evaluation test)
Separately, the electrochemical cell after initial activation was charged at a constant current of 0.2% to 50% SOC at 25 ° C. After charging, discharge for 10 seconds at a current value of 3C, subtract the post-discharge potential from the potential after charging, and determine the resistance value by dividing the potential difference by the current value of 3C. It was. Table 1 shows the relative value (%) when the resistance value of Comparative Example 1 is 100.0%. The smaller the value, the better the output characteristics.
 下記表1において、「(M/リチウム金属複合酸化物粉末)×100」とは、リチウム金属複合酸化物粉末のモル数に対する、表面処理剤中のアルミニウム、チタン及びジルコニウムの合計モル数の割合(M:Al、Ti,Zr)を意味し、「(M/Ni)×100」とは、リチウム金属複合酸化物粉末中のニッケルのモル数に対する、表面処理剤中のアルミニウム、チタン及びジルコニウムの合計モル数の割合(M:Al、Ti,Zr)}を意味し、「表面処理剤のディスパージョンの添加量」とは、表面処理剤を有機溶媒に分散させたディスパージョンのリチウム金属複合酸化物粉末100質量部に対する添加量を意味している。 In the following Table 1, “(M / lithium metal composite oxide powder) × 100” means the ratio of the total number of moles of aluminum, titanium and zirconium in the surface treatment agent to the number of moles of the lithium metal composite oxide powder ( M: Al, Ti, Zr), and “(M / Ni) × 100” is the sum of aluminum, titanium and zirconium in the surface treatment agent relative to the number of moles of nickel in the lithium metal composite oxide powder. "Molecular ratio (M: Al, Ti, Zr)}" and "addition amount of surface treatment agent dispersion" means a dispersion lithium metal composite oxide in which the surface treatment agent is dispersed in an organic solvent It means the amount added with respect to 100 parts by mass of the powder.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(考察)
 上記の実施例のように、焼成後のリチウム金属複合酸化物粉末を、アルミニウム、チタン及びジルコニウムのうちの少なくとも一種を含有する表面処理剤もしくは表面処理剤を有機溶媒に分散させたディスパージョンを用いてリチウム金属複合酸化物粉末の表面処理をした後、酸素雰囲気下、好ましくは酸素濃度20~100%の雰囲気下、温度700~950℃下に保持するように熱処理したところ、リチウム金属複合酸化物粒子の表面に、アルミニウム、チタン及びジルコニウムのうちの少なくとも一種を含有する表面層を形成することができ、リチウム二次電池の正極活物質として使用した場合に、電解液との反応を抑えて寿命特性を向上できるとともに、出力特性を同等若しくはそれ以上にできることが分かった。
(Discussion)
As in the above example, the sintered lithium metal composite oxide powder is a dispersion containing a surface treatment agent containing at least one of aluminum, titanium and zirconium or a surface treatment agent dispersed in an organic solvent. After the surface treatment of the lithium metal composite oxide powder, the lithium metal composite oxide was heat-treated in an oxygen atmosphere, preferably in an atmosphere having an oxygen concentration of 20 to 100% and maintained at a temperature of 700 to 950 ° C. A surface layer containing at least one of aluminum, titanium, and zirconium can be formed on the surface of the particles, and when used as a positive electrode active material of a lithium secondary battery, the life of the lithium secondary battery is suppressed and the reaction with the electrolyte is suppressed. It was found that the characteristics could be improved and the output characteristics could be made equal or better.
 なお、上記の実施例は特定組成の層状結晶構造を有するリチウム金属複合酸化物についての実施例であるが、これまで本発明者が行ってきた試験結果や技術常識からすれば、層状結晶構造を有するリチウム金属複合酸化物は共通する課題を有しており、また、表面処理及び熱処理による影響も同様であるから、層状結晶構造を有するリチウム金属複合酸化物であれば、その組成にかかわらず、共通して同様の効果を得ることができるものと考えることができる。 In addition, although said Example is an Example about lithium metal complex oxide which has a layered crystal structure of a specific composition, according to the test result and technical common sense which this inventor performed so far, a layered crystal structure is shown. Since the lithium metal composite oxide has a common problem, and the effects of surface treatment and heat treatment are the same, any lithium metal composite oxide having a layered crystal structure can be used regardless of its composition. It can be considered that the same effect can be obtained in common.

Claims (7)

  1.  アルミニウム、チタン及びジルコニウムのうちの少なくとも一種を含有する有機金属化合物を用いてリチウム金属複合酸化物粉末の表面処理を行う表面処理工程、及び、該表面処理後のリチウム金属複合酸化物粉末を熱処理する熱処理工程を備えた、層状結晶構造を有するリチウム金属複合酸化物の製造方法であって、
     前記熱処理工程では、表面処理後のリチウム金属複合酸化物粉末を、酸素含有雰囲気下、温度700~950℃下に保持するように熱処理することを特徴とする、層状結晶構造を有するリチウム金属複合酸化物の製造方法。
    A surface treatment step of performing a surface treatment of the lithium metal composite oxide powder using an organometallic compound containing at least one of aluminum, titanium and zirconium, and heat treating the lithium metal composite oxide powder after the surface treatment A method for producing a lithium metal composite oxide having a layered crystal structure, comprising a heat treatment step,
    In the heat treatment step, the lithium metal composite oxide powder having a layered crystal structure is heat-treated so that the surface-treated lithium metal composite oxide powder is maintained at a temperature of 700 to 950 ° C. in an oxygen-containing atmosphere. Manufacturing method.
  2.  前記表面処理工程では、リチウム金属複合酸化物粉末100質量部に対し、0.1~20質量部相当の表面処理剤を接触させることを特徴とする請求項1に記載のリチウム金属複合酸化物の製造方法。 The lithium metal composite oxide according to claim 1, wherein in the surface treatment step, a surface treatment agent corresponding to 0.1 to 20 parts by mass is brought into contact with 100 parts by mass of the lithium metal composite oxide powder. Production method.
  3.  前記表面処理工程では、前記リチウム金属複合酸化物粉末のモル数に対する、表面処理剤中のアルミニウム、チタン及びジルコニウムの合計モル数の割合{(M/リチウム金属複合酸化物粉末)×100(M:Al、Ti,Zr)}が0.005~4%となるように、リチウム金属複合酸化物粉末と表面処理剤とを接触させることを特徴とする請求項1に記載のリチウム金属複合酸化物の製造方法。 In the surface treatment step, the ratio of the total number of moles of aluminum, titanium and zirconium in the surface treatment agent to the number of moles of the lithium metal composite oxide powder {(M / lithium metal composite oxide powder) × 100 (M: 2. The lithium metal composite oxide according to claim 1, wherein the lithium metal composite oxide powder and the surface treatment agent are brought into contact so that Al, Ti, Zr)} is 0.005 to 4%. Production method.
  4.  前記表面処理工程では、前記リチウム金属複合酸化物粉末中のニッケルのモル数に対する、表面処理剤中のアルミニウム、チタン及びジルコニウムの合計モル数の割合{(M/Ni)×100(M:Al、Ti,Zr)}が0.01~13%となるように、リチウム金属複合酸化物粉末と表面処理剤とを接触させることを特徴とする請求項1に記載のリチウム金属複合酸化物の製造方法。 In the surface treatment step, the ratio of the total number of moles of aluminum, titanium and zirconium in the surface treatment agent to the number of moles of nickel in the lithium metal composite oxide powder {(M / Ni) × 100 (M: Al, 2. The method for producing a lithium metal composite oxide according to claim 1, wherein the lithium metal composite oxide powder is brought into contact with the surface treatment agent so that Ti, Zr)} is 0.01 to 13%. .
  5.  前記表面処理工程では、リチウム金属複合酸化物粉末100質量部に対し、表面処理剤を有機溶媒に分散させたディスパージョンを0.2~20質量部接触させることを特徴とする請求項1~4の何れかに記載のリチウム金属複合酸化物の製造方法。 5. In the surface treatment step, 0.2 to 20 parts by mass of a dispersion in which a surface treatment agent is dispersed in an organic solvent is brought into contact with 100 parts by mass of a lithium metal composite oxide powder. A method for producing a lithium metal composite oxide according to any one of the above.
  6.  解砕前後の比表面積(SSA)の変化率が100~250%となる解砕強度で、リチウム金属複合酸化物粉末を解砕する解砕工程を、前記熱処理工程後にさらに備えた請求項1~5の何れかに記載のリチウム金属複合酸化物の製造方法。 A crushing step of crushing the lithium metal composite oxide powder at a crushing strength at which the change rate of the specific surface area (SSA) before and after crushing is 100 to 250% is further provided after the heat treatment step. 6. The method for producing a lithium metal composite oxide according to any one of 5 above.
  7.  前記の表面処理に用いる有機金属化合物は、カップリング剤である請求項1~6の何れかに記載のリチウム金属複合酸化物の製造方法。 The method for producing a lithium metal composite oxide according to any one of claims 1 to 6, wherein the organometallic compound used for the surface treatment is a coupling agent.
PCT/JP2015/059468 2014-03-28 2015-03-26 Method for manufacturing lithium metal complex oxide having layered crystal structure WO2015147209A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016510504A JP6546582B2 (en) 2014-03-28 2015-03-26 Method for producing lithium metal composite oxide having layered crystal structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-069443 2014-03-28
JP2014069443 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015147209A1 true WO2015147209A1 (en) 2015-10-01

Family

ID=54195713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059468 WO2015147209A1 (en) 2014-03-28 2015-03-26 Method for manufacturing lithium metal complex oxide having layered crystal structure

Country Status (2)

Country Link
JP (1) JP6546582B2 (en)
WO (1) WO2015147209A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329267A (en) * 1991-04-30 1992-11-18 Sony Corp Organic electrolyte secondary battery
WO2006123572A1 (en) * 2005-05-17 2006-11-23 Sony Corporation Positive electrode active material and process for producing the same, and battery
WO2010008058A1 (en) * 2008-07-17 2010-01-21 旭硝子株式会社 Anode composite for nonaqueous electrolyte cell
JP2011187174A (en) * 2010-03-04 2011-09-22 Agc Seimi Chemical Co Ltd Method for manufacturing positive electrode active material for lithium ion secondary battery
WO2013024621A1 (en) * 2011-08-17 2013-02-21 日本電気株式会社 Lithium-ion cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329267A (en) * 1991-04-30 1992-11-18 Sony Corp Organic electrolyte secondary battery
WO2006123572A1 (en) * 2005-05-17 2006-11-23 Sony Corporation Positive electrode active material and process for producing the same, and battery
WO2010008058A1 (en) * 2008-07-17 2010-01-21 旭硝子株式会社 Anode composite for nonaqueous electrolyte cell
JP2011187174A (en) * 2010-03-04 2011-09-22 Agc Seimi Chemical Co Ltd Method for manufacturing positive electrode active material for lithium ion secondary battery
WO2013024621A1 (en) * 2011-08-17 2013-02-21 日本電気株式会社 Lithium-ion cell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIN GYU KIM ET AL.: "Air stable A1203-coated Li2Ni02 cathode additive as a surplus current consumer in a Li-ion cell", JOURNAL OF MATERIALS CHEMISTRY, vol. 18, no. 48, 2008, pages 5880 - 5887, XP055077327 *
YOUNGSIK KIM ET AL.: "Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3CO1/3Mn1/3O2 cathode materials for lithium ion batteries", ELECTROCHIMICA ACTA, vol. 52, no. 3, 2006, pages 1316 - 1322, XP028027984 *

Also Published As

Publication number Publication date
JPWO2015147209A1 (en) 2017-04-13
JP6546582B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
JP6335276B2 (en) Positive electrode active material for lithium secondary battery
JP6626434B2 (en) Lithium metal composite oxide powder
JP5204913B1 (en) Lithium metal composite oxide with layer structure
JP6251843B2 (en) Method for producing lithium metal composite oxide having layer structure
WO2014136760A1 (en) Lithium metal composite oxide powder
JP6586220B2 (en) Lithium metal composite oxide with layer structure
JP5606654B2 (en) Lithium metal composite oxide
JP5308600B1 (en) Lithium metal composite oxide with layer structure
JP5572268B1 (en) Spinel-type lithium manganese nickel-containing composite oxide
WO2013100070A1 (en) Spinel-type lithium manganese transition metal oxide
JP5953269B2 (en) Method for producing positive electrode active material for lithium secondary battery
WO2012008480A1 (en) Spinel-type lithium transition metal oxide and positive electrode active material substance for lithium batteries
JP6516919B2 (en) Positive electrode active material for lithium secondary battery
JP5951518B2 (en) Method for producing lithium metal composite oxide having layer structure
WO2017150522A1 (en) Positive electrode active material for lithium secondary battery
JP4673451B2 (en) Method for producing lithium transition metal oxide
JP6546582B2 (en) Method for producing lithium metal composite oxide having layered crystal structure
JP6200932B2 (en) Method for producing lithium metal composite oxide having layer structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510504

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15768163

Country of ref document: EP

Kind code of ref document: A1