JP2000327339A - Li-Co-BASED COMPOUND OXIDE AND ITS PRODUCTION - Google Patents

Li-Co-BASED COMPOUND OXIDE AND ITS PRODUCTION

Info

Publication number
JP2000327339A
JP2000327339A JP11136360A JP13636099A JP2000327339A JP 2000327339 A JP2000327339 A JP 2000327339A JP 11136360 A JP11136360 A JP 11136360A JP 13636099 A JP13636099 A JP 13636099A JP 2000327339 A JP2000327339 A JP 2000327339A
Authority
JP
Japan
Prior art keywords
composite oxide
based composite
compound oxide
based compound
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11136360A
Other languages
Japanese (ja)
Other versions
JP3308232B2 (en
Inventor
Itaru Gosho
至 御書
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP13636099A priority Critical patent/JP3308232B2/en
Publication of JP2000327339A publication Critical patent/JP2000327339A/en
Application granted granted Critical
Publication of JP3308232B2 publication Critical patent/JP3308232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To produce an Li-Co-based compound oxide useful as a positive pole active material for a nonaqueous electrolyte battery such as a lithium secondary battery and capable of improving charge and discharge cycle characteristics of the battery and to provide a method for producing the Li-Co-based compound oxide. SOLUTION: This particulate Li-Co-based compound oxide has the sum value A (μm) of respective lattice spacings in (104), (105), (009), (107), (108) and (113) indices of planes, the specific surface area B (m2/g) and the average particle diameter C (μm) satisfying the following formula: formula: 0.025<=[(A-11)/(B.C)]<=0.04. The method for producing the Li-Co-based compound oxide comprises carrying out water washing treatment of a particulate material of the Li-Co-based compound oxide, regulating the amount of water-soluble lithium compound-based impurities to <=0.05 wt.% and then heat-treating the resultant compound oxide at 400-700 deg.C for 0.5-50 h. The Li-Co-based compound oxide is suitable for producing a long-lived lithium secondary battery for various kinds of electrical equipment, especially for portable articles, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Li−Co系複合
酸化物およびその製造方法に関し、特にリチウム二次電
池などの非水電解液二次電池の正極活物質として有用な
Li−Co系複合酸化物およびその製造方法に関する。
The present invention relates to a Li-Co-based composite oxide and a method for producing the same, and more particularly to a Li-Co-based composite oxide useful as a positive electrode active material for a non-aqueous electrolyte secondary battery such as a lithium secondary battery. The present invention relates to an oxide and a method for producing the oxide.

【0002】[0002]

【従来の技術】現在、リチウム二次電池の正極活物質と
して、Li−Mn系複合酸化物、Li−Ni系複合酸化
物、Li−Co系複合酸化物などが提案され、それらの
一部は実用されるに至っている。それらのうちLi−M
n系複合酸化物やLi−Ni系複合酸化物は、MnやN
iの資源が豊富であるために安価に製造できる反面、L
i−Mn系複合酸化物は概して高容量の二次電池を製造
し難い問題があり、一方Li−Ni系複合酸化物は、化
学的に不安定であって二次電池の安全性の面で問題があ
る。これに対してLi−Co系複合酸化物は、Li−N
i系複合酸化物と比較して化学的に安定であるので取り
扱いが容易であり、しかも高容量の二次電池を製造し得
るので現在では最も多く実用に供されている。
2. Description of the Related Art Li-Mn-based composite oxides, Li-Ni-based composite oxides, and Li-Co-based composite oxides have been proposed as positive electrode active materials for lithium secondary batteries. It has been put to practical use. Li-M among them
n-based composite oxides and Li-Ni-based composite oxides include Mn and N
i has abundant resources and can be manufactured at low cost.
The i-Mn-based composite oxide generally has a problem that it is difficult to manufacture a high-capacity secondary battery, while the Li-Ni-based composite oxide is chemically unstable and has a problem in terms of safety of the secondary battery. There's a problem. On the other hand, Li-Co-based composite oxide is Li-N
Compared to i-type composite oxides, they are chemically stable and easy to handle, and can produce a high-capacity secondary battery.

【0003】かかる長所を有するLi−Co系複合酸化
物を用いた二次電池に対して、最近、その電池特性を一
層改善する要求が高まっており、そのための提案や報告
もなされている。例えば特公平7−118318号公報
には、LiCoO2 を製造するにあたり、原料たるリチ
ウム化合物とコバルト化合物との使用比をリチウムがリ
ッチとなるように配合し混合して加熱し、反応生成物中
に含まれる未反応のリチウム化合物や副生せる炭酸リチ
ウムを水洗除去すること、およびかくすると二次電池の
放電容量が向上すること、などが開示されている。また
特開平5−182667号公報には、電池の稼働中にお
ける異常な電池反応に基づく爆発事故を未然に防止する
ために、LiCoO2 に炭酸リチウムを共存せしめるこ
と、およびその具体的な方法が開示されている。
Recently, demands for further improving the battery characteristics of a secondary battery using a Li—Co-based composite oxide having such advantages have been increasing, and proposals and reports for that purpose have been made. For example, Japanese Patent Publication No. Hei 7-118318 discloses that in producing LiCoO 2 , the use ratio of a lithium compound and a cobalt compound as raw materials is blended so as to make lithium rich, mixed, heated, and contained in a reaction product. It discloses that the unreacted lithium compound and by-produced lithium carbonate contained therein are removed by washing with water, and that the discharge capacity of the secondary battery is thereby improved. Japanese Patent Application Laid-Open No. 5-182667 discloses a method of coexisting lithium carbonate with LiCoO 2 and a specific method thereof in order to prevent an explosion accident due to an abnormal battery reaction during operation of the battery. Have been.

【0004】ところで本発明者が行った最近の研究か
ら、特定の結晶構造を有し、且つ特定の比表面積と粒径
とを有する粒状物にて形成されたLi−Co系複合酸化
物を正極活物質として用いると、リチウム二次電池の充
放電サイクル特性を改善し得ることが判明した。
[0004] Recent research conducted by the present inventors has shown that a Li-Co-based composite oxide formed of granules having a specific crystal structure and a specific specific surface area and a specific particle size is used as a positive electrode. It has been found that when used as an active material, the charge / discharge cycle characteristics of a lithium secondary battery can be improved.

【0005】[0005]

【発明が解決しようとする課題】しかして本発明は、上
記の新知見を基に開発し完成したものであって、リチウ
ム二次電池などの非水電解液二次電池の正極活物質とし
て有用であり、該電池の充放電サイクル特性を改善し得
るLi−Co系複合酸化物およびその製造方法を提供す
ることを課題とする。
SUMMARY OF THE INVENTION The present invention has been developed and completed based on the above-mentioned new findings, and is useful as a positive electrode active material for non-aqueous electrolyte secondary batteries such as lithium secondary batteries. It is an object of the present invention to provide a Li-Co-based composite oxide capable of improving the charge / discharge cycle characteristics of the battery and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記の課題は、下記のL
i−Co系複合酸化物およびその製造方法により解決す
ることができる。 面指数(104)、(105)、(009)、(1
07)、(108)、および(113)におけるそれぞ
れの格子面間隔の合計値A(μm)、比表面積B(m2
/g)および平均粒径C(μm)が下式(1)を満足す
る粒状物であることを特徴とするLi−Co系複合酸化
物。 0.025≦〔(A−11)/(B・C)〕≦0.04 (1) 粒状物は、比表面積Bが0.1〜0.3m2 /gで
あり、平均粒径Cが10〜25μmである上記記載の
Li−Co系複合酸化物。 粒状物は、水溶性リチウム化合物系不純物の量が該
不純物をLi2 CO3 量に換算して0.05重量%以下
である上記または記載のLi−Co系複合酸化物。 非水電解液二次電池の正極活物質用である上記〜
のいずれかに記載のLi−Co系複合酸化物。 Li−Co系複合酸化物の粒状物を水洗処理して水
溶性リチウム化合物系不純物の量が該不純物をLi2
3 量に換算して0.05重量%以下となるようにし、
ついで空気中あるいは不活性雰囲気中で400〜700
℃の高温度下で0.5〜50時間熱処理することを特徴
とする上記、、のいずれかに記載のLi−Co系
複合酸化物の製造方法。 平均粒径Cが10〜25μmの粒状物を水洗処理
し、ついで熱処理する上記記載のLi−Co系複合酸
化物の製造方法。
The above object is achieved by the following L
The problem can be solved by an i-Co-based composite oxide and a method for producing the same. Surface indices (104), (105), (009), (1
07), (108), and (113), the total value A (μm) of the lattice spacings and the specific surface area B (m 2)
/ G) and an average particle size C (μm) are granular materials satisfying the following formula (1). 0.025 ≦ [(A-11) / (B · C)] ≦ 0.04 (1) The granular material has a specific surface area B of 0.1 to 0.3 m 2 / g and an average particle diameter C of The above-described Li-Co-based composite oxide having a thickness of 10 to 25 µm. The above-mentioned or the above-described Li-Co-based composite oxide, wherein the amount of the water-soluble lithium compound-based impurity is 0.05% by weight or less when the amount of the impurity is converted into the amount of Li 2 CO 3 . The above for the positive electrode active material of the non-aqueous electrolyte secondary battery ~
The Li-Co-based composite oxide according to any one of the above. The particles of the Li—Co-based composite oxide are washed with water and the amount of the water-soluble lithium compound-based impurities is reduced by Li 2 C
So as to be 0.05% by weight or less in terms of O 3 amount,
Then 400 to 700 in air or in an inert atmosphere
The method for producing a Li—Co-based composite oxide according to any one of the above, wherein the heat treatment is performed at a high temperature of 0.5 ° C. for 0.5 to 50 hours. The above-described method for producing a Li-Co-based composite oxide, wherein the granular material having an average particle size C of 10 to 25 µm is washed with water and then heat-treated.

【0007】[0007]

【発明の実施の形態】本発明のLi−Co系複合酸化物
は、化学構造的には、LiCoO2 またはそのCoの一
部を一種または二種以上の他の元素で置換したもの、例
えば下記の一般式(2)にて示されるものであってもよ
い。 LiA Co1-X Mex 2 (2) 一般式(2)において、Aは0.05〜1.5、好まし
くは0.1〜1.1であり、Xは0.01〜0.5、特
に0.02〜0.2であることが好ましい。元素Meと
しては、新周期率表の3〜10族元素、例えばZr、
V、Cr、Mo、Mn、Fe、Niなど、または13〜
15族元素、例えばB、Al、Ge、Pb、Sn、Sb
などである。それらの元素の二種以上でCoを置換した
Li−Co系複合酸化物にあっては、二種以上の元素の
合計量が上記Xの範囲内であればよい。
BEST MODE FOR CARRYING OUT THE INVENTION The Li—Co-based composite oxide of the present invention has a chemical structure in which LiCoO 2 or a part of Co thereof is substituted with one or more kinds of other elements. May be represented by the general formula (2). Li A Co 1-x Me x O 2 (2) In the general formula (2), A is 0.05 to 1.5, preferably 0.1 to 1.1, and X is 0.01 to 0. 5, preferably 0.02 to 0.2. As the element Me, a group 3-10 element of the new periodic table, for example, Zr,
V, Cr, Mo, Mn, Fe, Ni, etc., or 13 to
Group 15 element, for example, B, Al, Ge, Pb, Sn, Sb
And so on. In the case of a Li—Co-based composite oxide in which Co is substituted with two or more of these elements, the total amount of the two or more elements may be within the range of X described above.

【0008】本発明のLi−Co系複合酸化物は、面指
数(104)、(105)、(009)、(107)、
(108)、および(113)におけるそれぞれの格子
面間隔(d値)の合計値A(μm)、比表面積B(m2
/g)および平均粒径C(μm)が式(1)を満足する
粒状物にて形成されている。同式における〔(A−1
1)/(B・C)〕の値が0.025未満あるいは0.
04より大である粒状物を正極活物質として用いた場合
には、ともにリチウム二次電池の充放電サイクル特性に
良好な改良がみられず、しかして本発明においては下式
(3)を満足する粒状物にて形成されてなるLi−Co
系複合酸化物が特に好ましい。 0.032≦〔(A−11)/(B・C)〕≦0.038 (3)
The Li—Co-based composite oxide of the present invention has plane indices (104), (105), (009), (107),
The total value A (μm) and specific surface area B (m 2 ) of the respective lattice plane intervals (d values) in (108) and (113)
/ G) and an average particle size C (μm) satisfying the formula (1). [(A-1
1) / (B · C)] is less than 0.025 or 0.1.
In the case where a particulate material larger than 04 was used as the positive electrode active material, no favorable improvement was observed in the charge / discharge cycle characteristics of the lithium secondary battery, and the present invention satisfied the following expression (3). Li-Co formed of fine particles
Based composite oxides are particularly preferred. 0.032 ≦ [(A-11) / (B · C)] ≦ 0.038 (3)

【0009】式(1)を満足する限り、本発明のLi−
Co系複合酸化物は、リチウム二次電池の充放電サイク
ル特性の観点からは、d値の合計値、比表面積、平均粒
径の各大きさについては特に制限はない。但し、d値の
合計値が過少である場合には結晶中での圧縮歪みが大き
く、一方それが過大である場合には結晶中での引張り歪
みが大きく、しかしていずれの場合とも電池の充放電サ
イクル特性を低下せしめる傾向にあるので好ましくな
い。よって該合計値は、11.10〜11.15程度、
特に11.11〜11.14程度が好ましい。また平均
粒径が過少なLi−Co系複合酸化物は、反応性に富ん
でいて概して異常な電池反応を惹起し易く、一方それが
過大なLi−Co系複合酸化物は、電気抵抗が大きくこ
のためにリチウム二次電池の単位容積当たりのエネルギ
ー密度の低減に繋がるので、平均粒径は10〜25μm
程度、特に15〜20μm程度が好ましい。Li−Co
系複合酸化物の比表面積の好ましい範囲は、リチウム二
次電池の充放電サイクル特性の観点から0.1〜0.3
2 /g程度、特に0.15〜0.25m2 /g程度で
ある。
As long as the formula (1) is satisfied, the Li-
The Co-based composite oxide is not particularly limited in terms of the total value of the d values, the specific surface area, and the average particle size from the viewpoint of the charge / discharge cycle characteristics of the lithium secondary battery. However, when the sum of the d values is too small, the compressive strain in the crystal is large, while when it is too large, the tensile strain in the crystal is large, and in any case, the battery is charged. This is not preferred because it tends to lower the discharge cycle characteristics. Therefore, the total value is about 11.10 to 11.15,
In particular, about 11.11 to 11.14 is preferable. In addition, a Li-Co-based composite oxide having an excessively small average particle size is rich in reactivity and generally easily causes an abnormal battery reaction, while a Li-Co-based composite oxide having an excessively large average particle diameter has a large electric resistance. This leads to a reduction in the energy density per unit volume of the lithium secondary battery, and the average particle size is 10 to 25 μm.
Degree, particularly preferably about 15 to 20 μm. Li-Co
The preferred range of the specific surface area of the system composite oxide is 0.1 to 0.3 from the viewpoint of the charge and discharge cycle characteristics of the lithium secondary battery.
m 2 / g approximately, in particular 0.15~0.25m 2 / g approximately.

【0010】本発明において、Li−Co系複合酸化物
の粒状物のd値の合計値、比表面積、および平均粒径
は、それぞれつぎに示す方法により測定することができ
る。 〔d値の合計値の測定〕対陰極が銅のX線回折装置を用
い、発散スリット0.5deg.、散乱スリット0.5
deg.、受光スリット0.15mm、ステップ幅0.
006deg.、計測時間0.5秒のステップスキャン
の条件および方法にて面指数(104)、(105)、
(009)、(107)、(108)、および(11
3)のそれぞれのd値を測定し、それらd値の合計値
(μm)を算出する。 〔比表面積の測定方法〕「粉体の材料化学」〔荒井康夫
著、初版第9刷、培風館(東京)発行、1995年〕の
第178頁〜第184頁に記載された吸着法のうち、窒
素を吸着体とする気相吸着法(一点法)による。 〔平均粒径の測定方法〕Li−Co系複合酸化物の粒状
物を水あるいはエタノールなどの有機液体に投入し、3
5〜40kHz程度の超音波を付与した状態にて約2分
間分散処理して得た分散液を用い、且つその場合の粒状
物の量は該分散液のレーザー透過率(入射光量に対する
出力光量の比)が70〜95%となる量とし、ついで該
分散液に就いて、マイクロトラック粒度分析計にかけて
レーザー光の散乱により個々の粒状物の粒径(D1 、D
2 、D3 ・・)、および各粒径毎の存在個数(N1 、N
2、N3 ・・・)を計測する(個々の粒状物の粒径
(D)は、マイクロトラック粒度分析計によれば種々の
形状の粒状物毎に球相当径が自動的に測定される。)。
しかして平均粒径(μm)は、視野内に存在する個々の
粒子の個数(N)と各粒径(D)とから下式(4)にて
算出される。 平均粒径(μm)=(ΣND3 /ΣN) 1/ 3 (4)
In the present invention, the total value of the d values, the specific surface area, and the average particle size of the granular material of the Li—Co-based composite oxide can be measured by the following methods. [Measurement of total value of d value] The divergence slit was 0.5 deg. , Scattering slit 0.5
deg. , Light receiving slit 0.15 mm, step width 0.
006 deg. The surface indices (104), (105),
(009), (107), (108), and (11)
The respective d values of 3) are measured, and the total value (μm) of the d values is calculated. [Method for Measuring Specific Surface Area] Among the adsorption methods described in pages 178 to 184 of “Material Chemistry of Powder” [Yasuo Arai, First Edition, 9th Edition, published by Baifukan (Tokyo), 1995] Gas phase adsorption method (single point method) using nitrogen as an adsorbent. [Measurement method of average particle diameter] The granular material of the Li-Co-based composite oxide is charged into an organic liquid such as water or ethanol, and 3
A dispersion obtained by performing a dispersion treatment for about 2 minutes while applying ultrasonic waves of about 5 to 40 kHz is used, and the amount of particulate matter in that case is determined by the laser transmittance of the dispersion (the output light amount with respect to the incident light amount). Ratio) is 70-95%, and then the dispersion is passed through a Microtrac particle size analyzer to scatter laser light to determine the particle size (D 1 , D 1 ) of each granular material.
2, D 3 ··), and the presence the number of each particle each diameter (N 1, N
(2 , N 3 ...) Is measured (the particle diameter (D) of each granular material is automatically measured by a Microtrac particle size analyzer for each granular material having various shapes). .).
The average particle diameter (μm) is calculated by the following equation (4) from the number (N) of individual particles present in the visual field and each particle diameter (D). Average particle size (μm) = (ΣND 3 / ΣN) 1/3 (4)

【0011】つぎに、本発明のLi−Co系複合酸化物
の粒状物の製造方法について説明する。一般的にLi−
Co系複合酸化物の粒状物は、出発原料としてリチウム
やコバルトの酸化物、水酸化物、ハロゲン化物、硝酸
塩、しゅう酸塩、炭酸塩などを用い、かかるリチウム化
合物とコバルト化合物との混合物を、あるいは式(2)
で示すようなCoの一部が他の元素で置換されたLi−
Co系複合酸化物を製造する場合には上記の混合物に置
換元素の化合物を少量配合した混合物を周知の方法にて
反応せしめ、例えば該混合物を大気中で1000℃前後
で1〜50時間加熱焼成せしめ、かくして製造したLi
−Co系複合酸化物の塊状物を粉砕し、必要に応じて分
級して式(1)を満たすd値の合計値、比表面積、およ
び平均粒径を有する粒状物を選択採取して得ることがで
きる。就中、後記する理由にて、水洗処理などにより水
溶性リチウム化合物系不純物の量を後記の式(5)にて
Li 2 CO3 量に換算した値で0.05重量%以下とし
てなるものが好ましい。なお以下においても水溶性リチ
ウム化合物系不純物の量は、式(5)によるLi2 CO
3 換算量を意味するものとする。また本発明のLi−C
o系複合酸化物の粒状物は、上記の塊状物を粉砕して得
たものなどのLi−Co系複合酸化物の粒状物、就中、
平均粒径10μm〜25μmの粒状物を後記する水洗処
理し、必要に応じて乾燥した後、大気中、あるいは窒
素、アルゴンなどの不活性ガス雰囲気中で400〜70
0℃で0.5〜50時間特に1〜20時間程度、好まし
くは500〜700℃で0.5〜50時間特に1〜20
時間程度、熱処理することによっても製造することがで
きる。なお熱処理を行う雰囲気中に炭酸ガスが存在する
と炭酸リチウムが生じて不純物の含有量の増大に繋がる
ので、雰囲気中の炭酸ガス分圧は、10mmHg以下と
することが好ましい。
Next, the Li-Co-based composite oxide of the present invention
The method for producing the granular material will be described. In general, Li-
Co-based composite oxide particles are lithium as a starting material.
And cobalt oxides, hydroxides, halides, nitric acid
Lithiation using salts, oxalates, carbonates, etc.
A mixture of a compound and a cobalt compound, or a compound of the formula (2)
Li- in which a part of Co is replaced by another element as shown by
When producing a Co-based composite oxide, place in the above mixture.
A mixture containing a small amount of a compound of the
Let the mixture react, for example, in air at around 1000 ° C
Li for 1 to 50 hours
-The lump of the Co-based composite oxide is pulverized and separated if necessary.
And the total value of d values satisfying the expression (1), the specific surface area, and
And selectively obtain granules having an average particle size.
Wear. Especially, for the reasons described below,
The amount of the soluble lithium compound-based impurity is calculated by the following formula (5).
Li TwoCOThree0.05% by weight or less
Are preferred. In addition, water-soluble
The amount of the impurity compound is calculated according to the formula (5).TwoCO
ThreeIt means the conversion amount. The Li-C of the present invention
The granular material of the o-based composite oxide is obtained by pulverizing the mass
Particles of a Li-Co-based composite oxide such as
A water washing process described below for granules having an average particle size of 10 μm to 25 μm
After drying if necessary,
400 to 70 in an inert gas atmosphere such as nitrogen or argon
0.5 to 50 hours at 0 ° C, especially about 1 to 20 hours, preferably
Or 500-700 ° C for 0.5-50 hours, especially 1-20
It can be manufactured by heat treatment for about an hour.
Wear. Note that carbon dioxide gas exists in the atmosphere in which the heat treatment is performed.
And lithium carbonate are generated, leading to an increase in the content of impurities.
Therefore, the partial pressure of carbon dioxide in the atmosphere is 10 mmHg or less.
Is preferred.

【0012】一般的に、リチウム化合物とコバルト化合
物との混合比率は、リチウム化合物がコバルト化合物と
比較して気化による逸散性が高いことなどの理由から、
通常リチウムリッチとなるようにする。この結果、加熱
焼成して得たLi−Co系複合酸化物は、酸化リチウ
ム、水酸化リチウム、炭酸リチウムなどのリチウム化合
物系不純物を含有している場合が多い。
In general, the mixing ratio of the lithium compound and the cobalt compound is determined because the lithium compound has a higher fugitive property due to vaporization than the cobalt compound.
Usually, it is made to be lithium rich. As a result, the Li—Co-based composite oxide obtained by heating and firing often contains lithium compound-based impurities such as lithium oxide, lithium hydroxide, and lithium carbonate.

【0013】本発明において、かかるリチウム化合物系
不純物、就中、水酸化リチウム、炭酸リチウムなどの水
溶性リチウム化合物系不純物を水洗処理により粒状物中
での量が0.05重量%以下となるように除去すると、
一層好ましくは、かく水溶性不純物が除去された水洗処
理物を上記の条件にて熱処理すると、式(1)あるいは
式(3)を満たす粒状物の製造収率が向上し、しかもリ
チウム二次電池の充放電サイクル特性が向上する効果も
大きくなる。さらに集電体がアルミニウム製である場
合、水溶性リチウム化合物系不純物は該集電体を腐食し
て二次電池の充放電サイクル特性を低下する問題もある
ので、水溶性リチウム化合物系不純物の低減はこの面か
らも好ましい。この水洗処理は、蒸留水やイオン交換水
を洗浄水として用い、必要に応じて処理の際に機械的撹
拌や超音波を付与する通常の方法により行うことができ
る。なお水洗処理された粒状物中に残存するリチウム化
合物系不純物量(Li2 CO3 換算量)Dは、つぎの方
法および算出式(5)にて定量することができる。 〔水溶性リチウム化合物系不純物Dの定量方法〕Li−
Co系複合酸化物の粒状物の約10gを純水100ml
中に懸濁させ、10分間撹拌した後に濾別し、その濾液
について0.1Nの塩酸にて滴定し、該塩酸の滴下量か
らLiイオン濃度L(モル/リットル)を算出し、水溶
性リチウム化合物系不純物D(重量%)を下式(5)に
て算出する。 D=L×(Li2 CO3 の分子量:73.89)/2=36.95L (5)
In the present invention, the amount of such lithium compound-based impurities, particularly, water-soluble lithium compound-based impurities such as lithium hydroxide and lithium carbonate, is reduced to 0.05% by weight or less in the granular material by a water washing treatment. To remove
More preferably, when the washed product from which the water-soluble impurities have been removed is subjected to a heat treatment under the above conditions, the production yield of the granular material satisfying the formula (1) or (3) is improved, and the lithium secondary battery is further improved. The effect of improving the charge / discharge cycle characteristics of the semiconductor device also increases. Further, when the current collector is made of aluminum, there is a problem that the water-soluble lithium compound-based impurities corrode the current collector and deteriorate the charge / discharge cycle characteristics of the secondary battery. Is also preferable from this aspect. This water washing treatment can be carried out by a conventional method using distilled water or ion-exchanged water as washing water, and applying mechanical stirring or ultrasonic waves at the time of the treatment as necessary. The amount of lithium compound-based impurities (amount in terms of Li 2 CO 3 ) D remaining in the water-washed granules can be determined by the following method and calculation formula (5). [Quantitative determination method of water-soluble lithium compound impurity D] Li-
Approximately 10 g of Co-based composite oxide granules were added to 100 ml of pure water.
Suspended in water, stirred for 10 minutes, filtered off, and the filtrate was titrated with 0.1N hydrochloric acid, and the Li ion concentration L (mol / L) was calculated from the amount of the hydrochloric acid added dropwise. The compound-based impurity D (% by weight) is calculated by the following equation (5). D = L × (molecular weight of Li 2 CO 3 : 73.89) /2=36.95 L (5)

【0014】本発明者の研究によれば、Li−Co系複
合酸化物の粒状物は、上記の水洗処理や熱処理により、
特に水洗処理と熱処理とにより、概してその平均粒径は
然程あるいは実質的に変化しないがd値の合計値と比表
面積が変化して、その結果、式(1)や式(3)を満た
す粒状物を得易くなる。
According to the study of the present inventor, the granular material of the Li—Co-based composite oxide is subjected to the above-mentioned washing or heat treatment.
In particular, although the average particle diameter does not substantially or substantially change by the water washing treatment and the heat treatment, the total value of the d value and the specific surface area change, and as a result, the formulas (1) and (3) are satisfied. It becomes easier to obtain granules.

【0015】本発明のLi−Co系複合酸化物は、リチ
ウム二次電池などの非水電解液電池の正極活物質として
用いることができ、例えばリチウム二次電池用として周
知の他の材料や部材と共に用いてリチウム二次電池の製
造に供することができる。その主な材料あるいは部材を
以下に例示する。
The Li—Co-based composite oxide of the present invention can be used as a positive electrode active material of a non-aqueous electrolyte battery such as a lithium secondary battery. For example, other materials and members known for lithium secondary batteries are used. It can be used for the manufacture of a lithium secondary battery. The main materials or members are exemplified below.

【0016】Li−Co系複合酸化物の結着剤として
は、ポリテトラフルオロエチレン、ポリビニリデンフル
オリド、ポリエチレン、エチレン−プロピレン−ジエン
系ポリマーなどが例示され、導電剤としては、例えば繊
維状黒鉛、鱗片状黒鉛、球状黒鉛などの天然や人造の黒
鉛類や導電性カーボンブラックなどが例示される。結着
剤の使用量は、Li−Co系複合酸化物100重量部あ
たり1〜10重量部程度、特に2〜5重量部程度であ
り、導電剤の使用量はLi−Co系複合酸化物100重
量部あたり3〜15重量部程度、特に4〜10重量部程
度である。正極集電体としては、アルミニウム、アルミ
ニウム合金、チタンなどの導電性金属の、厚さ10〜1
00μm程度、特に15〜50μm程度の箔や穴あき
箔、厚さ25〜300μm程度、特に30〜150μm
程度のエキスパンドメタルなどが好ましい。
Examples of the binder for the Li-Co-based composite oxide include polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, and ethylene-propylene-diene-based polymers. Examples of the conductive agent include fibrous graphite. Natural and artificial graphites such as flaky graphite and spheroidal graphite, and conductive carbon black. The amount of the binder used is about 1 to 10 parts by weight, especially about 2 to 5 parts by weight, per 100 parts by weight of the Li-Co-based composite oxide. It is about 3 to 15 parts by weight, especially about 4 to 10 parts by weight per part by weight. As the positive electrode current collector, a conductive metal such as aluminum, an aluminum alloy, or titanium having a thickness of 10 to 1
About 00 μm, especially about 15 to 50 μm foil or perforated foil, about 25 to 300 μm thickness, especially about 30 to 150 μm
A certain degree of expanded metal is preferred.

【0017】負極活物質として好ましい例を挙げると、
各種の天然黒鉛や人造黒鉛、例えば繊維状黒鉛、鱗片状
黒鉛、球状黒鉛などの黒鉛類であり、その結着剤として
は、ポリテトラフルオロエチレン、ポリビニリデンフル
オリド、ポリエチレン、エチレン−プロピレン−ジエン
系ポリマーなどである。負極活物質の使用量は、負極活
物質と結着剤との合計量100重量部あたり80〜96
重量部程度である。負極集電体としては、銅、ニッケ
ル、銀、SUSなどの導電性金属の、厚さ5〜100μ
m程度、特に8〜50μm程度の箔や穴あき箔、厚さ2
0〜300μm程度、特に25〜100μm程度のエキ
スパンドメタルなどが好ましい。
Preferred examples of the negative electrode active material include:
Various natural graphites and artificial graphites, for example, graphites such as fibrous graphite, flaky graphite, spheroidal graphite, and the binders thereof include polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, ethylene-propylene-diene. And the like. The amount of the negative electrode active material used is 80 to 96 per 100 parts by weight of the total amount of the negative electrode active material and the binder.
It is about parts by weight. As the negative electrode current collector, a conductive metal such as copper, nickel, silver, and SUS, having a thickness of 5 to 100 μm.
m, especially about 8 to 50 μm foil or perforated foil, thickness 2
Expanded metal having a thickness of about 0 to 300 μm, particularly about 25 to 100 μm is preferable.

【0018】電解液としては、塩類を有機溶媒に溶解さ
せたものが例示される。該塩類としては、LiCl
4 、LiBF4 、LiPF6 、LiAsF6 、LiA
lCl4、Li(CF3 SO2 2 Nなどが例示され、
それらの一種または二種以上の混合物が使用される。
Examples of the electrolyte include a solution in which salts are dissolved in an organic solvent. The salts include LiCl
O 4, LiBF 4, LiPF 6 , LiAsF 6, LiA
IlCl 4 , Li (CF 3 SO 2 ) 2 N, etc.
One or a mixture of two or more thereof is used.

【0019】有機溶媒としては、エチレンカーボネー
ト、プロピレンカーボネート、ジメチルカーボネート、
ジエチルカーボネート、エチルメチルカーボネート、ジ
メチルスルホキシド、スルホラン、γ−ブチロラクト
ン、1,2−ジメトキシエタン、N,N−ジメチルホル
ムアミド、テトラヒドロフラン、1,3−ジオキソラ
ン、2−メチルテトラヒドロフラン、ジエチルエーテル
などが例示され、それらの一種または二種以上の混合物
が使用される。また電解液中における上記塩類の濃度
は、0.1〜3モル/リットル程度が適当である。
As the organic solvent, ethylene carbonate, propylene carbonate, dimethyl carbonate,
Diethyl carbonate, ethyl methyl carbonate, dimethyl sulfoxide, sulfolane, γ-butyrolactone, 1,2-dimethoxyethane, N, N-dimethylformamide, tetrahydrofuran, 1,3-dioxolan, 2-methyltetrahydrofuran, diethyl ether, and the like, One or a mixture of two or more thereof is used. The concentration of the above salts in the electrolyte is suitably about 0.1 to 3 mol / l.

【0020】[0020]

【実施例】以下、実施例により本発明を一層詳細に説明
するとともに、比較例をも挙げて本発明の顕著な効果を
示す。
EXAMPLES The present invention will be described in more detail with reference to the following examples, and comparative examples will also be described to show the remarkable effects of the present invention.

【0021】実施例1〜3、比較例1〜5 Co3 4 とLi2 CO3 とを用い、Co3 4 100
重量部あたりLi2 CO3 を42重量部混合し、その均
一混合物を約980℃で約10時間焼成し、焼成により
得た塊状のLiCoO2 を粉砕分級し、イオン交換水を
用いて超音波洗浄し、ついで大気中で熱処理して、表1
に示す実施例1〜3、比較例1〜5の各LiCoO2
状物を得た。なお比較例1〜2の各LiCoO2 粒状物
については上記の水洗処理と熱処理とを施していない。
Examples 1 to 3 and Comparative Examples 1 to 5 Co 3 O 4 100 was prepared using Co 3 O 4 and Li 2 CO 3.
42 parts by weight of Li 2 CO 3 are mixed per part by weight, and the homogeneous mixture is baked at about 980 ° C. for about 10 hours, and the massive LiCoO 2 obtained by the calcination is pulverized and classified, and ultrasonically cleaned using ion-exchanged water. And then heat-treated in air, as shown in Table 1.
The LiCoO 2 granules of Examples 1 to 3 and Comparative Examples 1 to 5 shown in Table 1 were obtained. The LiCoO 2 granules of Comparative Examples 1 and 2 were not subjected to the above-mentioned washing treatment and heat treatment.

【0022】実施例および比較例の各LiCoO2 粒状
物について、超音波洗浄後における水溶性リチウム化合
物系不純物の残存量、熱処理条件(温度および時間)、
熱処理後のLiCoO2 粒状物のd値の合計値A、比表
面積B、平均粒径C、および〔(A−11)/(B
C)〕の値をそれぞれ表1に示す。なお水洗および熱処
理を施していない比較例1〜2の各LiCoO2 粒状物
の各特性は、それらの処理を施されていない状態での値
を示す。
With respect to each LiCoO 2 particulate matter of Examples and Comparative Examples, the residual amount of water-soluble lithium compound impurities after ultrasonic cleaning, heat treatment conditions (temperature and time),
Sum A d-values of LiCoO 2 granules after the heat treatment, the specific surface area B, the average particle diameter C, and [(A-11) / (B
C)] are shown in Table 1. In addition, each characteristic of each LiCoO 2 granular material of Comparative Examples 1 and 2 not subjected to water washing and heat treatment shows a value in a state in which the treatment is not performed.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例1〜3および比較例1〜5の各Li
CoO2 の粒状物を用い、その90重量部、結着剤とし
てのポリフッ化ビニリデン7重量部、導電剤としてのア
セチレンブラック3重量部、およびN−メチル2ピロリ
ドン70重量部とを混合してスラリーとした。このスラ
リーを、集電体としての厚さ20μmのアルミニウム箔
の両面上に塗布し乾燥し、ついで圧延処理してアルミニ
ウム箔の片面あたり20mg/cm2 の正極活物質組成
物層を有する正極体を作製した。一方、鱗片状黒鉛90
重量部、ポリフッ化ビニリデン10重量部、およびN−
メチル2ピロリドン200重量部とを混合してスラリー
とした。このスラリーを、集電体としての厚さ14μm
の銅箔の両面に塗布し乾燥し、ついで圧延処理して銅箔
の片面あたり10.4mg/cm2 の負極活物質組成物
層を有する負極体を作製した。つぎに、正極体と負極体
とを多孔質ポリエチレンセパレータを介して捲巻して高
さ65mm、外径18mmの円筒缶型のリチウム二次電
池(放電容量:1300mAh)を製造した。電解液と
しては、エチレンカーボネート、プロピレンカーボネー
ト、およびジエチルカーボネートの混合溶媒(混合体積
比率は3:2:5)1リットルあたり1モルのLiPF
6 を溶解してなる溶液を使用し、これを上記正極体と負
極体との間に含浸した。
Each Li of Examples 1-3 and Comparative Examples 1-5
A slurry is prepared by mixing 90 parts by weight of CoO 2 granules, 7 parts by weight of polyvinylidene fluoride as a binder, 3 parts by weight of acetylene black as a conductive agent, and 70 parts by weight of N-methyl-2-pyrrolidone. And This slurry is applied on both sides of a 20 μm-thick aluminum foil as a current collector, dried, and then rolled to obtain a positive electrode body having a positive electrode active material composition layer of 20 mg / cm 2 per one side of the aluminum foil. Produced. On the other hand, flaky graphite 90
Parts by weight, 10 parts by weight of polyvinylidene fluoride, and N-
A slurry was prepared by mixing 200 parts by weight of methyl 2-pyrrolidone. This slurry was used as a current collector to a thickness of 14 μm.
Was coated on both sides of the copper foil, dried, and then rolled to prepare a negative electrode body having a negative electrode active material composition layer of 10.4 mg / cm 2 per one side of the copper foil. Next, the positive electrode body and the negative electrode body were wound through a porous polyethylene separator to produce a cylindrical can type lithium secondary battery (discharge capacity: 1300 mAh) having a height of 65 mm and an outer diameter of 18 mm. As an electrolytic solution, 1 mole of LiPF per liter of a mixed solvent of ethylene carbonate, propylene carbonate, and diethyl carbonate (mixing volume ratio is 3: 2: 5)
A solution obtained by dissolving 6 was used, and this was impregnated between the positive electrode body and the negative electrode body.

【0025】ついで各リチウム二次電池につき、つぎの
充放電サイクル試験方法にしたがって充放電サイクル特
性の試験を行い、100サイクル目の放電容量維持率
(%)を測定して表1にその結果を示した。 〔充放電サイクル試験方法〕正極体の面積1cm2 あた
り2.6mAの定電流および4.2Vの定電圧下で2.
5時間の充電、充電後1時間休止、正極体の面積1cm
2 あたり1.3mAの定電流のもとで端子電圧が3Vと
なる時点まで放電、および放電後1時間の休止、の4工
程を1サイクルとして室温(20℃)下で100回繰り
返し、各サイクルにおける放電電流値と放電時間から放
電容量(mA・H)を算出する。初回の放電容量に対す
る各サイクル目の放電容量の割合を放電容量維持率
(%)とする。
Next, each lithium secondary battery was tested for charge / discharge cycle characteristics according to the following charge / discharge cycle test method, and the discharge capacity retention ratio (%) at the 100th cycle was measured. The results are shown in Table 1. Indicated. [Charge / Discharge Cycle Test Method] Under a constant current of 2.6 mA and a constant voltage of 4.2 V per 1 cm 2 of area of the positive electrode body.
Charge for 5 hours, pause for 1 hour after charging, area of positive electrode body 1cm
The four steps of discharging until the terminal voltage reaches 3 V under a constant current of 1.3 mA per 2 and resting for 1 hour after discharging as one cycle are repeated 100 times at room temperature (20 ° C.), and each cycle is repeated. The discharge capacity (mAH) is calculated from the discharge current value and the discharge time at. The ratio of the discharge capacity in each cycle to the initial discharge capacity is defined as a discharge capacity maintenance ratio (%).

【0026】表1から、〔(A−11)/(BC)〕の
値が前記した式(1)の範囲外にある比較例1〜5の各
LiCoO2 粒状物を正極活物質として用いたリチウム
二次電池は、100サイクル目における放電容量維持率
が85%以下であるのに対して、〔(A−11)/(B
C)〕の値が式(1)を満たす実施例1〜3のLiCo
2 粒状物を正極活物質として用いたリチウム二次電池
は、100サイクル目においても90%以上の高放電容
量維持率を有し、しかして優れた充放電サイクル特性を
有することが判る。
From Table 1, each LiCoO 2 particulate material of Comparative Examples 1 to 5 in which the value of [(A-11) / (BC)] is out of the range of the above formula (1) was used as a positive electrode active material. The lithium secondary battery has a discharge capacity retention ratio of 85% or less at the 100th cycle, whereas [(A-11) / (B
C)] LiCo of Examples 1 to 3 in which the value of
It can be seen that the lithium secondary battery using the O 2 particles as the positive electrode active material has a high discharge capacity retention ratio of 90% or more even at the 100th cycle, and thus has excellent charge / discharge cycle characteristics.

【0027】[0027]

【発明の効果】本発明のLi−Co系複合酸化物は、正
極活物質として有用であり、とりわけ充放電サイクル特
性に優れた、しかして各種の電気機器用、就中、携帯用
品用などの長寿命リチウム二次電池の製造に好適であ
る。
The Li-Co-based composite oxide of the present invention is useful as a positive electrode active material, and is particularly excellent in charge / discharge cycle characteristics, and is suitable for various electric appliances, especially for portable articles. It is suitable for manufacturing a long-life lithium secondary battery.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB05 AC06 AD04 AE05 5H003 AA04 BA01 BB05 BC01 BC06 BD00 BD01 BD02 BD03 BD04 BD05 5H014 AA01 BB01 EE10 HH00 HH01 HH06 HH08 5H029 AJ05 AK03 AL06 AM03 AM04 AM05 AM07 CJ02 CJ28 DJ16 DJ17 HJ00 HJ01 HJ02 HJ05 HJ07 HJ13 HJ14  ──────────────────────────────────────────────────続 き Continued on front page F-term (reference) 4G048 AA04 AB05 AC06 AD04 AE05 5H003 AA04 BA01 BB05 BC01 BC06 BD00 BD01 BD02 BD03 BD04 BD05 5H014 AA01 BB01 EE10 HH00 HH01 HH06 HH08 5H029 AJ05 AK03 AL06 AM03 DJ04 AM05 HJ00 HJ01 HJ02 HJ05 HJ07 HJ13 HJ14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 面指数(104)、(105)、(00
9)、(107)、(108)、および(113)にお
けるそれぞれの格子面間隔の合計値A(μm)、比表面
積B(m2 /g)および平均粒径C(μm)が下式を満
足する粒状物であることを特徴とするLi−Co系複合
酸化物。 0.025≦〔(A−11)/(B・C)〕≦0.04
1. Surface indices (104), (105), (00)
9), (107), (108), and (113), the total value A (μm), specific surface area B (m 2 / g), and average particle size C (μm) of the respective lattice spacings are expressed by the following equations. A Li-Co-based composite oxide, which is a satisfactory granular material. 0.025 ≦ [(A-11) / (B · C)] ≦ 0.04
【請求項2】 粒状物は、比表面積Bが0.1〜0.3
2 /gであり、平均粒径Cが10〜25μmである請
求項1記載のLi−Co系複合酸化物。
2. The granular material has a specific surface area B of 0.1 to 0.3.
m is 2 / g, average particle size C is Li-Co-based composite oxide according to claim 1, wherein the 10 to 25 [mu] m.
【請求項3】 粒状物は、水溶性リチウム化合物系不純
物の量が該不純物をLi2 CO3 量に換算して0.05
重量%以下である請求項1または2記載のLi−Co系
複合酸化物。
3. The granular material has a water-soluble lithium compound-based impurity content of 0.05% in terms of Li 2 CO 3 amount.
The Li-Co-based composite oxide according to claim 1, which is less than or equal to% by weight.
【請求項4】 非水電解液二次電池の正極活物質用であ
る請求項1〜3のいずれかに記載のLi−Co系複合酸
化物。
4. The Li-Co-based composite oxide according to claim 1, which is used for a positive electrode active material of a non-aqueous electrolyte secondary battery.
【請求項5】 Li−Co系複合酸化物の粒状物を水洗
処理して水溶性リチウム化合物系不純物の量が該不純物
をLi2 CO3 量に換算して0.05重量%以下となる
ようにし、ついで空気中あるいは不活性雰囲気中で40
0〜700℃の高温度下で0.5〜50時間熱処理する
ことを特徴とする請求項1、3、4のいずれかに記載の
Li−Co系複合酸化物の製造方法。
5. A method of subjecting a particulate Li—Co-based composite oxide to washing with water so that the amount of a water-soluble lithium compound-based impurity is 0.05% by weight or less in terms of Li 2 CO 3. And then in air or in an inert atmosphere
The method for producing a Li—Co-based composite oxide according to claim 1, wherein the heat treatment is performed at a high temperature of 0 to 700 ° C. for 0.5 to 50 hours.
【請求項6】 平均粒径Cが10〜25μmの粒状物を
水洗処理し、ついで熱処理する請求項5記載のLi−C
o系複合酸化物の製造方法。
6. The Li-C according to claim 5, wherein the granular material having an average particle size C of 10 to 25 μm is washed with water and then heat-treated.
A method for producing an o-based composite oxide.
JP13636099A 1999-05-17 1999-05-17 Li-Co-based composite oxide and method for producing the same Expired - Fee Related JP3308232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13636099A JP3308232B2 (en) 1999-05-17 1999-05-17 Li-Co-based composite oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13636099A JP3308232B2 (en) 1999-05-17 1999-05-17 Li-Co-based composite oxide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000327339A true JP2000327339A (en) 2000-11-28
JP3308232B2 JP3308232B2 (en) 2002-07-29

Family

ID=15173362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13636099A Expired - Fee Related JP3308232B2 (en) 1999-05-17 1999-05-17 Li-Co-based composite oxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP3308232B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297764A (en) * 2000-04-04 2001-10-26 Sony Corp Positive electrode activator and nonaqueous electrolyte secondary cell
WO2002054512A1 (en) 2000-12-28 2002-07-11 Sony Corporation Positive electrode active material and nonaqueous electrolyte secondary cell
JP2004002066A (en) * 2002-05-29 2004-01-08 Toda Kogyo Corp Cobalt oxide particle powder, its preparation process, nonaqueous electrolyte secondary battery, cathode active material for this and its manufacturing process
US7078128B2 (en) 2001-04-27 2006-07-18 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
JP2007273106A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
KR100821523B1 (en) * 2006-08-30 2008-04-14 주식회사 엘 앤 에프 Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery coprising the same
JP2008277087A (en) * 2007-04-27 2008-11-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2009536438A (en) * 2006-05-10 2009-10-08 エルジー・ケム・リミテッド High performance lithium secondary battery materials
JP2011187174A (en) * 2010-03-04 2011-09-22 Agc Seimi Chemical Co Ltd Method for manufacturing positive electrode active material for lithium ion secondary battery
CN102770991A (en) * 2010-02-24 2012-11-07 日立麦克赛尔能源株式会社 Positive electrode material, method of production therefor, positive electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery
JP2016084279A (en) * 2008-12-04 2016-05-19 戸田工業株式会社 Lithium complex compound particle powder and production method therefor, nonaqueous electrolyte secondary battery
KR101785262B1 (en) * 2013-07-08 2017-10-16 삼성에스디아이 주식회사 Positive electrode active material, preparing method thereof, positive electrode including the same, and lithium secondary battery employing the positive electrode
JP2019508869A (en) * 2016-07-04 2019-03-28 エルジー・ケム・リミテッド Method for producing positive electrode active material for secondary battery and positive electrode active material for secondary battery produced thereby
JP2019087510A (en) * 2017-11-10 2019-06-06 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297764A (en) * 2000-04-04 2001-10-26 Sony Corp Positive electrode activator and nonaqueous electrolyte secondary cell
KR100915795B1 (en) * 2000-12-28 2009-09-08 소니 가부시끼 가이샤 Positive electrode active material and nonaqueous electrolyte secondary cell
US8298707B2 (en) 2000-12-28 2012-10-30 Sony Corporation Positive active material and nonaqueous electrolyte secondary battery
CN100382364C (en) * 2000-12-28 2008-04-16 索尼公司 Positive electrode active material and nonaqueous electrolyte secondary cell
WO2002054512A1 (en) 2000-12-28 2002-07-11 Sony Corporation Positive electrode active material and nonaqueous electrolyte secondary cell
KR100882144B1 (en) * 2000-12-28 2009-02-06 소니 가부시끼 가이샤 Positive electrode active material and nonaqueous electrolyte secondary cell
US8685565B2 (en) 2001-04-27 2014-04-01 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US7078128B2 (en) 2001-04-27 2006-07-18 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US8241791B2 (en) 2001-04-27 2012-08-14 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
JP4553095B2 (en) * 2002-05-29 2010-09-29 戸田工業株式会社 Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP2004002066A (en) * 2002-05-29 2004-01-08 Toda Kogyo Corp Cobalt oxide particle powder, its preparation process, nonaqueous electrolyte secondary battery, cathode active material for this and its manufacturing process
JP2007273106A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2009536438A (en) * 2006-05-10 2009-10-08 エルジー・ケム・リミテッド High performance lithium secondary battery materials
KR100821523B1 (en) * 2006-08-30 2008-04-14 주식회사 엘 앤 에프 Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery coprising the same
JP2008277087A (en) * 2007-04-27 2008-11-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
US9455444B2 (en) 2008-12-04 2016-09-27 Toda Kogyo Corporation Lithium composite compound particles and process for producing the same, and non-aqueous electrolyte secondary battery
JP2016084279A (en) * 2008-12-04 2016-05-19 戸田工業株式会社 Lithium complex compound particle powder and production method therefor, nonaqueous electrolyte secondary battery
JP2017200875A (en) * 2008-12-04 2017-11-09 戸田工業株式会社 Powder of lithium composite compound particle and production method of the same, and non-aqueous electrolyte secondary cell
CN102770991A (en) * 2010-02-24 2012-11-07 日立麦克赛尔能源株式会社 Positive electrode material, method of production therefor, positive electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery
JP2011187174A (en) * 2010-03-04 2011-09-22 Agc Seimi Chemical Co Ltd Method for manufacturing positive electrode active material for lithium ion secondary battery
KR101785262B1 (en) * 2013-07-08 2017-10-16 삼성에스디아이 주식회사 Positive electrode active material, preparing method thereof, positive electrode including the same, and lithium secondary battery employing the positive electrode
JP2019508869A (en) * 2016-07-04 2019-03-28 エルジー・ケム・リミテッド Method for producing positive electrode active material for secondary battery and positive electrode active material for secondary battery produced thereby
US10637056B2 (en) 2016-07-04 2020-04-28 Lg Chem, Ltd. Method of preparing positive electrode active material for secondary battery and positive electrode active material for secondary battery prepared thereby
JP2019087510A (en) * 2017-11-10 2019-06-06 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3308232B2 (en) 2002-07-29

Similar Documents

Publication Publication Date Title
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP4949561B2 (en) Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same
JP4353808B2 (en) Particulate cathode active material for lithium secondary battery
JP5589154B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material and method for producing the same
JP3222022B2 (en) Method for producing lithium secondary battery and negative electrode active material
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP4276442B2 (en) Positive electrode active material powder for lithium secondary battery
US20050250013A1 (en) Positive electrode material for lithium secondary battery and process for producing the same
JPH09129230A (en) Nonaqueous electrolytic battery and manufacture of positive active material
JPWO2004082046A1 (en) Positive electrode active material powder for lithium secondary battery
TW554562B (en) Nonaqueous electrolytic secondary battery and method of manufacturing the same
JP3308232B2 (en) Li-Co-based composite oxide and method for producing the same
KR20050084852A (en) Method for preparing positive electrode active material for lithium secondary cell
JP4081676B2 (en) Anode material for non-aqueous electrolyte secondary battery
JP4344359B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP7262419B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2003002660A (en) Method for producing lithium cobalt composite oxide
JP3396076B2 (en) Method for producing lithium cobaltate-based positive electrode active material for lithium secondary battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2001243949A (en) Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JP2001068093A (en) Positive electrode active material composition and lithium ion secondary battery using the same
JP4810729B2 (en) Lithium transition metal composite oxide and method for producing the same
JPH11260368A (en) Positive electrode active material for lithium secondary battery
JP3308229B2 (en) Li-Co based composite oxide
JP2004506299A (en) Trivanadium oxide hydrate composition

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees