JP2001068113A - Positive electrode active material for lithium battery, its manufacturing method, and lithium battery - Google Patents

Positive electrode active material for lithium battery, its manufacturing method, and lithium battery

Info

Publication number
JP2001068113A
JP2001068113A JP24470199A JP24470199A JP2001068113A JP 2001068113 A JP2001068113 A JP 2001068113A JP 24470199 A JP24470199 A JP 24470199A JP 24470199 A JP24470199 A JP 24470199A JP 2001068113 A JP2001068113 A JP 2001068113A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
active material
battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24470199A
Other languages
Japanese (ja)
Inventor
So Arai
創 荒井
Masayuki Tsuda
昌幸 津田
Yoji Sakurai
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP24470199A priority Critical patent/JP2001068113A/en
Publication of JP2001068113A publication Critical patent/JP2001068113A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain high discharging capacity, high stability and a wide operating temperature range by specifying the amount of lithium in a transition metal main layer in a layer structure of a composite oxide containing Li, Ni, Co, M, and O in a specified rate and having the layer structure. SOLUTION: This positive electrode active material for a lithium battery is a composite oxide having layer structure, represented by the composition formula: LiXNi1-Y-QCoQMYOZ. In the formula, 0<=X<=1.1, 0<Y+Q<0.5, 0<Y<0.5, 0<Q<0.5, 1.8<=Z<=2.2, and M is an element such as silicon, titanium, or the like. A rate of lithium in the transition metal main layer in the structure is 0.5% or more but 15% or less. Ni, Co, and element M contained mainly in the transition metal main layer in the structure are hardly mixed with lithium contained in the lithium main layer, change to randomly arranged rock-salt structure is retarded, and heat generation is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はリチウム電池用正極活物
質とその製造方法、及びそれを用いるリチウム電池、さ
らに詳細には、放電容量が大きくまた安全性に優れ使用
温度範囲の広いリチウム電池を提供する技術に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a lithium battery and a method for producing the same, and a lithium battery using the same. More specifically, the present invention relates to a lithium battery having a large discharge capacity, excellent safety, and a wide operating temperature range. It is related to the technology to be provided.

【0002】[0002]

【従来の技術及び問題点】リチウムなどのアルカリ金属
及びその化合物を負極活物質とする非水電解液電池は、
負極金属イオンの正極活物質へのインサーションもしく
はインターカレーション反応によって、その大放電容量
と充放電可逆性を両立させている。従来からこれらの正
極活物質には、二硫化チタンなどの硫化物が提案されて
いるが、これらは電圧が2V程度と低く、放電エネルギ
ーが小さいという欠点があった。この問題を解決するた
めに、4V級の電圧を示す正極活物質LiXNi1-YY
Z(0≦X≦1.1、0≦Y≦0.5、1.8≦Z≦
2.2、元素Mはニッケル以外の元素)が開発されてい
る。これにより大容量を実現することができるが、同時
にリチウム脱離によって高い酸化数状態の化合物を電池
内に収容することになり、電池全体の安全性に問題が生
じる場合があるという問題点があった。
2. Description of the Related Art A non-aqueous electrolyte battery using an alkali metal such as lithium or a compound thereof as a negative electrode active material is disclosed in
The large discharge capacity and charge / discharge reversibility are both achieved by the insertion or intercalation reaction of the negative electrode metal ions into the positive electrode active material. Conventionally, sulfides such as titanium disulfide have been proposed for these positive electrode active materials, but these have the drawback that the voltage is as low as about 2 V and the discharge energy is small. To solve this problem, the positive electrode active indicating the 4V-grade voltage substance Li X Ni 1-Y M Y
O Z (0 ≦ X ≦ 1.1, 0 ≦ Y ≦ 0.5, 1.8 ≦ Z ≦
2.2, element M is an element other than nickel). This makes it possible to realize a large capacity, but at the same time, a compound having a high oxidation state is accommodated in the battery due to lithium elimination, which may cause a problem in the safety of the whole battery. Was.

【0003】すなわち、特に満充電時など電圧が高い状
態で、環境温度が高くなった場合や電池が内部短絡を起
こしたような場合に、電池が発熱したり、極端な場合に
は発煙や発火が見られると言う安全性上の問題があっ
た。また充電時にリチウムの脱離量が過度に多い場合、
特に動作温度が高い場合に、正極が当初の結晶構造を維
持できず、以降の放電容量が減少し、動作温度範囲が限
定されるという問題があった。
[0003] That is, the battery generates heat when the environmental temperature is high or the battery is short-circuited under high voltage, particularly when the battery is fully charged, and in extreme cases, smoke or ignition occurs. There was a safety problem that was seen. If the amount of lithium released during charging is too large,
In particular, when the operating temperature is high, the positive electrode cannot maintain the original crystal structure, the subsequent discharge capacity decreases, and the operating temperature range is limited.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記のよう
な現状の課題を解決し、放電容量が大きく安全性に優れ
動作温度範囲の広いリチウム電池用正極活物質とその製
造方法、及びそれを用いるリチウム電池を提供すること
にある。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned current problems, and provides a positive electrode active material for a lithium battery having a large discharge capacity, excellent safety, and a wide operating temperature range, and a method for producing the same. And a lithium battery using the same.

【0005】[0005]

【問題点を解決するための手段】かかる目的を達成する
ために本発明によるリチウム電池用正極活物質は、下記
の組成式で与えられる層構造を有する複酸化物であっ
て、その層構造中の遷移金属主体層におけるリチウム占
有率が0.5%以上15%以下であることを特徴とす
る。
Means for Solving the Problems In order to achieve the above object, the positive electrode active material for a lithium battery according to the present invention is a double oxide having a layer structure given by the following composition formula. Wherein the lithium occupancy of the transition metal main layer is 0.5% or more and 15% or less.

【0006】組成式 LiXNi1-Y-QCoQYZ (0≦X≦1.1、0<Y+Q<0.5、0<Y<0.
5、0<Q<0.5、1.8≦Z≦2.2、Mは珪素、
チタン、バナジウム、クロム、マンガン、鉄、ゲルマニ
ウム、ジルコニウム、ニオブ、モリブデン、ルテニウ
ム、パラジウム、錫、テルル、ハフニウム、タングステ
ン、イリジウム、白金、鉛の何れかを含む1種類以上の
元素)
[0006] formula Li X Ni 1-YQ Co Q M Y O Z (0 ≦ X ≦ 1.1,0 <Y + Q <0.5,0 <Y <0.
5, 0 <Q <0.5, 1.8 ≦ Z ≦ 2.2, M is silicon,
One or more elements including any of titanium, vanadium, chromium, manganese, iron, germanium, zirconium, niobium, molybdenum, ruthenium, palladium, tin, tellurium, hafnium, tungsten, iridium, platinum, lead)

【0007】また前記リチウム電池用正極活物質で特に
前記元素Mがチタンを含むことを特徴としている。
[0007] Further, the positive electrode active material for a lithium battery is characterized in that the element M particularly contains titanium.

【0008】また本発明のリチウム電池用正極活物質の
製造方法では、原子比でLi/(Ni+Co+M)>1
となるようにリチウム化合物とニッケル化合物とコバル
ト化合物と元素Mの化合物を混合してその混合物を熱処
理した後に、LiXNi1-Y-QCoQYZ以外のリチウ
ム化合物を除去することにより前記リチウム電池用正極
活物質を製造することを特徴としている。
Further, in the method for producing a cathode active material for a lithium battery according to the present invention, the atomic ratio of Li / (Ni + Co + M)> 1
After mixing a lithium compound, a nickel compound, a cobalt compound, and a compound of the element M and heat treating the mixture so as to obtain a lithium compound other than Li x Ni 1 -YQ Co Q M Y O Z , It is characterized by producing a positive electrode active material for a lithium battery.

【0009】また本発明のリチウム電池は、前記リチウ
ム電池用正極活物質、特に前記リチウム電池用正極活物
質の製造方法により製造された前記リチウム電池用正極
活物質を含む正極を有しリチウム金属またはリチウム化
合物あるいはリチウムイオンを可逆的に挿入・脱離でき
る物質を含む負極を有しリチウムイオンが前記正極およ
び前記負極と電気化学反応をするための移動を行い得る
物質を電解質物質として有することを特徴としている。
The lithium battery of the present invention has a positive electrode containing the positive electrode active material for a lithium battery, particularly a positive electrode containing the positive electrode active material for a lithium battery manufactured by the method for producing the positive electrode active material for a lithium battery. A negative electrode containing a lithium compound or a substance capable of reversibly inserting and removing lithium ions, wherein the lithium ions have a substance capable of performing migration for performing an electrochemical reaction with the positive electrode and the negative electrode as an electrolyte substance. And

【0010】本発明をさらに詳しく説明する。発明者
は、放電容量が大きく安全性に優れたリチウム電池用正
極活物質とその製造方法、及びそれを用いるリチウム電
池を鋭意探索した結果、前記のリチウム電池用正極活物
質とその製造方法、及びそれを用いるリチウム電池によ
り、従来よりも放電容量が大きく安全性に優れ動作温度
範囲の広いリチウム電池用正極活物質とリチウム電池を
製造、実現できることを確かめ、その認識の下に本発明
を完成した。
The present invention will be described in more detail. The inventor has conducted a keen search for a lithium battery positive electrode active material having a large discharge capacity and excellent safety and a method for manufacturing the same, and a lithium battery using the same, and as a result, the positive electrode active material for a lithium battery and a method for manufacturing the same, and It was confirmed that a lithium battery using the same can produce and realize a positive electrode active material for a lithium battery and a lithium battery having a higher discharge capacity, higher safety and a wider operating temperature range than before, and completed the present invention based on that recognition. .

【0011】本発明のリチウム電池用正極活物質は、組
成式LiXNi1-Y-QCoQYZ(0≦X≦1.1、0
<Y+Q<0.5、0<Y<0.5、0<Q<0.5、
1.8≦Z≦2.2、Mは珪素、チタン、バナジウム、
クロム、マンガン、鉄、ゲルマニウム、ジルコニウム、
ニオブ、モリブデン、ルテニウム、バラジウム、錫、テ
ルル、ハフニウム、タングステン、イリジウム、白金、
鉛の何れかを含む1種類以上の元素)で与えられる複酸
化物である。
[0011] A positive active material of the present invention, the composition formula Li X Ni 1-YQ Co Q M Y O Z (0 ≦ X ≦ 1.1,0
<Y + Q <0.5, 0 <Y <0.5, 0 <Q <0.5,
1.8 ≦ Z ≦ 2.2, M is silicon, titanium, vanadium,
Chromium, manganese, iron, germanium, zirconium,
Niobium, molybdenum, ruthenium, palladium, tin, tellurium, hafnium, tungsten, iridium, platinum,
(At least one element including any of lead).

【0012】上記組成式中、Xは0≦X≦1.1である
が、これはリチウム電池の充放電によって変化する範囲
を示す。また詳細を後述するように、0<Y+Q<0.
5、0<Y<0.5、0<Q<0.5であるが、Yは好
ましくはY≦0.3、さらに好ましくはY≦0.1であ
る。さらに、Qは好ましくはQ≦0.3、さらに好まし
くはQ≦0.2である。Zは1.8≦Z≦2.2である
が、これは上記YおよびQの値および合成条件によって
変化する範囲を示している。
In the above composition formula, X satisfies 0 ≦ X ≦ 1.1, which indicates a range that varies depending on charging and discharging of the lithium battery. Also, as described later in detail, 0 <Y + Q <0.
5, 0 <Y <0.5 and 0 <Q <0.5, where Y is preferably Y ≦ 0.3, and more preferably Y ≦ 0.1. Further, Q is preferably Q ≦ 0.3, more preferably Q ≦ 0.2. Z satisfies 1.8 ≦ Z ≦ 2.2, which indicates a range that varies depending on the values of Y and Q and the synthesis conditions.

【0013】本発明によるリチウム電池用正極活物質
は、LiXNiOZをベースとする酸化還元対の割合が5
0%を越えており(すなわちY+Q<0.5)、また詳
細を後述するように遷移金属主体層におけるリチウム占
有率は0.5%以上15%以下である。これにより放電
容量が大きいリチウム電池用正極活物質とリチウム電池
を製造、実現できるという利点を有する。遷移金属主体
層におけるリチウム占有率は、好ましくは10%以下、
さらに好ましくは5%以下である。
The positive electrode active material for a lithium battery according to the present invention has a ratio of a redox couple based on Li x NiO Z of 5%.
It exceeds 0% (that is, Y + Q <0.5), and the lithium occupancy in the transition metal main layer is 0.5% or more and 15% or less as described in detail later. This has the advantage that a positive electrode active material for a lithium battery and a lithium battery having a large discharge capacity can be manufactured and realized. The lithium occupancy in the transition metal main layer is preferably 10% or less,
More preferably, it is 5% or less.

【0014】LiXNiOZをベースとする酸化還元対が
50%以下であったり、遷移金属主体層におけるリチウ
ム占有率が15%を越える場合は、十分な放電容量を得
ることができない。
When the redox couple based on Li x NiO Z is 50% or less, or when the lithium occupancy in the transition metal main layer exceeds 15%, a sufficient discharge capacity cannot be obtained.

【0015】また原子比でLi/(Ni+Co+M)>
1となるようにリチウム化合物とニッケル化合物とコバ
ルト化合物と元素Mの化合物を混合してその混合物を熱
処理した後にLiXNi1-Y-QCoQYZ以外のリチウ
ム化合物を除去して前記リチウム電池用正極活物質を製
造する、本発明のリチウム電池用正極活物質の製造方法
を用いることにより、リチウム主体層におけるニッケル
混入率を5%以下程度までに抑制することができ、放電
容量が大きい電池を構成するために好ましい。
Further, in terms of atomic ratio, Li / (Ni + Co + M)>
The lithium was removed Li X Ni 1-YQ Co Q M Y O Z other than lithium compound after heat treatment of the mixture by mixing a lithium compound and a nickel compound and a cobalt compound and a compound of the element M to be 1 By using the method for producing a positive electrode active material for a lithium battery of the present invention for producing a positive electrode active material for a battery, the nickel mixing ratio in the lithium main layer can be suppressed to about 5% or less, and the discharge capacity is large. It is preferable for forming a battery.

【0016】また本発明のリチウム電池用正極活物質を
用いることにより、安全性に優れるリチウム電池を実現
できるという利点を有する。その理由は、現在のところ
完全に明らかではないが、以下のようなものが考えられ
る。
The use of the positive electrode active material for a lithium battery according to the present invention has an advantage that a lithium battery excellent in safety can be realized. The reason is not completely clear at present, but the following can be considered.

【0017】すなわち組成式LiXNi1-Y-QCoQY
Z(0≦X≦1.1、0<Y+Q<0.5、0<Y<
0.5、0<Q<0.5、1.8≦Z≦2.2、Mは珪
素、チタン、バナジウム、クロム、マンガン、鉄、ゲル
マニウム、ジルコニウム、ニオブ、モリブデン、ルテニ
ウム、パラジウム、錫、テルル、ハフニウム、タングス
テン、イリジウム、白金、鉛の何れかを含む1種類以上
の元素)で与えられる複酸化物において、その層構造中
の遷移金属主体層におけるリチウム占有率が0.5%未
満である場合は、特に満充電時など電圧が高い状態で、
環境温度が高くなった場合や電池が内部短絡を起こした
ような場合に、構造中の主に遷移金属主体層に入ってい
るニッケル、コバルト、元素Mとリチウム主体層に入っ
ているリチウムが自由混合を起こし、ニッケル、コバル
ト、元素M及びリチウムがランダムに配列した岩塩構造
に変化するために、電池が発熱したり、極端な場合には
発煙や発火が見られるが、構造中の遷移金属主体層にお
けるリチウム占有率が0.5%以上である場合は、構造
中の主に遷移金属主体層に入っているニッケル、コバル
ト、元素Mとリチウム主体層に入っているリチウムが自
由混合しにくくなり、ニッケル、コバルト、元素M及び
リチウムがランダムに配列した岩塩構造への変化が抑制
されるためと考えられる。
[0017] That composition formula Li X Ni 1-YQ Co Q M Y O
Z (0 ≦ X ≦ 1.1, 0 <Y + Q <0.5, 0 <Y <
0.5, 0 <Q <0.5, 1.8 ≦ Z ≦ 2.2, M is silicon, titanium, vanadium, chromium, manganese, iron, germanium, zirconium, niobium, molybdenum, ruthenium, palladium, tin, At least one element selected from the group consisting of tellurium, hafnium, tungsten, iridium, platinum, and lead), the lithium occupancy of the transition metal main layer in the layer structure is less than 0.5%. In some cases, when the voltage is high, especially when fully charged,
Nickel, cobalt, element M, and lithium in the lithium-based layer mainly in the transition metal-based layer in the structure are free when the environmental temperature rises or the battery causes an internal short circuit. Batteries generate heat and, in extreme cases, emit smoke or fire, due to mixing and change to a rock salt structure in which nickel, cobalt, element M and lithium are randomly arranged. When the lithium occupation ratio in the layer is 0.5% or more, it is difficult for nickel, cobalt, and the element M mainly in the transition metal main layer in the structure to freely mix with lithium in the lithium main layer. It is considered that a change to a rock salt structure in which nickel, cobalt, element M and lithium are randomly arranged is suppressed.

【0018】遷移金属主体層におけるリチウム占有率は
0.5%以上であればよく、安全性の観点から特に上限
はないが、高すぎると放電容量が減少するので、実用上
の観点から、本発明で示すように15%以下とする必要
がある。前述のように、好ましくは10%以下、さらに
好ましくは5%以下である。
The lithium occupancy in the transition metal main layer may be 0.5% or more, and there is no particular upper limit from the viewpoint of safety. However, if it is too high, the discharge capacity is reduced. It is necessary to be 15% or less as shown in the invention. As described above, it is preferably at most 10%, more preferably at most 5%.

【0019】また遷移金属主体層におけるリチウム占有
率を0.5%以上にするために、珪素、チタン、バナジ
ウム、クロム、マンガン、鉄、ゲルマニウム、ジルコニ
ウム、ニオブ、モリブデン、ルテニウム、パラジウム、
錫、テルル、ハフニウム、タングステン、イリジウム、
白金、鉛の何れかを含む1種類以上の元素Mを含むこと
が必要である。
In order to make the lithium occupation ratio in the transition metal main layer 0.5% or more, silicon, titanium, vanadium, chromium, manganese, iron, germanium, zirconium, niobium, molybdenum, ruthenium, palladium,
Tin, tellurium, hafnium, tungsten, iridium,
It is necessary to contain at least one kind of element M containing either platinum or lead.

【0020】前記元素Mは+4価状態を取りやすく、リ
チウムと酸素を含む化合物であるLiRMO2+R/2(Rは
正数)のような化合物を作り、LiXNi1-QCoQZ
固溶して、遷移金属主体層におけるリチウム占有率を高
くすることができるためと考えられる。前記元素Mとし
ては、比較的資源が豊富という観点から、チタン、マン
ガン、鉄、ジルコニウム、モリブデン、珪素、ゲルマニ
ウム、錫、鉛が特に好ましい。また前記元素Mとして
は、ニッケル+3価とイオン半径が近く、固溶しやすい
という観点から、チタン、バナジウム、クロム、マンガ
ン、鉄、ゲルマニウムが好ましく、資源性を合わせて考
えると、チタン、マンガン、鉄が特に好ましい。
The element M easily takes a +4 valence state, and forms a compound such as Li R MO 2 + R / 2 (R is a positive number), which is a compound containing lithium and oxygen, and forms Li X Ni 1 -Q Co. This is considered to be because solid solution with Q O Z can increase the lithium occupancy in the transition metal main layer. As the element M, titanium, manganese, iron, zirconium, molybdenum, silicon, germanium, tin, and lead are particularly preferable from the viewpoint of relatively abundant resources. Further, as the element M, titanium, vanadium, chromium, manganese, iron, and germanium are preferable from the viewpoint that the ionic radius is close to that of nickel + trivalent and the solid solution is easy, and titanium, manganese, Iron is particularly preferred.

【0021】特にチタンは前記LiRMO2+R/2(Rは正
数)におけるM=Tiにおいて、R=1/3のLi1/3
TiO13/6(つまりLi2Ti613)、R=1/2のL
1/2TiO9/4(つまりLi2Ti49)、R=2/3
のLi2/3TiO7/3(つまりLi2Ti37)、R=1
2/17のLi12/17TiO40/12(つまりLi12Ti17
40)、R=4/5のLi4/5TiO12/5(つまりLi4
Ti512)、R=2のLi2TiO3等のチタン酸リチ
ウム化合物を容易に合成することができ、またLiX
1-QCoQZと固溶しやすく、また前記チタン酸リチ
ウム化合物がLiXNi1-QCoQZの合成温度付近で安
定なために前記元素Mとして特に好ましい。
In particular, titanium is obtained when M = Ti in the above-mentioned Li R MO 2 + R / 2 (R is a positive number), and R 1/3 of Li 1/3
TiO 13/6 (that is, Li 2 Ti 6 O 13 ), R = 1/2 L
i 1/2 TiO 9/4 (that is, Li 2 Ti 4 O 9 ), R = 2
Li 2/3 TiO 7/3 (that is, Li 2 Ti 3 O 7 ), R = 1
2/17 Li 12/17 TiO 40/12 (ie Li 12 Ti 17
O 40 ), R 4/5 Li 4/5 TiO 12/5 (that is, Li 4
It is possible to easily synthesize a lithium titanate compound such as Ti 5 O 12 ) and Li 2 TiO 3 with R = 2, and Li X N
It is particularly preferable as the element M because it is easily dissolved in i 1 -Q Co Q O Z and the lithium titanate compound is stable around the synthesis temperature of Li X Ni 1 -Q Co Q O Z.

【0022】一方、前記元素Mの含有量が高いと、放電
容量が減少するので、元素Mの置換量に相当するYはY
<0.5を満たす必要があり、好ましくはY≦0.3、
最も好ましくはY≦0.1である。また本発明のリチウ
ム電池用正極活物質を用いることにより、動作温度範囲
の広いリチウム電池用正極活物質とリチウム電池を製
造、実現できるという利点を有する。
On the other hand, when the content of the element M is high, the discharge capacity decreases, so that Y corresponding to the substitution amount of the element M becomes Y
<0.5, preferably Y ≦ 0.3,
Most preferably, Y ≦ 0.1. Further, by using the positive electrode active material for a lithium battery of the present invention, there is an advantage that a lithium battery and a positive electrode active material for a lithium battery having a wide operating temperature range can be manufactured and realized.

【0023】その理由は、現在のところ完全に明らかで
はないが、以下のようなものが考えられる。すなわち組
成式LiXNi1-Y-QCoQYZ(0≦X≦1.1、0
<Y+Q<0.5、0<Y<0.5、0<Q<0.5、
1.8≦Z≦2.2、Mは珪素、チタン、バナジウム、
クロム、マンガン、鉄、ゲルマニウム、ジルコニウム、
ニオブ、モリブデン、ルテニウム、パラジウム、錫、テ
ルル、ハフニウム、タングステン、イリジウム、白金、
鉛の何れかを含む1種類以上の元素)で与えられる複酸
化物において、コバルトの置換量に相当するQが、0<
Qであることにより、充電時にリチウム脱離量を抑制す
ることができ、動作温度が高い場合でも、正極が当初の
結晶構造を維持でき、放電容量の減少が起こらず、動作
温度範囲が広くなると考えられる。放電容量の大きい電
池を構成するためには、Q<0.5であることが必要で
あり、好ましくはQ≦0.3、最も好ましくはQ≦0.
2である。
The reason is not completely clear at present, but the following can be considered. That composition formula Li X Ni 1-YQ Co Q M Y O Z (0 ≦ X ≦ 1.1,0
<Y + Q <0.5, 0 <Y <0.5, 0 <Q <0.5,
1.8 ≦ Z ≦ 2.2, M is silicon, titanium, vanadium,
Chromium, manganese, iron, germanium, zirconium,
Niobium, molybdenum, ruthenium, palladium, tin, tellurium, hafnium, tungsten, iridium, platinum,
In the complex oxide given by one or more elements containing any of lead, Q corresponding to the substitution amount of cobalt is 0 <
By being Q, the amount of lithium desorbed during charging can be suppressed, and even when the operating temperature is high, the positive electrode can maintain the original crystal structure, the discharge capacity does not decrease, and the operating temperature range becomes wider. Conceivable. In order to construct a battery having a large discharge capacity, it is necessary that Q <0.5, preferably Q ≦ 0.3, most preferably Q ≦ 0.
2.

【0024】また原子比でLi/(Ni+Co+M)>
1となるようにリチウム化合物とニッケル化合物とコバ
ルト化合物と元素Mの化合物を混合してその混合物を熱
処理した後にLiXNi1-Y-QCoQYZ以外のリチウ
ム化合物を除去して前記リチウム電池用正極活物質を製
造することにより、過剰のリチウムを反応系中に入れ
て、遷移金属主体層におけるリチウム占有率を高めたり
調節したりすることができる。
Also, in terms of atomic ratio, Li / (Ni + Co + M)>
The lithium was removed Li X Ni 1-YQ Co Q M Y O Z other than lithium compound after heat treatment of the mixture by mixing a lithium compound and a nickel compound and a cobalt compound and a compound of the element M to be 1 By producing the positive electrode active material for a battery, excess lithium can be put into the reaction system to increase or adjust the lithium occupancy in the transition metal main layer.

【0025】Li/(Ni+Co+M)>4で得られる
効果はLi/(Ni+Co+M)=4と同等であり、L
i/(Ni+Co+M)>4の場合はLiXNi1-Y-Q
QYZ以外の、除去すべきリチウム化合物の量が増
えるだけであるため、経済的な観点から1<Li/(N
i+Co+M)≦4である。またLi/(Ni+Co+
M)≦1である場合には、遷移金属主体層におけるリチ
ウム占有率が0.5%未満になることが多いため、1<
Li/(Ni+Co+M)とすることが有効である。
The effect obtained when Li / (Ni + Co + M)> 4 is equivalent to Li / (Ni + Co + M) = 4.
When i / (Ni + Co + M)> 4, Li X Ni 1-YQ C
o Since only the amount of the lithium compound to be removed other than Q MY O Z increases, 1 <Li / (N
(i + Co + M) ≦ 4. Li / (Ni + Co +
M) ≦ 1, when the lithium occupation ratio in the transition metal main layer is often less than 0.5%, 1 <
It is effective to set Li / (Ni + Co + M).

【0026】本製造方法によって得られた正極活物質を
用いて電池正極を形成するには、前記複酸化物粉末とポ
リテトラフルオロエチレンのごとき結着剤粉末との混合
物をステンレス等の支持体上に圧着成形する、或いは、
かかる混合物粉末に導電性を付与するためアセチレンブ
ラックのような導電性粉末を混合し、これにさらにポリ
テトラフルオロエチレンのような結着剤粉末を所要に応
じて加え、この混合物を金属容器にいれる、あるいはス
テンレスなどの支持体に圧着成形する、あるいは有機溶
剤等の溶媒中に分散してスラリー状にして金属基板上に
塗布する、等の手段によって形成される。
In order to form a battery cathode using the cathode active material obtained by the present production method, a mixture of the above-mentioned double oxide powder and a binder powder such as polytetrafluoroethylene is coated on a support such as stainless steel. Crimping, or
A conductive powder such as acetylene black is mixed to impart conductivity to the mixture powder, and a binder powder such as polytetrafluoroethylene is further added as necessary, and the mixture is placed in a metal container. Alternatively, it is formed by means such as compression molding on a support such as stainless steel, or dispersing in a solvent such as an organic solvent to form a slurry and applying the slurry on a metal substrate.

【0027】本製造方法によって得られた正極活物質を
用いる電池では、負極活物質としてリチウムを用いる場
合は、一般のリチウム電池のそれと同様にシート状にし
て、またそのシートをニッケル、ステンレス等の導電体
網に圧着して負極として形成される。また負極活物質と
しては、リチウム以外にリチウム−アルミニウム合金等
のリチウム合金を用いることができる。さらに炭素な
ど、いわゆるロッキングチェア電池(リチウムイオン電
池)用の負極を用いることもでき、充電反応により正極
から供給されるリチウムイオンを電気化学的に挿入し、
炭素−リチウム負極などとすることもできる。また充放
電を繰り返し行うことで二次電池として用いることもで
きる。
In the battery using the positive electrode active material obtained by the present manufacturing method, when lithium is used as the negative electrode active material, it is formed into a sheet in the same manner as a general lithium battery, and the sheet is made of nickel, stainless steel or the like. A negative electrode is formed by pressure bonding to a conductor net. As the negative electrode active material, a lithium alloy such as a lithium-aluminum alloy can be used in addition to lithium. Further, a negative electrode for a rocking chair battery (lithium ion battery) such as carbon can be used, and lithium ions supplied from the positive electrode by a charging reaction are electrochemically inserted,
A carbon-lithium negative electrode or the like can also be used. The battery can be used as a secondary battery by repeating charging and discharging.

【0028】本製造方法によって得られた正極活物質を
用いる電池では、電解液として、例えばジメトキシエタ
ン、ジエトキシエタン、2−メチルテトラヒドロフラ
ン、エチレンカーボネート、プロピレンカーボネート、
メチルホルメート、ジメチルスルホキシド、アセトニト
リル、ブチロラクトン、ジメチルホルムアミド、ジメチ
ルカーボネート、ジエチルカーボネート、スルホラン、
エチルメチルカーボネート等の有機溶媒に、LiAsF
6、LiBF4、LiPF6、LiAlCl4、LiClO
4等のルイス酸を溶解した非水電解質溶媒、或いは固体
電解質、高分子電解質、前記有機溶媒を担持させた高分
子電解質等が使用できる。
In a battery using the positive electrode active material obtained by this production method, as an electrolytic solution, for example, dimethoxyethane, diethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, propylene carbonate,
Methyl formate, dimethyl sulfoxide, acetonitrile, butyrolactone, dimethylformamide, dimethyl carbonate, diethyl carbonate, sulfolane,
LiAsF in an organic solvent such as ethyl methyl carbonate
6 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiClO
A nonaqueous electrolyte solvent in which a Lewis acid such as 4 is dissolved, a solid electrolyte, a polymer electrolyte, a polymer electrolyte carrying the organic solvent, and the like can be used.

【0029】さらにセパレータ、電池ケース等の構造材
料等の他の要素についても従来公知の各種材料が使用で
き、特に制限はない。
As for other elements such as a structural material such as a separator and a battery case, various conventionally known materials can be used, and there is no particular limitation.

【0030】[0030]

【実施例】以下実施例によって本発明をさらに具体的に
説明するが、本発明はこれらによりなんら制限されるも
のではない。なお、実施例において電池の作製及び測定
はアルゴン雰囲気下のドライボックス内で行った。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. In the examples, the production and measurement of the battery were performed in a dry box under an argon atmosphere.

【0031】[0031]

【実施例1】図1は本発明によるリチウム電池用正極活
物質の製造方法によって得られた正極活物質を用いる電
池の一具体例であるコイン型電池の断面図であり、図中
1は封口板、2はガスケット、3は正極ケース、4は負
極、5はセパレータ、6は正極合剤ペレットを示す。
EXAMPLE 1 FIG. 1 is a cross-sectional view of a coin-type battery which is a specific example of a battery using a positive electrode active material obtained by a method for producing a positive electrode active material for a lithium battery according to the present invention. Reference numeral 2 denotes a gasket, 3 denotes a positive electrode case, 4 denotes a negative electrode, 5 denotes a separator, and 6 denotes a positive electrode mixture pellet.

【0032】正極活物質は、次のようにして製造した試
料aを用いた。まず水酸化リチウム−水和物と硝酸ニッ
ケル六水和物と硝酸コバルト六水和物とルチル型酸化チ
タンを、原子比でLi:Ni:Co:Ti=20:8:
1:1となるように混合し、大気中で500℃で6時
間、続けて大気中で700℃で24時間熱処理すること
により、LiNi0.8Co0.1Ti0.12とそれ以外のリ
チウム化合物との混合物を得た。次にこの混合物を25
℃で水洗し、LiNi0.8Co0.1Ti0.12以外のリチ
ウム化合物を水溶液中に溶かし、濾過によって除去する
ことにより、LiNi0.8Co0.1Ti0.12を得た。X
線回折により、LiNi0.8Co0.1Ti0. 12は層構造
を持ち、遷移金属主体層におけるリチウム占有率が4.
3%であることが判明した。この試料をaとする。
As the positive electrode active material, a sample a produced as follows was used. First, lithium hydroxide-hydrate, nickel nitrate hexahydrate, cobalt nitrate hexahydrate, and rutile type titanium oxide were prepared by atomic ratio of Li: Ni: Co: Ti = 20: 8:
The mixture was mixed at a ratio of 1: 1 and heat-treated in the air at 500 ° C. for 6 hours and subsequently at 700 ° C. in the air for 24 hours, whereby LiNi 0.8 Co 0.1 Ti 0.1 O 2 was mixed with other lithium compounds. A mixture was obtained. The mixture is then added to 25
The mixture was washed with water at ℃, and a lithium compound other than LiNi 0.8 Co 0.1 Ti 0.1 O 2 was dissolved in the aqueous solution and removed by filtration to obtain LiNi 0.8 Co 0.1 Ti 0.1 O 2 . X
The ray diffraction, LiNi 0.8 Co 0.1 Ti 0. 1 O 2 has a layered structure, lithium occupancy in the transition metal-based layer is 4.
It turned out to be 3%. This sample is designated as a.

【0033】この正極活物質試料aを真空乾燥した後、
粉砕して粉末とし、導電剤(アセチレンブラック)、結
着剤(ポリテトラフルオロエチレン)と共に混合の上、
ロール成形し、正極合剤ペレット6(厚さ0.5mm、
直径15mm)とした。
After vacuum drying this positive electrode active material sample a,
After pulverized to a powder, mixed with a conductive agent (acetylene black) and a binder (polytetrafluoroethylene),
Roll forming, positive electrode mixture pellet 6 (0.5 mm thick,
(Diameter 15 mm).

【0034】次にステンレス製の封口板1上に金属リチ
ウムの負極4を加圧配置したものをポリプロピレン製ガ
スケット2の凹部に挿入し、負極4の上にポリプロピレ
ン製で微孔性のセパレータ5、正極合剤ペレット6をこ
の順序に配置し、電解液としてエチレンカーボネートと
ジメチルカーボネートの等容積混合溶媒にLiPF6
溶解させた1規定溶液を適量注入して含浸させた後に、
ステンレス製の正極ケース3を被せてかしめることによ
り、厚さ2mm、直径23mmのコイン型電池を作製し
た。
Next, a metal lithium negative electrode 4 placed under pressure on a stainless steel sealing plate 1 is inserted into a concave portion of a polypropylene gasket 2, and a polypropylene microporous separator 5 is placed on the negative electrode 4. After arranging the positive electrode mixture pellets 6 in this order, injecting and impregnating an appropriate amount of a 1 N solution of LiPF 6 dissolved in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate as an electrolytic solution,
A coin-type battery having a thickness of 2 mm and a diameter of 23 mm was produced by covering and swaging a stainless steel positive electrode case 3.

【0035】このようにして作製した試料aを正極活物
質とする電池を、25℃において0.5mA/cm2
電流密度で4.3Vまで充電し、その後3.0Vまで放
電させた際の放電容量を表に示す。放電容量が大きく、
高エネルギー密度電池として利用できる利点を有してい
る。
The battery prepared as described above, using the sample a as the positive electrode active material, was charged to 4.3 V at a current density of 0.5 mA / cm 2 at 25 ° C., and then discharged to 3.0 V. The discharge capacity is shown in the table. Large discharge capacity,
It has the advantage that it can be used as a high energy density battery.

【0036】またこの電池を0.1mA/cm2の電流
密度で、4.3Vまで充電し、そのままで電池を解体
し、正極活物質を含む正極合剤ペレットを取り出し、3
00度まで加熱した際の吸発熱を走査型示差熱分析を用
いて観察したところ、発熱はなく、吸熱のみが認められ
た。従ってこの試料aを正極活物質とする電池は満充電
の際に高温で発熱することはなく、安全性の高い電池を
実現できる。
The battery was charged to 4.3 V at a current density of 0.1 mA / cm 2 , the battery was disassembled as it was, and a positive electrode mixture pellet containing a positive electrode active material was taken out.
When the endothermic heat generated when heated to 00 degrees was observed using a scanning differential thermal analysis, there was no exothermic heat, and only the endothermic heat was observed. Therefore, a battery using this sample a as a positive electrode active material does not generate heat at a high temperature when fully charged, and can realize a highly safe battery.

【0037】また試料aを正極活物質とする電池を、4
0℃において0.5mA/cm2の電流密度で4.3V
まで充電し、4.3Vに到達後に電流を遮断して、その
ままで電池を1週間保持し、その後0.5mA/cm2
の電流密度で3.0Vまで放電させた際の放電容量を表
に示す。放電容量が大きく、広い温度範囲で高エネルギ
ー密度電池として利用できる利点を有している。
A battery using sample a as a positive electrode active material was
4.3 V at a current density of 0.5 mA / cm 2 at 0 ° C.
Until the voltage reached 4.3 V, the current was cut off, and the battery was kept as it was for one week, and then 0.5 mA / cm 2
The discharge capacity at the time of discharging to 3.0 V at the current density shown in FIG. It has the advantage that it has a large discharge capacity and can be used as a high energy density battery in a wide temperature range.

【0038】[0038]

【実施例2】実施例2では、以下のような製造方法によ
り得た正極活物質の試料bを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
−水和物と硝酸ニッケル六水和物と硝酸コバルト六水和
物とルチル型酸化チタンを、原子比でLi:Ni:C
o:Ti=20:7:2:1となるように混合し、大気
中で500℃で6時間、続けて大気中で700℃で24
時間熱処理することにより、LiNi0.7Co0.2Ti
0.12とそれ以外のリチウム化合物との混合物を得た。
Example 2 In Example 2, a lithium battery was fabricated in the same manner as in Example 1, except that the positive electrode active material sample b obtained by the following manufacturing method was used. First, lithium hydroxide-hydrate, nickel nitrate hexahydrate, cobalt nitrate hexahydrate, and rutile-type titanium oxide are mixed in an atomic ratio of Li: Ni: C.
o: Ti = 20: 7: 2: 1, and mixed in air at 500 ° C. for 6 hours, followed by 24 hours at 700 ° C. in air.
LiNi 0.7 Co 0.2 Ti
A mixture of 0.1 O 2 and other lithium compounds was obtained.

【0039】次にこの混合物を25℃で水洗し、LiN
0.7Co0.2Ti0.12以外のリチウム化合物を水溶液
中に溶かし、濾過によって除去することにより、LiN
0. 7Co0.2Ti0.12を得た。X線回折により、Li
Ni0.7Co0.2Ti0.12は層構造を持ち、遷移金属主
体層におけるリチウム占有率が2.3%であることが判
明した。この試料をbとする。
Next, the mixture was washed with water at 25 ° C.
By dissolving a lithium compound other than i 0.7 Co 0.2 Ti 0.1 O 2 in an aqueous solution and removing by filtration, LiN
to obtain a i 0. 7 Co 0.2 Ti 0.1 O 2. By X-ray diffraction, Li
It has been found that Ni 0.7 Co 0.2 Ti 0.1 O 2 has a layer structure, and the lithium occupancy in the transition metal main layer is 2.3%. This sample is designated as b.

【0040】このようにして作製した試料bを正極活物
質とする電池を、25℃において0.5mA/cm2
電流密度で4.3Vまで充電し、その後3.0Vまで放
電させた際の放電容量を表に示す。放電容量が大きく、
高エネルギー密度電池として利用できる利点を有してい
る。またこの電池を0.1mA/cm2の電流密度で、
4.3Vまで充電し、そのままで電池を解体し、正極活
物質を含む正極合剤ペレットを取り出し、300度まで
加熱した際の吸発熱を走査型示差熱分析を用いて観察し
たところ、発熱はなく、吸熱のみが認められた。従って
この試料bを正極活物質とする電池は満充電の際に高温
で発熱することはなく、安全性の高い電池を実現でき
る。
A battery using the thus prepared sample b as a positive electrode active material was charged to 4.3 V at a current density of 0.5 mA / cm 2 at 25 ° C., and then discharged to 3.0 V. The discharge capacity is shown in the table. Large discharge capacity,
It has the advantage that it can be used as a high energy density battery. The battery was charged at a current density of 0.1 mA / cm 2 ,
The battery was charged to 4.3 V, the battery was dismantled as it was, the positive electrode mixture pellet containing the positive electrode active material was taken out, and the heat absorption and heat generation when heated to 300 ° C. was observed using scanning differential thermal analysis. No heat absorption was observed. Therefore, a battery using this sample b as a positive electrode active material does not generate heat at a high temperature when fully charged, and can realize a highly safe battery.

【0041】また試料bを正極活物質とする電池を、4
0℃において0.5mA/cm2の電流密度で4.3V
まで充電し、4.3Vに到達後に電流を遮断して、その
ままで電池を1週間保持し、その後0.5mA/cm2
の電流密度で3.0Vまで放電させた際の放電容量を表
に示す。放電容量が大きく、広い温度範囲で高エネルギ
ー密度電池として利用できる利点を有している。
A battery using sample b as a positive electrode active material was
4.3 V at a current density of 0.5 mA / cm 2 at 0 ° C.
Until the voltage reached 4.3 V, the current was cut off, and the battery was kept as it was for one week, and then 0.5 mA / cm 2
The discharge capacity at the time of discharging to 3.0 V at the current density shown in FIG. It has the advantage that it has a large discharge capacity and can be used as a high energy density battery in a wide temperature range.

【0042】[0042]

【実施例3】実施例3では、以下のような製造方法によ
り得た正極活物質の試料cを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
−水和物と硝酸ニッケル六水和物と硝酸コバルト六水和
物とルチル型酸化チタンを、原子比でLi:Ni:C
o:Ti=20:8:1:1となるように混合し、大気
中で500℃で6時間、続けて大気中で800℃で24
時間熱処理することにより、LiNi0.8Co0.1Ti
0.12とそれ以外のリチウム化合物との混合物を得た。
次にこの混合物を25℃で水洗し、LiNi0.8Co0.1
Ti0.12以外のリチウム化合物を水溶液中に溶かし、
濾過によって除去することにより、LiNi 0.8Co0.1
Ti0.12を得た。X線回折により、LiNi0.8Co
0.1Ti0.12は層構造を持ち、遷移金属主体層におけ
るリチウム占有率が2.0%であることが判明した。こ
の試料をcとする。
Embodiment 3 In Embodiment 3, the following manufacturing method is used.
Example 1 was the same as Example 1 except that the obtained positive electrode active material sample c was used.
Thus, a lithium battery was produced. First lithium hydroxide
-Hydrate, nickel nitrate hexahydrate and cobalt nitrate hexahydrate
Product and rutile-type titanium oxide in atomic ratio Li: Ni: C
o: Ti = 20: 8: 1: 1
For 6 hours at 500 ° C in air, followed by 24 hours at 800 ° C in air.
Heat treatment for LiNi0.8Co0.1Ti
0.1OTwoAnd other lithium compounds.
The mixture is then washed with water at 25 ° C.0.8Co0.1
Ti0.1OTwoDissolve other lithium compounds in the aqueous solution,
By removal by filtration, LiNi 0.8Co0.1
Ti0.1OTwoI got By X-ray diffraction, LiNi0.8Co
0.1Ti0.1OTwoHas a layered structure, and the transition metal
The lithium occupancy was found to be 2.0%. This
Let the sample of c be c.

【0043】このようにして作製した試料cを正極活物
質とする電池を、25℃において0.5mA/cm2
電流密度で4.3Vまで充電し、その後3.0Vまで放
電させた際の放電容量を表に示す。放電容量が大きく、
高エネルギー密度電池として利用できる利点を有してい
る。
A battery using the thus prepared sample c as a positive electrode active material was charged to 4.3 V at a current density of 0.5 mA / cm 2 at 25 ° C., and then discharged to 3.0 V. The discharge capacity is shown in the table. Large discharge capacity,
It has the advantage that it can be used as a high energy density battery.

【0044】またこの電池を0.1mA/cm2の電流
密度で、4.3Vまで充電し、そのままで電池を解体
し、正極活物質を含む正極合剤ペレットを取り出し、3
00度まで加熱した際の吸発熱を走査型示差熱分析を用
いて観察したところ、発熱はなく、吸熱のみが認められ
た。従ってこの試料cを正極活物質とする電池は満充電
の際に高温で発熱することはなく、安全性の高い電池を
実現できる。
This battery was charged to 4.3 V at a current density of 0.1 mA / cm 2 , the battery was disassembled as it was, and a positive electrode mixture pellet containing a positive electrode active material was taken out.
When the endothermic heat generated when heated to 00 degrees was observed using a scanning differential thermal analysis, there was no exothermic heat, and only the endothermic heat was observed. Therefore, a battery using this sample c as a positive electrode active material does not generate heat at a high temperature when fully charged, and can realize a highly safe battery.

【0045】また試料cを正極活物質とする電池を、4
0℃において0.5mA/cm2の電流密度で4.3V
まで充電し、4.3Vに到達後に電流を遮断して、その
ままで電池を1週間保持し、その後0.5mA/cm2
の電流密度で3.0Vまで放電させた際の放電容量を表
に示す。放電容量が大きく、広い温度範囲で高エネルギ
ー密度電池として利用できる利点を有している。
A battery using sample c as a positive electrode active material was
4.3 V at a current density of 0.5 mA / cm 2 at 0 ° C.
Until the voltage reached 4.3 V, the current was cut off, and the battery was kept as it was for one week, and then 0.5 mA / cm 2
The discharge capacity at the time of discharging to 3.0 V at the current density shown in FIG. It has the advantage that it has a large discharge capacity and can be used as a high energy density battery in a wide temperature range.

【0046】[0046]

【実施例4】実施例4では、以下のような製造方法によ
り得た正極活物質の試料dを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
−水和物と硝酸ニッケル六水和物と硝酸コバルト六水和
物とルチル型酸化チタンを、原子比でLi:Ni:C
o:Ti=40:17:2:1となるように混合し、大
気中で500℃で6時間、続けて大気中で700℃で2
4時間熱処理することにより、LiNi0.85Co0.10
0.052とそれ以外のリチウム化合物との混合物を得
た。次にこの混合物を25℃で水洗し、LiNi0.85
0.10Ti0.05 2以外のリチウム化合物を水溶液中に
溶かし、濾過によって除去することにより、LiNi
0.85Co0.10Ti0.052を得た。X線回折により、L
iNi0.85Co0.10Ti0.052は層構造を持ち、遷移
金属主体層におけるリチウム占有率が0.5%であるこ
とが判明した。この試料をdとする。
Embodiment 4 In Embodiment 4, the following manufacturing method is used.
Same as Example 1 except that the obtained positive electrode active material sample d was used.
Thus, a lithium battery was produced. First lithium hydroxide
-Hydrate, nickel nitrate hexahydrate and cobalt nitrate hexahydrate
Product and rutile-type titanium oxide in atomic ratio Li: Ni: C
o: Ti = 40: 17: 2: 1, and mixed.
6 hours at 500 ° C in air, followed by 2 hours at 700 ° C in air
By heat treatment for 4 hours, LiNi0.85Co0.10T
i0.05OTwoAnd a mixture of other lithium compounds
Was. The mixture is then washed with water at 25 ° C.0.85C
o0.10Ti0.05O TwoOther lithium compounds in aqueous solution
By melting and removing by filtration, LiNi
0.85Co0.10Ti0.05OTwoI got By X-ray diffraction, L
iNi0.85Co0.10Ti0.05OTwoHas a layer structure and transitions
The lithium occupancy in the metal main layer is 0.5%.
It turned out. This sample is referred to as d.

【0047】このようにして作製した試料dを正極活物
質とする電池を、25℃において0.5mA/cm2
電流密度で4.3Vまで充電し、その後3.0Vまで放
電させた際の放電容量を表に示す。放電容量が大きく、
高エネルギー密度電池として利用できる利点を有してい
る。
A battery using the thus prepared sample d as the positive electrode active material was charged at 25 ° C. at a current density of 0.5 mA / cm 2 to 4.3 V, and then discharged to 3.0 V. The discharge capacity is shown in the table. Large discharge capacity,
It has the advantage that it can be used as a high energy density battery.

【0048】またこの電池を0.1mA/cm2の電流
密度で、4.3Vまで充電し、そのままで電池を解体
し、正極活物質を含む正極合剤ペレットを取り出し、3
00度まで加熱した際の吸発熱を走査型示差熱分析を用
いて観察したところ、弱い吸熱が認められた。従ってこ
の試料dを正極活物質とする電池は満充電の際に高温で
発熱する可能性が低く、安全性の高い電池を実現でき
る。
The battery was charged to 4.3 V at a current density of 0.1 mA / cm 2 , the battery was disassembled as it was, and a positive electrode mixture pellet containing a positive electrode active material was taken out.
When the endothermic heat generated by heating to 00 degrees was observed using a scanning differential thermal analysis, a weak endothermic was observed. Therefore, a battery using this sample d as the positive electrode active material has a low possibility of generating heat at a high temperature when fully charged, and can realize a highly safe battery.

【0049】また試料dを正極活物質とする電池を、4
0℃において0.5mA/cm2の電流密度で4.3V
まで充電し、4.3Vに到達後に電流を遮断して、その
ままで電池を1週間保持し、その後0.5mA/cm2
の電流密度で3.0Vまで放電させた際の放電容量を表
に示す。放電容量が大きく、広い温度範囲で高エネルギ
ー密度電池として利用できる利点を有している。
A battery using the sample d as a positive electrode active material was
4.3 V at a current density of 0.5 mA / cm 2 at 0 ° C.
Until the voltage reached 4.3 V, the current was cut off, and the battery was kept as it was for one week, and then 0.5 mA / cm 2
The discharge capacity at the time of discharging to 3.0 V at the current density shown in FIG. It has the advantage that it has a large discharge capacity and can be used as a high energy density battery in a wide temperature range.

【0050】実施例1〜4では、具体的なX、Y、Q、
Mを有する組成式LiXNi1-Y-QCoQYZで与えら
れる複酸化物であるリチウム電池用正極活物質の具体例
とその製造方法の具体例、及びそれを用いる電池の具体
例について示したが、一般に、組成式LiXNi1-Y-Q
QYZ(0≦X≦1.1、0<Y+Q<0.5、0
<Y<0.5、0<Q<0.5、1.8≦Z≦2.2、
Mは珪素、チタン、バナジウム、クロム、マンガン、
鉄、ゲルマニウム、ジルコニウム、ニオブ、モリブデ
ン、ルテニウム、パラジウム、錫、テルル、ハフニウ
ム、タングステン、イリジウム、白金、鉛の何れかを含
む1種類以上の元素)で与えられる複酸化物であって、
その層構造中の遷移金属主体層におけるリチウム占有率
が0.5%以上15%以下であることを特徴とするリチ
ウム電池用正極活物質であり、特に前記元素Mがチタン
を含むことを特徴とし、また特に原子比でLi/(Ni
+M)>1となるようにリチウム化合物とニッケル化合
物と元素Mの化合物を混合してその混合物を熱処理した
後にLiXNi1-Y-QCoQYZ以外のリチウム化合物
を除去することにより前記リチウム電池用正極活物質を
製造することを特徴とし、前記リチウム電池用正極活物
質、特に前記リチウム電池用正極活物質の製造方法によ
り製造された前記リチウム電池用正極活物質を含む正極
を有しリチウム金属またはリチウム化合物あるいはリチ
ウムイオンを可逆的に挿入・脱離できる物質を含む負極
を有しリチウムイオンが前記正極および前記負極と電気
化学反応をするための移動を行い得る物質を電解質物質
として有するリチウム電池である場合には、同様の効果
を生じることはいうまでもない。
In Examples 1 to 4, specific X, Y, Q,
Specific examples of the positive electrode active material for a lithium battery, which is a double oxide given by the composition formula Li x Ni 1-YQ Co Q M Y O Z having M, specific examples of the production method thereof, and specific examples of the battery using the same Has been shown, but in general, the composition formula Li X Ni 1 -YQ C
o Q M Y O Z (0 ≦ X ≦ 1.1, 0 <Y + Q <0.5, 0
<Y <0.5, 0 <Q <0.5, 1.8 ≦ Z ≦ 2.2,
M is silicon, titanium, vanadium, chromium, manganese,
Iron, germanium, zirconium, niobium, molybdenum, ruthenium, palladium, tin, tellurium, hafnium, tungsten, iridium, platinum, one or more elements including any of lead),
A positive electrode active material for a lithium battery, wherein a lithium occupation ratio in a transition metal main layer in the layer structure is 0.5% or more and 15% or less, and particularly, the element M contains titanium. , And especially Li / (Ni
+ M)> 1 and comprising as said by removing the Li X Ni 1-YQ Co Q M Y O Z other than lithium compound after heat treatment of the mixture by mixing a lithium compound and a nickel compound and a compound of an element M It is characterized by producing a positive electrode active material for a lithium battery, comprising a positive electrode containing the positive electrode active material for a lithium battery produced by the method for producing a positive electrode active material for a lithium battery, particularly the positive electrode active material for a lithium battery. A lithium metal or lithium compound or a negative electrode containing a substance capable of reversibly inserting and removing lithium ions, and having a substance capable of performing movement for performing an electrochemical reaction with the positive electrode and the negative electrode as a lithium ion substance as an electrolyte substance In the case of a lithium battery, it goes without saying that a similar effect is produced.

【0051】[0051]

【比較例1】比較例1では、以下のような製造方法によ
り得た正極活物質の試料eを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
−水和物と硝酸ニッケル六水和物を、原子比でLi:N
i=2:1となるように混合し、大気中で500℃で6
時間、続けて大気中で700℃で24時間熱処理するこ
とにより、LiNiO2とそれ以外のリチウム化合物と
の混合物を得た。次にこの混合物を25℃で水洗し、L
iNiO2以外のリチウム化合物を水溶液中に溶かし、
濾過によって除去することにより、LiNiO2を得
た。X線回折により、LiNiO2は層構造を持ち、遷
移金属主体層におけるリチウム占有率が0.0%である
ことが判明した。この試料をeとする。
Comparative Example 1 In Comparative Example 1, a lithium battery was fabricated in the same manner as in Example 1, except that a positive electrode active material sample e obtained by the following manufacturing method was used. First, lithium hydroxide-hydrate and nickel nitrate hexahydrate are combined in an atomic ratio of Li: N.
i = 2: 1 and mixed in air at 500 ° C. for 6 hours.
The mixture was subjected to heat treatment at 700 ° C. for 24 hours in the air for 24 hours to obtain a mixture of LiNiO 2 and other lithium compounds. Next, the mixture was washed with water at 25 ° C.
dissolving lithium compounds other than iNiO 2 in an aqueous solution,
LiNiO 2 was obtained by removing by filtration. X-ray diffraction revealed that LiNiO 2 had a layered structure and the lithium occupancy in the transition metal main layer was 0.0%. This sample is referred to as e.

【0052】このようにして作製した試料eを正極活物
質とする電池を、0.5mA/cm 2の電流密度で4.
3Vまで充電し、その後3.0Vまで放電させた際の放
電容量を表に示す。
The sample e thus prepared was used as a positive electrode active material.
0.5 mA / cm TwoAt a current density of 4.
Charge to 3V, then discharge to 3.0V
The capacitance is shown in the table.

【0053】またこの電池を0.1mA/cm2の電流
密度で、4.3Vまで充電し、そのままで電池を解体
し、正極活物質を含む正極合剤ペレットを取り出し、こ
れを300度まで加熱した際の吸発熱を観察したとこ
ろ、強い発熱が認められた。従ってこの試料eを正極活
物質とする電池は満充電の際に高温で発熱を起こす可能
性が高く、電池の安全性が低いことが分かった。この電
池と比較すると、本発明の実施例で製造した正極活物質
を有する電池は、安全性が高いことが分かる。
The battery was charged to 4.3 V at a current density of 0.1 mA / cm 2 , the battery was disassembled as it was, a positive electrode mixture pellet containing a positive electrode active material was taken out, and this was heated to 300 ° C. Observation of heat absorption and heat generation at the time of the heat treatment revealed strong heat generation. Therefore, it was found that the battery using this sample e as the positive electrode active material was likely to generate heat at a high temperature when fully charged, and the safety of the battery was low. Compared with this battery, it can be seen that the battery having the positive electrode active material manufactured in Examples of the present invention has higher safety.

【0054】また試料eを正極活物質とする電池を、4
0℃において0.5mA/cm2の電流密度で4.3V
まで充電し、4.3Vに到達後に電流を遮断して、その
ままで電池を1週間保持し、その後0.5mA/cm2
の電流密度で3.0Vまで放電させた際の放電容量を表
に示す。放電容量が小さく、40℃における特性劣化が
起こることが分かった。この電池と比較すると、本発明
の実施例で製造した正極活物質を有する電池は、動作温
度範囲が広いことが分かる。
A battery using sample e as a positive electrode active material was
4.3 V at a current density of 0.5 mA / cm 2 at 0 ° C.
Until the voltage reached 4.3 V, the current was cut off, and the battery was kept as it was for one week, and then 0.5 mA / cm 2
The discharge capacity at the time of discharging to 3.0 V at the current density shown in FIG. It was found that the discharge capacity was small and the characteristics were degraded at 40 ° C. Compared with this battery, it can be seen that the battery having the positive electrode active material manufactured in the example of the present invention has a wider operating temperature range.

【0055】[0055]

【比較例2】比較例2では、以下のような製造方法によ
り得た正極活物質の試料fを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
−水和物と硝酸ニッケル六水和物と硝酸コバルト六水和
物を、原子比でLi:Ni:Co=20:9:1となる
ように混合し、大気中で500℃で6時間、続けて大気
中で700℃で24時間熱処理することにより、LiN
0.9Co0.12とそれ以外のリチウム化合物との混合
物を得た。次にこの混合物を25℃で水洗し、LiNi
0.9Co0.12以外のリチウム化合物を水溶液中に溶か
し、濾過によって除去することにより、LiNi0.9
0.12を得た。X線回折により、LiNi0.9Co0.1
は層構造を持ち、遷移金属主体層におけるリチウム占有
率が0.0%であることが判明した。この試料をfとす
る。
Comparative Example 2 In Comparative Example 2, a lithium battery was produced in the same manner as in Example 1, except that a positive electrode active material sample f obtained by the following production method was used. First, lithium hydroxide-hydrate, nickel nitrate hexahydrate, and cobalt nitrate hexahydrate are mixed at an atomic ratio of Li: Ni: Co = 20: 9: 1, and 500 ° C. in the atmosphere. By heating at 700 ° C. for 24 hours in the atmosphere for 6 hours, followed by LiN
A mixture of i 0.9 Co 0.1 O 2 and other lithium compounds was obtained. The mixture is then washed with water at 25 ° C.
By dissolving lithium compounds other than 0.9 Co 0.1 O 2 in an aqueous solution and removing them by filtration, LiNi 0.9 C
o 0.1 O 2 was obtained. By X-ray diffraction, LiNi 0.9 Co 0.1
Has a layer structure, and the lithium occupancy in the transition metal main layer was found to be 0.0%. This sample is designated as f.

【0056】このようにして作製した試料fを正極活物
質とする電池を、0.5mA/cm 2の電流密度で4.
3Vまで充電し、その後3.0Vまで放電させた際の放
電容量を表に示す。
The thus prepared sample f was used as a positive electrode active material.
0.5 mA / cm TwoAt a current density of 4.
Charge to 3V, then discharge to 3.0V
The capacitance is shown in the table.

【0057】またこの電池を0.1mA/cm2の電流
密度で、4.3Vまで充電し、そのままで電池を解体
し、正極活物質を含む正極合剤ペレットを取り出し、こ
れを300度まで加熱した際の吸発熱を観察したとこ
ろ、強い発熱が認められた。従ってこの試料eを正極活
物質とする電池は満充電の際に高温で発熱を起こす可能
性が高く、電池の安全性が低いことが分かった。この電
池と比較すると、本発明の実施例で製造した正極活物質
を有する電池は、安全性が高いことが分かる。
The battery was charged to 4.3 V at a current density of 0.1 mA / cm 2 , the battery was disassembled as it was, a positive electrode mixture pellet containing a positive electrode active material was taken out, and this was heated to 300 ° C. Observation of heat absorption and heat generation at the time of the heat treatment revealed strong heat generation. Therefore, it was found that the battery using this sample e as the positive electrode active material was likely to generate heat at a high temperature when fully charged, and the safety of the battery was low. Compared with this battery, it can be seen that the battery having the positive electrode active material manufactured in Examples of the present invention has higher safety.

【0058】[0058]

【比較例3】比較例3では、以下のような製造方法によ
り得た正極活物質の試料gを用いる他は、実施例1と同
様にしてリチウム電池を作製した。まず水酸化リチウム
−水和物と硝酸ニッケル六水和物とルチル型酸化チタン
を、原子比でLi:Ni:Ti=20:9:1となるよ
うに混合し、大気中で500℃で6時間、続けて大気中
で700℃で24時間熱処理することにより、LiNi
0.9Ti0.12とそれ以外のリチウム化合物との混合物
を得た。次にこの混合物を25℃で水洗し、LiNi
0.9Ti0.12以外のリチウム化合物を水溶液中に溶か
し、濾過によって除去することにより、LiNi0.9
0.12を得た。X線回折により、LiNi0.9Co0.1
は層構造を持ち、遷移金属主体層におけるリチウム占有
率が3.9%であることが判明した。この試料をgとす
る。
Comparative Example 3 In Comparative Example 3, a lithium battery was fabricated in the same manner as in Example 1, except that a sample g of the positive electrode active material obtained by the following manufacturing method was used. First, lithium hydroxide-hydrate, nickel nitrate hexahydrate, and rutile-type titanium oxide are mixed in an atomic ratio of Li: Ni: Ti = 20: 9: 1, and mixed at 500 ° C. in the atmosphere. Heat treatment at 700 ° C. for 24 hours in the air, followed by LiNi
A mixture of 0.9 Ti 0.1 O 2 and another lithium compound was obtained. The mixture is then washed with water at 25 ° C.
By dissolving lithium compounds other than 0.9 Ti 0.1 O 2 in an aqueous solution and removing them by filtration, LiNi 0.9 T
i 0.1 O 2 was obtained. By X-ray diffraction, LiNi 0.9 Co 0.1
Has a layer structure, and the lithium occupancy in the transition metal main layer was found to be 3.9%. Let this sample be g.

【0059】このようにして作製した試料gを正極活物
質とする電池を、0.5mA/cm 2の電流密度で4.
3Vまで充電し、その後3.0Vまで放電させた際の放
電容量を表に示す。
The sample g thus prepared was used as a positive electrode active material.
0.5 mA / cm TwoAt a current density of 4.
Charge to 3V, then discharge to 3.0V
The capacitance is shown in the table.

【0060】また試料gを正極活物質とする電池を、4
0℃において0.5mA/cm2の電流密度で4.3V
まで充電し、4.3Vに到達後に電流を遮断して、その
ままで電池を1週間保持し、その後0.5mA/cm2
の電流密度で3.0Vまで放電させた際の放電容量を表
に示す。放電容量が小さく、40℃における特性劣化が
起こることが分かった。この電池と比較すると、本発明
の実施例で製造した正極活物質を有する電池は、動作温
度範囲が広いことが分かる。
A battery using sample g as a positive electrode active material was
4.3 V at a current density of 0.5 mA / cm 2 at 0 ° C.
Until the voltage reached 4.3 V, the current was cut off, and the battery was kept as it was for one week, and then 0.5 mA / cm 2
The discharge capacity at the time of discharging to 3.0 V at the current density shown in FIG. It was found that the discharge capacity was small and the characteristics were degraded at 40 ° C. Compared with this battery, it can be seen that the battery having the positive electrode active material manufactured in the example of the present invention has a wider operating temperature range.

【0061】表 Table

【0062】[0062]

【発明の効果】以上説明したように、本発明によるチウ
ム電池用正極活物質とその製造方法、及びリチウム電池
によれば、放電容量が大きくまた安全性に優れ使用温度
範囲の広いリチウム電池を実現することができ、携帯用
の種々の電子機器の電源を始め、様々な分野に利用でき
るという利点を有する。
As described above, according to the cathode active material for a lithium battery according to the present invention, the method for producing the same, and the lithium battery, a lithium battery having a large discharge capacity, excellent safety, and a wide operating temperature range is realized. It has the advantage that it can be used in various fields including the power supply of various portable electronic devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例におけるコイン型電池の構成例
を示す断面図。
FIG. 1 is a sectional view showing a configuration example of a coin-type battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 封口板 2 ガスケット 3 正極ケース 4 負極 5 セパレータ 6 正極合剤ペレット DESCRIPTION OF SYMBOLS 1 Sealing plate 2 Gasket 3 Positive electrode case 4 Negative electrode 5 Separator 6 Positive electrode mixture pellet

フロントページの続き (72)発明者 櫻井 庸司 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 5H003 AA02 AA10 BB05 BD00 5H029 AJ03 AJ12 AK03 AL06 AL12 AM03 AM04 AM07 AM11 AM16 BJ03 Continued on the front page (72) Inventor Yoji Sakurai 2-3-1 Otemachi, Chiyoda-ku, Tokyo F-term in Nippon Telegraph and Telephone Corporation (reference) 5H003 AA02 AA10 BB05 BD00 5H029 AJ03 AJ12 AK03 AL06 AL12 AM03 AM04 AM07 AM11 AM16 BJ03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 下記の組成式で与えられる層構造を有す
る複酸化物であって、その層構造中の遷移金属主体層に
おけるリチウム占有率が0.5%以上15%以下である
ことを特徴とするリチウム電池用正極活物質。 組成式 LiXNi1-Y-QCoQYZ (0≦X≦1.1、0<Y+Q<0.5、0<Y<0.
5、0<Q<0.5、1.8≦Z≦2.2、Mは珪素、
チタン、バナジウム、クロム、マンガン、鉄、ゲルマニ
ウム、ジルコニウム、ニオブ、モリブデン、ルテニウ
ム、パラジウム、錫、テルル、ハフニウム、タングステ
ン、イリジウム、白金、鉛の何れかを含む1種類以上の
元素)
1. A composite oxide having a layer structure represented by the following composition formula, wherein a lithium occupancy in a transition metal main layer in the layer structure is 0.5% or more and 15% or less. Positive electrode active material for lithium batteries. The composition formula Li X Ni 1-YQ Co Q M Y O Z (0 ≦ X ≦ 1.1,0 <Y + Q <0.5,0 <Y <0.
5, 0 <Q <0.5, 1.8 ≦ Z ≦ 2.2, M is silicon,
One or more elements including any of titanium, vanadium, chromium, manganese, iron, germanium, zirconium, niobium, molybdenum, ruthenium, palladium, tin, tellurium, hafnium, tungsten, iridium, platinum, lead)
【請求項2】 前記元素Mがチタンを含むことを特徴と
する請求項1記載のリチウム電池用正極活物質。
2. The positive electrode active material for a lithium battery according to claim 1, wherein the element M includes titanium.
【請求項3】 下記の組成式で与えられる層構造を有す
る複酸化物であり、その層構造中の遷移金属主体層にお
けるリチウム占有率が0.5%以上15%以下であるリ
チウム電池用正極活物質の製造方法であって、原子比で
Li/(Ni+Co+M)>1となるようにリチウム化
合物とニッケル化合物とコバルト化合物と元素Mの化合
物を混合してその混合物を熱処理した後に、LiXNi
1-Y-QCoQYZ以外のリチウム化合物を除去すること
を特徴とするリチウム電池用正極活物質の製造方法。 組成式 LiXNi1-Y-QCoQYZ (0≦X≦1.1、0<Y+Q<0.5、0<Y<0.
5、0<Q<0.5、1.8≦Z≦2.2、Mは珪素、
チタン、バナジウム、クロム、マンガン、鉄、ゲルマニ
ウム、ジルコニウム、ニオブ、モリブデン、ルテニウ
ム、パラジウム、錫、テルル、ハフニウム、タングステ
ン、イリジウム、白金、鉛の何れかを含む1種類以上の
元素)
3. A positive electrode for a lithium battery, which is a double oxide having a layer structure given by the following composition formula, wherein the lithium occupancy in a transition metal main layer in the layer structure is 0.5% or more and 15% or less. A method for producing an active material, comprising mixing a lithium compound, a nickel compound, a cobalt compound, and a compound of the element M so that the atomic ratio is Li / (Ni + Co + M)> 1, heat treating the mixture, and then subjecting the mixture to Li x Ni
1-YQ Co Q M Y O method for producing a cathode active material for lithium battery and removing lithium compounds other than Z. The composition formula Li X Ni 1-YQ Co Q M Y O Z (0 ≦ X ≦ 1.1,0 <Y + Q <0.5,0 <Y <0.
5, 0 <Q <0.5, 1.8 ≦ Z ≦ 2.2, M is silicon,
One or more elements including any of titanium, vanadium, chromium, manganese, iron, germanium, zirconium, niobium, molybdenum, ruthenium, palladium, tin, tellurium, hafnium, tungsten, iridium, platinum, lead)
【請求項4】 下記の組成式で与えられる層構造を有す
る複酸化物であり、その層構造中の遷移金属主体層にお
けるリチウム占有率が0.5%以上15%以下であるリ
チウム電池用正極活物質を含む正極を有しリチウム金属
またはリチウム化合物あるいはリチウムイオンを可逆的
に挿入・脱離できる物質を含む負極を有し、リチウムイ
オンが前記正極および前記負極と電気化学反応をするた
めの移動を行い得る物質を電解質物質として有すること
を特徴とするリチウム電池。 組成式 LiXNi1-Y-QCoQYZ (0≦X≦1.1、0<Y+Q<0.5、0<Y<0.
5、0<Q<0.5、1.8≦Z≦2.2、Mは珪素、
チタン、バナジウム、クロム、マンガン、鉄、ゲルマニ
ウム、ジルコニウム、ニオブ、モリブデン、ルテニウ
ム、パラジウム、錫、テルル、ハフニウム、タングステ
ン、イリジウム、白金、鉛の何れかを含む1種類以上の
元素)
4. A positive electrode for a lithium battery, which is a double oxide having a layer structure given by the following composition formula, wherein a lithium occupation ratio of a transition metal main layer in the layer structure is 0.5% or more and 15% or less. A positive electrode containing an active material, and a negative electrode containing a substance capable of reversibly inserting and removing lithium metal or a lithium compound or lithium ion, wherein lithium ions move to perform an electrochemical reaction with the positive electrode and the negative electrode. A lithium battery comprising a substance capable of performing the following as an electrolyte substance. The composition formula Li X Ni 1-YQ Co Q M Y O Z (0 ≦ X ≦ 1.1,0 <Y + Q <0.5,0 <Y <0.
5, 0 <Q <0.5, 1.8 ≦ Z ≦ 2.2, M is silicon,
One or more elements including any of titanium, vanadium, chromium, manganese, iron, germanium, zirconium, niobium, molybdenum, ruthenium, palladium, tin, tellurium, hafnium, tungsten, iridium, platinum, lead)
【請求項5】 前記リチウム電池用正極活物質が請求項
3に記載のリチウム電池用正極活物質の製造方法により
製造されたものであることを特徴とする請求項4記載の
リチウム電池。
5. The lithium battery according to claim 4, wherein the positive electrode active material for a lithium battery is manufactured by the method for manufacturing a positive electrode active material for a lithium battery according to claim 3.
JP24470199A 1999-08-31 1999-08-31 Positive electrode active material for lithium battery, its manufacturing method, and lithium battery Pending JP2001068113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24470199A JP2001068113A (en) 1999-08-31 1999-08-31 Positive electrode active material for lithium battery, its manufacturing method, and lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24470199A JP2001068113A (en) 1999-08-31 1999-08-31 Positive electrode active material for lithium battery, its manufacturing method, and lithium battery

Publications (1)

Publication Number Publication Date
JP2001068113A true JP2001068113A (en) 2001-03-16

Family

ID=17122653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24470199A Pending JP2001068113A (en) 1999-08-31 1999-08-31 Positive electrode active material for lithium battery, its manufacturing method, and lithium battery

Country Status (1)

Country Link
JP (1) JP2001068113A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002041419A1 (en) * 2000-11-20 2002-05-23 Chuo Denki Kogyo Co., Ltd. Nonaqueous electrolyte secondary cell and positive electrode active material
KR100709205B1 (en) * 2001-04-02 2007-04-18 삼성에스디아이 주식회사 Positive active material composition for lithium secondary battery
JP2008234851A (en) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2009266712A (en) * 2008-04-28 2009-11-12 Sakai Chem Ind Co Ltd Positive active material for lithium secondary battery and its manufacturing method
JP2010123424A (en) * 2008-11-20 2010-06-03 National Institute Of Advanced Industrial Science & Technology Active material for lithium battery, manufacturing method thereof, and lithium battery using the same
JP2011181222A (en) * 2010-02-26 2011-09-15 Hitachi Ltd Lithium ion battery
JP2012079625A (en) * 2010-10-05 2012-04-19 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery prepared using the positive electrode active material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002041419A1 (en) * 2000-11-20 2002-05-23 Chuo Denki Kogyo Co., Ltd. Nonaqueous electrolyte secondary cell and positive electrode active material
US6811925B2 (en) 2000-11-20 2004-11-02 Chuo Denki Kogyo Co., Ltd. Nonaqueous electrolyte secondary cell and a tungsten or molybdenum substituted lithium positive electrode active material
KR100709205B1 (en) * 2001-04-02 2007-04-18 삼성에스디아이 주식회사 Positive active material composition for lithium secondary battery
US7507501B2 (en) 2001-04-02 2009-03-24 Samsung Sdi Co., Ltd. Positive active material composition for rechargeable lithium batteries
JP2008234851A (en) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2009266712A (en) * 2008-04-28 2009-11-12 Sakai Chem Ind Co Ltd Positive active material for lithium secondary battery and its manufacturing method
JP2010123424A (en) * 2008-11-20 2010-06-03 National Institute Of Advanced Industrial Science & Technology Active material for lithium battery, manufacturing method thereof, and lithium battery using the same
JP2011181222A (en) * 2010-02-26 2011-09-15 Hitachi Ltd Lithium ion battery
JP2012079625A (en) * 2010-10-05 2012-04-19 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery prepared using the positive electrode active material

Similar Documents

Publication Publication Date Title
JP6549565B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
KR100542184B1 (en) An active material for a battery and a method of preparing the same
EP3208872A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP5114998B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR20160059781A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2002260632A (en) Secondary battery
JPH08306360A (en) Manufacture of cathode active material for nonaqueous battery
JP2003151549A (en) Layered oxide electrode material and its manufacturing method and battery using the same
JP2012252853A (en) Method for manufacturing lithium-containing complex oxide, positive electrode active material, and secondary battery
JP7271945B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP3647758B2 (en) Non-aqueous battery positive electrode material, method for producing the same, and battery using the same
JP2001023617A (en) Manufacture of lithium secondary battery
JP2005158737A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JPH09120815A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP2019114454A (en) Method of manufacturing positive electrode material for non-aqueous secondary battery
JP2001068113A (en) Positive electrode active material for lithium battery, its manufacturing method, and lithium battery
JPH10321228A (en) Positive electrode active material for lithium battery, its manufacture, and lithium battery using it
JP2008159543A (en) Positive electrode active material for non-aqueous type electrolyte secondary battery, and method for manufacturing the material, and non-aqueous type electrolyte secondary battery using the material
JPH09259879A (en) Manufacture of positive electrode active material for lithium battery
JP2003272623A (en) Positive electrode active material for lithium secondary battery and its manufacturing method as well as lithium secondary battery using it
JP5704056B2 (en) Method for producing positive electrode active material for secondary battery, positive electrode active material for secondary battery, and secondary battery using the same
JP2003123756A (en) Positive electrode material for lithium ion secondary battery, method of preparing the same, and lithium secondary battery
JP2000327340A (en) Lithium manganese compound oxide particulate composition and its production and utilization for lithium ion secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040113