JP2002260632A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JP2002260632A
JP2002260632A JP2001052289A JP2001052289A JP2002260632A JP 2002260632 A JP2002260632 A JP 2002260632A JP 2001052289 A JP2001052289 A JP 2001052289A JP 2001052289 A JP2001052289 A JP 2001052289A JP 2002260632 A JP2002260632 A JP 2002260632A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
positive electrode
active material
nickelate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001052289A
Other languages
Japanese (ja)
Other versions
JP4055368B2 (en
Inventor
Mikio Watanabe
美樹男 渡邉
Tatsuji Numata
達治 沼田
Yuichi Kumeuchi
友一 粂内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2001052289A priority Critical patent/JP4055368B2/en
Priority to KR1020037011300A priority patent/KR100582614B1/en
Priority to EP02744912.3A priority patent/EP1383183B1/en
Priority to CNB028056310A priority patent/CN1237632C/en
Priority to PCT/JP2002/001329 priority patent/WO2002069417A1/en
Priority to US10/469,119 priority patent/US20040072071A1/en
Publication of JP2002260632A publication Critical patent/JP2002260632A/en
Application granted granted Critical
Publication of JP4055368B2 publication Critical patent/JP4055368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-capacity secondary battery of a non-aqueous electrolyte type superior in safety and moreover having superior high-temperature cycle characteristic. SOLUTION: This secondary battery uses a mixture of lithium manganate with lithium nickelate as a positive electrode active material, and contains at least one kind of element selected from Bi, Pb, Sb and Sn in the positive electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池に関し、
更に詳しくは、リチウム二次電池あるいはリチウムイオ
ン二次電池等の非水電解液を用いた二次電池に好適に用
いられ、高容量化が可能で、安全性及び動作特性、特に
高温サイクル特性に優れた二次電池に関するものであ
る。
The present invention relates to a secondary battery,
More specifically, it is suitably used for a secondary battery using a non-aqueous electrolyte such as a lithium secondary battery or a lithium ion secondary battery, and can have a high capacity, and has safety and operating characteristics, particularly high-temperature cycle characteristics. It relates to an excellent secondary battery.

【0002】[0002]

【従来の技術】従来、リチウム金属やリチウム化合物を
負極として用いる非水電解液二次電池においては、正極
活物質としてコバルト酸リチウム、ニッケル酸リチウ
ム、スピネル型マンガン酸リチウムを用いると、4Vを
越える起電力が得られることから広く研究が行われてい
る。中でも、コバルト酸リチウムが電池特性に優れ、か
つ合成も容易であることから、現在リチウムイオン二次
電池の正極活物質として広く実用化されている。
2. Description of the Related Art Conventionally, in a non-aqueous electrolyte secondary battery using lithium metal or a lithium compound as a negative electrode, when lithium cobaltate, lithium nickelate, and spinel type lithium manganate are used as a positive electrode active material, the voltage exceeds 4 V. Research has been extensively conducted because an electromotive force can be obtained. Above all, lithium cobaltate is widely used as a positive electrode active material of a lithium ion secondary battery at present because of its excellent battery characteristics and easy synthesis.

【0003】しかしながら、コバルトは可採埋蔵量が少
なく高価なため、その代替物質として、ニッケル酸リチ
ウムが有望視されている。このニッケル酸リチウムはコ
バルト酸リチウムと同様、層状岩塩構造(α−NaFe
2構造)を有し、リチウム電極に対し約4Vの電位を
有し、その容量もリチウム基準で4.2V以下の範囲で
約200mAh/gとコバルト酸リチウムに対し非常に
高容量であるため、注目されている。
[0003] However, since cobalt has a small recoverable reserve and is expensive, lithium nickelate is promising as a substitute for cobalt. This lithium nickelate has a layered rock salt structure (α-NaFe) like lithium cobaltate.
O 2 structure) has, for having a potential of about 4V to lithium electrode, the capacity is very high capacity to about 200 mAh / g of lithium cobaltate in the range of 4.2V or less based on lithium ,Attention has been paid.

【0004】ところで、この層状岩塩構造では、充電時
のリチウムの脱離により電気陰性度の大きな酸素相が隣
接することになり、酸素層間の静電反発力が化学結合力
を上回るとCdCl2構造への不可逆的構造変化が生じ
る。このような充電時における構造不安定性は、充電に
より生成するNi4+の化学的な不安定性とも相関し、結
晶格子からの酸素脱離開始温度に影響を及ぼす。充電状
態のニッケル酸リチウムは、コバルト酸リチウムに比べ
ても酸素脱離開始温度が低いことが既に報告されている
(Solid State Ionics, 69, No.3/4, 265 (1994)を参照
されたい)。
By the way, in this layered rock salt structure, an oxygen phase having a large electronegativity becomes adjacent due to elimination of lithium at the time of charging, and when the electrostatic repulsion between the oxygen layers exceeds the chemical bonding force, the CdCl 2 structure is formed. An irreversible structural change to Such structural instability during charging also correlates with the chemical instability of Ni 4+ generated by charging, and affects the temperature at which oxygen desorption from the crystal lattice starts. It has been reported that lithium nickelate in a charged state has a lower oxygen desorption initiation temperature than lithium cobaltate (see Solid State Ionics, 69, No. 3/4, 265 (1994)). ).

【0005】したがって、ニッケル酸リチウムを単独で
正極活物質とした電池系は、高容量が期待できるにもか
かわらず、この充電時の熱不安定性により十分な安全性
が確保できないことから、実用化が困難である。また、
この電池系には、電解液を分解する反応が進行しやす
く、サイクル特性、特に高温下でのサイクル特性が十分
ではないことが既に報告されている(J. Electrochem.
Soc. 147 p.1322-1331 (2000)を参照されたい)。
Therefore, a battery system using lithium nickel oxide alone as a positive electrode active material is not practically used because sufficient stability cannot be ensured due to thermal instability during charging, although high capacity can be expected. Is difficult. Also,
It has already been reported that in this battery system, the reaction for decomposing the electrolytic solution easily proceeds, and the cycle characteristics, particularly the cycle characteristics at high temperatures, are not sufficient (J. Electrochem.
Soc. 147 p.1322-1331 (2000)).

【0006】一方、スピネル型のマンガン酸リチウム
は、そこ結晶構造が空間群Fd3mに属しており、その
(111)結晶軸方向の積層パターンは、コバルト酸リ
チウムやニッケル酸リチウムと異なり、リチウム単独相
が存在しないことが分かっている。このため、リチウム
を全て引き抜いてもマンガンイオンがピラーとなるため
に、酸素層が直接隣接することはない。したがって、立
方晶の基本骨格を維持したままリチウムイオンの引き抜
きが可能である。また、充電時の酸素脱離開始温度も、
層状岩塩構造のニッケル酸リチウムやコバルト酸リチウ
ムに比べて高温であり、この点からも、スピネル型マン
ガン酸リチウムは安全性の高い正極材料であることが分
かる。
On the other hand, spinel-type lithium manganate has a crystal structure belonging to the space group Fd3m, and its lamination pattern in the (111) crystal axis direction is different from lithium cobaltate or lithium nickelate, and is different from lithium cobaltate or lithium nickelate. Is known not to exist. For this reason, even if all the lithium is extracted, the manganese ions become pillars, so that the oxygen layer does not directly adjoin. Therefore, it is possible to extract lithium ions while maintaining the cubic basic skeleton. Also, the oxygen desorption start temperature during charging is
The temperature is higher than that of lithium nickelate or lithium cobaltate having a layered rock salt structure, which also indicates that spinel-type lithium manganate is a highly safe cathode material.

【0007】しかしながら、スピネル型のマンガン酸リ
チウムを用いた電池系は、コバルト酸リチウムやニッケ
ル酸リチウムを用いたものに比べると、充放電容量が小
さいことが問題である。また、高温下で電解液中にMn
が溶出するため、高温サイクル特性が不十分であること
が指摘されている。そこで、スピネル型のマンガン酸リ
チウムとニッケル酸リチウムとの混合物を正極活物質と
して用いることで、高容量でかつ安全性を高めた非水電
解液二次電池が提案されている(特開2000−770
72号公報参照)。この非水電解液二次電池は、コバル
ト酸リチウムより高容量で、かつ安全性が確保されたも
のとなっている。
However, the battery system using the spinel type lithium manganate has a problem that the charge and discharge capacity is smaller than that using the lithium cobaltate or lithium nickelate. Further, Mn is contained in the electrolyte at a high temperature.
It has been pointed out that the high-temperature cycle characteristics are insufficient due to elution. Therefore, a nonaqueous electrolyte secondary battery having a high capacity and improved safety has been proposed by using a spinel-type mixture of lithium manganate and lithium nickelate as a positive electrode active material (Japanese Patent Application Laid-Open No. 2000-2000). 770
No. 72). This non-aqueous electrolyte secondary battery has a higher capacity than lithium cobalt oxide, and ensures safety.

【0008】[0008]

【発明が解決しようとする課題】ところで、上述した非
水電解液二次電池においては、高容量及び安全性の面で
従来の二次電池より優れているという特徴はあるが、こ
の二次電池においても、高温下でのサイクル特性が十分
ではなく、更なる改善が必要である。更に、スピネル型
マンガン酸リチウムを用いた二次電池においては、正極
中にGe,Sn,Pb,In,Sb,BiおよびZnか
らなる元素群から選ばれた少なくとも1種類の元素を含
むカルコゲン化合物を添加することで、高温下での電池
特性を改善した技術が既に開示されている(特開平10
−302767号公報参照)が、この二次電池は、正極
活物質としてスピネル型のマンガン酸リチウム単体を用
いたものであり、スピネル型のマンガン酸リチウムとニ
ッケル酸リチウムとの混合物を正極活物質として用いる
点については全く検討されていない。
The above-mentioned non-aqueous electrolyte secondary battery is characterized by being superior to conventional secondary batteries in terms of high capacity and safety. In this case, the cycle characteristics at high temperatures are not sufficient, and further improvement is required. Furthermore, in a secondary battery using spinel-type lithium manganate, a chalcogen compound containing at least one element selected from the group consisting of Ge, Sn, Pb, In, Sb, Bi, and Zn in a positive electrode. A technique of improving the battery characteristics at high temperatures by adding the same has already been disclosed (Japanese Patent Laid-Open No.
This secondary battery uses a spinel-type lithium manganate alone as a positive electrode active material, and uses a mixture of spinel-type lithium manganate and lithium nickelate as a positive electrode active material. The point of use is not considered at all.

【0009】また、コバルト酸リチウムやニッケル酸リ
チウムを用いた二次電池においては、B,Bi,Mo,
P,Cr,V,Wから選ばれた少なくとも1種類以上の
元素を添加することで、電池の内部抵抗を低減した技術
が既に開示されている(特開2000−113884号
公報参照)が、この二次電池では、高温下での電池特性
については全く記載されていない。このように、正極活
物質としてニッケル酸リチウムとスピネル型マンガン酸
リチウムとの混合物を用いることにより、コバルト酸リ
チウムを用いたもの以上に高容量でかつ安全性の高い二
次電池を得ることは可能であるが、この二次電池におい
ても高温下でのサイクル特性が十分ではないために、高
温サイクル特性を改善することが望まれている。
In a secondary battery using lithium cobaltate or lithium nickelate, B, Bi, Mo,
A technique in which the internal resistance of a battery is reduced by adding at least one element selected from P, Cr, V, and W has already been disclosed (see Japanese Patent Application Laid-Open No. 2000-113884). For the secondary battery, there is no description about battery characteristics at high temperatures. Thus, by using a mixture of lithium nickelate and spinel-type lithium manganate as the positive electrode active material, it is possible to obtain a secondary battery with higher capacity and higher safety than that using lithium cobaltate. However, even in this secondary battery, since the cycle characteristics at high temperatures are not sufficient, it is desired to improve the high-temperature cycle characteristics.

【0010】本発明は、上記の事情に鑑みてなされたも
のであって、高容量で、安全性に優れ、しかも高温サイ
クル特性に優れた非水電解液系の二次電池を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery having high capacity, excellent safety, and excellent high-temperature cycle characteristics. Aim.

【0011】[0011]

【課題を解決するための手段】本発明者は、上記の目的
を達成するために鋭意検討を重ねた結果、本発明を完成
した。すなわち、本発明の請求項1記載の二次電池は、
マンガン酸リチウムとニッケル酸リチウムの混合物を正
極活物質として用いた二次電池において、正極電極中
に、Bi、Pb、Sb、Snから選択された少なくとも
一種の元素を含むことを特徴とする。
Means for Solving the Problems The present inventor has made intensive studies to achieve the above object, and as a result, completed the present invention. That is, the secondary battery according to claim 1 of the present invention is:
In a secondary battery using a mixture of lithium manganate and lithium nickelate as a positive electrode active material, the positive electrode includes at least one element selected from Bi, Pb, Sb, and Sn.

【0012】本発明の請求項2記載の二次電池は、請求
項1記載の二次電池において、前記マンガン酸リチウム
はLixMn24(ただし、1.02≦x≦1.25)
であり、前記ニッケル酸リチウムはLiNi1-xx2
(ただし、MはCo、Mn、Fe、Al、Srから選択
された一種以上の元素、0<x≦0.5)であることを
特徴とする。
The secondary battery according to a second aspect of the present invention is the secondary battery according to the first aspect, wherein the lithium manganate is Li x Mn 2 O 4 (where 1.02 ≦ x ≦ 1.25).
Wherein the lithium nickelate is LiNi 1-x M x O 2
(Where M is at least one element selected from Co, Mn, Fe, Al and Sr, 0 <x ≦ 0.5).

【0013】本発明の請求項3記載の二次電池は、請求
項1または2記載の二次電池において、前記マンガン酸
リチウムと前記ニッケル酸リチウムとの重量比は、a:
100−a(ただし、40<a≦99)であることを特
徴とする。
The secondary battery according to claim 3 of the present invention is the secondary battery according to claim 1 or 2, wherein the weight ratio of the lithium manganate and the lithium nickelate is a:
100-a (where 40 <a ≦ 99).

【0014】本発明の請求項4記載の二次電池は、請求
項1、2または3記載の二次電池において、前記元素
は、炭酸塩、水酸化物または酸化物の状態で添加されて
いることを特徴とする。
A secondary battery according to a fourth aspect of the present invention is the secondary battery according to the first, second or third aspect, wherein the element is added in a state of carbonate, hydroxide or oxide. It is characterized by the following.

【0015】本発明の請求項5記載の二次電池は、請求
項4記載の二次電池において、前記炭酸塩、水酸化物ま
たは酸化物は、前記混合物に対して重量比で0.5%以
上かつ10%以下含まれていることを特徴とする。
According to a second aspect of the present invention, in the secondary battery according to the fourth aspect, the carbonate, hydroxide or oxide is 0.5% by weight with respect to the mixture. It is characterized in that it is contained in an amount of not less than 10%.

【0016】[0016]

【発明の実施の形態】本発明の二次電池の一実施の形態
について非水電解液二次電池を例に採り説明する。本実
施の形態の非水電解液二次電池は、LixMn24(た
だし、1.02≦x≦1.25)で表されるスピネル型
マンガン酸リチウムと、LiNi1-xx 2(ただし、
MはCo、Mn、Fe、Al、Srから選択された一種
以上の元素、0<x≦0.5)で表されるニッケル酸リ
チウムの混合物を正極活物質として用いた二次電池であ
り、正極電極中に、Bi、Pb、Sb、Snから選択さ
れた少なくとも一種の元素が炭酸塩、水酸化物または酸
化物の状態で添加されたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the secondary battery of the present invention
Will be described by taking a non-aqueous electrolyte secondary battery as an example. Real truth
The non-aqueous electrolyte secondary battery of the embodiment is LixMnTwoOFour(T
However, a spinel type represented by 1.02 ≦ x ≦ 1.25)
Lithium manganate and LiNi1-xMxO Two(However,
M is a kind selected from Co, Mn, Fe, Al and Sr
The nickel oxide represented by the above elements, 0 <x ≦ 0.5)
A secondary battery using a mixture of titanium as the positive electrode active material.
Selected from Bi, Pb, Sb, and Sn in the positive electrode.
At least one element is a carbonate, hydroxide or acid
Is added in the form of a compound.

【0017】この非水電解液二次電池では、スピネル型
マンガン酸リチウムとニッケル酸リチウムの混合物を正
極活物質として用いたことにより、その高温下でのサイ
クル劣化はそれぞれを単独で正極活物質とした場合のそ
れと挙動が異なっている。このため、このようなサイク
ル劣化原因はそれぞれの活物質が相互作用を起こした結
果ではないかと考えられている。例えば、ニッケル酸リ
チウムの電極界面で電解液が分解されたことにより発生
した生成物が、マンガン酸リチウムに対して悪影響を及
ぼすこと等である。
In this non-aqueous electrolyte secondary battery, since a mixture of spinel-type lithium manganate and lithium nickelate is used as the positive electrode active material, the cycle deterioration at a high temperature is independently caused by the positive electrode active material. Behavior is different from that of For this reason, it is considered that such a cycle deterioration cause is a result of the interaction between the active materials. For example, a product generated by the decomposition of the electrolytic solution at the electrode interface of lithium nickelate adversely affects lithium manganate.

【0018】そこで、このような電池系に、Bi、P
b、Sb、Snから選択された少なくとも一種の元素を
炭酸塩、水酸化物または酸化物の状態で添加した場合、
電解液の分解もしくはその生成物が他方の活物質へ与え
る悪影響を抑制する効果が生じる。
Therefore, Bi, P
When at least one element selected from b, Sb and Sn is added in the form of carbonate, hydroxide or oxide,
The effect of suppressing the decomposition of the electrolytic solution or the adverse effect of the product thereof on the other active material is produced.

【0019】この非水電解液二次電池では、正極活物質
として用いるマンガン酸リチウムのマンガン(Mn)原
料としては、電解二酸化マンガン(EMD)、Mn
23、Mn34、化学合成二酸化マンガン(CMD)等
の種々のMn酸化物、炭酸マンガンや蓚酸マンガン等の
マンガン塩等のマンガン化合物を用いることができ、リ
チウム(Li)原料としては、炭酸リチウム、Li酸化
物、硝酸リチウム、水酸化リチウム等のリチウム化合物
を用いることができる。
In this nonaqueous electrolyte secondary battery, the manganese (Mn) raw material of lithium manganate used as a positive electrode active material includes electrolytic manganese dioxide (EMD), Mn
Various Mn oxides such as 2 O 3 , Mn 3 O 4 and chemically synthesized manganese dioxide (CMD), and manganese compounds such as manganese salts such as manganese carbonate and manganese oxalate can be used. As the lithium (Li) raw material, And lithium compounds such as lithium carbonate, Li oxide, lithium nitrate and lithium hydroxide.

【0020】また、ニッケル酸リチウムでは、ニッケル
(Ni)原料としては、水酸化ニッケル、酸化ニッケ
ル、硝酸ニッケル等のニッケル化合物を用いることがで
き、リチウム(Li)原料としては、炭酸リチウム、硝
酸リチウム、水酸化リチウム等のリチウム化合物を用い
ることができる。なお、安定化、高容量化、安全性向上
等のために、一部他元素(Co、Mn、Fe、Al、S
r)をドープしたものでもよい。
In lithium nickelate, nickel compounds such as nickel hydroxide, nickel oxide and nickel nitrate can be used as nickel (Ni) raw materials, and lithium carbonate and lithium nitrate can be used as lithium (Li) raw materials. And lithium compounds such as lithium hydroxide. Some elements (Co, Mn, Fe, Al, S, S) are used for stabilization, high capacity, safety improvement, etc.
r) may be doped.

【0021】正極電極中に混合するマンガン酸リチウム
またはニッケル酸リチウムは、正極電極の充填性、電解
液の劣化防止の点を考慮すると、30μm以下の粒径が
望ましい。また、吸着水または構造水を持たないもの、
あるいは加熱脱水処理を行ったものが好ましい。
The lithium manganate or lithium nickelate mixed in the positive electrode preferably has a particle size of 30 μm or less in consideration of the filling property of the positive electrode and the prevention of deterioration of the electrolytic solution. In addition, those without adsorbed water or structured water,
Alternatively, those subjected to heat dehydration treatment are preferable.

【0022】正極電極中へ添加するBi、Pb、Sb、
Snの少なくとも一種類以上の元素を含む炭酸塩、水酸
化物あるいは酸化物は、粉体作製時、電極作製時のいず
れにおいて添加してもよく、また混合するマンガン酸リ
チウムとニッケル酸リチウムのいずれか一方にのみ添加
してもよい。ただ、作業性を考慮した場合、電極作製時
に、導電付与剤、バインダー、有機溶剤とともに添加す
ることが望ましい。また、45℃下でのサイクル特性の
改善効果の点では、Biを添加したものが最も効果的で
あるから、添加元素としてはBiを選択することが望ま
しい。
Bi, Pb, Sb, added to the positive electrode
The carbonate, hydroxide or oxide containing at least one element of Sn may be added at the time of powder production or at the time of electrode production, or any of lithium manganate and lithium nickelate to be mixed. It may be added to only one of them. However, in consideration of workability, it is desirable to add them together with a conductivity-imparting agent, a binder, and an organic solvent during electrode fabrication. From the viewpoint of the effect of improving the cycle characteristics at 45 ° C., the addition of Bi is the most effective. Therefore, it is desirable to select Bi as the additional element.

【0023】次に、本発明の非水電解液二次電池につい
てより詳細に説明する。正極活物質としては、上記のマ
ンガン酸リチウムとニッケル酸リチウムを混合したもの
が好適に用いられる。一方、負極活物質としては、リチ
ウム、リチウム合金、またはリチウムを吸蔵・放出し得
るグラファイト、または非晶質炭素等の炭素材料が好適
に用いられる。セパレータは、特に限定されないが、織
布、硝子繊維、多孔性合成樹脂皮膜等を用いることがで
きる。例えば、ポリプロピレン、ポリエチレン系の多孔
膜が、薄膜でかつ大面積化、膜強度や膜抵抗の点で好適
である。
Next, the non-aqueous electrolyte secondary battery of the present invention will be described in more detail. As the positive electrode active material, a mixture of the above-described lithium manganate and lithium nickelate is suitably used. On the other hand, as the negative electrode active material, lithium, lithium alloy, graphite capable of inserting and extracting lithium, or a carbon material such as amorphous carbon is preferably used. The separator is not particularly limited, but a woven fabric, a glass fiber, a porous synthetic resin film, or the like can be used. For example, a polypropylene or polyethylene porous film is suitable in terms of a thin film, large area, film strength and film resistance.

【0024】非水電解液の溶媒としては、通常よく用い
られるもので良く、例えば、カーボネート類、塩素化炭
化水素、エーテル類、ケトン類、ニトリル類等が好適に
用いられる。特に好ましくは、高誘電率溶媒として、エ
チレンカーボネート(EC)、プロピレンカーボネート
(PC)、γ−ブチロラクトン(GBL)等から少なく
とも1種類、低粘度溶媒として、ジエチルカーボネート
(DEC)、ジメチルカーボネート(DMC)、エチル
メチルカーボネート(EMC)、エステル類等から少な
くとも1種類選択し、これらを混合したものが好適に用
いられる。
As the solvent of the non-aqueous electrolyte, those commonly used may be used, and for example, carbonates, chlorinated hydrocarbons, ethers, ketones, nitriles and the like are preferably used. Particularly preferably, at least one of ethylene carbonate (EC), propylene carbonate (PC), and γ-butyrolactone (GBL) is used as the high dielectric constant solvent, and diethyl carbonate (DEC) and dimethyl carbonate (DMC) are used as the low viscosity solvent. , Ethyl methyl carbonate (EMC), esters and the like, and a mixture thereof is suitably used.

【0025】支持塩としては、LiClO4、LiI、
LiPF6、LiAlCl4、LiBF4、CF3SO3
i等から選択された少なくとも1種類が好適に用いられ
る。電解液及び支持塩は、電池を使用する環境、電池用
途への最適化等を考慮して適宜、選定・調整すれば良い
が、支持塩として、0.8〜1.5MのLiClO 4
LiBF4またはLiPF6を用い、溶媒として、EC+
DEC、PC+DMC、PC+EMCのうち少なくとも
1種を用いるのが望ましい。
As the supporting salt, LiClOFour, LiI,
LiPF6, LiAlClFour, LiBFFour, CFThreeSOThreeL
At least one kind selected from i.
You. Electrolyte and supporting salt are used for battery environment and battery
It is sufficient to select and adjust as appropriate taking into account optimization etc.
Is, as a supporting salt, 0.8 to 1.5 M LiClO Four,
LiBFFourOr LiPF6And EC + as a solvent
At least DEC, PC + DMC, PC + EMC
It is desirable to use one kind.

【0026】非水電解液二次電池の構成としては、角
形、ペーパー型、積層型、円筒型、コイン型など種々の
形状を採用することができる。また、構成部品には、集
電体、絶縁板等があるが、これらは特に限定されるもの
ではなく、上記の形状に応じて適宜選定すればよい。
As the configuration of the nonaqueous electrolyte secondary battery, various shapes such as a rectangular shape, a paper type, a laminated type, a cylindrical type, and a coin type can be adopted. In addition, the components include a current collector, an insulating plate, and the like, but these are not particularly limited, and may be appropriately selected according to the above shape.

【0027】以下、本実施の形態の非水電解液二次電池
について、実施例及び比較例によりさらに詳しく説明す
るが、本発明はこれら実施例に限定されるものではな
い。 「実施例1」スピネル型マンガン酸リチウムを合成する
ために、出発原料として炭酸リチウム(Li2CO3)お
よび電解二酸化マンガン(EMD)を用い、これらの原
料をモル比で[Li]/[Mn]=1.05/2となる
ように混合した。次いで、この混合粉を酸素フローの雰
囲気下、800℃で焼成した。
Hereinafter, the nonaqueous electrolyte secondary battery of the present embodiment will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Example 1 In order to synthesize spinel type lithium manganate, lithium carbonate (Li 2 CO 3 ) and electrolytic manganese dioxide (EMD) were used as starting materials, and these materials were used in a molar ratio of [Li] / [Mn]. ] = 1.05 / 2. Next, this mixed powder was fired at 800 ° C. in an atmosphere of oxygen flow.

【0028】ニッケル酸リチウムは、ニッケル源として
硝酸ニッケルを、リチウム源として水酸化リチウムを、
それぞれ用い、添加元素としてCo化合物、例えば炭酸
コバルトを用い、これらを所望の組成比となるように混
合し、その後、酸素フロー雰囲気下、750℃で焼成し
た。ここでは、焼成後の組成がLiNi0.8Co0.2 2
となるように原料のモル比を調整した。
Lithium nickelate is used as a nickel source.
Nickel nitrate, lithium hydroxide as the lithium source,
Each is used, and a Co compound such as carbonic acid is used as an additional element.
Use cobalt and mix them to achieve the desired composition ratio.
And then fired at 750 ° C. in an oxygen flow atmosphere
Was. Here, the composition after firing is LiNi0.8Co0.2O Two
The molar ratio of the raw materials was adjusted so that

【0029】次いで、マンガン酸リチウム、ニッケル酸
リチウム、導電性付与剤、水酸化ビスマスを乾式混合
し、バインダーであるPVDFを溶解させたN−メチル
−2−ピロリドン(NMP)中に均一に分散させてスラ
リーとした。次いで、このスラリーを厚さ25μmのア
ルミ金属箔上に塗布し、その後NMPを蒸発させること
により正極シートとした。ここでは、正極中の固形分比
率を、重量%でマンガン酸リチウム:ニッケル酸リチウ
ム:導電性付与剤:水酸化ビスマス:PVDF=45:
35:10:3:7(重量%)とした。
Next, lithium manganate, lithium nickelate, a conductivity-imparting agent, and bismuth hydroxide are dry-mixed and uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which PVDF as a binder is dissolved. To make a slurry. Next, this slurry was applied on an aluminum metal foil having a thickness of 25 μm, and then NMP was evaporated to obtain a positive electrode sheet. Here, the solid content ratio in the positive electrode is expressed by weight% of lithium manganate: lithium nickelate: conductivity imparting agent: bismuth hydroxide: PVDF = 45:
35: 10: 3: 7 (% by weight).

【0030】一方、負極シートは、カーボン及びPVD
Fを、カーボン:PVDF=90:10(重量%)の比
率となるように混合し、この混合物をNMP中に分散さ
せ、この分散厚さμmの銅箔上に塗布して作製した。電
解液は、支持塩として1MのLiPF6を用い、溶媒と
してエチレンカーボネート(EC)+ジエチルカーボネ
ート(DEC)=50+50(体積%)の混合液を用い
た。セパレーターは、厚さ25μmのポリエチレン多孔
膜を使用した。
On the other hand, the negative electrode sheet is made of carbon and PVD.
F was mixed so as to have a ratio of carbon: PVDF = 90: 10 (% by weight), and this mixture was dispersed in NMP, and applied to a copper foil having a dispersed thickness of μm to prepare the same. As the electrolyte, 1M LiPF 6 was used as a supporting salt, and a mixed solution of ethylene carbonate (EC) + diethyl carbonate (DEC) = 50 + 50 (vol%) was used as a solvent. As the separator, a polyethylene porous membrane having a thickness of 25 μm was used.

【0031】「実施例2」スピネル型マンガン酸リチウ
ムを合成するために、出発原料として炭酸リチウム(L
2CO3)、電解二酸化マンガン(EMD)及び酸化ビ
スマス(Bi23)を用い、これらをモル比で[Li]
/[Mn]/[Bi]=1.05/2/0.05となる
ように混合した。次いで、この混合粉を酸素フローの雰
囲気下、800℃で焼成し、Bi添加スピネル型マンガ
ン酸リチウムを得た。また、ニッケル酸リチウムは実施
例1と同様に作製した。
Example 2 In order to synthesize spinel-type lithium manganate, lithium carbonate (L
i 2 CO 3 ), electrolytic manganese dioxide (EMD) and bismuth oxide (Bi 2 O 3 ), and these are used in a molar ratio of [Li].
/[Mn]/[Bi]=1.05/2/0.05. Next, the mixed powder was fired at 800 ° C. in an atmosphere of oxygen flow to obtain a Bi-added spinel-type lithium manganate. Further, lithium nickelate was produced in the same manner as in Example 1.

【0032】次いで、Bi添加マンガン酸リチウム、ニ
ッケル酸リチウム、導電性付与剤を乾式混合し、バイン
ダーであるPVDFを溶解させたN−メチル−2−ピロ
リドン(NMP)中に均一に分散させ、スラリーとし
た。次いで、このスラリーを厚さ25μmのアルミ金属
箔上に塗布し、その後、NMPを蒸発させることにより
正極シートとした。ここでは、正極中の固形分比率を、
Bi添加マンガン酸リチウム:ニッケル酸リチウム:導
電性付与剤:PVDF=45:40:10:5(重量
%)とした。なお、その他の電池構成は、実施例1と同
様とし、円筒セルを試作した。
Next, Bi-added lithium manganate, lithium nickelate, and a conductivity-imparting agent are dry-mixed and uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which PVDF as a binder is dissolved. And Next, this slurry was applied on an aluminum metal foil having a thickness of 25 μm, and then NMP was evaporated to obtain a positive electrode sheet. Here, the solid content ratio in the positive electrode is
Bi-added lithium manganate: lithium nickelate: conductivity-imparting agent: PVDF = 45: 40: 10: 5 (% by weight). Other battery configurations were the same as in Example 1, and a cylindrical cell was prototyped.

【0033】「比較例1」正極活物質としてスピネル型
マンガン酸リチウムのみを用い、固形分比率をマンガン
酸リチウム:導電性付与剤:PVDF=80:10:1
0(重量%)とした以外は実施例1と同様にして円筒セ
ルを試作した。
Comparative Example 1 A spinel type lithium manganate alone was used as the positive electrode active material, and the solid content ratio was lithium manganate: conductivity imparting agent: PVDF = 80: 10: 1.
A trial production of a cylindrical cell was performed in the same manner as in Example 1 except that 0 (wt%) was used.

【0034】「比較例2」正極活物質としてニッケル酸
リチウムのみを用い、固形分比率をニッケル酸リチウ
ム:導電性付与剤:PVDF=80:10:10(重量
%)とした以外は実施例1と同様にして円筒セルを試作
した。
Comparative Example 2 Example 1 was repeated except that only lithium nickelate was used as the positive electrode active material and the solid content ratio was lithium nickelate: conductivity imparting agent: PVDF = 80: 10: 10 (% by weight). A prototype of a cylindrical cell was produced in the same manner as in Example 1.

【0035】「比較例3」正極活物質として実施例2と
同様にして作製したBi添加スピネル型マンガン酸リチ
ウムを用い、固形分比率をBi添加スピネル型マンガン
酸リチウム:導電性付与剤:PVDF=80:10:1
0(重量%)とした以外は実施例1と同様にして、円筒
セルを試作した。
Comparative Example 3 Bi-added spinel-type lithium manganate produced in the same manner as in Example 2 was used as the positive electrode active material, and the solid content ratio was Bi-added spinel-type lithium manganate: conductivity imparting agent: PVDF = 80: 10: 1
A trial production of a cylindrical cell was performed in the same manner as in Example 1 except that 0 (% by weight) was used.

【0036】「比較例4」正極活物質としてニッケル酸
リチウムのみを用い、固形分比率をニッケル酸リチウ
ム:導電性付与剤:酸化ビスマス:PVDF=75:1
0:5:10(重量%)とした以外は実施例1と同様に
して、円筒セルを試作した。
Comparative Example 4 Only lithium nickelate was used as the positive electrode active material, and the solid content ratio was lithium nickelate: conductivity imparting agent: bismuth oxide: PVDF = 75: 1.
A cylindrical cell was prototyped in the same manner as in Example 1 except that the ratio was 0: 5: 10 (% by weight).

【0037】「比較例5」正極活物質としてスピネル型
マンガン酸リチウムとニッケル酸リチウムの混合物を用
い、固形分比率をスピネル型マンガン酸リチウム:ニッ
ケル酸リチウム:導電性付与剤:PVDF=45:3
5:10:10(重量%)とした以外は実施例1と同様
にして、円筒セルを試作した。
Comparative Example 5 A mixture of spinel-type lithium manganate and lithium nickelate was used as the positive electrode active material, and the solid content ratio was changed to spinel-type lithium manganate: lithium nickelate: conductivity imparting agent: PVDF = 45: 3.
A cylindrical cell was prototyped in the same manner as in Example 1 except that the ratio was 5:10:10 (% by weight).

【0038】「特性評価」実施例1、2および比較例1
〜5にて作製した円筒セルを用い、45℃における充放
電サイクル試験を行った。充電は0.5Aで4.2Vま
で、放電は1Aで3.0Vまで行った。表1に初回サイ
クルにおける充放電容量を示す。
"Characteristic evaluation" Examples 1 and 2 and Comparative Example 1
The charge / discharge cycle test at 45 ° C. was performed using the cylindrical cells prepared in the steps No. 5 to No. 5. The charging was performed up to 4.2 V at 0.5 A, and the discharging was performed up to 3.0 V at 1 A. Table 1 shows the charge / discharge capacity in the first cycle.

【表1】 [Table 1]

【0039】また、図1に、実施例1、2及び比較例5
のサイクルに伴う容量維持率の推移を示す。表1より、
マンガン酸リチウムを単独(比較例1)で用いた場合よ
り、ニッケル酸リチウムを混合した場合(比較例5)の
方が充電、放電容量ともに大きいことがわかる。
FIG. 1 shows Examples 1 and 2 and Comparative Example 5.
3 shows the change in the capacity retention rate with the cycle of FIG. From Table 1,
It can be seen that the charge and discharge capacities are larger when lithium nickelate is mixed (Comparative Example 5) than when lithium manganate is used alone (Comparative Example 1).

【0040】また、正極電極中のニッケル酸リチウム含
量が増加すれば電池容量も増加するが、安全性の確保が
困難となるため、ニッケル酸リチウムの混合量はスピネ
ル型マンガン酸リチウムに対して重量比で1%以上60
%以下とするのが望ましい。また、Biの水酸化物、酸
化物の添加は電池容量を減少させるが、Biの添加量が
あまり少なすぎると効果が認められないので、Biの添
加量は正極活物質の合計に対して重量比で0.5%以上
10%以下となる範囲で添加することが望ましい。
When the content of lithium nickelate in the positive electrode increases, the battery capacity also increases. However, it is difficult to ensure safety. Therefore, the mixing amount of lithium nickelate is increased by weight with respect to the spinel-type lithium manganate. 1% or more by ratio 60
% Is desirable. The addition of Bi hydroxides and oxides reduces the battery capacity. However, if the amount of Bi is too small, the effect is not recognized. Therefore, the amount of Bi added is based on the total weight of the positive electrode active material. It is desirable to add in a range of 0.5% or more and 10% or less.

【0041】また、表2に実施例1、2および比較例1
〜5にて作製した円筒セルの45℃における放電容量の
サイクル特性比較を示す。ここでは、初回容量を100
%とした場合の300サイクル後の容量維持率を示して
いる。
Table 2 shows Examples 1 and 2 and Comparative Example 1.
5 shows a comparison of the cycle characteristics of the discharge capacity at 45 ° C. of the cylindrical cells prepared in Nos. 1 to 5. Here, the initial capacity is 100
% Shows the capacity retention rate after 300 cycles.

【表2】 [Table 2]

【0042】この表2によれば、比較例3では大きく容
量減少が起こり、比較例1、2とは明らかにサイクル挙
動が異なっていることがわかる。これは、マンガン酸リ
チウムとニッケル酸リチウムがこの条件下において相互
作用を起こしているものと考えられる。一方、実施例
1、2の電池においては、容量維持率が大幅に改善され
ていることがわかった。
According to Table 2, it can be seen that the capacity was significantly reduced in Comparative Example 3, and the cycle behavior was clearly different from Comparative Examples 1 and 2. This is presumably because lithium manganate and lithium nickelate interact under this condition. On the other hand, in the batteries of Examples 1 and 2, it was found that the capacity retention ratio was significantly improved.

【0043】さらに、Bi炭酸塩、Pb、Sb、Snの
炭酸塩、水酸化物、酸化物を添加した場合においても同
様に、比較例5と比べてサイクル特性の大幅な改善が認
められた。また、Bi、Pb、Sb、Snの炭酸塩、水
酸化物、酸化物の添加量は、あまり少なすぎると効果が
認められず、また多すぎても電池容量が減少するので、
正極活物質の合計に対して重量比で0.5%以上10%
以下となる範囲で添加することが望ましい。
Further, when Bi carbonate, Pb, Sb and Sn carbonates, hydroxides and oxides were added, the cycle characteristics were also significantly improved as compared with Comparative Example 5. In addition, if the amounts of the carbonates, hydroxides, and oxides of Bi, Pb, Sb, and Sn are too small, no effect is observed, and if the amounts are too large, the battery capacity decreases.
0.5% or more and 10% by weight based on the total of the positive electrode active materials
It is desirable to add in the following range.

【0044】本実施の形態によれば、正極活物質とし
て、スピネル型マンガン酸リチウムとニッケル酸リチウ
ムとの混合物を用い、さらに、正極電極中にBi、P
b、Sb、Snの炭酸塩、水酸化物、酸化物を添加した
ので、電解液の分解もしくはその生成物が他方の活物質
へ与える悪影響を抑制することができ、その結果、高温
下でのサイクル特性を改善することができる。
According to the present embodiment, a mixture of spinel-type lithium manganate and lithium nickelate is used as the positive electrode active material, and Bi, P
Since carbonates, hydroxides, and oxides of b, Sb, and Sn were added, it was possible to suppress the decomposition of the electrolytic solution or the adverse effect of the product thereof on the other active material. Cycle characteristics can be improved.

【0045】以上、本発明の二次電池の一実施の形態に
ついて非水電解液二次電池を例に採り説明してきたが、
具体的な構成は本実施形態に限定されるものではなく、
本発明の要旨を逸脱しない範囲で設計の変更等が可能で
ある。
As described above, one embodiment of the secondary battery of the present invention has been described using a non-aqueous electrolyte secondary battery as an example.
The specific configuration is not limited to this embodiment,
Design changes and the like can be made without departing from the spirit of the present invention.

【0046】[0046]

【発明の効果】以上説明した様に、本発明の二次電池に
よれば、マンガン酸リチウムとニッケル酸リチウムの混
合物を正極活物質として用いた二次電池において、正極
電極中に、Bi、Pb、Sb、Snから選択された少な
くとも一種の元素を含むこととしたので、電解液の分解
もしくはその生成物が他方の活物質へ与える悪影響を抑
制することができ、その結果、高温下でのサイクル特性
を改善することができる。以上により、高容量で、安全
性に優れ、しかも高温サイクル特性に優れた非水電解液
系の二次電池を提供することができる。
As described above, according to the secondary battery of the present invention, in a secondary battery using a mixture of lithium manganate and lithium nickelate as a positive electrode active material, Bi, Pb , Sb, and Sn, it is possible to suppress the decomposition of the electrolytic solution or the adverse effect of the product on the other active material, and as a result, the cycle under a high temperature The characteristics can be improved. As described above, it is possible to provide a nonaqueous electrolyte secondary battery having a high capacity, excellent safety, and excellent high-temperature cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例および従来例それぞれにおけ
るマンガン酸リチウムとニッケル酸リチウム混合正極を
用いた円筒セルの45℃におけるサイクル特性を示す図
である。
FIG. 1 is a diagram showing cycle characteristics at 45 ° C. of a cylindrical cell using a lithium manganate and lithium nickelate mixed positive electrode in each of an example of the present invention and a conventional example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 粂内 友一 東京都港区芝五丁目7番1号 日本電気株 式会社内 Fターム(参考) 5H029 AJ03 AJ05 AJ12 AK03 AL06 AL07 AL12 AM03 AM05 AM07 BJ02 BJ03 BJ04 DJ16 EJ03 EJ05 EJ12 HJ01 HJ02 5H050 AA05 AA07 AA08 BA17 CA01 CA08 CA09 CB07 CB08 CB12 DA02 DA09 EA01 EA12 EA24 HA01 HA02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yuichi Kumeuchi 5-7-1 Shiba, Minato-ku, Tokyo F-term within NEC Corporation 5H029 AJ03 AJ05 AJ12 AK03 AL06 AL07 AL12 AM03 AM05 AM07 BJ02 BJ03 BJ04 DJ16 EJ03 EJ05 EJ12 HJ01 HJ02 5H050 AA05 AA07 AA08 BA17 CA01 CA08 CA09 CB07 CB08 CB12 DA02 DA09 EA01 EA12 EA24 HA01 HA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 マンガン酸リチウムとニッケル酸リチウ
ムの混合物を正極活物質として用いた二次電池におい
て、 正極電極中に、Bi、Pb、Sb、Snから選択された
少なくとも一種の元素を含むことを特徴とする二次電
池。
1. A secondary battery using a mixture of lithium manganate and lithium nickelate as a positive electrode active material, wherein the positive electrode contains at least one element selected from Bi, Pb, Sb, and Sn. Features a secondary battery.
【請求項2】 前記マンガン酸リチウムはLixMn2
4(ただし、1.02≦x≦1.25)であり、前記ニ
ッケル酸リチウムはLiNi1-xx2(ただし、Mは
Co、Mn、Fe、Al、Srから選択された一種以上
の元素、0<x≦0.5)であることを特徴とする請求
項1記載の二次電池。
2. The method according to claim 1, wherein the lithium manganate is Li x Mn 2 O.
4 (where 1.02 ≦ x ≦ 1.25), and the lithium nickelate is LiNi 1-x M x O 2 (where M is at least one selected from Co, Mn, Fe, Al, and Sr) 2. The secondary battery according to claim 1, wherein 0 <x ≦ 0.5).
【請求項3】 前記マンガン酸リチウムと前記ニッケル
酸リチウムとの重量比は、a:100−a(ただし、4
0<a≦99)であることを特徴とする請求項1または
2記載の二次電池。
3. The weight ratio of the lithium manganate to the lithium nickelate is a: 100-a (4
The secondary battery according to claim 1, wherein 0 <a ≦ 99).
【請求項4】 前記元素は、炭酸塩、水酸化物または酸
化物の状態で添加されていることを特徴とする請求項
1、2または3記載の二次電池。
4. The secondary battery according to claim 1, wherein the element is added in a state of carbonate, hydroxide or oxide.
【請求項5】 前記炭酸塩、水酸化物または酸化物は、
前記混合物に対して重量比で0.5%以上かつ10%以
下含まれていることを特徴とする請求項4記載の二次電
池。
5. The carbonate, hydroxide or oxide,
The secondary battery according to claim 4, wherein the content of the secondary battery is 0.5% or more and 10% or less with respect to the mixture.
JP2001052289A 2001-02-27 2001-02-27 Secondary battery Expired - Lifetime JP4055368B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001052289A JP4055368B2 (en) 2001-02-27 2001-02-27 Secondary battery
KR1020037011300A KR100582614B1 (en) 2001-02-27 2002-02-15 Secondary Cell
EP02744912.3A EP1383183B1 (en) 2001-02-27 2002-02-15 Secondary cell
CNB028056310A CN1237632C (en) 2001-02-27 2002-02-15 Secondary cell
PCT/JP2002/001329 WO2002069417A1 (en) 2001-02-27 2002-02-15 Secondary cell
US10/469,119 US20040072071A1 (en) 2001-02-27 2002-02-15 Secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001052289A JP4055368B2 (en) 2001-02-27 2001-02-27 Secondary battery

Publications (2)

Publication Number Publication Date
JP2002260632A true JP2002260632A (en) 2002-09-13
JP4055368B2 JP4055368B2 (en) 2008-03-05

Family

ID=18912943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001052289A Expired - Lifetime JP4055368B2 (en) 2001-02-27 2001-02-27 Secondary battery

Country Status (6)

Country Link
US (1) US20040072071A1 (en)
EP (1) EP1383183B1 (en)
JP (1) JP4055368B2 (en)
KR (1) KR100582614B1 (en)
CN (1) CN1237632C (en)
WO (1) WO2002069417A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288501A (en) * 2003-03-24 2004-10-14 Mitsubishi Chemicals Corp Positive electrode activator for lithium secondary battery, positive electrode of lithium secondary battery using the same, and lithium secondary battery
JP2007522619A (en) * 2004-02-07 2007-08-09 エルジー・ケム・リミテッド Electrode additive coated with conductive material and lithium secondary battery comprising the same
WO2008078695A1 (en) 2006-12-26 2008-07-03 Mitsubishi Chemical Corporation Lithium transition metal compound powder, process for production thereof, spray-dried product useful as firing precursor, and positive electrode for lithium secondary battery and lithium secondary battery made by using the same
JP2009224305A (en) * 2008-03-18 2009-10-01 Korea Inst Of Science & Technology LITHIUM SECONDARY BATTERY WITH Li-Sn-Mn COMPOUND POSITIVE ELECTRODE THIN FILM, MANUFACTURING METHOD OF Li-Sn-Mn COMPOUND TARGET AND POSITIVE ELECTRODE THIN FILM DEPOSITION METHOD USING THIS
WO2010101306A3 (en) * 2009-06-25 2010-11-11 日本碍子株式会社 Positive electrode active material and lithium secondary battery
WO2013024621A1 (en) * 2011-08-17 2013-02-21 日本電気株式会社 Lithium-ion cell
WO2015046495A1 (en) * 2013-09-30 2015-04-02 日本電気株式会社 Positive electrode material for lithium ion secondary batteries

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100416893C (en) * 2004-11-17 2008-09-03 比亚迪股份有限公司 Anode of lithium ion cell and lithium ion cell
US20080008933A1 (en) 2005-12-23 2008-01-10 Boston-Power, Inc. Lithium-ion secondary battery
US7811707B2 (en) 2004-12-28 2010-10-12 Boston-Power, Inc. Lithium-ion secondary battery
CN101288197B (en) * 2004-12-28 2013-04-17 波士顿电力公司 Lithium-ion secondary battery
US20060211233A1 (en) * 2005-03-21 2006-09-21 Skyworks Solutions, Inc. Method for fabricating a wafer level package having through wafer vias for external package connectivity and related structure
US7576426B2 (en) * 2005-04-01 2009-08-18 Skyworks Solutions, Inc. Wafer level package including a device wafer integrated with a passive component
JP5118637B2 (en) 2005-07-14 2013-01-16 ボストン−パワー,インコーポレイテッド Control electronics for Li-ion batteries
US8003241B2 (en) 2006-06-23 2011-08-23 Boston-Power, Inc. Lithium battery with external positive thermal coefficient layer
TWI426678B (en) 2006-06-28 2014-02-11 Boston Power Inc Electronics with multiple charge rate, battery packs, methods of charging a lithium ion charge storage power supply in an electronic device and portable computers
US7635606B2 (en) * 2006-08-02 2009-12-22 Skyworks Solutions, Inc. Wafer level package with cavities for active devices
US20080217708A1 (en) * 2007-03-09 2008-09-11 Skyworks Solutions, Inc. Integrated passive cap in a system-in-package
KR101521158B1 (en) 2007-06-22 2015-05-18 보스톤-파워, 인크. Cid retention device for li-ion cell
CN101878527B (en) 2007-11-30 2012-09-26 斯盖沃克斯瑟路申斯公司 Wafer level packaging using flip chip mounting
US8900931B2 (en) 2007-12-26 2014-12-02 Skyworks Solutions, Inc. In-situ cavity integrated circuit package
EP2104162B1 (en) * 2008-03-18 2011-07-13 Korea Institute of Science and Technology Lithium-manganese-tin oxide cathode active material and lithium secondary cell using the same
US9166206B2 (en) 2008-04-24 2015-10-20 Boston-Power, Inc. Prismatic storage battery or cell with flexible recessed portion
WO2010150626A1 (en) * 2009-06-25 2010-12-29 日本碍子株式会社 Method for producing spinel type lithium manganate and method for producing positive electrode active material for lithium secondary battery
KR20120060820A (en) 2009-09-01 2012-06-12 보스톤-파워, 인크. Large scale battery systems and method of assembly
CN102412387A (en) * 2010-09-26 2012-04-11 比亚迪股份有限公司 Lithium ion battery anode, preparation method thereof and lithium ion battery

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513107A (en) * 1991-07-03 1993-01-22 Fujitsu Ltd Lithium secondary battery
US5425932A (en) * 1993-05-19 1995-06-20 Bell Communications Research, Inc. Method for synthesis of high capacity Lix Mn2 O4 secondary battery electrode compounds
JP3396696B2 (en) * 1993-11-26 2003-04-14 エヌイーシートーキン栃木株式会社 Rechargeable battery
JPH0845498A (en) * 1994-05-26 1996-02-16 Sony Corp Nonaqueous electrolytic liquid secondary battery
JPH08279357A (en) * 1995-04-05 1996-10-22 Sanyo Electric Co Ltd Lithium secondary battery and its manufacture
JP3503361B2 (en) * 1996-09-27 2004-03-02 新神戸電機株式会社 Non-aqueous electrolyte secondary battery
JPH10125327A (en) * 1996-10-23 1998-05-15 Shin Kobe Electric Mach Co Ltd Organic electrolyte secondary battery
JPH10241670A (en) * 1997-02-25 1998-09-11 Sanyo Electric Co Ltd Electrode for nonaqueous electrolytic secondary battery and manufacture thereof
JPH10302767A (en) * 1997-04-24 1998-11-13 Mitsubishi Cable Ind Ltd Cathode activating material of lithium secondary battery and production thereof
JP4214564B2 (en) * 1997-06-19 2009-01-28 東ソー株式会社 Spinel structure lithium manganese oxide containing other elements, method for producing the same, and use thereof
CA2240805C (en) * 1997-06-19 2005-07-26 Tosoh Corporation Spinel-type lithium-manganese oxide containing heteroelements, preparation process and use thereof
JPH1116566A (en) * 1997-06-20 1999-01-22 Hitachi Ltd Battery
JPH11297362A (en) * 1998-04-13 1999-10-29 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method and method for detection battery state
EP1117145B1 (en) * 1998-08-27 2011-10-05 NEC Corporation Nonaqueous electrolyte secondary cell
US6699618B2 (en) * 2000-04-26 2004-03-02 Showa Denko K.K. Cathode electroactive material, production method therefor and secondary cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288501A (en) * 2003-03-24 2004-10-14 Mitsubishi Chemicals Corp Positive electrode activator for lithium secondary battery, positive electrode of lithium secondary battery using the same, and lithium secondary battery
JP2007522619A (en) * 2004-02-07 2007-08-09 エルジー・ケム・リミテッド Electrode additive coated with conductive material and lithium secondary battery comprising the same
WO2008078695A1 (en) 2006-12-26 2008-07-03 Mitsubishi Chemical Corporation Lithium transition metal compound powder, process for production thereof, spray-dried product useful as firing precursor, and positive electrode for lithium secondary battery and lithium secondary battery made by using the same
EP2337125A1 (en) 2006-12-26 2011-06-22 Mitsubishi Chemical Corporation Lithium transition metal based compound powder and method for manufacturing the same
EP2341570A1 (en) 2006-12-26 2011-07-06 Mitsubishi Chemical Corporation Lithium transition metal based compound powder and method for manufacturing the same
JP2009224305A (en) * 2008-03-18 2009-10-01 Korea Inst Of Science & Technology LITHIUM SECONDARY BATTERY WITH Li-Sn-Mn COMPOUND POSITIVE ELECTRODE THIN FILM, MANUFACTURING METHOD OF Li-Sn-Mn COMPOUND TARGET AND POSITIVE ELECTRODE THIN FILM DEPOSITION METHOD USING THIS
WO2010101306A3 (en) * 2009-06-25 2010-11-11 日本碍子株式会社 Positive electrode active material and lithium secondary battery
CN102482117A (en) * 2009-06-25 2012-05-30 日本碍子株式会社 Positive electrode active material and lithium secondary battery
WO2013024621A1 (en) * 2011-08-17 2013-02-21 日本電気株式会社 Lithium-ion cell
US9246174B2 (en) 2011-08-17 2016-01-26 Nec Corporation Lithium ion battery
WO2015046495A1 (en) * 2013-09-30 2015-04-02 日本電気株式会社 Positive electrode material for lithium ion secondary batteries
JPWO2015046495A1 (en) * 2013-09-30 2017-03-09 日本電気株式会社 Positive electrode material for lithium ion secondary battery

Also Published As

Publication number Publication date
EP1383183B1 (en) 2014-07-23
EP1383183A1 (en) 2004-01-21
CN1237632C (en) 2006-01-18
US20040072071A1 (en) 2004-04-15
EP1383183A4 (en) 2009-11-25
KR100582614B1 (en) 2006-05-23
JP4055368B2 (en) 2008-03-05
KR20040062876A (en) 2004-07-09
CN1494744A (en) 2004-05-05
WO2002069417A1 (en) 2002-09-06

Similar Documents

Publication Publication Date Title
JP7503863B2 (en) Positive electrode active material, its manufacturing method, and lithium secondary battery including positive electrode containing the same
JP4055368B2 (en) Secondary battery
EP1909345B1 (en) Cathode active material for a lithium battery
JP6197029B2 (en) Active material for nonaqueous electrolyte storage element
JP4523807B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR20110076955A (en) Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
KR20080026316A (en) Cathode active material and lithium battery using the same
KR20130098372A (en) Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
JP2000077071A (en) Nonaqueous electrolyte secondary battery
JP2006128115A (en) Negative electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery having this
JP2012190580A (en) Positive electrode active material for lithium ion secondary battery
JP2003282055A (en) Non-aqueous electrolyte secondary battery
JP7336648B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP2003229130A (en) Positive active material for secondary battery and positive electrode for secondary battery using the same and secondary battery
JP7258372B2 (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP3120789B2 (en) Non-aqueous electrolyte secondary battery
JP6481907B2 (en) Lithium iron manganese based composite oxide, positive electrode active material for lithium ion secondary battery using the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5176317B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2005158737A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
JP2001176546A (en) Film-sheathed non-aqueous electrolyte secondary batatery
JP2996234B1 (en) Non-aqueous electrolyte secondary battery
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
WO2013125465A1 (en) Positive electrode active material
JP2000067869A (en) Non-aqueous electrolyte secondary battery
JP3055621B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070828

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070927

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

R150 Certificate of patent or registration of utility model

Ref document number: 4055368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

EXPY Cancellation because of completion of term