JP3503361B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3503361B2
JP3503361B2 JP25680196A JP25680196A JP3503361B2 JP 3503361 B2 JP3503361 B2 JP 3503361B2 JP 25680196 A JP25680196 A JP 25680196A JP 25680196 A JP25680196 A JP 25680196A JP 3503361 B2 JP3503361 B2 JP 3503361B2
Authority
JP
Japan
Prior art keywords
battery
carbonate
positive electrode
internal pressure
operates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25680196A
Other languages
Japanese (ja)
Other versions
JPH10106541A (en
Inventor
智博 井口
賢治 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP25680196A priority Critical patent/JP3503361B2/en
Publication of JPH10106541A publication Critical patent/JPH10106541A/en
Application granted granted Critical
Publication of JP3503361B2 publication Critical patent/JP3503361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に関するものである。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】従来、電子機器に使用される二次電池と
しては高性能化、ポータブル化、小型化が望まれる中
で、ニッケル−カドミウム電池や鉛電池等が挙げられる
が、これらの電池は放電電圧が低く、高エネルギー密度
を得るには充分ではなかった。最近では、正極にリチウ
ムコバルト複合酸化物等のリチウム複合酸化物と、負極
にリチウムを吸蔵、放出できる炭素材料と、非水電解液
を用いることによって構成した非水電解液二次電池が実
用化されている。この電池は、放電電圧が高く、高エネ
ルギー密度であり自己放電も少なく、サイクル特性にも
優れている。上記非水電解質二次電池の場合、電極反応
に関与する物質が化学的に活性な材料であること、水分
の混入により性能劣化する非水電解液を用いていること
等の理由により、電池外界と電池内部構成物とが完全に
隔離された密閉構造をとる。そのため過充電などの何ら
かの原因で電池内圧が上昇すると、電池が急速な破損を
起こし電池自身の機能を失い、あるいは、周辺機器に対
しても損傷を与えてしまうことがある。また、上記過充
電状態が持続することにより、電解液等が急激に分解す
る異常な反応が起こり、それにより電池温度が急激に上
昇してしまうことがある。
2. Description of the Related Art Conventionally, nickel-cadmium batteries, lead batteries and the like are mentioned as secondary batteries used in electronic devices, while high performance, portable and miniaturization are desired. The discharge voltage was low, which was not sufficient to obtain a high energy density. Recently, a non-aqueous electrolyte secondary battery constructed by using a lithium composite oxide such as a lithium-cobalt composite oxide for the positive electrode, a carbon material capable of inserting and extracting lithium in the negative electrode, and a non-aqueous electrolyte solution has been put into practical use. Has been done. This battery has a high discharge voltage, a high energy density, little self-discharge, and excellent cycle characteristics. In the case of the above non-aqueous electrolyte secondary battery, the substance involved in the electrode reaction is a chemically active material, and the non-aqueous electrolyte solution whose performance deteriorates due to the inclusion of water is used. The internal structure of the battery is completely isolated from the internal components of the battery. Therefore, if the internal pressure of the battery rises due to some cause such as overcharging, the battery may be rapidly damaged and the battery itself may lose its function, or peripheral devices may be damaged. Further, if the above-mentioned overcharged state is maintained, an abnormal reaction in which the electrolytic solution or the like is rapidly decomposed may occur, which may cause a rapid rise in the battery temperature.

【0003】これらの問題を解決する手段として、特開
平4−328278号公報では、電池内圧の上昇によっ
て作動する電流遮断機構を有する非水電解液二次電池に
おいて、電池内部の異常反応が進行する前に化学反応を
してガスを発生させる添加剤(炭酸リチウム)を正極に
添加する技術を提案している。この技術は、上記異常な
反応が起こる前に、炭酸リチウムが分解して発生するガ
スによって電池内圧を上昇させ電流遮断機構を作動させ
ようとするものである。
As means for solving these problems, in Japanese Patent Laid-Open No. 4-328278, in a non-aqueous electrolyte secondary battery having a current cutoff mechanism that operates by an increase in internal pressure of the battery, an abnormal reaction inside the battery proceeds. Previously, a technique has been proposed in which an additive (lithium carbonate) that chemically reacts to generate gas is added to the positive electrode. This technique attempts to activate the current cutoff mechanism by increasing the internal pressure of the battery by the gas generated by the decomposition of lithium carbonate before the abnormal reaction occurs.

【0004】[0004]

【発明が解決しようとする課題】上記炭酸リチウムは過
充電状態において、電気化学的に分解し、ガスを発生さ
せることができるが、その電気化学的反応性はあまり良
好ではない。従って過充電領域における急激な電池電圧
の上昇に対してはガス発生反応が追随できない場合が考
えられる。ガス発生反応が追随できない場合、電流遮断
機構は作動せず、上述した電池内部の異常反応に至る心
配がある。前記異常反応による電池温度の上昇は、仮に
電池内圧の上昇によって作動する電流遮断機構が作動し
たとしても、当該作動の時点が遅すぎ、電池の破損や周
辺機器の損傷を引き起こす要因となるおそれがある。本
発明が解決しようとする課題は、過充電領域における急
激な電池電圧の上昇に対しても速やかに電池内圧を上昇
させて電池内圧で作動する電流遮断機構を確実に働か
せ、電池温度の上昇を回避することのできる非水電解液
二次電池を提供することである。
In the overcharged state, the above lithium carbonate can be electrochemically decomposed to generate gas, but its electrochemical reactivity is not so good. Therefore, it is considered that the gas generation reaction cannot follow the rapid increase in the battery voltage in the overcharge region. If the gas generation reaction cannot follow, the current cutoff mechanism does not operate, and there is a concern that the above-described abnormal reaction inside the battery may occur. The rise in the battery temperature due to the abnormal reaction may be a factor causing the damage of the battery or the damage of peripheral devices even if the current cutoff mechanism that operates due to the increase in the battery internal pressure operates. is there. The problem to be solved by the present invention is to rapidly increase the battery internal pressure even with respect to a rapid increase in the battery voltage in the overcharge region to reliably operate the current cutoff mechanism that operates at the battery internal pressure, thereby increasing the battery temperature. A non-aqueous electrolyte secondary battery that can be avoided.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明の非水電解液二次電池は、正極が充電、放電
に伴い、リチウムを放出、吸蔵することのできるコバル
ト酸リチウムであり、負極がリチウムを吸蔵、放出する
ことのできる炭素材であり、前記正極と負極と有機電解
液が密閉容器に収納され、所定電池内圧で作動する電流
遮断機構を有する構成において、電池内圧上昇で開放作
動する弁機構を備え、前記弁機構は、前記電流遮断機構
が作動する電池内圧より高い電池内圧で開放作動するも
のであり、前記正極が、炭酸亜鉛、炭酸鉛、塩基性炭酸
鉛から選ばれる少なくとも1種を含み、前記炭酸亜鉛、
炭酸鉛、塩基性炭酸鉛のいずれかの電気化学的分解によ
り、前記電流遮断機構及び弁機構を作動させるものであ
ことを特徴とする。正極が、炭酸亜鉛、炭酸鉛、塩基
性炭酸鉛から選ばれる少なくとも1種を含むことによ
り、電池の過充電領域おける急激な電池電圧の上昇に対
しても速やかに電池内圧を上昇させることができる。こ
れは炭酸亜鉛、炭酸鉛、塩基性炭酸鉛が、電解液の分解
電圧より低い正極電位で速やかに分解し、炭酸ガスを発
生させることができるためであると考えられる。また、
炭酸亜鉛、炭酸鉛、塩基性炭酸鉛の分解反応は、炭酸リ
チウムに比してその粒径に依存しにくい。炭酸亜鉛、炭
酸鉛、塩基性炭酸鉛は、それぞれ単独で使用してもその
効果を発揮するが、それらの2種以上を併用してもそれ
ぞれの作用を打ち消し合うことなく使用できる。このこ
とにより電流遮断機構を速やかに作動させることがで
き、前述した異常反応及びそれによる電池温度の上昇を
確実に抑えることができる。
In order to solve the above problems, in the non-aqueous electrolyte secondary battery of the present invention, the positive electrode is charged and discharged.
Along with, the cobalt that can release and occlude lithium
Lithium thoate, negative electrode occludes and releases lithium
A carbon material capable of, the positive and negative electrodes and an organic electrolyte solution is housed in a sealed container, in a configuration having a current interrupting mechanism which operates at a predetermined internal pressure of the battery, the open operation in the battery internal pressure rise
A valve mechanism that operates, the valve mechanism being the current cutoff mechanism.
When the internal pressure of the battery is higher than the internal pressure of the battery
And than, the positive electrode, zinc carbonate, saw including at least one lead carbonate, selected from basic lead carbonate, said zinc carbonate,
By electrochemical decomposition of either lead carbonate or basic lead carbonate
To operate the current cutoff mechanism and the valve mechanism.
Characterized in that that. Since the positive electrode contains at least one selected from zinc carbonate, lead carbonate, and basic lead carbonate, the internal pressure of the battery can be quickly increased even when the battery voltage rapidly increases in the overcharge region of the battery. . It is considered that this is because zinc carbonate, lead carbonate, and basic lead carbonate can be rapidly decomposed at a positive electrode potential lower than the decomposition voltage of the electrolytic solution to generate carbon dioxide gas. Also,
The decomposition reaction of zinc carbonate, lead carbonate, and basic lead carbonate is less dependent on the particle size than lithium carbonate. Zinc carbonate, lead carbonate, and basic lead carbonate exert their effects even if they are used alone, but even if two or more of them are used in combination, they can be used without canceling each other's actions. As a result, the current cutoff mechanism can be operated promptly, and the above-mentioned abnormal reaction and the rise in battery temperature due to it can be surely suppressed.

【0006】上記構成において、電流遮断機構が開放作
動する電池内圧より高い電池内圧で開放作動する弁機構
を備えることが好ましい。この構成とすることにより電
池内のガスが電池外部へ放出する前に電流遮断機構を作
動させ、電解液の漏洩をも防ぐことができる。
In the above structure, it is preferable that the current cutoff mechanism is provided with a valve mechanism that opens at a battery internal pressure higher than the battery internal pressure at which the current interrupting mechanism operates. With this configuration, it is possible to operate the current cutoff mechanism before the gas in the battery is discharged to the outside of the battery and prevent leakage of the electrolytic solution.

【0007】[0007]

【発明の実施の形態】本発明の実施の形態の一例を、図
面を参照しながら説明する。図1は、本発明の実施形態
のリチウム二次電池の分解断面図である。本図に示すよ
うに、本発明の実施形態のリチウム二次電池は、捲回群
1が電池容器2内に配置されて構成されている。そし
て、捲回群1は正極3と負極4とがセパレータ5を介し
て捲回されており、捲回群1には電解液が含浸されてい
る。正極3は、次のように製造した。充電、放電に伴
い、リチウムを放出、吸蔵することのできる正極活物質
LiCoO2と、黒鉛粉末からなる導電助剤と、ポリフ
ッ化ビニリデン(PVDF)からなるバインダとを重量
比で85:10:5で混合したものを、N−メチル−2
−ピロリドン(NMP)と湿式混合した。さらに平均粒
径が30μm以下である炭酸亜鉛を、リチウムコバルト
複合酸化物に対して重量比で5%加えて、さらに混合し
た。つぎに、これをアルミニウム箔からなる正極集電体
に塗工機により両面塗布し、乾燥を行ないロールプレス
機によりプレスをし正極3を作製した。負極4は、リチ
ウムを吸蔵、放出することのできる負極活物質として非
晶質系炭素粉末を使用した。この炭素粉末とPVDFか
らなるバインダを、重量比90:10の比率で秤量し、
NMPと湿式混合した。これを集電体である銅箔上に塗
工機により両面塗布し、乾燥を行ない、ロールプレス機
によりプレスをし、負極4を作製した。
BEST MODE FOR CARRYING OUT THE INVENTION An example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an exploded cross-sectional view of a lithium secondary battery according to an embodiment of the present invention. As shown in the figure, the lithium secondary battery according to the embodiment of the present invention is configured such that the winding group 1 is arranged in the battery container 2. The positive electrode 3 and the negative electrode 4 are wound in the winding group 1 via the separator 5, and the winding group 1 is impregnated with the electrolytic solution. The positive electrode 3 was manufactured as follows. The positive electrode active material LiCoO 2 capable of releasing and occluding lithium with charging and discharging, a conductive aid made of graphite powder and a binder made of polyvinylidene fluoride (PVDF) in a weight ratio of 85: 10: 5. Was mixed with N-methyl-2
Wet mixed with pyrrolidone (NMP). Further, zinc carbonate having an average particle size of 30 μm or less was added to the lithium cobalt composite oxide in a weight ratio of 5%, and further mixed. Next, the positive electrode current collector made of aluminum foil was coated on both sides with a coater, dried, and pressed with a roll press machine to produce a positive electrode 3. For the negative electrode 4, an amorphous carbon powder was used as a negative electrode active material capable of inserting and extracting lithium. The carbon powder and PVDF binder were weighed at a weight ratio of 90:10,
Wet mixed with NMP. This was applied on both sides of a copper foil as a collector by a coater, dried, and pressed by a roll press machine to prepare a negative electrode 4.

【0008】電池は次のようにして組み立てた。まず正
極3と負極4とを200℃で8時間真空乾燥させてか
ら、水分量が3%以下のドライ雰囲気中で正極3と負極
4とをポリプロピレン製の微多孔質フィルムからなるセ
パレータ5を介して捲回して捲回群を作った。次に、捲
回群を電池缶2の電槽部2b内に配置してから、正極3
のタブ端子を正極端子を構成する電池缶2の蓋部2aに
超音波溶接により接続し、負極4のタブ端子を負極端子
を構成する電池容器2の電槽部2bに超音波溶接により
接続した。そして、電槽部2b内に電解液を4ml注液
して捲回群に電解液を含浸させた。なお、電解液はプロ
ピレンカーボネート(PC)とジエチルカーボネート
(DEC)との混合液(1:1vol%)にアルゴン雰
囲気中で上記混合溶媒中に1MのLiPF6を溶解した
ものを用いた。次に蓋部2aと電槽部2bとをガスケッ
トを介して接合して、理論容量1400mAhの電池を
完成させた。
The battery was assembled as follows. First, the positive electrode 3 and the negative electrode 4 are vacuum dried at 200 ° C. for 8 hours, and then the positive electrode 3 and the negative electrode 4 are placed in a dry atmosphere having a water content of 3% or less via a separator 5 made of a polypropylene microporous film. And wound to make a wound group. Next, the winding group is placed in the battery case portion 2b of the battery can 2, and then the positive electrode 3
The tab terminal of No. 4 was connected to the lid portion 2a of the battery can 2 constituting the positive electrode terminal by ultrasonic welding, and the tab terminal of the negative electrode 4 was connected to the battery case portion 2b of the battery container 2 constituting the negative electrode terminal by ultrasonic welding. . Then, 4 ml of the electrolytic solution was injected into the battery case portion 2b to impregnate the wound group with the electrolytic solution. The electrolytic solution used was a mixed solution (1: 1 vol%) of propylene carbonate (PC) and diethyl carbonate (DEC) in which 1M LiPF 6 was dissolved in the above mixed solvent in an argon atmosphere. Next, the lid portion 2a and the battery case portion 2b were joined together via a gasket to complete a battery having a theoretical capacity of 1400 mAh.

【0009】ここで、電池容器2の蓋部2a内には、所
定電池内圧よりも高い電池内圧で開放作動する弁機構、
及び所定電池内圧上昇で作動する電流遮断機構(圧力ス
イッチ)が組み込まれている。前記圧力スイッチとは、
具体的には、電池内圧の上昇によって作動する可動部材
により正極集電端子と、正極外部端子(電池の外観か
ら、正極端子と表現される部材)との電気的接続を断つ
機構からなるものである。また、前記弁機構は非復帰
型、つまり一旦電池内圧が過剰に高まり、弁が作動する
と元の状態(電池を密閉する状態)に復帰しないものを
使用した。但し復帰型の弁機構を採用しても構わない。
上記「所定電池内圧上昇で作動する電流遮断機構」に
は、電池内圧が6〜8kg/cm2で作動するものを用
いた。また、上記「所定電池内圧よりも高い電池内圧で
開放作動する弁機構」の弁には、電池内圧が10〜15
kg/cm2で開放するものを用いた。これらの値は任
意に設定可能である。電池の使用目的等により設計すれ
ばよい。例えば弁について言うと、弁の材質、厚み、面
積等を調整することで容易に設計変更が可能である。
Here, in the lid portion 2a of the battery container 2, a valve mechanism that operates to open at a battery internal pressure higher than a predetermined battery internal pressure,
In addition, a current interruption mechanism (pressure switch) that operates when the internal pressure of the battery rises is incorporated. What is the pressure switch?
Specifically, it is composed of a mechanism that disconnects the electrical connection between the positive electrode current collector terminal and the positive electrode external terminal (a member expressed as the positive electrode terminal from the appearance of the battery) by a movable member that operates by increasing the internal pressure of the battery. is there. The valve mechanism used was a non-reset type, that is, one in which the internal pressure of the battery was once excessively increased and the valve did not return to its original state (the state in which the battery was sealed). However, a return type valve mechanism may be adopted.
As the above-mentioned "current interrupting mechanism that operates when the internal pressure of the battery rises", one that operates at an internal battery voltage of 6 to 8 kg / cm 2 was used. In addition, the valve of the above-mentioned "valve mechanism that operates to open at a battery internal pressure higher than the predetermined battery internal pressure" has a battery internal pressure of
The one opened at kg / cm 2 was used. These values can be set arbitrarily. It may be designed according to the purpose of use of the battery. For example, regarding a valve, the design can be easily changed by adjusting the material, thickness, area, etc. of the valve.

【0010】[0010]

【実施例】上記発明の実施の形態で記した電池(実施例
1)と、炭酸亜鉛に代えて炭酸鉛を用いたこと以外は実
施例1と同条件で作製した電池(実施例2)と、炭酸亜
鉛に代えて塩基性炭酸鉛を用いたこと以外は実施例1と
同条件で作製した電池(実施例3)、炭酸亜鉛に代えて
炭酸リチウムを用いたこと以外は実施例1と同条件で作
製した電池(従来例1)、及び炭酸亜鉛、炭酸鉛、塩基
性炭酸鉛を全く用いない以外は実施例1〜3の電池と同
条件で作製した電池(従来例2)について以下の試験を
実施した。上記実施例1〜3、従来例1、2の電池を上
限電圧4.2V、1Aで3時間30分充電し、満充電状
態にした後、さらに高電圧側に電位走査した。その時の
電流電位特性を測定した。実施例1の電池については図
2、実施例2の電池については図3、実施例3の電池に
ついては図4、従来例1の電池については図5、従来例
2の電池については図6に示す。走査速度は0.1mV
/sec、試験温度は30℃である。尚、前記電位走査
速度では負極電位が殆ど変化しないことは予め確認済で
ある。従って、図2〜6の結果は実質的に正極の特性を
比較したものといえる。つまり負極に金属リチウム、リ
チウム合金を用いたり、無定形炭素以外の、リチウムを
吸蔵、放出することのできる負極材料、例えば黒鉛のよ
うな結晶性の高い炭素材料等を用いても図2に示す結果
と同様の結果が得られると考えられる。図2〜図6にお
いて4.6V付近に観測される電流ピークは、正極の酸
化ピークである。実施例1〜3の電池(図2〜4)で
は、電池電圧5V付近で急激な電流の上昇が観測され
た。それに対し従来例1、2の電池(図5、6)では図
2〜4のような急激な電流の上昇が観測されないことが
わかる。図2〜4で観測された急激な電流の上昇は、各
種炭酸塩の分解反応に起因するものである。この分解反
応によって炭酸ガスが発生する。このことは実施例1〜
3の電池は、従来例1、2の電池に比して過充電領域に
おける急激な電池電圧の上昇に対しても速やかに電池内
圧を上昇させて電流遮断機構を作動させ、電池温度の上
昇を回避することができることを示している。
EXAMPLE A battery (Example 1) described in the embodiment of the invention and a battery (Example 2) manufactured under the same conditions as in Example 1 except that lead carbonate was used instead of zinc carbonate. A battery (Example 3) manufactured under the same conditions as in Example 1 except that basic lead carbonate was used instead of zinc carbonate, and the same as Example 1 except that lithium carbonate was used instead of zinc carbonate. Regarding the battery prepared under the conditions (conventional example 1) and the battery prepared under the same conditions as the batteries of examples 1 to 3 (conventional example 2) except that zinc carbonate, lead carbonate and basic lead carbonate were not used at all, The test was conducted. The batteries of Examples 1 to 3 and Conventional Examples 1 and 2 were charged at the upper limit voltage of 4.2 V and 1 A for 3 hours and 30 minutes to be in a fully charged state, and then the potential was further scanned to the higher voltage side. The current-potential characteristics at that time were measured. FIG. 2 shows the battery of Example 1, FIG. 3 shows the battery of Example 2, FIG. 4 shows the battery of Example 3, FIG. 5 shows the battery of Conventional Example 1, and FIG. 6 shows the battery of Conventional Example 2. Show. Scanning speed is 0.1 mV
/ Sec, the test temperature is 30 ° C. It has been confirmed in advance that the negative electrode potential hardly changes at the potential scanning speed. Therefore, it can be said that the results shown in FIGS. That is, even if metallic lithium or a lithium alloy is used for the negative electrode, or if a negative electrode material other than amorphous carbon capable of inserting and extracting lithium, for example, a carbon material with high crystallinity such as graphite is used, it is also shown in FIG. It is considered that the same result as the result is obtained. The current peak observed in the vicinity of 4.6 V in FIGS. 2 to 6 is the oxidation peak of the positive electrode. In the batteries of Examples 1 to 3 (FIGS. 2 to 4), a rapid increase in current was observed near the battery voltage of 5V. On the other hand, in the batteries of Conventional Examples 1 and 2 (FIGS. 5 and 6), it is understood that the rapid increase in current as shown in FIGS. The rapid current increase observed in FIGS. 2 to 4 is due to the decomposition reaction of various carbonates. Carbon dioxide is generated by this decomposition reaction. This is the case with Examples 1 to 1.
Compared with the batteries of Conventional Examples 1 and 2, the battery of No. 3 quickly raises the battery internal pressure even when the battery voltage rapidly rises in the overcharge region to activate the current cutoff mechanism to increase the battery temperature. It shows that it can be avoided.

【0011】次に、実施例1、従来例1の電池を満充電
状態から2CAで連続的に充電し続ける過充電テストを
実施した。そのときの電池の破壊状況を表1に示す。表
1は、上記過充電テストにおいて、炭酸亜鉛、炭酸リチ
ウムの平均粒径を、5、10、15、20、25、3
0、35、40μmとし、添加量を5%としたときの、
電池の破裂、爆発の発生率(%)を示したものである。
Next, an overcharge test was carried out in which the batteries of Example 1 and Conventional Example 1 were continuously charged at 2 CA from the fully charged state. Table 1 shows the state of destruction of the battery at that time. Table 1 shows the average particle sizes of zinc carbonate and lithium carbonate in the above-mentioned overcharge test as 5, 10, 15, 20, 25, 3
0, 35, 40 μm and the added amount is 5%,
It shows the occurrence rate (%) of battery rupture and explosion.

【0012】[0012]

【表1】 [Table 1]

【0013】平均粒径が30μm以下の場合において破
裂、爆発の発生率が0%となり、好ましいものである。
平均粒径が30μmを越えると効果がいくぶん小さくな
るのは、炭酸亜鉛の表面積が小さくなり、電池電圧上昇
に対する感度が鈍くなり、ガス発生速度が遅くなるため
と思われる。これら電池の破裂、爆発は、前述した異常
反応による電池温度の上昇によるものである。また表1
から、従来例1の、炭酸リチウムを正極に含ませた電池
は、実施例1の、炭酸亜鉛を正極に含ませた電池に比し
て炭酸塩の粒径に依存しやすいこともわかる。表1の実
施例1の結果は、炭酸鉛を正極に含ませた実施例2、塩
基性炭酸鉛を正極に含ませた実施例3についても同様に
得られた。
When the average particle size is 30 μm or less, the rate of occurrence of rupture and explosion is 0%, which is preferable.
When the average particle size exceeds 30 μm, the effect is somewhat small because the surface area of zinc carbonate is small, sensitivity to increase in battery voltage is low, and gas generation rate is slow. The rupture and explosion of these batteries are due to the rise in battery temperature due to the above-mentioned abnormal reaction. Table 1
From the results, it can be seen that the battery in which lithium carbonate was included in the positive electrode of Conventional Example 1 was more likely to depend on the particle size of carbonate than the battery in Example 1 in which the zinc carbonate was included in the positive electrode. The results of Example 1 in Table 1 were similarly obtained for Example 2 in which lead carbonate was contained in the positive electrode and Example 3 in which basic lead carbonate was contained in the positive electrode.

【0014】[0014]

【0015】また本実施例では、炭酸亜鉛、炭酸鉛、塩
基性炭酸鉛をそれぞれ単独で使用したが、これら2種以
上を併用してもそれぞれの作用を打ち消し合うことなく
使用できる。
In this embodiment, zinc carbonate, lead carbonate, and basic lead carbonate are used alone, but two or more kinds of them can be used together without canceling their respective actions.

【0016】[0016]

【発明の効果】本発明により、過充電領域における急激
な電池電圧の上昇に対しても速やかに電池内圧を上昇さ
せることができる結果、電池内圧の上昇による電流遮断
機構の作動が確実となる。電流遮断機構の作動は、電解
液が急激に分解する異常な反応が起こる前であり、電池
温度の上昇を回避することのできる非水電解液二次電池
を提供することができた。
As described above, according to the present invention, the battery internal pressure can be quickly increased even when the battery voltage is rapidly increased in the overcharge region. As a result, the operation of the current cutoff mechanism due to the increase of the battery internal pressure becomes reliable. The operation of the current cutoff mechanism was performed before the abnormal reaction in which the electrolytic solution was rapidly decomposed, and it was possible to provide the non-aqueous electrolytic solution secondary battery capable of avoiding the increase in the battery temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非水電解液二次電池の断面図である。FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery of the present invention.

【図2】炭酸亜鉛を正極に含ませた電池の、過充電時の
電流と電圧との関係を示す図である。
FIG. 2 is a diagram showing a relationship between current and voltage during overcharge of a battery in which zinc carbonate is included in a positive electrode.

【図3】炭酸鉛を正極に含ませた電池の、過充電時の電
流と電圧との関係を示す図である。
FIG. 3 is a diagram showing the relationship between current and voltage during overcharging of a battery containing lead carbonate in its positive electrode.

【図4】塩基性炭酸鉛を正極に含ませた電池の、過充電
時の電流と電圧との関係を示す図である。
FIG. 4 is a diagram showing a relationship between current and voltage during overcharge of a battery in which basic lead carbonate is contained in a positive electrode.

【図5】炭酸リチウムを正極に含ませた電池の、過充電
時の電流と電圧との関係を示す図である。
FIG. 5 is a diagram showing a relationship between current and voltage during overcharge of a battery in which lithium carbonate is included in a positive electrode.

【図6】正極に炭酸塩を含ませない電池の、過充電時の
電流と電圧との関係を示す図である。
FIG. 6 is a diagram showing a relationship between current and voltage during overcharge of a battery in which a positive electrode does not contain carbonate.

【符号の説明】[Explanation of symbols]

1.極板群 2.電池容器 2a.蓋部 2b.電槽部 3.正極 4.負極 5.セパレータ 1. Electrode group 2. Battery container 2a. Lid 2b. Battery case 3. Positive electrode 4. Negative electrode 5. Separator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−192721(JP,A) 特開 平9−306510(JP,A) 特開 平8−31450(JP,A) 特開 平9−45371(JP,A) 特開 平9−213375(JP,A) 特開 平8−102331(JP,A) 特開 平4−329269(JP,A) 特開 平4−329268(JP,A) 特開 平4−328278(JP,A) 特開 平5−242913(JP,A) 特開 平6−338323(JP,A) 特開 平7−254436(JP,A) 特開 平8−138743(JP,A) 特開 平6−243870(JP,A) 特開 平9−180758(JP,A)   ─────────────────────────────────────────────────── ─── Continued front page       (56) Reference JP-A-7-192721 (JP, A)                 JP-A-9-306510 (JP, A)                 JP-A-8-31450 (JP, A)                 Japanese Unexamined Patent Publication No. 9-45371 (JP, A)                 JP-A-9-213375 (JP, A)                 JP-A-8-102331 (JP, A)                 JP-A-4-329269 (JP, A)                 JP 4-329268 (JP, A)                 JP-A-4-328278 (JP, A)                 JP-A-5-242913 (JP, A)                 JP-A-6-338323 (JP, A)                 JP-A-7-254436 (JP, A)                 JP-A-8-138743 (JP, A)                 JP-A-6-243870 (JP, A)                 JP-A-9-180758 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極が充電、放電に伴い、リチウムを放
出、吸蔵することのできるコバルト酸リチウムであり、
負極がリチウムを吸蔵、放出することのできる炭素材で
あり、前記正極と負極と有機電解液が密閉容器に収納さ
れ、所定電池内圧で作動する電流遮断機構を有する非水
電解液二次電池において、電池内圧上昇で開放作動する
弁機構を備え、前記弁機構は、前記電流遮断機構が作動
する電池内圧より高い電池内圧で開放作動するものであ
り、前記正極が、炭酸亜鉛、炭酸鉛、塩基性炭酸鉛から
選ばれる少なくとも1種を含み、前記炭酸亜鉛、炭酸
鉛、塩基性炭酸鉛のいずれかの電気化学的分解により、
前記電流遮断機構及び弁機構を作動させるものである
とを特徴とする非水電解液二次電池。
1. A positive electrode releases lithium as it is charged and discharged.
It is a lithium cobalt oxide that can be discharged and stored,
The negative electrode is a carbon material that can store and release lithium.
Yes, the positive electrode, the negative electrode, and the organic electrolyte are housed in a closed container, and in a non-aqueous electrolyte secondary battery having a current cutoff mechanism that operates at a predetermined battery internal pressure, open operation is performed when the battery internal pressure rises.
A valve mechanism is provided, and the valve mechanism operates the current cutoff mechanism.
It operates to open at a battery internal pressure higher than the internal battery pressure.
Ri, the positive electrode, viewed contains at least one zinc carbonate, selected lead carbonate, from basic lead carbonate, said zinc carbonate
By electrochemical decomposition of either lead or basic lead carbonate,
A non-aqueous electrolyte secondary battery, which operates the current cutoff mechanism and the valve mechanism .
【請求項2】炭酸亜鉛、炭酸鉛、塩基性炭酸鉛の平均粒
径が30μm以下であることを特徴とする請求項1に記
載の非水電解液二次電池。
2. Average particles of zinc carbonate, lead carbonate and basic lead carbonate
The diameter is 30 μm or less, described in claim 1.
Non-aqueous electrolyte secondary battery listed.
JP25680196A 1996-09-27 1996-09-27 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3503361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25680196A JP3503361B2 (en) 1996-09-27 1996-09-27 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25680196A JP3503361B2 (en) 1996-09-27 1996-09-27 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH10106541A JPH10106541A (en) 1998-04-24
JP3503361B2 true JP3503361B2 (en) 2004-03-02

Family

ID=17297636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25680196A Expired - Fee Related JP3503361B2 (en) 1996-09-27 1996-09-27 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3503361B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4055368B2 (en) * 2001-02-27 2008-03-05 日本電気株式会社 Secondary battery
JP5515996B2 (en) 2010-04-09 2014-06-11 ソニー株式会社 battery

Also Published As

Publication number Publication date
JPH10106541A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
US7378185B2 (en) Prismatic lithium secondary battery having a porous heat resistant layer
JP6633283B2 (en) Nonaqueous electrolyte battery, method for manufacturing nonaqueous electrolyte battery, and battery pack
JP3358478B2 (en) Organic electrolyte secondary battery
JP4236308B2 (en) Lithium ion battery
JPH08167429A (en) Rechargeable electrochemical cell and its manufacture
JP2002237293A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP4862211B2 (en) Sealed secondary battery
JPH08236155A (en) Lithium secondary battery
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
JP3819663B2 (en) Lithium secondary battery charge / discharge method and lithium secondary battery
JP2000021452A (en) Nonaqueous electrolyte secondary battery
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JPH11144762A (en) Spiral lithium ion battery electrode and spiral lithium ion battery using the same
JP3503361B2 (en) Non-aqueous electrolyte secondary battery
JP2005071640A (en) Flat nonaqueous electrolyte secondary battery
JP2003100278A (en) Nonaqueous electrolyte secondary battery
JP4248044B2 (en) Non-aqueous electrolyte secondary battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
WO2003067688A1 (en) Nonaqueous electrolyte secondary cell
JP2002110251A (en) Lithium ion secondary battery
JPH1140199A (en) Lithium secondary battery
JP4420484B2 (en) Sealed battery
JP2000306610A (en) Nonaqueous electrolyte secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery
JP2932498B2 (en) Battery

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031201

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees