JP3358478B2 - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JP3358478B2
JP3358478B2 JP01225997A JP1225997A JP3358478B2 JP 3358478 B2 JP3358478 B2 JP 3358478B2 JP 01225997 A JP01225997 A JP 01225997A JP 1225997 A JP1225997 A JP 1225997A JP 3358478 B2 JP3358478 B2 JP 3358478B2
Authority
JP
Japan
Prior art keywords
battery
positive electrode
lithium
phosphate
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01225997A
Other languages
Japanese (ja)
Other versions
JPH10154532A (en
Inventor
賢治 中井
学 落田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP01225997A priority Critical patent/JP3358478B2/en
Priority to TW086113644A priority patent/TW400661B/en
Priority to US08/934,832 priority patent/US5962167A/en
Priority to KR1019970048510A priority patent/KR19980024915A/en
Publication of JPH10154532A publication Critical patent/JPH10154532A/en
Application granted granted Critical
Publication of JP3358478B2 publication Critical patent/JP3358478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機電解液二次電池
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池に代表される有機電解
液二次電池は、高エネルギ−密度であるメリットを活か
して、主にVTRカメラやノ−トパソコン、携帯電話等
のポ−タブル機器に使用されている。特に近年は負極に
炭素材等の、リチウムを吸蔵、放出可能な材料を用いた
いわゆるリチウムイオン二次電池が普及している。この
電池の内部構造は、通常以下に記述するような捲回式に
される。すなわち、正極、負極共に活物質は金属箔に塗
着される。そして、セパレ−タを挟んで正極、負極が直
接接触しないように捲回され、容器となる円筒形の缶に
収納、電解液注液後、キャップ封口されている。電池組
立時では負極活物質として用いる炭素材は、いわばリチ
ウムが放出しきった状態、即ち放電状態である。従っ
て、通常正極も放電状態の活物質、例えばLiCoO2
(コバルト酸リチウム)やLiNiO2(ニッケル酸リ
チウム)などが用いられる。そして、初充電することに
よって電池として機能させることができる。こうして必
要に応じて充電、放電できるリチウムイオン二次電池と
なる。
2. Description of the Related Art Organic electrolyte secondary batteries typified by lithium secondary batteries take advantage of their high energy density and are mainly used in portable devices such as VTR cameras, notebook computers, and mobile phones. It is used. Particularly in recent years, a so-called lithium ion secondary battery using a material capable of occluding and releasing lithium, such as a carbon material, for a negative electrode has become widespread. The internal structure of this battery is usually wound as described below. That is, the active material is applied to the metal foil for both the positive electrode and the negative electrode. The positive electrode and the negative electrode are wound so as not to come into direct contact with each other with the separator interposed therebetween, housed in a cylindrical can serving as a container, filled with an electrolytic solution, and sealed with a cap. When assembling the battery, the carbon material used as the negative electrode active material is in a state where lithium has been completely released, that is, in a discharged state. Therefore, the positive electrode is usually also in the discharged active material, for example, LiCoO 2
Such as (lithium cobaltate) and LiNiO 2 (lithium nickel oxide) is used. The battery can function as a battery by being charged for the first time. Thus, a lithium ion secondary battery that can be charged and discharged as needed is obtained.

【0003】[0003]

【発明が解決しようとする課題】一般に有機電解液二次
電池は、電極反応に関与する物質が化学的に活性な材料
であること、水分の混入により性能劣化する有機電解液
を用いていること等の理由により、電池外界と電池内部
構成物とが完全に隔離された密閉構造をとる。従って、
何らかの原因で電池内圧が上昇した場合には電池が破裂
し、周辺機器に損傷を与えてしまうことがある。さら
に、電池が爆発した場合には、周辺機器の破損のおそれ
がある。特にリチウム二次電池の場合には、過充電時に
その確率が極めて高くなる。通常、リチウム二次電池
は、充電、放電時の電流、電圧を適正に保つための電気
回路で保護されているが、この保護回路が故障した場合
に充電上限電圧の制御が効かず、充電の進行に伴い電池
電圧が上昇し、電解液が電気分解、ガス発生し、電池内
圧が上昇する。この状態がさらに持続すると、内部抵抗
の上昇によるジュ−ル熱と、電解液や電解液の分解生成
物と活物質の化学反応による反応熱で、電池温度が急激
に上昇する。このような状態にある電池は、破裂、爆発
に至る確率が高くなる。
Generally, an organic electrolyte secondary battery uses a chemically active material as a substance involved in an electrode reaction, and uses an organic electrolyte which deteriorates in performance due to the incorporation of moisture. For such reasons, a sealed structure is provided in which the outside of the battery and the internal components of the battery are completely isolated. Therefore,
If the internal pressure of the battery rises for some reason, the battery may explode and damage peripheral devices. Further, when the battery explodes, there is a possibility that peripheral devices may be damaged. In particular, in the case of a lithium secondary battery, the probability at the time of overcharging becomes extremely high. Normally, a lithium secondary battery is protected by an electric circuit that maintains the current and voltage during charging and discharging properly.However, if this protection circuit fails, the control of the charging upper limit voltage does not work, and the charging As the process proceeds, the battery voltage increases, the electrolytic solution undergoes electrolysis and gas generation, and the battery internal pressure increases. When this state is further maintained, the battery temperature sharply rises due to Joule heat due to an increase in internal resistance and reaction heat due to a chemical reaction between the electrolyte and the decomposition product of the electrolyte and the active material. The battery in such a state has a high probability of explosion or explosion.

【0004】このような問題の一応の対策として、電池
内圧の上昇に応じて作動する電流遮断機構が電池に組み
込まれた密閉型構造とし、過充電で電池内圧が上昇した
場合に充電電流を断ち切り、それ以上の電気量が電池に
流入しないようにしている。しかし、たとえ充電電流が
断ち切られたとしても、上記化学反応が伴った場合には
電池の温度上昇を即座に止めることはできない。そこで
電流遮断装置が作動する圧力を低くすると、40〜60
℃といった暖められた周囲環境温度(ノ−トパソコン内
では頻繁にこのくらいの温度になる。)で、電池を通常
条件(保護回路で守られた条件)で使用している場合に
おいてさえ、電流遮断機構が作動してしまう。従って、
電流遮断機構の作動圧力は、あまり低く設定できない制
約がある。このようにリチウム二次電池は、誤使用、誤
操作、誤動作により、場合によっては破裂、爆発等危険
な壊れ方をするので、電池の安全性を確保することは、
この上ない重要な課題である。
[0004] As a temporary measure against such a problem, a closed circuit structure in which a current interruption mechanism which operates in response to an increase in the internal pressure of the battery is incorporated in the battery, and the charging current is cut off when the internal pressure of the battery increases due to overcharging. , So that no more amount of electricity flows into the battery. However, even if the charging current is cut off, the temperature rise of the battery cannot be stopped immediately when the above-mentioned chemical reaction is accompanied. Therefore, when the pressure at which the current interrupter operates is reduced, 40 to 60
Even if the battery is used under normal conditions (conditions protected by a protection circuit) at a warmed ambient environment temperature such as ℃ (this temperature frequently occurs in a notebook computer), current is cut off. The mechanism operates. Therefore,
There is a restriction that the operating pressure of the current interruption mechanism cannot be set too low. As described above, lithium secondary batteries can be dangerously broken, such as rupture or explosion, due to misuse, misoperation, or malfunction.
This is a very important task.

【0005】本発明者らが、電池の破裂に至る状況を詳
細に分析した結果、電流遮断機構作動時の電池温度に関
わりなく、すなわちそれほど電池内圧が上昇しなくて
も、上記化学反応を伴い、およそ130℃を越えると、
電池が破裂する確率が高くなることがわかった。このよ
うな問題を解決するために、いくつかの改善がなされて
きた。たとえば、特開平4−328278号公報、特開
平4−329269号公報では正極に炭酸リチウムや蓚
酸リチウムを含有させ、電池が過充電状態になったとき
に炭酸リチウムや蓚酸リチウムを電気化学的に分解、炭
酸ガスを発生させ、早い段階で電池内圧上昇、電池内圧
上昇に応じて作動する電流遮断機構を作動させることが
提案されている。とりわけ、特開平4−329268号
公報では、リチウムとコバルトの配合モル比をLi/C
o=1.0以上のリチウムリッチな条件で正極活物質を
合成、あるいは、Li/Co=1.0で合成した正極活
物質と炭酸リチウムとを混合、熱処理することで正極活
物質に炭酸リチウム層を含有させている。しかし、この
ような方法で合成した正極活物質粒子は通常平均粒子径
が10〜25μmと大きく成長したものとなる。粒子が
大きく成長した正極活物質を用いて電池とした場合に、
活物質の比表面積が小さいために電流密度が大きくな
り、高率放電特性、低温放電特性が悪くなるというデメ
リットがある。さらに単に炭酸リチウムを正極に混合し
ただけでは、大きな電流で過充電状態になった場合に炭
酸リチウムの分解による炭酸ガスの発生、電池内圧の上
昇が電池温度上昇に追随できず、著しい破壊が発生する
ことがある。これらの問題を補うために、特開平6−3
38323号公報や特開平8−102331号公報では
正極に炭酸マンガン、炭酸コバルト、炭酸ニッケルを添
加したり、炭酸ナトリウム、炭酸カリウム、炭酸ルビジ
ウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウ
ムを含有させたりしている。しかし、それでも、本発明
の発明者がトレ−ス実験を実施したところ、その効果は
必ずしも十分なものではなっかった。このような状況を
精力的に、詳細に検討した結果、その原因は前記炭酸塩
の平均粒子径にあることが判明した。また、前記各公報
では、炭酸塩が電気化学的に分解、炭酸ガスを発生させ
るという記載がなされているが、本発明者の詳細な分析
によると、前記炭酸塩のみが分解するのではなく、有機
電解液との相互作用によって有機電解液とともに前記炭
酸塩が分解、ガス発生することが判明した。しかも発生
したガスは炭酸ガスではなく、主に酸素、炭化水素系の
ガスであることが判明した。従って、前記炭酸塩の平均
粒子径が大きいと、その表面積が小さくなるために電解
液との相互作用を伴った分解反応が十分促進されず、十
分電池内圧を上昇させ、所望のタイミングで電流遮断機
構を作動させることは困難である。
As a result of a detailed analysis of the situation leading to the explosion of the battery, the present inventors have found that the above-mentioned chemical reaction is involved regardless of the battery temperature at the time of operating the current interrupt mechanism, that is, even if the internal pressure of the battery does not rise so much. Above about 130 ° C,
It was found that the probability of the battery exploding was increased. Several improvements have been made to solve these problems. For example, in JP-A-4-328278 and JP-A-4-329269, the positive electrode contains lithium carbonate or lithium oxalate, and when the battery is overcharged, the lithium carbonate and lithium oxalate are electrochemically decomposed. It has been proposed to generate carbon dioxide gas and to activate the battery internal pressure at an early stage and to activate a current cutoff mechanism that operates in response to the battery internal pressure increase. In particular, JP-A-4-329268 discloses that the molar ratio of lithium to cobalt is Li / C
A positive electrode active material is synthesized under a lithium-rich condition of o = 1.0 or more, or a positive electrode active material synthesized at Li / Co = 1.0 and lithium carbonate are mixed and heat-treated to obtain lithium carbonate. Layer. However, the positive electrode active material particles synthesized by such a method usually have a large average particle diameter of 10 to 25 μm. When a battery is made using a cathode active material in which particles have grown greatly,
Since the specific surface area of the active material is small, there is a disadvantage that the current density increases and the high-rate discharge characteristics and the low-temperature discharge characteristics deteriorate. Furthermore, if lithium carbonate is simply mixed into the positive electrode, in the case of an overcharged state with a large current, decomposition of lithium carbonate will generate carbon dioxide gas, and the rise in battery internal pressure will not be able to follow the rise in battery temperature, causing significant destruction. May be. To make up for these problems, Japanese Patent Application Laid-Open No.
In Japanese Patent No. 38323 and JP-A-8-102331, manganese carbonate, cobalt carbonate, and nickel carbonate are added to the positive electrode, or sodium carbonate, potassium carbonate, rubidium carbonate, magnesium carbonate, calcium carbonate, and barium carbonate are added to the positive electrode. I have. Nevertheless, when the inventor of the present invention conducted a tracing experiment, the effect was not always sufficient. As a result of vigorous and detailed examination of such a situation, it was found that the cause was the average particle diameter of the carbonate. Further, in each of the above publications, it is described that carbonate is electrochemically decomposed and generates carbon dioxide gas.However, according to the detailed analysis of the present inventors, not only the carbonate is decomposed, It has been found that the carbonate is decomposed and gas is generated together with the organic electrolyte due to the interaction with the organic electrolyte. Moreover, it was found that the generated gas was not oxygen gas but mainly oxygen-based gas. Therefore, when the average particle diameter of the carbonate is large, the decomposition surface reaction with the interaction with the electrolytic solution is not sufficiently promoted because the surface area is small, and the internal pressure of the battery is sufficiently increased to interrupt the current at a desired timing. It is difficult to operate the mechanism.

【0006】さらに、有機電解液の分解電圧よりも低い
電位で、上記炭酸塩は電気化学的に分解されるが、電池
が大電流で過充電状態になった場合には、電池電圧が急
速に上昇するため、上記炭酸塩の分解電圧を超え、有機
電解液の分解電圧へと、いとも簡単に到達し、破裂、爆
発することが多々あった。また、上記種々金属の炭酸塩
を正極に含ませても、過充電時には電解液の分解を抑制
することはできず、それに伴う電池温度の上昇も抑制す
ることはできない。本発明が解決しようとする課題は、
前述のような過充電時の化学反応による電池温度の上昇
を抑制し、電池の破裂や爆発といった著しい破壊を抑制
することである。
[0006] Further, the carbonate is electrochemically decomposed at a potential lower than the decomposition voltage of the organic electrolyte, but when the battery is overcharged with a large current, the battery voltage rapidly increases. Because of the rise, the decomposition voltage of the carbonate exceeded the decomposition voltage of the above-mentioned carbonate, and easily reached the decomposition voltage of the organic electrolyte. In addition, even if the above-mentioned carbonates of various metals are contained in the positive electrode, decomposition of the electrolytic solution cannot be suppressed at the time of overcharging, and a rise in battery temperature due to the decomposition cannot be suppressed. The problem to be solved by the present invention is
The purpose of the present invention is to suppress a rise in battery temperature due to a chemical reaction at the time of overcharging as described above, and to suppress remarkable destruction such as bursting or explosion of a battery.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、正極が充電、放電に伴い、リチウムを放
出、吸蔵することのできる材料を含む正極と、リチウム
金属、リチウム合金、リチウムを吸蔵、放出することの
できる炭素材の中から選ばれる材料を含む負極と、有機
電解液とが密閉容器に収納され、当該密閉容器が、所定
圧力よりも高い電池内圧で開放作動する弁機構と電池内
圧上昇で作動する電流遮断機構とを備え、該電流遮断機
構は、前記弁機構が開放作動する電池内圧より低い電池
内圧で作動する有機電解液二次電池において、前記正極
は、平均粒子径が30μm以下のリン酸リチウム又はリ
ン酸コバルト等のリン酸塩化合物を、正極活物質重量に
対して0.2〜15重量%含有することを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a method of discharging lithium in accordance with charging and discharging of a positive electrode.
A positive electrode containing a material capable of extracting and storing, and lithium
Of absorbing and releasing metals, lithium alloys and lithium
Negative electrode containing a material selected from among carbon materials
The electrolyte solution is stored in a closed container, and the closed container is
Valve mechanism that opens and opens at battery internal pressure higher than pressure and battery internal
A current cut-off mechanism that is activated by pressure increase.
The battery is lower than the battery internal pressure at which the valve mechanism operates to open.
In the organic electrolyte secondary battery operating at an internal pressure, the positive electrode
Is lithium phosphate or lithium phosphate having an average particle size of 30 μm or less.
Phosphate compounds such as cobalt phosphate are added to the weight of the positive electrode active material.
It is characterized by containing 0.2 to 15% by weight .

【0008】上記構成において、平均粒子径が30μm
以下のリン酸塩化合物を、正極活物質重量に対して0.
2〜15重量%含有することで、電池の放電容量を確保
しつつ、比較的大きな電流で電池が急激に過充電状態に
陥った場合に、破裂、爆発といった電池の著しい破壊が
抑制される。
In the above structure, the average particle size is 30 μm
The following phosphate compounds were added in an amount of 0.1% based on the weight of the positive electrode active material.
2 to 15% by weight ensures battery discharge capacity
While the battery suddenly becomes overcharged with a relatively large current.
In the event of a fall, significant destruction of the battery, such as a burst or explosion,
Is suppressed.

【0009】リン酸リチウム等のリン酸塩化合物を正極
に含ませることにより、電池の過充電時においても有機
電解液の電気化学的な分解を抑制することができる。ま
た、万が一上記過充電が過剰なものとなり、有機電解液
及び/又はリン酸塩化合物の電気化学的分解が促進した
場合でも、有機電解液二次電池が、弁機構開放作動電池
内圧より低い電池内圧で作動する電流遮断機構を備えた
場合には、過剰な電池内圧上昇に対して事前に電流を遮
断することができ、より電池の安全性が高まる。
By incorporating a phosphate compound such as lithium phosphate into the positive electrode, electrochemical decomposition of the organic electrolyte can be suppressed even when the battery is overcharged. Also, even if the overcharge becomes excessive and the electrochemical decomposition of the organic electrolyte and / or the phosphate compound is promoted, the organic electrolyte secondary battery may be lower than the internal pressure of the valve mechanism opening operation battery. When a current cutoff mechanism that operates at an internal pressure is provided, the current can be cut off in advance for an excessive increase in the internal pressure of the battery, and the safety of the battery is further improved.

【0010】[0010]

【発明の実施の形態】本発明の実施の形態の一例を以下
に図面を参照しながら説明する。図1は本発明を実施し
た円筒形リチウム二次電池の断面図である。1は正極集
電体で厚さ20μmのアルミニウム箔である。平面サイ
ズは50mm×450mmである。2は正極活物質層
で、リチウムイオンを電極反応種とし、リチウムを放
出、吸蔵可能な正極活物質LiCoO2と導電助剤であ
るグラファイトと、バインダ−であるポリフッ化ビニリ
デン(PVDF)と、電解液とから構成される。正極活
物質層2の詳細な作製方法を記す。LiCoO2(平均
粒径約1〜2μm)粉末とグラファイト(平均粒径約
0.5μm)粉末とPVDFを重量比で80:10:1
0に十分混合し、そこへ分散溶媒となるN−メチル−2
−ピロリドンを適量加え、十分に混練、分散させ、イン
ク状にする。さらにそこへリン酸リチウム(三津和化学
薬品(株)製)を所定量加え、再び混練、分散させる。こ
の混練物をロ−ルtoロ−ルの転写により正極集電体1
の両面に塗着、乾燥し、正極活物質層2を得る。(但
し、この段階では電解液は入っていない。)正極活物質
層2の厚さは正極集電体1の両面各々100μmであ
る。3は負極集電体で厚さ10μmの銅箔ある。平面サ
イズは50mm×490mmである。4は負極活物質層
で、リチウムイオンを電極反応種とし、リチウムを放
出、吸蔵することのできる負極活物質としての無定形炭
素と、バインダ−であるポリフッ化ビニリデン(PVD
F)と、電解液とから構成される。負極活物質層4の詳
細な作製方法を記す。無定形炭素とPVDFを重量比で
90:10となるように混合しそこへ分散溶媒となるN
−メチル−2−ピロリドンを適量加え、十分に混練、分
散させ、インク状にする。この混練物をロ−ルtoロ−
ルの転写により負極集電体3の両面に塗着、乾燥し、負
極活物質層4を得る。(但し、この段階では電解液は入
っていない。)負極活物質層2の厚さは負極集電体3の
両面各々100μmである。5はセパレ−タで、厚さ2
5μmの微多孔性のポリエチレンフィルムである。正
極、負極の間にセパレ−タ5が配置されるように捲回
し、負極缶6に挿入する。そして負極集電体に予め溶接
させておいたタブ端子を負極缶6に溶接する。7は正極
キャップで8は正極タブ端子である。正極タブ端子8は
予め正極集電体1に溶接しておき、正極キャップ7に溶
接する。次に、電解液5mlを負極缶6内に注入する。
電解液は1mol/lのLiPF6が溶解された、炭酸
プロピレンと炭酸ジメチルと炭酸ジエチルの混合溶媒で
あり、その混合比は体積にして30:55:15であ
る。9は絶縁性のガスケットである。正極キャップ7を
負極缶上部に配置し、ガスケット9を介して負極缶上部
をかしめ、電池を密閉する。ここで、正極キャップ7内
には、電池内圧の上昇によって作動する電流遮断機構
(圧力スイッチ)と前記電流遮断機構が作動する電池内
圧よりも高い電池内圧によって開放作動する弁機構が組
み込まれている。前記圧力スイッチとは、具体的には、
電池内圧の上昇によって作動する可動部材により正極集
電端子と、正極外部端子(電池の外観から、正極端子と
表現される部材)との電気的接続を断つ機構からなるも
のである。また、前記弁機構は非復帰形、つまり一旦電
池内圧が過剰に高まり、弁が作動すると元の状態(電池
を密閉する状態)に復帰しないものを使用した。但し復
帰形の弁機構を採用しても構わない。上記「電池内圧に
よって作動する電流遮断機構」には、電池内圧が6〜8
kg/cm2で作動するものを用いた。また、上記「電
流遮断機構が作動する電池内圧よりも高い電池内圧によ
って開放作動する弁機構」の弁には、電池内圧が10〜
15kg/cm2で開放するものを用いた。これらの値
は任意に設定可能である。電池の使用目的等により設計
すればよい。例えば弁について言うと、弁の材質、厚
み、面積等を調整することで容易に設計変更が可能であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a cylindrical lithium secondary battery embodying the present invention. Reference numeral 1 denotes a positive electrode current collector, which is an aluminum foil having a thickness of 20 μm. The plane size is 50 mm × 450 mm. Reference numeral 2 denotes a positive electrode active material layer which uses lithium ions as an electrode reactive species, releases lithium and can occlude lithium, a positive electrode active material LiCoO 2 , graphite as a conductive additive, polyvinylidene fluoride (PVDF) as a binder, and electrolysis. Liquid. A detailed manufacturing method of the positive electrode active material layer 2 will be described. 80: 10: 1 by weight ratio of LiCoO 2 (average particle size: about 1 to 2 μm) powder, graphite (average particle size: about 0.5 μm) powder, and PVDF
0, and mixed with N-methyl-2 as a dispersion solvent.
Add an appropriate amount of pyrrolidone, knead and disperse sufficiently to form an ink. Further, a predetermined amount of lithium phosphate (manufactured by Mitsui Chemicals, Inc.) is added thereto, and the mixture is kneaded and dispersed again. This kneaded material is roll-to-roll transferred to form a positive electrode current collector 1.
Is applied to both sides and dried to obtain a positive electrode active material layer 2. (However, no electrolyte is contained at this stage.) The thickness of the positive electrode active material layer 2 is 100 μm on each side of the positive electrode current collector 1. Reference numeral 3 denotes a negative electrode current collector, which is a copper foil having a thickness of 10 μm. The plane size is 50 mm × 490 mm. Reference numeral 4 denotes a negative electrode active material layer, which uses lithium ion as an electrode reactive species, amorphous carbon as a negative electrode active material capable of releasing and occluding lithium, and polyvinylidene fluoride (PVD) as a binder.
F) and an electrolytic solution. A detailed method for forming the negative electrode active material layer 4 will be described. Amorphous carbon and PVDF are mixed at a weight ratio of 90:10, and N as a dispersion solvent is added thereto.
-Methyl-2-pyrrolidone is added in an appropriate amount, sufficiently kneaded and dispersed to form an ink. This kneaded material is rolled to roll.
The negative electrode active material layer 4 is obtained by coating and drying both surfaces of the negative electrode current collector 3 by transferring the same. (However, no electrolyte is contained at this stage.) The thickness of the negative electrode active material layer 2 is 100 μm on both sides of the negative electrode current collector 3. 5 is a separator having a thickness of 2
5 μm microporous polyethylene film. It is wound so that the separator 5 is arranged between the positive electrode and the negative electrode, and inserted into the negative electrode can 6. Then, the tab terminal which has been welded to the negative electrode current collector in advance is welded to the negative electrode can 6. 7 is a positive electrode cap and 8 is a positive electrode tab terminal. The positive electrode tab terminal 8 is welded to the positive electrode current collector 1 in advance, and then welded to the positive electrode cap 7. Next, 5 ml of the electrolytic solution is injected into the negative electrode can 6.
The electrolyte is a mixed solvent of propylene carbonate, dimethyl carbonate and diethyl carbonate in which 1 mol / l of LiPF 6 is dissolved, and the mixing ratio is 30:55:15 by volume. 9 is an insulating gasket. The positive electrode cap 7 is arranged on the upper part of the negative electrode can, and the upper part of the negative electrode can is caulked via the gasket 9 to seal the battery. Here, in the positive electrode cap 7, a current cutoff mechanism (pressure switch) that is activated by an increase in the battery internal pressure and a valve mechanism that is opened by a battery internal pressure higher than the battery internal pressure at which the current cutoff mechanism is activated are incorporated. . The pressure switch is, specifically,
The mechanism comprises a mechanism for disconnecting an electrical connection between a positive electrode current collecting terminal and a positive electrode external terminal (a member represented as a positive electrode terminal from the external appearance of the battery) by a movable member that is activated by an increase in battery internal pressure. Further, the valve mechanism used was of a non-return type, that is, one which does not return to the original state (a state in which the battery is sealed) once the internal pressure of the battery becomes excessively high and the valve operates. However, a return type valve mechanism may be adopted. The “current interruption mechanism operated by the battery internal pressure” includes a battery internal pressure of 6 to 8;
Those operating at kg / cm 2 were used. Further, the valve of the above-mentioned "valve mechanism which is opened by a battery internal pressure higher than the battery internal pressure at which the current cutoff mechanism operates" has a battery internal pressure of 10 to 10.
One that opened at 15 kg / cm 2 was used. These values can be set arbitrarily. It may be designed according to the purpose of use of the battery. For example, regarding a valve, the design can be easily changed by adjusting the material, thickness, area, and the like of the valve.

【0011】正極にリン酸リチウムを含有させたこと
で、過充電時において、電池電圧上昇を伴った場合、速
やかにガス発生、電池内圧上昇を促進させ、早い段階で
電流遮断機構を作動、電池温度上昇を抑制することがで
きる。この段階の作用は、リン酸リチウムの粒子径に依
存しにくい。さらに、急速に電池電圧が上昇し、上記炭
酸塩の分解電圧を超え、有機電解液の分解電圧へと達し
た場合には、詳細なメカニズム明らかではないが、リ
ン酸リチウムが電解液の分解を抑制するため、電池内で
の化学反応を抑制する、あるいは、化学反応によって生
じる電池温度の上昇を緩やかにすることができる。よっ
て電池内圧が急激に上昇すること、電池温度が維異常上
昇するようなこともない。この段階の作用には、リン酸
リチウムの粒子径に起因する電池電圧上昇に対する優れ
た感度が求められる。
[0011] By including lithium phosphate in the positive electrode, when the battery voltage rises during overcharging, the gas generation and the internal pressure of the battery are quickly promoted, and the current cutoff mechanism is activated at an early stage. Temperature rise can be suppressed. The action at this stage hardly depends on the particle size of lithium phosphate. Further, when the battery voltage rises rapidly and exceeds the decomposition voltage of the above carbonate and reaches the decomposition voltage of the organic electrolyte, the detailed mechanism is not clear, but lithium phosphate is decomposed by the decomposition of the electrolyte. Therefore, the chemical reaction in the battery can be suppressed, or the rise in battery temperature caused by the chemical reaction can be moderated. Therefore, the battery internal pressure does not suddenly increase and the battery temperature does not abnormally increase. The action at this stage involves phosphoric acid
Excellent against battery voltage rise due to lithium particle size
Sensitivity is required.

【0012】[0012]

【実施例】発明の実施の形態の記載により作製した電池
(実施例1)及び以下に述べる実施例2、従来例1〜従
来例12の電池を作製し、比較検討した。実施例2は、
リン酸リチウムに代えてリン酸コバルトを用いた以外は
実施例1と同条件で作製した。従来例1は、正極にリン
酸リチウムを加えないで、その他は全く上記実施例と同
条件で作製した。従来例2は、正極に炭酸リチウム、従
来例3は、蓚酸リチウム、従来例4は炭酸マンガン、従
来例5は炭酸コバルト、従来例6は炭酸ニッケル、従来
例7は炭酸ナトリウム、従来例8は炭酸カリウム、従来
例9は炭酸ルビジウム、従来例10は炭酸カルシウム、
従来例11は炭酸マグネシウム、従来例12は炭酸バリ
ウムを所定量添加したものである。
EXAMPLES Batteries prepared according to the description of the embodiment of the invention (Example 1), batteries described in Example 2 and Conventional Examples 1 to 12 described below were prepared and compared. Example 2
It was produced under the same conditions as in Example 1 except that cobalt phosphate was used instead of lithium phosphate. Conventional Example 1 was manufactured under the same conditions as in the above Example except that lithium phosphate was not added to the positive electrode. Conventional Example 2 is lithium carbonate for the positive electrode, Conventional Example 3 is lithium oxalate, Conventional Example 4 is manganese carbonate, Conventional Example 5 is cobalt carbonate, Conventional Example 6 is nickel carbonate, Conventional Example 7 is sodium carbonate, and Conventional Example 8 is Potassium carbonate, Conventional example 9 is rubidium carbonate, Conventional example 10 is calcium carbonate,
Conventional example 11 is a magnesium carbonate, and conventional example 12 is a predetermined amount of barium carbonate.

【0013】実施例1、2、および各従来例の電池で
は、リン酸リチウムやリン酸コバルト、各種炭酸塩、蓚
酸塩の添加量は、正極活物質LiCoO2の重量に対し
て0.05〜20%とした。また、各種炭酸塩、蓚酸塩
の平均粒径は1μm〜40μmとした。作製した電池は
以下に示す条件で充電し、放電の後、2.8Aで連続的
に充電し続け、過充電状態にした。そのときの電池の破
壊状況を表1、表2に示す。表中の数値は、上段が電池
放電容量(mAh)、下段が電池を過充電状態にしたと
きの破裂あるいは爆発発生率(%)である。また表中の
括弧内に記した物質は正極に含ませた添加物名である。
なお、本過充電テストは周囲温度30℃で実施し、リン
酸リチウムやリン酸コバルト、各種炭酸塩の平均粒径は
5μmとした。 充電:4.2V定電圧、上限電流100mA、20h、
周囲温度25℃ 放電:100mA定電流、終止電圧2.8V、周囲温度
25℃
In the batteries of Examples 1 and 2 and each of the conventional examples, the addition amount of lithium phosphate, cobalt phosphate, various carbonates, and oxalate is 0.05 to 0.05% by weight of the positive electrode active material LiCoO 2. 20%. The average particle size of various carbonates and oxalates was 1 μm to 40 μm. The produced battery was charged under the following conditions. After discharging, the battery was continuously charged at 2.8 A, and was placed in an overcharged state. Tables 1 and 2 show the state of destruction of the battery at that time. The numerical values in the table indicate the battery discharge capacity (mAh) in the upper row and the rupture or explosion occurrence rate (%) when the battery is overcharged in the lower row. The substances described in parentheses in the table are the names of additives contained in the positive electrode.
The overcharge test was performed at an ambient temperature of 30 ° C., and the average particle size of lithium phosphate, cobalt phosphate, and various carbonates was 5 μm. Charge: 4.2V constant voltage, upper limit current 100mA, 20h,
Ambient temperature 25 ° C Discharge: 100mA constant current, final voltage 2.8V, ambient temperature 25 ° C

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】表1、表2から明らかなように、正極にリ
ン酸リチウム、リン酸コバルトを添加したことにより、
過充電に陥った場合の破裂、爆発といった電池の著しい
破壊が抑制される。リン酸リチウムが重量で正極活物質
に対して0.2重量%以上になるとさらに顕著な効果が
得られる。一方、リン酸リチウム、リン酸コバルトの添
加量が15重量%を越えると、放電容量が急激に低下す
る。この理由は、添加物の電子伝導度が低いために電池
の内部抵抗が大きくなったことによると思われる。
As is clear from Tables 1 and 2, by adding lithium phosphate and cobalt phosphate to the positive electrode,
Significant destruction of the battery, such as rupture and explosion when overcharged, is suppressed. A more remarkable effect can be obtained when lithium phosphate is 0.2% by weight or more based on the weight of the positive electrode active material. On the other hand, when the addition amount of lithium phosphate and cobalt phosphate exceeds 15% by weight, the discharge capacity sharply decreases. The reason is considered to be that the internal resistance of the battery was increased due to the low electronic conductivity of the additive.

【0017】表3は、上記過充電テストにおいて、リン
酸リチウム、リン酸コバルトの平均粒径を、5、10、
15、20、25、30、35、40μmとし、添加量
を5%としたときの、電池の破裂、爆発の発生率(%)
を示したものである。
Table 3 shows that the average particle sizes of lithium phosphate and cobalt phosphate in the overcharge test were 5, 10 and
Rupture and explosion rates (%) of the battery when 15, 20, 25, 30, 35, and 40 μm and the amount of addition is 5%.
It is shown.

【0018】[0018]

【表3】 [Table 3]

【0019】平均粒径が30μm以下の場合において破
裂、爆発の発生率が0%となり、好ましいものである。
平均粒径が30μmを越えると効果がいくぶん小さくな
るのは、リン酸リチウム、リン酸コバルトの表面積が小
さくなり、電池電圧上昇に対する感度が鈍くなり、ガス
発生速度が遅くなるためと思われる。
When the average particle size is 30 μm or less, the rate of burst and explosion is 0%, which is preferable.
The reason why the effect is somewhat reduced when the average particle size exceeds 30 μm is considered to be because the surface areas of lithium phosphate and cobalt phosphate are reduced, sensitivity to a rise in battery voltage is reduced, and the gas generation rate is reduced.

【0020】従来例1の電池では、非常に高い確率で、
電池が破裂、爆発に至っていたが、従来例2〜12では
確率が低下している。しかし、リン酸リチウム、リン酸
コバルトを添加した実施例1、2の電池のように、ほぼ
完全に電池の破裂、爆発を回避したわけではない。その
理由を検討するために、満充電状態にある各電池の電極
を正極、負極ともに一部を取り出し、正極を作用極、負
極を対極として高電圧側に走査した。走査速度は0.1
mV/sec、試験温度は30℃条件は次のとおりであ
る。試験に供するために切り出した電極の寸法は、正極
が20mm×20mm、負極が21mm×21mmであ
る。切り出した正極と負極はセパレ−タをはさんで対向
させた2極式セルで、同電解液中で電圧走査した。尚、
ここでは参照電極は採用していない。その理由は、電圧
走査中の対極(負極)電位が殆ど変化しないためであ
る。従って負極に金属リチウム、リチウム合金を用いた
り、無定形炭素以外の、リチウムを吸蔵、放出すること
のできる負極材料、例えば黒鉛のような結晶性の高い炭
素材料等を用いても図2、図3に示す結果と同様の結果
が得られると考えられる。
In the battery of Conventional Example 1, with a very high probability,
Although the battery exploded and exploded, the probability is reduced in Conventional Examples 2 to 12. However, as in the batteries of Examples 1 and 2 to which lithium phosphate and cobalt phosphate were added, the batteries were not completely prevented from rupture or explosion. In order to investigate the reason, a part of both the positive electrode and the negative electrode of each battery in a fully charged state was taken out, and the positive electrode was used as a working electrode and the negative electrode was used as a counter electrode to scan toward a high voltage side. Scan speed is 0.1
mV / sec, test temperature 30 ° C. The conditions are as follows. The dimensions of the electrodes cut out for the test are 20 mm × 20 mm for the positive electrode and 21 mm × 21 mm for the negative electrode. The cut positive electrode and negative electrode were a bipolar cell in which a separator was opposed to each other, and voltage scanning was performed in the same electrolytic solution. still,
Here, no reference electrode is employed. This is because the potential of the counter electrode (negative electrode) during voltage scanning hardly changes. Therefore, even if metal lithium or a lithium alloy is used for the negative electrode, or a negative electrode material capable of occluding and releasing lithium other than amorphous carbon, for example, a highly crystalline carbon material such as graphite, etc. It is considered that a result similar to the result shown in FIG. 3 is obtained.

【0021】電圧走査の結果を図2〜図9に示す。図2
は正極にリン酸リチウムを添加した実施例1の電池の電
極を用いて電圧走査した結果、図3は正極にリン酸コバ
ルトを添加した実施例2の電池の電極を用いて電圧走査
した結果、図4は、正極には何も添加しない従来例1の
電池の電極を用いて電圧走査した結果、図5は正極に炭
酸リチウムを添加した従来例2の電池の電極を用いて電
圧走査した結果、図6は正極に蓚酸リチウムを添加した
従来例3の電池の電極を用いて電圧走査した結果、図7
は正極に炭酸マンガンを添加した従来例4の電池の電極
を用いて電圧走査した結果、図8は正極に炭酸カリウム
を添加した従来例8の電池の電極を用いて電圧走査した
結果、図9は正極に炭酸マグネシウムを添加した従来例
11の電池の電極を用いて電圧走査した結果をそれぞれ
示す。図2〜図9において4.6V付近に観測される電
流ピークは、電解液や添加剤の電気化学的分解に起因す
るピークではなく、正極の酸化ピークである。図4の、
正極には何も添加しない従来例1の電池の電極を用いて
電圧走査した結果では、約5.1Vから電解液の分解に
相当する電流値の上昇が観測される。これは電池が過充
電状態となり、約5.1V以上となると、電池が破裂、
爆発に至る確率がかなり高くなるという試験結果と一致
している。図5の正極に炭酸リチウムを添加した従来例
2の電池の電極を用いて電圧走査した結果では、電解液
の分解に相当する電流が流れる電圧よりも低い、約5V
で炭酸リチウムと電解液との分解反応に相当する電流ピ
−クが観測され、特開平4−328278号公報の記述
内容と一致している。しかし、5.5V付近から急激に
電解液の分解に起因する電流値の上昇が観測され、図
2、図3のような、正極にリン酸リチウム、リン酸コバ
ルトを含有させた際の電解液分解抑制効果はみられなか
った。ところが図6〜図9に示されているように、その
他各種炭酸塩や蓚酸リチウムを添加した従来例3、従来
例4、従来例8、従来例11の電池の電極を用いて電圧
走査した結果では、電解液の分解に相当する電流が流れ
る電圧よりも低い電圧で、添加物と電解液との分解反応
に相当する電流は観測されない。従って添加物の効果は
殆どないといえる。
The results of the voltage scanning are shown in FIGS. FIG.
FIG. 3 shows the result of voltage scanning using the electrode of the battery of Example 1 in which lithium phosphate was added to the positive electrode, and FIG. 3 shows the result of voltage scanning using the electrode of the battery in Example 2 in which cobalt phosphate was added to the positive electrode. FIG. 4 shows the result of voltage scanning using the electrode of the battery of Conventional Example 1 in which nothing was added to the positive electrode, and FIG. 5 shows the result of voltage scanning using the electrode of the battery of Conventional Example 2 in which lithium carbonate was added to the positive electrode. FIG. 6 shows the results of voltage scanning using the electrodes of the battery of Conventional Example 3 in which lithium oxalate was added to the positive electrode.
9 shows the result of voltage scanning using the electrode of the battery of Conventional Example 4 in which manganese carbonate was added to the positive electrode, and FIG. 8 shows the result of voltage scanning using the electrode of the battery of Conventional Example 8 in which potassium carbonate was added to the positive electrode. Shows the results of voltage scanning using the electrode of the battery of Conventional Example 11 in which magnesium carbonate was added to the positive electrode. The current peak observed near 4.6 V in FIGS. 2 to 9 is not a peak due to electrochemical decomposition of the electrolyte or the additive, but an oxidation peak of the positive electrode. In FIG.
As a result of voltage scanning using the electrode of the battery of Conventional Example 1 in which nothing is added to the positive electrode, an increase in the current value corresponding to decomposition of the electrolyte from about 5.1 V is observed. This means that when the battery is overcharged and the voltage rises above about 5.1V, the battery will burst,
Consistent with test results showing a significantly higher probability of explosion. The result of voltage scanning using the electrode of the battery of Conventional Example 2 in which lithium carbonate was added to the positive electrode in FIG. 5 shows that the voltage was lower than the voltage at which the current corresponding to the decomposition of the electrolyte flows by about 5 V.
A current peak corresponding to the decomposition reaction between lithium carbonate and the electrolyte was observed, which is consistent with the description in JP-A-4-328278. However, a sharp increase in the current value due to the decomposition of the electrolyte was observed from around 5.5 V. As shown in FIGS. 2 and 3, the electrolyte when lithium phosphate and cobalt phosphate were contained in the positive electrode was used. No decomposition inhibiting effect was observed. However, as shown in FIGS. 6 to 9, the results of voltage scanning using the electrodes of the batteries of Conventional Example 3, Conventional Example 4, Conventional Example 8, and Conventional Example 11 to which other various carbonates and lithium oxalate were added. Thus, at a voltage lower than the voltage at which the current corresponding to the decomposition of the electrolyte flows, no current corresponding to the decomposition reaction between the additive and the electrolyte is observed. Therefore, it can be said that the additive has almost no effect.

【0022】これら従来例の電池の電極を用いて電圧走
査した結果(図4〜図9)では、いずれも5.1Vを超
えると電解液の分解反応に相当する電流が観測される。
従って、図4〜図9は、比較的大きな電流で電池が急激
に過充電状態に陥った場合に、破裂、爆発を抑制できな
いことを示唆している。
In the results of voltage scanning using the electrodes of these conventional batteries (FIGS. 4 to 9), when the voltage exceeds 5.1 V, a current corresponding to the decomposition reaction of the electrolytic solution is observed.
Accordingly, FIGS. 4 to 9 suggest that when the battery suddenly falls into an overcharged state with a relatively large current, the explosion and explosion cannot be suppressed.

【0023】それに対して図2、図3の正極にリン酸リ
チウム、あるいはリン酸コバルトを添加した、本発明の
電池の電極を用いて電圧走査した結果では、約5Vでリ
ン酸リチウム、あるいはリン酸コバルトと電解液との分
解反応に相当する電流ピ−クが観測され、それよりも高
い電圧では、電解液の分解反応に相当する電流が殆ど観
測されない。従って、正極にリン酸リチウム、あるいは
リン酸コバルトを添加した電池は、比較的大きな電流で
電池が急激に過充電状態に陥った場合に、破裂、爆発を
抑制できることがわかる。
On the other hand, as a result of voltage scanning using the electrode of the battery of the present invention in which lithium phosphate or cobalt phosphate was added to the positive electrode in FIGS. A current peak corresponding to the decomposition reaction between the cobalt oxide and the electrolytic solution is observed. At a voltage higher than that, almost no current corresponding to the decomposition reaction of the electrolytic solution is observed. Therefore, it can be seen that a battery in which lithium phosphate or cobalt phosphate is added to the positive electrode can suppress rupture and explosion when the battery suddenly enters an overcharged state with a relatively large current.

【0024】本実施例では有機電解液二次電池の正極
に添加するリン酸塩化合物としてリン酸リチウム、リン
酸コバルトを用いているが、これに適宜その他のリン酸
塩化合物を追加して用いてもほぼ同様の効果が得られ
る。また、本実施例では、正極活物質にLiCoO
用いたが、その他の正極活物質、例えばLiNiO
LiMnO等を用いても本実施例と同様の効果が得ら
れる。
[0024] In this example, lithium phosphate as the phosphate compound to be added to the positive electrode of the organic electrolyte secondary battery, is used cobalt phosphate, by adding appropriate other phosphate compound to Almost the same effect can be obtained by using. In this example, LiCoO 2 was used as the positive electrode active material, but other positive electrode active materials, for example, LiNiO 2 ,
Even if LiMnO 2 or the like is used, the same effect as that of the present embodiment can be obtained.

【0025】[0025]

【発明の効果】本発明により、過充電に陥った場合の破
裂、爆発といった有機電解液二次電池の著しい破壊を有
効に回避することができた。とりわけ比較的大きな電流
で電池が急激に過充電状態に陥った場合にも、破裂、爆
発を抑制できた。また本発明の電池が急激に過充電状態
に陥り、電解液の分解電圧に突入した場合には、リン酸
リチウム、やリン酸コバルト等のリン酸塩化合物の電解
液の分解を抑制する効果を発揮する。つまりリン酸リチ
ウム、やリン酸コバルト等のリン酸塩化合物には、電
解液の分解電圧よりも低い電圧でガス発生する機能と、
電池がたとえ電解液の分解電圧に突入しても、電解液
の分解を抑制する機能、という2つの機能がある。電池
内圧上昇によって作動する電流遮断機構を備えた場合に
は、前記の機能を利用して、さらに次のことが可能で
ある。本発明の電池が過充電状態となると、電解液が分
解する電圧よりも低い電圧でリン酸リチウム、やリン酸
コバルト等のリン酸塩化合物と電解液との相互作用でガ
ス発生し、電池内圧上昇によって作動する電流遮断機構
を速やかに作動させ、過充電電流を断ち切り、電池温度
の上昇を抑制し、電池の破裂、爆発を回避する。従っ
て、本発明による電池の安全性を確保する効果は、これ
までに提案されている添加物の効果を遥かに上回るほど
大きい。
According to the present invention, remarkable destruction of the organic electrolyte secondary battery such as rupture or explosion in the event of overcharging can be effectively avoided. In particular, even when the battery suddenly enters an overcharged state with a relatively large current, the explosion and explosion could be suppressed. Further, when the battery of the present invention suddenly falls into an overcharged state and enters the decomposition voltage of the electrolytic solution, the effect of suppressing the decomposition of the electrolytic solution of a phosphate compound such as lithium phosphate or cobalt phosphate is improved. Demonstrate. In other words, phosphate compounds such as lithium phosphate and cobalt phosphate have a function of generating gas at a voltage lower than the decomposition voltage of the electrolytic solution,
Even if the battery enters the decomposition voltage of the electrolytic solution, it has two functions of suppressing the decomposition of the electrolytic solution. In the case where a current interruption mechanism that operates by increasing the internal pressure of the battery is provided, the following can be further performed by using the above-described function. When the battery of the present invention is in an overcharged state, gas is generated by the interaction between the electrolyte and a phosphate compound such as lithium phosphate or cobalt phosphate at a voltage lower than the voltage at which the electrolyte is decomposed, and the internal pressure of the battery is reduced. The current cut-off mechanism, which is activated by the rise, is quickly activated to cut off the overcharge current, suppress the rise in battery temperature, and prevent the battery from exploding or exploding. Therefore, the effect of ensuring the safety of the battery according to the present invention is much greater than the effect of the additives proposed so far.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機電解液二次電池の一例の縦断面図
である。
FIG. 1 is a longitudinal sectional view of an example of an organic electrolyte secondary battery of the present invention.

【図2】正極にリン酸リチウムを添加した実施例の電池
の電極を用いて電圧走査した結果を示したものである。
FIG. 2 shows the results of voltage scanning using the electrodes of the battery of the example in which lithium phosphate was added to the positive electrode.

【図3】正極にリン酸コバルトを添加した実施例の電池
の電極を用いて電圧走査した結果を示したものである。
FIG. 3 shows the results of voltage scanning using the electrodes of the battery of the example in which cobalt phosphate was added to the positive electrode.

【図4】正極には何も添加しない従来例1の電池の電極
を用いて電圧走査した結果を示したものである。
FIG. 4 shows the result of voltage scanning using the electrode of the battery of Conventional Example 1 in which nothing is added to the positive electrode.

【図5】正極に炭酸リチウムを添加した従来例2の電池
の電極を用いて電圧走査した結果をを示したものであ
る。
FIG. 5 shows the results of voltage scanning using the electrode of the battery of Conventional Example 2 in which lithium carbonate was added to the positive electrode.

【図6】正極に蓚酸リチウムを添加した従来例3の電池
の電極を用いて電圧走査した結果を示したものである。
FIG. 6 shows the results of voltage scanning using the electrodes of the battery of Conventional Example 3 in which lithium oxalate was added to the positive electrode.

【図7】正極に炭酸マンガンを添加した従来例4の電池
の電極を用いて電圧走査した結果を示したものである。
FIG. 7 shows the result of voltage scanning using the electrode of the battery of Conventional Example 4 in which manganese carbonate was added to the positive electrode.

【図8】正極に炭酸カリウムを添加した従来例8の電池
の電極を用いて電圧走査した結果を示したものである。
FIG. 8 shows the result of voltage scanning using the electrode of the battery of Conventional Example 8 in which potassium carbonate was added to the positive electrode.

【図9】正極に炭酸マグネシウムを添加した従来例11
の電池の電極を用いて電圧走査した結果を示したもので
ある。
FIG. 9 shows a conventional example 11 in which magnesium carbonate was added to a positive electrode.
3 shows the results of voltage scanning using the electrodes of the battery of FIG.

【符号の説明】[Explanation of symbols]

1.正極集電体 2.正極活物質層 3.負極集電体 4.負極活物質層 5.セパレ−タ 6.負極缶 7.正極キャップ 8.正極タブ端子 9.ガスケット 1. 1. positive electrode current collector 2. positive electrode active material layer Negative electrode current collector 4. Negative electrode active material layer 5. Separator 6. Negative electrode can 7 Positive electrode cap 8. Positive electrode tab terminal 9. gasket

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 4/62 H01M 4/02 - 4/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 10/40 H01M 4/62 H01M 4/02-4/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極が充電、放電に伴い、リチウムを放
出、吸蔵することのできる材料を含む正極と、リチウム
金属、リチウム合金、リチウムを吸蔵、放出することの
できる炭素材の中から選ばれる材料を含む負極と、有機
電解液が密閉容器に収納され、当該密閉容器が、所定
圧力よりも高い電池内圧で開放作動する弁機構と電池内
圧上昇で作動する電流遮断機構とを備え、該電流遮断機
構は、前記弁機構が開放作動する電池内圧より低い電池
内圧で作動する有機電解液二次電池において、前記正極
、平均粒子径が30μm以下のリン酸リチウム又はリ
ン酸コバルト等のリン酸塩化合物を、正極活物質重量に
対して0.2〜15重量%含有することを特徴とする有
機電解液二次電池。
The positive electrode releases lithium with charging and discharging.
A positive electrode containing a material capable of extracting and storing, and lithium
Of absorbing and releasing metals, lithium alloys and lithium
A negative electrode comprising a material selected from a carbon material capable, and the organic electrolyte solution is contained in a sealed container, the sealed container is opened actuated valve mechanism and a battery with a high battery internal pressure than the predetermined pressure
A current cut-off mechanism that is activated by pressure increase.
The battery is lower than the battery internal pressure at which the valve mechanism operates to open.
In an organic electrolyte secondary battery that operates at an internal pressure, the positive electrode has lithium phosphate or lithium phosphate having an average particle size of 30 μm or less.
Phosphate compounds such as cobalt phosphate are added to the weight of the positive electrode active material.
An organic electrolyte secondary battery containing 0.2 to 15% by weight with respect to the total weight of the battery.
JP01225997A 1996-09-24 1997-01-27 Organic electrolyte secondary battery Expired - Fee Related JP3358478B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP01225997A JP3358478B2 (en) 1996-09-24 1997-01-27 Organic electrolyte secondary battery
TW086113644A TW400661B (en) 1996-09-24 1997-09-19 Non-aqueous liquid electrolyte battery
US08/934,832 US5962167A (en) 1996-09-24 1997-09-22 Non-aqueous liquid electrolyte secondary cell
KR1019970048510A KR19980024915A (en) 1996-09-24 1997-09-24 Nonaqueous Electrolyte Secondary Battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25131296 1996-09-24
JP8-251312 1996-09-24
JP01225997A JP3358478B2 (en) 1996-09-24 1997-01-27 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH10154532A JPH10154532A (en) 1998-06-09
JP3358478B2 true JP3358478B2 (en) 2002-12-16

Family

ID=26347838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01225997A Expired - Fee Related JP3358478B2 (en) 1996-09-24 1997-01-27 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3358478B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8586246B2 (en) 2008-09-01 2013-11-19 Sony Corporation Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371713B2 (en) * 1996-09-24 2003-01-27 新神戸電機株式会社 Organic electrolyte secondary battery
JPH11224676A (en) * 1998-02-06 1999-08-17 Yuasa Corp Lithium battery
JP4211439B2 (en) * 2002-03-18 2009-01-21 新神戸電機株式会社 Method for selecting composite oxide for positive electrode active material of lithium secondary battery
JP4952034B2 (en) * 2005-04-20 2012-06-13 パナソニック株式会社 Nonaqueous electrolyte secondary battery
KR100901535B1 (en) 2005-10-26 2009-06-08 주식회사 엘지화학 Secondary Battery of Improved Life Characteristics
KR20090017535A (en) * 2006-05-31 2009-02-18 산요덴키가부시키가이샤 High-voltage charge type nonaqueous electrolyte secondary battery
JP2008123972A (en) * 2006-11-16 2008-05-29 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary cell
JP5201847B2 (en) * 2007-02-20 2013-06-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP5277686B2 (en) * 2007-03-29 2013-08-28 三菱化学株式会社 Lithium secondary battery and positive electrode for lithium secondary battery used therefor
JP2008251218A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP5077131B2 (en) 2007-08-02 2012-11-21 ソニー株式会社 Positive electrode active material, positive electrode using the same, and nonaqueous electrolyte secondary battery
JP5079461B2 (en) * 2007-11-14 2012-11-21 ソニー株式会社 Positive electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP4710916B2 (en) 2008-02-13 2011-06-29 ソニー株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
KR101623963B1 (en) 2008-08-04 2016-05-24 소니 가부시끼가이샤 Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
WO2013080722A1 (en) * 2011-11-30 2013-06-06 三洋電機株式会社 Non-aqueous electrolyte secondary battery and method for manufacturing same
JP6101583B2 (en) * 2013-07-05 2017-03-22 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
US10340525B2 (en) 2015-01-30 2019-07-02 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
JP6338115B2 (en) * 2015-11-04 2018-06-06 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP6627708B2 (en) 2016-10-07 2020-01-08 トヨタ自動車株式会社 Lithium ion secondary battery and method of manufacturing lithium ion secondary battery
JP6819245B2 (en) * 2016-11-30 2021-01-27 三洋電機株式会社 A method for manufacturing a positive electrode plate for a non-aqueous electrolyte secondary battery, a method for manufacturing a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery.
CN110462912B (en) * 2017-03-30 2023-07-21 Tdk株式会社 All-solid battery
JP6982779B2 (en) * 2017-04-25 2021-12-17 トヨタ自動車株式会社 Manufacturing method of non-water-based secondary battery
JP6722389B2 (en) * 2017-06-22 2020-07-15 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP6870505B2 (en) * 2017-07-05 2021-05-12 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP6818235B2 (en) * 2017-09-11 2021-01-20 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
CN110892559B (en) 2017-10-31 2023-01-10 松下知识产权经营株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8586246B2 (en) 2008-09-01 2013-11-19 Sony Corporation Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH10154532A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
JP3358478B2 (en) Organic electrolyte secondary battery
JP2000030703A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
KR19980024915A (en) Nonaqueous Electrolyte Secondary Battery
KR20040079316A (en) Battery
JP2002110225A (en) Non-acqueous electrolyte lithium secondary battery
US7425385B2 (en) Non-aqueous electrolyte secondary battery
JPH10125327A (en) Organic electrolyte secondary battery
JPH0744043B2 (en) Lithium secondary battery
JP2003142078A (en) Nonaqueous electrolyte secondary battery
JPH11273674A (en) Organic electrolyte secondary battery
JP2001250543A (en) Lithium secondary battery
JP2005347222A (en) Electrolyte liquid and battery
JP3402237B2 (en) Non-aqueous electrolyte secondary battery
JP3371713B2 (en) Organic electrolyte secondary battery
JPH10134817A (en) Organic electrolyte secondary battery
JP3152307B2 (en) Lithium secondary battery
JP3921836B2 (en) Organic electrolyte secondary battery
JPH1140199A (en) Lithium secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery
JP3010973B2 (en) Non-aqueous electrolyte secondary battery
JP2001357851A (en) Nonaqueous electrolyte secondary battery
JP3358482B2 (en) Lithium secondary battery
JP2000188132A5 (en)
JP3402233B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131011

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees