JP4211439B2 - Method for selecting composite oxide for positive electrode active material of lithium secondary battery - Google Patents

Method for selecting composite oxide for positive electrode active material of lithium secondary battery Download PDF

Info

Publication number
JP4211439B2
JP4211439B2 JP2003069312A JP2003069312A JP4211439B2 JP 4211439 B2 JP4211439 B2 JP 4211439B2 JP 2003069312 A JP2003069312 A JP 2003069312A JP 2003069312 A JP2003069312 A JP 2003069312A JP 4211439 B2 JP4211439 B2 JP 4211439B2
Authority
JP
Japan
Prior art keywords
positive electrode
composite oxide
lithium
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003069312A
Other languages
Japanese (ja)
Other versions
JP2003346908A (en
Inventor
祐一 高塚
哲久 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2003069312A priority Critical patent/JP4211439B2/en
Publication of JP2003346908A publication Critical patent/JP2003346908A/en
Application granted granted Critical
Publication of JP4211439B2 publication Critical patent/JP4211439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリチウム二次電池の正極活物質用複合酸化物の選定方法に係り、特に、正極活物質にスピネル構造を有するリチウムマンガン複合酸化物、又は、リチウム、マンガン、コバルト及びニッケルを含む層状構造の複合酸化物を用いた正極を電解液に浸潤させたリチウム二次電池の正極活物質用複合酸化物の選定方法に関する。
【0002】
【従来の技術】
リチウム二次電池を代表するリチウムイオン二次電池は、高エネルギー密度であるメリットを活かして、主にVTRカメラやノートパソコン、携帯電話等のポータブル機器の電源に使用されている。一般的な円筒型リチウムイオン二次電池の寸法は、直径が18mm、高さが65mmとされ、18650型と呼ばれ小形民生用リチウムイオン二次電池として広く普及している。18650型リチウムイオン二次電池の正極活物質には、高容量、長寿命を特徴とするコバルト酸リチウムが主として用いられており、電池容量は、おおむね1.3Ah〜1.7Ah、出力はおよそ10W程度である。
【0003】
一方、自動車産業界においては環境問題に対応すべく、排出ガスのない、動力源を完全に電池のみにした電気自動車や、内燃機関エンジンと電池との両方を動力源とするハイブリッド(電気)自動車の開発が加速され、一部実用化の段階にきている。電気自動車の電源となる電池には当然高出力、高エネルギーが得られる特性が要求され、この要求にマッチした電池としてリチウムイオン電池が注目されている。このようなリチウムイオン電池の正極活物質には、スピネル構造を有するリチウム複合酸化物(例えば、特許文献1参照)や層状構造を有する複合酸化物(例えば、特許文献2参照)が用いられる。
【0004】
ところが、リチウムイオン電池の場合、高出力になればなるほど安全性が低下する傾向にある。人を乗せて走る電気自動車の場合、充電制御システムが故障してしまった場合の過充電時、不慮の衝突事故の場合に遭遇する可能性のある電池のクラッシュ時あるいは、異物突き刺し時、外部短絡時等の電池自体の安全性を確保することは、最低限必要な、非常に重要な電池特性である。ここで言う電池の安全性とは、電池が異常な状態にさらされた場合の電池の挙動が、人に身体的損害を与えないことは当然のことながら、車両への損傷を最小限に抑えることを意味する。
【0005】
過充電時等の安全性対策としては、従来から、PTC(Positive Temperature Coefficient)素子や、電池内圧上昇を利用した圧力スイッチによる電流遮断機構を使用することにより、異常状態の電池の充電を停止させる方法が使用されている。
【0006】
【特許文献1】
特開2002−316823号公報
【特許文献2】
特開2002−068747号公報
【0007】
【発明が解決しようとする課題】
しかしながら、大電流を取り出す必要のある電池の場合、PTC素子による抵抗増加や圧力スイッチの接点部分の発熱が生じるため、電池の蓋などに電流遮断機構を設けることは難しい。充電中に外部機構による電流遮断ができないと、電池は過充電され続け、正極活物質であるマンガン酸リチウムのリチウムイオンがほとんど抜け出して結晶構造が不安定化し、電圧の上昇、電解液の分解が開始される。電解液の分解による発熱は、部分的に急激な温度上昇を示す。この温度上昇に伴い、結晶構造が不安定状態にあるマンガン酸リチウムの酸素が爆発的に電解液の酸化、分解に消費され、更に大きな発熱を生じ、電池の白煙噴出や破裂、発火の現象が見られることもある。
【0008】
本発明は上記事案に鑑み、過充電状態でも安全性を保持することができるリチウム二次電池の正極活物質用複合酸化物の選定方法を提供することを課題とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明は、正極活物質にスピネル構造を有するリチウムマンガン複合酸化物、又は、リチウム、マンガン、コバルト及びニッケルを含む層状構造の複合酸化物を用いた正極を電解液に浸潤させたリチウム二次電池の正極活物質用複合酸化物の選定方法であって、前記正極を連続充電したときの金属リチウムに対する電圧が5.2V〜5.8Vの領域でプラトーを持たないリチウムマンガン複合酸化物、又は、複合酸化物を前記正極活物質用複合酸化物として選定するステップを含むことを特徴とする。
【0010】
本発明では、正極活物質にスピネル構造を有するリチウムマンガン複合酸化物、又は、リチウム、マンガン、コバルト及びニッケルを含む層状構造の複合酸化物を用いた正極を連続充電したときの金属リチウムに対する電圧(vs.Li/Li+、以下の電圧はLi基準とする。)は、電極表面からのリチウムイオンの放出に伴い上昇すると共に、リチウムマンガン複合酸化物の充放電領域に相当する5.2〜5.8Vの領域で電圧が横這い状態となるプラトーを持たないため、過充電状態での部分的に急激な温度上昇を回避することができることから、リチウム二次電池の安全性を保持することができる。
【0011】
この場合において、金属リチウムに対する電圧が5.5V以上の領域で、複合酸化物の単位充電量当たりの電圧が0.1V/(mAh/g)以上となるときの放電状態からの充電量が、正極の放電可能容量に対して1.5倍以下にすれば、複合酸化物のマンガンの溶出が生じ電圧が上昇して温度が急激に上昇し始めるときの充電量を放電可能容量に対して一定範囲内に規制されるため、複合酸化物が安定した結晶構造に保持されるので、過充電状態での急激な温度上昇を抑制することができる。
【0012】
【発明の実施の形態】
以下、図面を参照して、本発明を電気自動車搭載用の円筒型リチウムイオン電池に適用した実施の形態について、正極活物質の選定、電池の作製の順に説明する。
【0013】
(正極活物質の選定)
マンガン原料として二酸化マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガンなどのマンガン化合物、コバルト原料としてコバルト酸化物、硫酸コバルト、硝酸コバルトなどのコバルト化合物、ニッケル原料としてニッケル酸化物、硫酸ニッケル、硝酸ニッケルなどのニッケル化合物、リチウム原料として炭酸リチウム、硝酸リチウム、酢酸リチウム、硫化リチウムなどのリチウム化合物を使用する。また、別の元素を置換・ドープする場合は、その元素を含む炭酸塩、硝酸塩、硫酸塩、酢酸塩などの塩を使用する。各原料の混合比を調整して略均一に混合し、焼成時間、焼成温度を変えることで、スピネル構造を有するリチウムマンガン複合酸化物、及び、リチウム、マンガン、コバルト及びニッケルを含む層状構造の複合酸化物を調製する(以下、両者を総称する場合に「複合酸化物」という。)。
【0014】
以上のように調製した各複合酸化物90重量部に対し、導電剤として鱗片状黒鉛粉末5重量部と、結着剤としてポリフッ化ビニリデン5重量部とを添加し、これに分散溶媒としてN−メチルピロリドンを添加、混練して得られる正極合剤スラリを、厚さ20μmのアルミニウム箔にほぼ均一に両面塗布し、乾燥、プレスすることで正極試験片を作製する。このとき、正極試験片の合剤塗布部厚さを300μm、合剤密度を2.75g/cmとした。得られた正極を、厚さ40μmの微多孔性のポリエチレン製セパレータを介して、金属リチウム箔を銅製メッシュに貼り付けた負極試験片で挟み込み、電解液に浸潤させ、ビーカーセル(リチウム電池)を作製する。電解液には、エチレンカーボネートとジメチルカーボネートを体積比1:2で混合した混合溶媒に、電解質の6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものを用いた。
【0015】
作製した各ビーカーセルに、電極面積に対して0.5mA/cmの電流で連続充電し、正極試験片の金属リチウムに対する電圧が5.9Vとなるまで過充電状態とする。このとき、所定時間ごとに、正極試験片の金属リチウムに対する電圧を測定する。図1は、充電量に対する正極試験片の測定電圧を示したものである。金属リチウムに対する電圧が5.2〜5.8Vの過充電領域で、連続右上がりとなる(プラトーを持たない)ビーカーセルの複合酸化物を、正極活物質を選定する第1条件とする。また、金属リチウムに対する電圧が5.5V以上の領域で複合酸化物の単位充電量当たりの電圧が0.1V/(mAh/g)以上となる、連続充電開始時からの充電量C1を算出し、充電量C1の放電容量に対する比を過充電量として求める。過充電量が1.5以下のビーカーセルの複合酸化物を、正極活物質を選定する第2条件とする。そして、第1条件(及び第2条件)を満足する複合酸化物を正極活物質として選定する。
【0016】
(電池の作製)
以上のように選定した複合酸化物90重量部に対し、導電剤として鱗片状黒鉛粉末5重量部と、結着剤としてポリフッ化ビニリデン5重量部とを添加し、これに分散溶媒としてN−メチルピロリドンを添加、混練して得られる正極合剤スラリを、厚さ20μmのアルミニウム箔の両面に均一に塗布し、乾燥、プレスすることで正極を作製する。
【0017】
負極活物質の非晶質炭素粉末90重量部に対し、結着剤としてポリフッ化ビニリデン10重量部を添加し、これに分散溶媒としてN−メチルピロリドンを添加、混練して得られるスラリを、厚さ10μmの圧延銅箔の両面に塗布し、乾燥、プレスすることで負極を作製する。
【0018】
図2に示すように、上記作製の正極と負極とを、これら両極が直接接触しないように厚さ40μmのポリオレフィン系セパレータを介して軸芯11に捲回し捲回群6を作製する。正極から導出されているリード片9を変形させ、軸芯11のほぼ延長線上にある極柱(正極外部端子1)周囲から一体に張り出している鍔部7周面に接続し固定する。負極外部端子1’と、負極から導出されているリード片9との接続も、正極と同様にする。その後正極外部端子1及び負極外部端子1’の鍔部7周面全周、捲回群6外周面全周に絶縁被覆8を施し、捲回群6を直径65mm、高さ390mmの円筒形SUS(ステンレス)製電池容器(缶)5に挿入する。続いて、円盤状電池蓋4周端面を電池容器5開口部に嵌合し、双方の接触部全域をレーザ溶接する。次に、金属製のナット2を正極外部端子1、負極外部端子1’にそれぞれ螺着し、電池蓋4を鍔部7とナット2の間で締め付けにより固定する。次いで、上述したビーカーセルの電解液と同様の電解液を注液して円筒型リチウムイオン電池20を作製する。電池20はいずれも、電池容量90Ah、最大出力1000Wとした。
【0019】
【実施例】
次に、本実施形態に従って作製した電池20の実施例について説明する。なお、比較のために作製した比較例の電池についても併記する。
【0020】
(比較例1)
下表1に示すように、比較例1では、正極活物質に上記作製の複合酸化物Aを用いた。複合酸化物Aはプラトーを持ち、過充電量は1.8であった。
【0021】
【表1】

Figure 0004211439
【0022】
(比較例2)
表1に示すように、比較例2では、複合酸化物Bを用いる以外は比較例1と同様にした。複合酸化物Bはプラトーを持ち、過充電量は1.6であった。
【0023】
(実施例1〜実施例3)
表1に示すように、実施例1〜実施例3では、正極活物質に用いる複合酸化物を変えた以外は比較例1と同様にした。実施例1では複合酸化物Cを、実施例2では複合酸化物Dを、実施例3では複合酸化物Eを、それぞれ用いた。複合酸化物C、D、Eはいずれもプラトーを持たず、過充電量は、実施例1では1.6、実施例2では1.5、実施例3では1.3であった。
【0024】
(比較例3、4)
表1に示すように、比較例3では、正極活物質に上記作製の複合酸化物Fを用いた。複合酸化物Fはプラトーを持ち、過充電量は2.0であった。また、比較例4では、複合活物質Gを用いる以外は比較例1と同様にした。複合酸化物Gはプラトーを持ち、過充電量は1.6であった。
【0025】
(実施例4〜実施例6)
表1に示すように、実施例4〜実施例6では、正極活物質に用いる複合酸化物を変えた以外は比較例1と同様にした。実施例4では複合酸化物Hを、実施例5では複合酸化物Iを、実施例6では複合酸化物Jを、それぞれ用いた。複合酸化物H、I、Jはいずれもプラトーを持たず、過充電量は、実施例4では1.7、実施例5では1.5、実施例6では1.4であった。
【0026】
なお、上記実施例及び比較例で、複合酸化物A〜Eはスピネル構造を有するリチウムマンガン複合酸化物であり、複合酸化物F〜Jはリチウム、マンガン、コバルト及びニッケルを含む層状構造の複合酸化物である。
【0027】
(安全性試験)
実施例及び比較例の電池に、0.5Cの電流を充電方向に連続的に流す過充電試験を行い、電池表面の最高到達温度を測定し、発火の有無の状況について調べた。結果を下表2に示す。
【0028】
【表2】
Figure 0004211439
【0029】
表1及び表2に示すように、正極を連続充電したときにプラトーを持つ比較例1、比較例2、比較例3及び比較例4の電池は、最高到達温度が450°C以上に達し、安全性試験において発火が見られた。これに対し、プラトーを持たない実施例1〜実施例3及び実施例4〜実施例6の電池に関しては、安全性試験において発火が見られなかった。また、過充電量が1.5以下の実施例2、実施例3、実施例5及び実施例6の電池では最高到達温度が260°C以下となり高くならなかった。
【0030】
以上のように、本実施形態では、正極を連続充電したときの金属リチウムに対する電圧が5.2〜5.8Vの過充電領域でプラトーを持たない(第1条件を満足する)複合酸化物(スピネル構造を有するリチウムマンガン複合酸化物、又は、リチウム、マンガン、コバルト及びニッケルを含む層状構造の複合酸化物)を用いたので、電池20は過充電状態での最高到達温度が高温とはならず発火がなく、優れた安全性を保持することができる。更に、金属リチウムに対する電圧が5.5V以上の領域で複合酸化物の単位充電量当たりの電圧が0.1V/(mAh/g)以上となるときの過充電量を1.5以下(第1条件及び第2条件を満足する)とすることで、過充電状態での複合酸化物のマンガンの溶出を抑制して結晶構造を安定に保持することができるので、急激な温度上昇を回避することができる。従って、電池20の電池温度を所定温度以下に保持することができ、安全性を確保することができる。
【0031】
なお、本実施形態では、正極合剤の配合比、電極密度や電極厚さは1例を示したが、本発明はこれに限定されるものではない。配合比の調整、電極密度や電極厚さなどの電極設計によって、正極(単極)を連続充電したときの金属リチウムに対する電圧の推移に違いが見られるが、プラトーや過充電量の調整により、安全性を保持したリチウム二次電池を得ることができる。
【0032】
また、本実施形態では、負極活物質に非晶質炭素を用いた例を示したが、リチウムイオンを挿入・脱離可能な黒鉛やその他の材料でもよく、負極にリチウムイオンを挿入、脱離させる目的以外の炭素材などを添加して用いることもできる。
【0033】
更に、本実施形態では、電解質としてLiPFを例示したが、これに限定されるものではなく、例えば、LiC1O、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLiなどやこれらの混合物を用いてもよい。
【0034】
また、本実施形態以外の電解液溶媒として、プロピレンカーボネート、ジエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチルラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチルー1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリルなどを使用してもよく、またこれらの2種以上の混合溶媒としてもよい。また、本実施形態では、結着材としてポリフッ化ビニリデンを例示したが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、ポリビニルアルコール、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体及びこれらの混合体などを使用することもできる。
【0035】
更にまた、本実施形態では、電気自動車用電源等に用いられる大形の二次電池を例示したが、本発明は、電池の大きさ、電池容量に限定されるものではない。また、有底筒状容器(缶)に電池上蓋がかしめによって封口されている構造の円筒型電池にも適用可能である。更に、本実施形態では、電極を捲回した捲回群6を用いた電池を例示したが、電極を積層して用いる電池にも適用可能である。また、本実施形態では、電池容器として円筒形の缶を使用した例を示したが、本発明は、形状には制限されず、角型やその他の形状であっても適用可能である。
【0036】
【発明の効果】
以上説明したように、本発明によれば、正極活物質にスピネル構造を有するリチウムマンガン複合酸化物を用いた正極を連続充電したときの金属リチウムに対する電圧が、リチウムマンガン複合酸化物の充放電領域に相当する5.2〜5.8Vの領域でプラトーを持たないため、過充電状態での部分的に急激な温度上昇を回避することができることから、リチウム二次電池の安全性を保持することができる、という効果を得ることができる。また、正極活物質にリチウム、マンガン、コバルト及びニッケルを含む層状構造の複合酸化物を用いた正極の場合であっても、同様の条件を満たせば、リチウム二次電池の安全性を確保することができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】ビーカーセルに投入した充電量と正極試験片の金属リチウムに対する電圧との関係を模式的に示すグラフである。
【図2】本発明を適用した実施形態の円筒型リチウムイオン電池の断面図である。
【符号の説明】
5 電池容器
6 捲回群
20 円筒型リチウムイオン電池[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for selecting a composite oxide for a positive electrode active material of a lithium secondary battery, and in particular, a lithium manganese composite oxide having a spinel structure in a positive electrode active material, or a layered structure containing lithium, manganese, cobalt, and nickel. The present invention relates to a method for selecting a composite oxide for a positive electrode active material of a lithium secondary battery in which a positive electrode using the composite oxide is infiltrated into an electrolyte solution.
[0002]
[Prior art]
Lithium ion secondary batteries, which are representative of lithium secondary batteries, are mainly used as power sources for portable devices such as VTR cameras, laptop computers, and mobile phones, taking advantage of the high energy density. A general cylindrical lithium ion secondary battery has a diameter of 18 mm and a height of 65 mm, which is called 18650 type, and is widely used as a small-sized consumer lithium ion secondary battery. The positive electrode active material of the 18650 type lithium ion secondary battery mainly uses lithium cobaltate, which is characterized by high capacity and long life. The battery capacity is approximately 1.3 Ah to 1.7 Ah, and the output is approximately 10 W. Degree.
[0003]
On the other hand, in the automobile industry, in order to deal with environmental problems, there are no exhaust gas, electric vehicles that use only batteries as power sources, and hybrid (electric) vehicles that use both internal combustion engine and batteries as power sources. Development has been accelerated, and part of it has been put to practical use. Naturally, a battery serving as a power source for an electric vehicle is required to have high output and high energy characteristics. Lithium ion batteries are attracting attention as batteries that meet this requirement. As the positive electrode active material of such a lithium ion battery, a lithium composite oxide having a spinel structure (for example, see Patent Document 1) or a composite oxide having a layered structure (for example, see Patent Document 2) is used.
[0004]
However, in the case of a lithium ion battery, the higher the output, the lower the safety. In the case of an electric vehicle that carries people, overcharging when the charging control system breaks down, battery crash that may occur in case of accidental collision, foreign object piercing, external short circuit Ensuring the safety of the battery itself, such as time, is a very important battery characteristic that is necessary at a minimum. Battery safety here means that the battery's behavior when exposed to abnormal conditions will not cause any physical damage to the person, but will minimize damage to the vehicle. Means that.
[0005]
As a safety measure during overcharge, etc., the charging of abnormal batteries has been stopped by using a PTC (Positive Temperature Coefficient) element or a current cut-off mechanism using a pressure switch that utilizes the increase in battery internal pressure. The method is used.
[0006]
[Patent Document 1]
JP 2002-316823 A [Patent Document 2]
[Patent Document 1] Japanese Patent Laid-Open No. 2002-068747
[Problems to be solved by the invention]
However, in the case of a battery that needs to take out a large current, resistance increase due to the PTC element and heat generation at the contact portion of the pressure switch occur, so it is difficult to provide a current interruption mechanism on the battery lid or the like. If the current cannot be interrupted by an external mechanism during charging, the battery will continue to be overcharged, and the lithium ion of the lithium manganate, which is the positive electrode active material, will almost escape and the crystal structure will become unstable, increasing the voltage and decomposing the electrolyte. Be started. Heat generation due to the decomposition of the electrolyte partially shows a rapid temperature rise. As the temperature rises, the oxygen in the lithium manganate, which has an unstable crystal structure, is explosively consumed in the oxidation and decomposition of the electrolyte, generating a large amount of heat, and the phenomenon of white smoke ejection, explosion, and ignition of the battery. May be seen.
[0008]
An object of the present invention is to provide a method for selecting a composite oxide for a positive electrode active material of a lithium secondary battery that can maintain safety even in an overcharged state.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a positive electrode using a lithium manganese composite oxide having a spinel structure as a positive electrode active material or a layered structure composite oxide containing lithium, manganese, cobalt, and nickel as an electrolytic solution. A method for selecting a composite oxide for a positive electrode active material of a lithium secondary battery infiltrated in a battery, wherein the voltage with respect to metallic lithium when the positive electrode is continuously charged does not have a plateau in the region of 5.2 V to 5.8 V The method includes a step of selecting a lithium manganese composite oxide or a composite oxide as the composite oxide for a positive electrode active material .
[0010]
In the present invention, the voltage with respect to metallic lithium when continuously charging a positive electrode using a lithium manganese composite oxide having a spinel structure as a positive electrode active material or a layered composite oxide containing lithium, manganese, cobalt and nickel ( vs. Li / Li +, and the following voltage is based on Li) and increases with the release of lithium ions from the electrode surface, and corresponds to the charge / discharge region of the lithium manganese composite oxide. since voltage 8V region does not have a plateau as the flat state, since it is possible to avoid a partial rapid temperature rise in the overcharge state, it is possible to retain the safety of the lithium secondary battery.
[0011]
In this case, the amount of charge from the discharge state when the voltage per unit charge amount of the composite oxide is 0.1 V / (mAh / g) or more in the region where the voltage with respect to metallic lithium is 5.5 V or more, If the dischargeable capacity of the positive electrode is 1.5 times or less, the manganese oxide of the composite oxide is eluted, the voltage rises, and the charge amount when the temperature starts to rise rapidly is constant with respect to the dischargeable capacity. Since the complex oxide is held in a stable crystal structure because it is regulated within the range, a rapid temperature increase in an overcharged state can be suppressed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a cylindrical lithium ion battery mounted on an electric vehicle will be described in the order of selection of a positive electrode active material and production of the battery, with reference to the drawings.
[0013]
(Selection of positive electrode active material)
Manganese compounds such as manganese dioxide, manganese sulfate, manganese nitrate and manganese acetate as manganese raw materials, cobalt compounds such as cobalt oxide, cobalt sulfate and cobalt nitrate as cobalt raw materials, nickel oxide, nickel sulfate and nickel nitrate as nickel raw materials Nickel compounds and lithium compounds such as lithium carbonate, lithium nitrate, lithium acetate, and lithium sulfide are used as raw materials for lithium. When another element is substituted / doped, a salt such as carbonate, nitrate, sulfate or acetate containing the element is used. By adjusting the mixing ratio of each raw material and mixing substantially uniformly, and changing the firing time and firing temperature, a lithium manganese composite oxide having a spinel structure and a composite of a layered structure containing lithium, manganese, cobalt and nickel An oxide is prepared (hereinafter referred to as “composite oxide” when both are collectively referred to).
[0014]
To 90 parts by weight of each composite oxide prepared as described above, 5 parts by weight of flaky graphite powder as a conductive agent and 5 parts by weight of polyvinylidene fluoride as a binder are added, and N- A positive electrode mixture slurry obtained by adding and kneading methylpyrrolidone is coated almost uniformly on a 20 μm thick aluminum foil on both sides, dried and pressed to prepare a positive electrode test piece. At this time, the mixture application part thickness of the positive electrode test piece was 300 μm, and the mixture density was 2.75 g / cm 3 . The obtained positive electrode was sandwiched between negative electrode test pieces in which a metal lithium foil was bonded to a copper mesh through a microporous polyethylene separator having a thickness of 40 μm, and infiltrated with an electrolyte solution, and a beaker cell (lithium battery) was Make it. As the electrolytic solution, one obtained by dissolving 1 mol / liter of electrolyte lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2 was used.
[0015]
Each manufactured beaker cell is continuously charged with a current of 0.5 mA / cm 2 with respect to the electrode area, and is overcharged until the voltage of the positive electrode test piece with respect to metallic lithium is 5.9V. At this time, the voltage with respect to the metallic lithium of a positive electrode test piece is measured for every predetermined time. FIG. 1 shows the measured voltage of the positive electrode test piece with respect to the charge amount. The first condition for selecting the positive electrode active material is a complex oxide of a beaker cell that continuously rises to the right (no plateau) in the overcharge region where the voltage with respect to metallic lithium is 5.2 to 5.8V. In addition, the charge amount C1 from the start of continuous charging, where the voltage per unit charge amount of the composite oxide is 0.1 V / (mAh / g) or more in the region where the voltage with respect to metallic lithium is 5.5 V or more is calculated. The ratio of the charge amount C1 to the discharge capacity is obtained as the overcharge amount. A complex oxide of a beaker cell having an overcharge amount of 1.5 or less is set as a second condition for selecting a positive electrode active material. A composite oxide that satisfies the first condition (and the second condition) is selected as the positive electrode active material.
[0016]
(Production of battery)
To 90 parts by weight of the composite oxide selected as described above, 5 parts by weight of flaky graphite powder as a conductive agent and 5 parts by weight of polyvinylidene fluoride as a binder are added, and N-methyl as a dispersion solvent is added thereto. A positive electrode mixture slurry obtained by adding and kneading pyrrolidone is uniformly applied to both surfaces of an aluminum foil having a thickness of 20 μm, dried and pressed to produce a positive electrode.
[0017]
A slurry obtained by adding 10 parts by weight of polyvinylidene fluoride as a binder and adding N-methylpyrrolidone as a dispersion solvent to 90 parts by weight of the amorphous carbon powder of the negative electrode active material, A negative electrode is produced by applying to both sides of a rolled copper foil having a thickness of 10 μm, drying and pressing.
[0018]
As shown in FIG. 2, the wound group 6 is manufactured by winding the positive electrode and the negative electrode manufactured above on the shaft core 11 through a polyolefin separator having a thickness of 40 μm so that the both electrodes do not directly contact each other. The lead piece 9 led out from the positive electrode is deformed and connected and fixed to the circumferential surface of the flange 7 integrally projecting from the periphery of the pole column (positive electrode external terminal 1) substantially on the extension line of the shaft core 11. The connection between the negative external terminal 1 ′ and the lead piece 9 led out from the negative electrode is the same as that of the positive electrode. Thereafter, an insulating coating 8 is applied to the entire circumference of the collar 7 circumference and the circumference of the wound group 6 of the positive electrode external terminal 1 and the negative electrode external terminal 1 ′, and the wound group 6 is a cylindrical SUS having a diameter of 65 mm and a height of 390 mm. Insert into a (stainless) battery container (can) 5. Subsequently, the peripheral end surface of the disk-shaped battery lid 4 is fitted into the opening of the battery container 5, and both contact areas are laser welded. Next, the metal nut 2 is screwed to the positive electrode external terminal 1 and the negative electrode external terminal 1 ′, and the battery cover 4 is fixed between the flange portion 7 and the nut 2 by tightening. Next, an electrolytic solution similar to the above-described beaker cell electrolytic solution is injected to produce the cylindrical lithium ion battery 20. All of the batteries 20 had a battery capacity of 90 Ah and a maximum output of 1000 W.
[0019]
【Example】
Next, examples of the battery 20 manufactured according to the present embodiment will be described. In addition, it describes together about the battery of the comparative example produced for the comparison.
[0020]
(Comparative Example 1)
As shown in Table 1 below, in Comparative Example 1, the composite oxide A produced as described above was used as the positive electrode active material. The composite oxide A had a plateau and the overcharge amount was 1.8.
[0021]
[Table 1]
Figure 0004211439
[0022]
(Comparative Example 2)
As shown in Table 1, Comparative Example 2 was the same as Comparative Example 1 except that the composite oxide B was used. The composite oxide B had a plateau and the overcharge amount was 1.6.
[0023]
(Example 1 to Example 3)
As shown in Table 1, Examples 1 to 3 were the same as Comparative Example 1 except that the composite oxide used for the positive electrode active material was changed. In Example 1, composite oxide C was used, in Example 2, composite oxide D was used, and in Example 3, composite oxide E was used. None of the composite oxides C, D, and E had a plateau, and the overcharge amount was 1.6 in Example 1, 1.5 in Example 2, and 1.3 in Example 3.
[0024]
(Comparative Examples 3 and 4)
As shown in Table 1, in Comparative Example 3, the composite oxide F produced above was used as the positive electrode active material. The composite oxide F had a plateau and the overcharge amount was 2.0. Further, Comparative Example 4 was the same as Comparative Example 1 except that the composite active material G was used. The composite oxide G had a plateau and the overcharge amount was 1.6.
[0025]
(Example 4 to Example 6)
As shown in Table 1, Examples 4 to 6 were the same as Comparative Example 1 except that the composite oxide used for the positive electrode active material was changed. In Example 4, composite oxide H was used, in Example 5, composite oxide I was used, and in Example 6, composite oxide J was used. None of the composite oxides H, I, and J had a plateau, and the overcharge amount was 1.7 in Example 4, 1.5 in Example 5, and 1.4 in Example 6.
[0026]
In the above examples and comparative examples, the composite oxides A to E are lithium manganese composite oxides having a spinel structure, and the composite oxides F to J are composite oxides having a layered structure containing lithium, manganese, cobalt, and nickel. It is a thing.
[0027]
(Safety test)
An overcharge test in which a current of 0.5 C was continuously applied in the charging direction was conducted on the batteries of the examples and comparative examples, the maximum temperature reached on the battery surface was measured, and the presence or absence of ignition was examined. The results are shown in Table 2 below.
[0028]
[Table 2]
Figure 0004211439
[0029]
As shown in Table 1 and Table 2, the batteries of Comparative Example 1, Comparative Example 2, Comparative Example 3, and Comparative Example 4 having a plateau when the positive electrode is continuously charged reach a maximum temperature of 450 ° C. or higher. Ignition was seen in the safety test. On the other hand, regarding the batteries of Examples 1 to 3 and Examples 4 to 6 having no plateau, no ignition was observed in the safety test. Further, in the batteries of Examples 2, 3, 5, and 6 with an overcharge amount of 1.5 or less, the maximum temperature reached 260 ° C. or less and did not increase.
[0030]
As described above, in the present embodiment, the composite oxide (which satisfies the first condition) does not have a plateau in the overcharge region where the voltage with respect to metallic lithium when the positive electrode is continuously charged is 5.2 to 5.8V ( lithium-manganese composite oxide having a spinel structure, or, not the lithium, manganese, so using a composite oxide of a layered structure) containing cobalt and nickel, batteries 20 maximum temperature in the overcharge state and high temperature There is no ignition and excellent safety can be maintained. Furthermore, the overcharge amount when the voltage per unit charge amount of the composite oxide is 0.1 V / (mAh / g) or more in the region where the voltage with respect to metallic lithium is 5.5 V or more is 1.5 or less (first By satisfying the conditions and the second condition), the elution of manganese in the composite oxide in an overcharged state can be suppressed and the crystal structure can be stably maintained, so that a rapid temperature rise is avoided. Can do. Therefore, the battery temperature of the battery 20 can be kept below a predetermined temperature, and safety can be ensured.
[0031]
In the present embodiment, the mixing ratio of the positive electrode mixture, the electrode density, and the electrode thickness are shown as one example, but the present invention is not limited to this. Depending on the adjustment of the mixing ratio, electrode design such as electrode density and electrode thickness, there is a difference in the transition of voltage against metallic lithium when the positive electrode (single electrode) is continuously charged, but by adjusting the plateau and overcharge amount, A lithium secondary battery that maintains safety can be obtained.
[0032]
In this embodiment, amorphous carbon is used as the negative electrode active material. However, graphite or other materials capable of inserting and removing lithium ions may be used, and lithium ions may be inserted and removed from the negative electrode. It is also possible to add a carbon material or the like other than the purpose to be used.
[0033]
Further, in the present embodiment, LiPF 6 is exemplified as the electrolyte. However, the electrolyte is not limited thereto. For example, LiC 1 O 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li , CF 3 SOLi, or a mixture thereof may be used.
[0034]
Further, as electrolyte solutions other than the present embodiment, propylene carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyllactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1 , 3-dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, etc., or a mixture of two or more of these may be used. In the present embodiment, polyvinylidene fluoride is exemplified as the binder, but polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, Polymers such as cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, polyvinyl alcohol, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and acrylic resins, and mixtures thereof can also be used.
[0035]
Furthermore, in the present embodiment, a large secondary battery used for an electric vehicle power source or the like is illustrated, but the present invention is not limited to the size of the battery and the battery capacity. Further, the present invention can also be applied to a cylindrical battery having a structure in which a battery upper lid is sealed by caulking on a bottomed cylindrical container (can). Furthermore, in this embodiment, the battery using the wound group 6 in which the electrode is wound is illustrated, but the present invention can also be applied to a battery in which the electrodes are stacked. Moreover, although the example which used the cylindrical can as a battery container was shown in this embodiment, this invention is not restrict | limited to a shape, Even if it is a square shape and another shape, it is applicable.
[0036]
【The invention's effect】
As described above, according to the present invention, when a positive electrode using a lithium manganese composite oxide having a spinel structure as a positive electrode active material is continuously charged, the voltage with respect to lithium metal is a charge / discharge region of the lithium manganese composite oxide. Since there is no plateau in the region of 5.2 to 5.8 V corresponding to the above, it is possible to avoid a partial rapid temperature rise in an overcharged state, and thus to maintain the safety of the lithium secondary battery It is possible to obtain the effect that Also, even in the case of a positive electrode using a layered structure composite oxide containing lithium, manganese, cobalt and nickel as the positive electrode active material, the safety of the lithium secondary battery can be ensured if the same conditions are satisfied. It is possible to obtain the effect that
[Brief description of the drawings]
FIG. 1 is a graph schematically showing the relationship between the amount of charge charged into a beaker cell and the voltage of a positive electrode test piece with respect to metallic lithium.
FIG. 2 is a cross-sectional view of a cylindrical lithium ion battery according to an embodiment to which the present invention is applied.
[Explanation of symbols]
5 Battery container 6 Winding group 20 Cylindrical lithium ion battery

Claims (4)

正極活物質にスピネル構造を有するリチウムマンガン複合酸化物を用いた正極を電解液に浸潤させたリチウム二次電池の正極活物質用複合酸化物の選定方法であって、前記正極を連続充電したときの金属リチウムに対する電圧が5.2V〜5.8Vの領域でプラトーを持たないリチウムマンガン複合酸化物を前記正極活物質用複合酸化物として選定するステップを含むことを特徴とするリチウム二次電池の正極活物質用複合酸化物の選定方法A method for selecting a composite oxide for a positive electrode active material of a lithium secondary battery in which a positive electrode using a lithium manganese composite oxide having a spinel structure as a positive electrode active material is infiltrated into an electrolyte, wherein the positive electrode is continuously charged And selecting a lithium-manganese composite oxide having no plateau in the range of 5.2 V to 5.8 V as a composite oxide for a positive electrode active material . A method for selecting a composite oxide for a positive electrode active material . 前記金属リチウムに対する電圧が5.5V以上の領域で、前記リチウムマンガン複合酸化物の単位充電量当たりの電圧が0.1V/(mAh/g)以上となるときの放電状態からの充電量が、前記正極の放電可能容量に対して1.5倍以下であることを特徴とする請求項1に記載のリチウム二次電池の正極活物質用複合酸化物の選定方法The amount of charge from the discharge state when the voltage per unit charge of the lithium manganese composite oxide is 0.1 V / (mAh / g) or more in the region where the voltage with respect to the metal lithium is 5.5 V or more, 2. The method for selecting a composite oxide for a positive electrode active material of a lithium secondary battery according to claim 1, wherein the capacity is 1.5 times or less of the dischargeable capacity of the positive electrode . 正極活物質にリチウム、マンガン、コバルト及びニッケルを含む層状構造の複合酸化物を用いた正極を電解液に浸潤させたリチウム二次電池の正極活物質用複合酸化物の選定方法であって、前記正極を連続充電したときの金属リチウムに対する電圧が5.2V〜5.8Vの領域でプラトーを持たない複合酸化物を前記正極活物質用複合酸化物として選定するステップを含むことを特徴とするリチウム二次電池の正極活物質用複合酸化物の選定方法A method for selecting a composite oxide for a positive electrode active material of a lithium secondary battery in which a positive electrode using a composite oxide having a layered structure containing lithium, manganese, cobalt and nickel as a positive electrode active material is infiltrated into an electrolytic solution, A step of selecting a composite oxide having no plateau in the region of a voltage of 5.2 V to 5.8 V with respect to metallic lithium when the positive electrode is continuously charged as the composite oxide for the positive electrode active material. A method for selecting a composite oxide for a positive electrode active material of a secondary battery. 前記金属リチウムに対する電圧が5.5V以上の領域で、前記層状構造の複合酸化物の単位充電量当たりの電圧が0.1V/(mAh/g)以上となるときの放電状態からの充電量が、前記正極の放電可能容量に対して1.5倍以下であることを特徴とする請求項3に記載のリチウム二次電池の正極活物質用複合酸化物の選定方法The charge amount from the discharge state when the voltage per unit charge amount of the composite oxide having the layered structure is 0.1 V / (mAh / g) or more in a region where the voltage with respect to the metal lithium is 5.5 V or more. The method for selecting a composite oxide for a positive electrode active material of a lithium secondary battery according to claim 3, wherein the dischargeable capacity of the positive electrode is 1.5 times or less.
JP2003069312A 2002-03-18 2003-03-14 Method for selecting composite oxide for positive electrode active material of lithium secondary battery Expired - Fee Related JP4211439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003069312A JP4211439B2 (en) 2002-03-18 2003-03-14 Method for selecting composite oxide for positive electrode active material of lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-73548 2002-03-18
JP2002073548 2002-03-18
JP2003069312A JP4211439B2 (en) 2002-03-18 2003-03-14 Method for selecting composite oxide for positive electrode active material of lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2003346908A JP2003346908A (en) 2003-12-05
JP4211439B2 true JP4211439B2 (en) 2009-01-21

Family

ID=29781773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003069312A Expired - Fee Related JP4211439B2 (en) 2002-03-18 2003-03-14 Method for selecting composite oxide for positive electrode active material of lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4211439B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101569976B1 (en) * 2012-02-29 2015-11-17 신코베덴키 가부시키가이샤 Lithium ion battery
EP2822078B1 (en) * 2012-02-29 2017-10-04 Hitachi Chemical Company, Ltd. Lithium-ion battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2156800C (en) * 1995-08-23 2003-04-29 Huanyu Mao Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries
JP3358478B2 (en) * 1996-09-24 2002-12-16 新神戸電機株式会社 Organic electrolyte secondary battery
JP2001035472A (en) * 1999-07-16 2001-02-09 Shin Kobe Electric Mach Co Ltd Rectangular non-aqueous electrolyte secondary battery
JP2001148249A (en) * 1999-11-19 2001-05-29 Chuo Denki Kogyo Co Ltd Negative electrode active material for lithium secondary battery and lithium secondary battery

Also Published As

Publication number Publication date
JP2003346908A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
JP3368877B2 (en) Cylindrical lithium-ion battery
JP3541723B2 (en) Cylindrical lithium-ion battery
JP4305111B2 (en) Battery pack and electric vehicle
JP2004006264A (en) Lithium secondary battery
JP5300274B2 (en) Lithium secondary battery
JP4305035B2 (en) Winding cylindrical lithium-ion battery
JP2009123424A (en) Nonaqueous electrolyte secondary battery
JP4752154B2 (en) Method for manufacturing lithium secondary battery
JP4055307B2 (en) Cylindrical lithium-ion battery
JP2003243036A (en) Cylindrical lithium secondary battery
JP2000311677A (en) Rolled type cylindrical lithium secondary battery
JP6106774B2 (en) Prismatic lithium-ion battery
JP4211439B2 (en) Method for selecting composite oxide for positive electrode active material of lithium secondary battery
JP2003243037A (en) Lithium ion battery
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP4688527B2 (en) Lithium secondary battery
JP3988384B2 (en) Non-aqueous electrolyte secondary battery
JP2006040772A (en) Lithium ion battery
JP2013115033A (en) Square lithium ion battery
JP3624793B2 (en) Lithium ion battery
JP4026587B2 (en) Lithium ion battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JP2004319308A (en) Lithium secondary battery
JP3719139B2 (en) Non-aqueous electrolyte secondary battery
JP3518484B2 (en) Lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees