JP3719139B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3719139B2
JP3719139B2 JP2000394095A JP2000394095A JP3719139B2 JP 3719139 B2 JP3719139 B2 JP 3719139B2 JP 2000394095 A JP2000394095 A JP 2000394095A JP 2000394095 A JP2000394095 A JP 2000394095A JP 3719139 B2 JP3719139 B2 JP 3719139B2
Authority
JP
Japan
Prior art keywords
active material
battery
positive electrode
negative electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000394095A
Other languages
Japanese (ja)
Other versions
JP2002198034A (en
Inventor
賢治 中井
健介 弘中
剛 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000394095A priority Critical patent/JP3719139B2/en
Priority to US09/977,305 priority patent/US6706446B2/en
Priority to EP01124876A priority patent/EP1220343B1/en
Priority to TW090125980A priority patent/TW522593B/en
Publication of JP2002198034A publication Critical patent/JP2002198034A/en
Application granted granted Critical
Publication of JP3719139B2 publication Critical patent/JP3719139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は非水電解液二次電池に係り、特に、平均粒径0.1μm乃至2μmの一次粒子の集合体で形成された二次粒子からなるリチウムマンガン複酸化物と導電材とを含む正極活物質合剤が帯状集電体の両面にほぼ均等量塗着された正極と、充放電によりリチウムイオンを吸蔵・放出可能な負極と、をセパレータを介して捲回した電極捲回群を、所定圧で内圧を開放する内圧開放機構を有する電池容器内に収容した非水電解液二次電池に関する。
【0002】
【従来の技術】
非水電解液二次電池を代表するリチウムイオン二次電池は、高エネルギー密度であるメリットを活かして、主にVTRカメラやノートパソコン、携帯電話等のポータブル機器の電源に使用されている。この電池の内部構造は、通常以下に示されるような捲回式とされている。電極は正極、負極共に活物質が金属箔に塗着された帯状であり、セパレ−タを挟んで正極、負極が直接接触しないように断面が渦巻状に捲回され、捲回群を形成している。この捲回群が電池容器となる円筒形の電池缶に収納され、電解液注液後、封口されている。
【0003】
一般的な円筒形リチウムイオン二次電池の寸法は、18650型と呼ばれる、直径が18mm、高さ65mmであり、小形民生用リチウムイオン電池として広く普及している。18650型リチウムイオン二次電池の正極活物質には、高容量、長寿命を特徴とするコバルト酸リチウムが主として用いられており、電池容量は、おおむね1.3Ah〜1.7Ah、出力はおよそ10W程度である。
【0004】
一方、自動車産業界においては環境問題に対応すべく、排出ガスのない、動力源を完全に電池のみにした電気自動車(EV)と、内燃機関エンジンと電池との両方を動力源とするハイブリッド(電気)自動車の開発が加速され、一部実用化の段階にきている。
【0005】
電気自動車の電源となる電池には当然高出力、高エネルギーが得られる特性が要求され、この要求にマッチした電池としてリチウムイオン電池が注目されている。電気自動車の普及のためには、電池の低価格化が必須であり、そのためには、低コスト電池材料が求められ、例えば、正極活物質であれば、資源的に豊富なマンガンの酸化物が特に注目され、電池の高性能化を狙った改善がなされてきた。また、電気自動車用電池には、高容量だけではなく、加速性能などを左右する高出力化、つまり電池の内部抵抗の低減が求められる。電極反応面積の増大を狙って、正極活物質として比表面積の大きなマンガン酸リチウムとすることでこの要求に対応することができる。
【0006】
具体的に比表面積を大くするには、マンガン酸リチウムの粒子径を小さくすることである。しかし、小さな粒子径では、電極製作時に粉体が飛散したり、集電体両面に塗布するのためのスラリ化がしにくいなどの弊害が生じる。これを改善するために、小さな粒子径である一次粒子を凝集させた二次粒子を形成したマンガン酸リチウムとすることで対処可能である。
【0007】
【発明が解決しようとする課題】
しかしながら、リチウムイオン電池の場合、高容量、高出力になればなるほど安全性が低下する傾向にあり、特に上述したような、高出力化を狙ったマンガン酸リチウムを用いた場合には、電池が異常状態に陥ったときの現象がやや激しくなる傾向が見られる。電気自動車用電源に用いられるような高容量、高出力の電池ともなると、大電流充電、大電流放電がなされるために、18650型リチウムイオン電池に一般に採用されているような、異常時の電池内圧上昇に応じて作動する電流遮断機構(一種の切断スイッチ)を電池構造内に設けることは実質的に不可能である。
【0008】
人を乗せて走る電気自動車の場合、充電制御システムが故障してしまった場合の過充電時、不慮の衝突事故の場合に遭遇する可能性のある電池のクラッシュ時あるいは、異物突き刺し時、外部短絡時等の電池自体の安全性を確保することは、最低限必要な、非常に重要な電池特性である。なお、電池の安全性とは、電池が異常な状態にさらされた場合の電池の挙動が、人に身体的損害を与えないことは当然のことながら、車両への損傷を最小限の抑えることを意味する。
【0009】
本発明は上記事案に鑑み、高容量、高出力でありながらも、極めて安全性の高い非水電解液二次電池を提供することを課題とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明は、平均粒径0.1μm乃至2μmの一次粒子の集合体で形成された二次粒子からなるスピネル系リチウムマンガン複酸化物と、黒鉛と無定型炭素との混合物の導電材とを含む正極活物質合剤が帯状集電体の両面にほぼ均等量塗着された正極と、充放電によりリチウムイオンを吸蔵・放出可能な負極と、をセパレータを介して捲回した電極捲回群を、所定圧で内圧を開放する内圧開放機構を有する電池容器内に収容した非水電解液二次電池において、前記リチウムマンガン複酸化物の前記集電体片面あたりの塗着量が270g/m乃至330g/mであり、前記正極活物質合剤に含有される導電材量が3重量%乃至7重量%であり、かつ、前記黒鉛の平均粒径が、前記二次粒子の平均粒径の0.2倍乃至0.8倍であることを特徴とする。
【0011】
本発明では、高容量、高出力の非水電解液二次電池を確保するために、平均粒径0.1μm乃至2μmの一次粒子の集合体で形成された二次粒子からなるスピネル系リチウムマンガン複酸化物と導電材とを含む正極活物質合剤が帯状集電体の両面にほぼ均等量塗着された正極と、充放電によりリチウムイオンを吸蔵・放出可能な負極と、が用いられている。また、導電材に黒鉛と無定型炭素との混合物を用い、黒鉛の平均粒径を二次粒子の平均粒径の0.2倍乃至0.8倍としたので、高出力の非水電解液二次電池とすることができる。高容量、高出力の非水電解液二次電池では、異常状態に陥ったときに、大電流充電又は大電流放電状態が維持され、非水電解液と活物質合剤との化学反応により電池容器内で急激かつ大量のガスが発生し、電池容器の内圧を上昇させる。一般に、非水電解液二次電池では、電池容器内の内圧上昇を防止するために、電池容器に所定圧で内圧を開放する内圧開放機構を有しているが、リチウムマンガン複酸化物を、集電体片面あたりの塗着量が270g/m乃至330g/mとし、かつ、正極活物質合剤に含有される導電材量を3重量%乃至7重量%とすることにより、内圧開放機構からのガス放出が極めて穏やかに行われる。このため、本発明によれば、高容量、高出力でありながらも、極めて安全性の高い非水電解液二次電池を実現することができる。
【0012】
本発明において、無定型炭素をアセチレンブラックとすれば、更に高出力の非水電解液二次電池を得ることができる。また、リチウムマンガン複酸化物のLi/Mn比を0.55乃至0.60とすれば、容量の低下を伴うことなく出力維持率を向上させることができる。更に、負極の活物質に非晶質炭素を用いれば、高出力、高容量、かつ、安全性に一層優れた非水電解液二次電池とすることができる。
【0013】
【発明の実施の形態】
以下、図面を参照して本発明をEV搭載用円筒形リチウムイオン電池に適用した実施の形態について説明する。
【0014】
(正極板の作製)
図1に示すように、正極活物質としてのマンガン酸リチウム(LiMn)粉末と、導電材として後述する所定の炭素と、結着剤としてポリフッ化ビニリデン(PVdF)とを所定混合比で混合し、これに分散溶媒のN−メチル−2−ピロリドン(NMP)を添加、混練したスラリを、厚さ20μmのアルミニウム箔(正極集電体)の両面に塗布した。このとき、正極板長寸方向の一方の側縁に幅50mmの未塗布部を残した。その後乾燥、プレス、裁断して幅300mm、後述する所定長さ及び正極活物質合剤塗布部所定厚さの帯状の正極板を得た。正極活物質合剤層のかさ密度は2.65g/cmとした。正極板のスラリ未塗布部に切り欠きを入れ、切り欠き残部をリード片とした。また、隣り合うリード片を50mm間隔とし、リード片の幅を10mmとした。
【0015】
(負極板の作製)
充放電によりリチウムを収容・放出可能な所定の炭素粉末92重量部に結着剤として8重量部のポリフッ化ビニリデンを添加し、これに分散溶媒のN−メチル−2−ピロリドンを添加、混練したスラリを、厚さ10μmの圧延銅箔(負極集電体)の両面に塗布した。このとき、負極板長寸方向の一方の側縁に幅50mmの未塗布部を残した。その後乾燥、プレス、裁断して幅305mm、後述する所定長さ及び負極活物質塗布部所定厚さの帯状の負極板を得た。負極活物質合剤層の空隙率が約35%となるように負極板を圧縮した。負極板のスラリ未塗布部に正極板と同様に切り欠きを入れ、切り欠き残部をリード片とした。また、隣り合うリード片を50mm間隔とし、リード片の幅を10mmとした。
【0016】
(電池の作製)
上記作製した帯状の正極板と負極板とを、これら両極板が直接接触しないように幅310mm、厚さ40μmのポリエチレン製セパレータを介して捲回した。このとき、正極板及び負極板のリード片9が、それぞれ捲回群6の互いに反対側の両端面に位置するようにした。正極板、負極板、セパレータの長さを調整して、捲回群6径を65±0.1mmとした。
【0017】
正極板から導出されているリード片9を変形させ、その全てを、軸芯11のほぼ延長線上にある極柱(正極外部端子1)周囲から一体に張り出している鍔部7周面付近に集合、接触させた後、リード片9と鍔部7周面とを超音波溶接してリード片9を鍔部7周面に接続し固定した。また、負極外部端子1’と負極板から導出されているリード片9との接続操作も、正極外部端子1と正極板から導出されているリード片9との接続操作と同様に行った。
【0018】
その後、正極外部端子1及び負極外部端子1’の鍔部7周面全周に絶縁被覆8を施した。この絶縁被覆8は、捲回群6外周面全周にも及ぼした。絶縁被覆8には、基材がポリイミドで、その片面にヘキサメタアクリレートからなる粘着剤を塗布した粘着テープを用いた。この粘着テープを鍔部7周面から捲回群6外周面に亘って何重にも巻いて絶縁被覆8とした。捲回群6の最大径部が絶縁被覆8存在部となるように巻き数を調整し、該最大径をステンレス製の電池容器5の内径より僅かに小さくして捲回群6を電池容器5内に挿入した。電池容器5の外径は67mm、内径は66mmである。
【0019】
そして、アルミナ製で円盤状電池蓋4裏面と当接する部分の厚さ2mm、内径16mm、外径25mmの第2のセラミックワッシャ3’を、先端が正極外部端子1を構成する極柱、先端が負極外部端子1’を構成する極柱にそれぞれ嵌め込んだ。また、アルミナ製で厚さ2mm、内径16mm、外径28mmの平板状の第1のセラミックワッシャ3を電池蓋4に載置し、正極外部端子1、負極外部端子1’をそれぞれ第1のセラミックワッシャ3に通した。その後、電池蓋4周端面を電池容器5開口部に嵌合し、双方の接触部全域をレーザ溶接した。このとき、正極外部端子1、負極外部端子1’は、電池蓋4の中心に形成された穴を貫通して電池蓋4外部に突出している。そして、第1のセラミックワッシャ3、金属製ナット2底面よりも平滑な金属ワッシャ14を、この順に正極外部端子1、負極外部端子1’にそれぞれ嵌め込んだ。なお、電池蓋4には電池の内圧上昇に応じて開裂する内圧低減機構としての開裂弁10が設けられている。開裂弁10の開裂圧は、1.3×10〜1.8×10Paとした。
【0020】
次いで、ナット2を正極外部端子1、負極外部端子1’にそれぞれ螺着し、第2のセラミックワッシャ3’、第1のセラミックワッシャ3、金属ワッシャ14を介して電池蓋4を鍔部7とナット2の間で締め付けにより固定した。このときの締め付けトルク値は約7N・mとした。なお、締め付け作業が終了するまで金属ワッシャ14は回転しなかった。この状態で、電池蓋4裏面と鍔部7の間に介在させたゴム(EPDM)製Oリング16の圧縮により電池容器5内部の発電要素は外気から遮断される。
【0021】
その後、電池蓋4に設けた注液口15から非水電解液を所定量電池容器5内に注入し、その後注液口15を封止することにより円筒形リチウムイオン電池20を完成させた。
【0022】
非水電解液には、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートの体積比1:1:1の混合溶液中へ6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものを用いた。なお、円筒形リチウムイオン電池20には、電池容器5の内圧の上昇に応じて電流を遮断する、例えば、PTC(Positive Temperature Coefficient) 素子等の電流遮断機構は設けられていない。
【0023】
【実施例】
次に、本実施形態に従って作製した円筒形リチウムイオン電池20の実施例について説明する。なお、比較のために作製した比較例の電池についても併記する。
【0024】
(実施例1)
下表1に示すように、実施例1では、正極活物質として一次粒子径約1〜2μm、二次粒子径約20μm、LiとMnの原子比(Li/Mn比)0.52のマンガン酸リチウム(LiMn)粉末と、平均粒子径18μmの鱗片状黒鉛と、ポリフッ化ビニリデンと、の配合比を重量%で90:5:5とし、正極活物質合剤層(活物質塗布部)の集電体片面あたりのマンガン酸リチウムの塗着量を270g/m、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を226μm、正極板の長さを615cmとした。LiMnの二次粒径に対する鱗片状黒鉛の平均粒径は0.9倍である。一方、負極板には、負極活物質としてメソフェーズ系球状黒鉛であるMCMBを用い、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を150μm、長さを633cmとした。なお、鱗片状黒鉛の平均粒子径は、篩分けによって調整することができる。
【0025】
【表1】

Figure 0003719139
【0026】
なお、作製した電極板は、捲回したときに、捲回最内周では捲回方向に正極板が負極板からはみ出すことがなく、また最外周でも捲回方向に正極板が負極板からはみ出すことがないように負極板の長さは正極板の長さよりも18cm長くなるようにした。また、捲回方向と垂直方向においても正極活物質塗布部が負極活物質塗布部からはみ出すことがないように、負極活物質塗布部の幅は、正極活物質塗布部の幅よりも5mm長くした(以下の実施例及び比較例においても同じ。)。
【0027】
(実施例2)
表1に示すように、実施例2では、マンガン酸リチウムの塗着量を300g/mとし、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を252μm、正極板の長さを565cm、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を166μm、負極板の長さを583cmとした以外は実施例1と同様に電池を作製した。
【0028】
(実施例2−2〜2−5)
表1に示すように、実施例2−2〜実施例2−5では、マンガン酸リチウムのLi/Mn比をそれぞれ、0.55、0.58、0.60、0.61とした以外は実施例2と同様に電池を作製した。
【0029】
(実施例3)
表1に示すように、実施例3では、マンガン酸リチウムの塗着量を330g/mとし、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を277μm、正極板の長さを523cm、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を183μm、負極板の長さを541cmとした以外は実施例1と同様に電池を作製した。
【0030】
(実施例4)
表1に示すように、実施例4では、実施例1と同様のマンガン酸リチウム粉末と、平均粒子径18μmの鱗片状黒鉛(LiMnの二次粒径に対する鱗片状黒鉛の平均粒径:0.9倍)と、ポリフッ化ビニリデンとの配合比を、重量%で90:3:7とし、正極活物質合剤層(活物質塗布部)の集電体片面あたりのマンガン酸リチウムの塗着量を300g/m、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を252μm、正極板の長さを565cmとした。一方、負極板には、負極活物質としてMCMBを用い、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を166μm、長さを583cmとして、電池を作製した。
【0031】
(実施例5)
表1に示すように、実施例5では、実施例1と同様のマンガン酸リチウム粉末と、平均粒子径18μmの鱗片状黒鉛(LiMnの二次粒径に対する鱗片状黒鉛の平均粒径:0.9倍)と、ポリフッ化ビニリデンとの配合比を、重量%で90:7:3とし、正極活物質合剤層(活物質塗布部)の集電体片面あたりのマンガン酸リチウムの塗着量を300g/m、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を260μm、正極板の長さを556cmとした。一方、負極板には、負極活物質としてMCMBを用い、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を166μm、長さを574cmとして、電池を作製した。
【0032】
(実施例6)
表1に示すように、実施例6では、実施例1と同様のマンガン酸リチウム粉末と、平均粒子径18μmの鱗片状黒鉛(LiMnの二次粒径に対する鱗片状黒鉛の平均粒径:0.9倍)と、ケッチェンブラック(KB)と、ポリフッ化ビニリデンとの配合比を、重量%で90:4:1:5とし、正極活物質合剤層(活物質塗布部)の集電体片面あたりのマンガン酸リチウムの塗着量を300g/m、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を252μm、正極板の長さを565cmとした。一方、負極板には、負極活物質としてMCMBを用い、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を166μm、長さを583cmとして、電池を作製した。
【0033】
(実施例7)
表1に示すように、実施例7では、実施例1と同様のマンガン酸リチウム粉末と、平均粒子径2μmの鱗片状黒鉛(LiMnの二次粒径に対する鱗片状黒鉛の平均粒径:0.1倍)と、ケッチェンブラック(KB)と、ポリフッ化ビニリデンとの配合比を、重量%で90:4:1:5とし、正極活物質合剤層(活物質塗布部)の集電体片面あたりのマンガン酸リチウムの塗着量を300g/m、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を252μm、正極板の長さを565cmとした。一方、負極板には、負極活物質としてMCMBを用い、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を166μm、長さを583cmとして、電池を作製した。
【0034】
(実施例8)
表1に示すように、実施例8では、実施例1と同様のマンガン酸リチウム粉末と、平均粒子径4μmの鱗片状黒鉛(LiMnの二次粒径に対する鱗片状黒鉛の平均粒径:0.2倍)と、ケッチェンブラック(KB)と、ポリフッ化ビニリデンとの配合比を、重量%で90:4:1:5とし、正極活物質合剤層(活物質塗布部)の集電体片面あたりのマンガン酸リチウムの塗着量を300g/m、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を252μm、正極板の長さを565cmとした。一方、負極板には、負極活物質としてMCMBを用い、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を166μm、長さを583cmとして、電池を作製した。
【0035】
(実施例9)
表1に示すように、実施例9では、実施例1と同様のマンガン酸リチウム粉末と、平均粒子径10μmの鱗片状黒鉛(LiMnの二次粒径に対する鱗片状黒鉛の平均粒径:0.5倍)と、ケッチェンブラック(KB)と、ポリフッ化ビニリデンとの配合比を、重量%で90:4:1:5とし、正極活物質合剤層(活物質塗布部)の集電体片面あたりのマンガン酸リチウムの塗着量を300g/m、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を252μm、長さを565cmとした。一方、負極板には、負極活物質としてMCMBを用い、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を166μm、長さを583cmとして、電池を作製した。
【0036】
(実施例10)
表1に示すように、実施例10では、実施例1と同様のマンガン酸リチウム粉末と、平均粒子径16μmの鱗片状黒鉛(LiMnの二次粒径に対する鱗片状黒鉛の平均粒径:0.8倍)と、ケッチェンブラック(KB)と、ポリフッ化ビニリデンとの配合比を、重量%で90:4:1:5とし、正極活物質合剤層(活物質塗布部)の集電体片面あたりのマンガン酸リチウムの塗着量を300g/m、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を252μm、長さを565cmとした。一方、負極板には、負極活物質としてMCMBを用い、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を166μm、長さを583cmとして、電池を作製した。
【0037】
(実施例11)
表1に示すように、実施例11では、実施例1と同様のマンガン酸リチウム粉末と、平均粒子径10μmの鱗片状黒鉛(LiMnの二次粒径に対する鱗片状黒鉛の平均粒径:0.5倍)と、アセチレンブラック(AB)と、ポリフッ化ビニリデンとの配合比を、重量%で90:4:1:5とし、正極活物質合剤層(活物質塗布部)の集電体片面あたりのマンガン酸リチウムの塗着量を300g/m、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を252μm、長さを565cmとした。一方、負極板には、負極活物質としてMCMBを用い、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を166μm、長さを583cmとして、電池を作製した。
【0038】
(実施例12)
表1に示すように、実施例12では、正極活物質として一次粒子径約1〜2μm、二次粒子径約20μm、LiとMnの原子比(Li/Mn比)0.55のマンガン酸リチウム(LiMn)粉末と、平均粒子径10μmの鱗片状黒鉛(LiMnの二次粒径に対する鱗片状黒鉛の平均粒径:0.5倍)と、アセチレンブラック(AB)と、ポリフッ化ビニリデンとの配合比を、重量%で90:4:1:5とし、正極活物質合剤層(活物質塗布部)の集電体片面あたりのマンガン酸リチウムの塗着量を300g/m、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を252μm、長さを565cmとした。一方、負極板には、負極活物質としてMCMBを用い、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を166μm、長さを583cmとして、電池を作製した。
【0039】
(実施例13)
表1に示すように、実施例13では、正極活物質として一次粒子径約1〜2μm、二次粒子径約20μm、LiとMnの原子比(Li/Mn比)0.58のマンガン酸リチウム(LiMn)粉末と、平均粒子径10μmの鱗片状黒鉛(LiMnの二次粒径に対する鱗片状黒鉛の平均粒径:0.5倍)と、アセチレンブラック(AB)と、ポリフッ化ビニリデンとの配合比を、重量%で90:4:1:5とし、正極活物質合剤層(活物質塗布部)の集電体片面あたりのマンガン酸リチウムの塗着量を300g/m、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を252μm、長さを565cmとした。一方、負極板には、負極活物質としてMCMBを用い、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を166μm、長さを583cmとして、電池を作製した。
【0040】
(実施例14)
表1に示すように、実施例14では、正極活物質として一次粒子径約1〜2μm、二次粒子径約20μm、LiとMnの原子比(Li/Mn比)0.60のマンガン酸リチウム(LiMn)粉末と、平均粒子径10μmの鱗片状黒鉛(LiMnの二次粒径に対する鱗片状黒鉛の平均粒径:0.5倍)と、アセチレンブラック(AB)と、ポリフッ化ビニリデンとの配合比を、重量%で90:4:1:5とし、正極活物質合剤層(活物質塗布部)の集電体片面あたりのマンガン酸リチウムの塗着量を300g/m、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を252μm、長さを565cmとした。一方、負極板には、負極活物質としてMCMBを用い、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を166μm、長さを583cmとして、電池を作製した。
【0041】
(実施例15)
表1に示すように、実施例15では、正極活物質として一次粒子径約1〜2μm、二次粒子径約20μm、LiとMnの原子比(Li/Mn比)0.61のマンガン酸リチウム(LiMn)粉末と、平均粒子径10μmの鱗片状黒鉛(LiMnの二次粒径に対する鱗片状黒鉛の平均粒径:0.5倍)と、アセチレンブラック(AB)と、ポリフッ化ビニリデンとの配合比を、重量%で90:4:1:5とし、正極活物質合剤層(活物質塗布部)の集電体片面あたりのマンガン酸リチウムの塗着量を300g/m、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を252μm、長さを565cmとした。一方、負極板には、負極活物質としてMCMBを用い、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を166μm、長さを583cmとして、電池を作製した。
【0042】
(実施例16)
表1に示すように、実施例16では、実施例1と同様のマンガン酸リチウム粉末と、平均粒子径10μmの鱗片状黒鉛(LiMnの二次粒径に対する鱗片状黒鉛の平均粒径:0.5倍)と、アセチレンブラック(AB)と、ポリフッ化ビニリデンとの配合比を、重量%で90:4:1:5とし、正極活物質合剤層(活物質塗布部)の集電体片面あたりのマンガン酸リチウムの塗着量を300g/m、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を252μm、長さを605cmとした。一方、負極板には、負極活物質として非晶質炭素を用い、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を133μm、長さを623cmとして、電池を作製した。
【0043】
(実施例16−2〜16−5)
表1に示すように、実施例16−2〜実施例16−5では、マンガン酸リチウムのLi/Mn比をそれぞれ、0.55、0.58、0.60、0.61とした以外は実施例16と同様に電池を作製した。
【0044】
(実施例17)
表1に示すように、実施例17では、実施例1と同様のマンガン酸リチウム粉末と、平均粒子径10μmの鱗片状黒鉛(LiMnの二次粒径に対する鱗片状黒鉛の平均粒径:0.5倍)と、ポリフッ化ビニリデンとの配合比を、重量%で90:5:5とし、正極活物質合剤層(活物質塗布部)の集電体片面あたりのマンガン酸リチウムの塗着量を300g/m、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を252μm、長さを605cmとした。一方、負極板には、負極活物質として非晶質炭素を用い、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を133μm、長さを623cmとして、電池を作製した。
【0045】
(実施例17−2〜17−5)
表1に示すように、実施例17−2〜実施例17−5では、マンガン酸リチウムのLi/Mn比をそれぞれ、0.55、0.58、0.60、0.61とした以外は実施例17と同様に電池を作製した。
【0046】
(比較例1)
表1に示すように、比較例1では、マンガン酸リチウムの塗着量を260g/mとし、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を218μm、長さを633cmとし、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を144μm、負極板の長さを651cmとした以外は実施例1と同様の電池を作製した。
【0047】
(比較例2)
表1に示すように、比較例2では、マンガン酸リチウムの塗着量を340g/mとし、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を285μm、長さを511cmとし、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を189μm、負極板の長さを529cmとした以外は実施例1と同様の電池を作製した。
【0048】
(比較例3)
表1に示すように、比較例3では、実施例1と同様のマンガン酸リチウム粉末と、平均粒子径18μmの鱗片状黒鉛(LiMnの二次粒径に対する鱗片状黒鉛の平均粒径:0.9倍)と、ポリフッ化ビニリデンとの配合比を、重量%で91:2:7とし、正極活物質合剤層(活物質塗布部)の集電体片面あたりのマンガン酸リチウムの塗着量を300g/m、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を249μm、正極板の長さを568cmとし、負極活物質としてMCMBを用い、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を166μm、負極板の長さを586cmとして、電池を作製した。
【0049】
(比較例4)
表1に示すように、比較例4では、実施例1と同様のマンガン酸リチウム粉末と、平均粒子径18μmの鱗片状黒鉛(LiMnの二次粒径に対する鱗片状黒鉛の平均粒径:0.9倍)と、ポリフッ化ビニリデンとの配合比を、重量%で86:8:6とし、正極活物質合剤層(活物質塗布部)の集電体片面あたりのマンガン酸リチウムの塗着量を300g/m、正極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を263μm、正極板の長さを553cmとした。一方、負極板には、負極活物質としてMCMBを用い、負極活物質合剤層(活物質塗布部)の厚さ(集電体厚さは含まない。)を166μm、負極板の長さを571cmとして、電池を作製した。
【0050】
<試験・評価>
次に、以上のようにして作製した実施例及び比較例の各電池について、以下の一連の試験を行った。
【0051】
実施例及び比較例の各電池を、充電した後放電し、放電容量を測定した。充電条件は、4.2V定電圧、制限電流80A、3.5時間とした。放電条件は、20A定電流、終止電圧2.7Vとした。
【0052】
また、上記条件で充電状態の電池の放電出力を測定した。測定条件は、20A、40A、80A、各放電電流で5秒目の電圧を読み取り、横軸電流値に対して縦軸にプロットし、3点を結ぶ近似直線が、2.7Vと交差するところの電流値と、2.7Vとの積を出力とした。
【0053】
更に、実施例、比較例の各電池を、上記条件で充放電を100回繰り返した後、出力(容量)を測定し、初期の出力に対する維持率を百分率で示した。当然のことながら、この維持率が高いほうが寿命特性がよいことになる。
【0054】
これら充電、放電、出力の測定は、いずれも環境温度25±1°Cの雰囲気で行った。
【0055】
その後、作製した電池を、常温で、80A定電流で連続充電し、電池挙動を観察した。その結果を下表2に示す。現象は、開裂弁開裂の後、電解液の揮発物からなるガス放出が起こる。このガス放出の程度を比較するために、現象発生直後の電池表面温度を測定した。また、ガス放出後、電池容器の変形の有無を確認した。なお、表2において、「○」は電池容器の変形が全く認められなかったもの、「△」は電池容器の若干の変形が認められたもの、「×」は電池容器が大きく変形したものを示している。
【0056】
【表2】
Figure 0003719139
【0057】
表2に示すように、実施例1〜実施例5の電池では、高容量、高出力な電池が得られ、かつ、連続充電時の電池挙動も穏やかなものであった。このときの電池の表面温度は140°C〜210°Cであった。一方、マンガン酸リチウムの塗着量が270g/mを下回った比較例1の電池は高容量、高出力な電池が得られるものの、連続充電時の電池挙動が電池の変形を伴った激しいものとなり、電池表面温度は300°Cを超える結果となった。逆に、マンガン酸リチウムの塗着量が330g/mを上回った比較例2の電池は、連続充電時の電池挙動は穏やかであったが、出力の低下を伴い、電気自動車用電池としてはふさわしくない結果となった。同様に、比較例3の電池は、正極導電材の黒鉛の量が3重量%を下回っており、出力の低下を招く結果となった。一方、正極導電材の黒鉛の量が7重量%を上回っている比較例4の電池では、高容量、高出力な電池が得られるものの、連続充電時の電池挙動は、電池の変形を伴った激しいものとなり、電池表面温度は、300°Cとなる結果となった。
【0058】
正極導電材に黒鉛と無定型炭素を混合して用いた実施例6〜実施例16−5の電池では、出力の高い電池を得ることができた。無定型炭素にケッチェンブラックを用いた実施例6〜実施例10の電池では、正極活物質のマンガン酸リチウムの二次粒子径に対する導電材黒鉛の粒子径の比が、0.2〜0.8である実施例8〜実施例10の電池が、中でもより高出力が得られている。マンガン酸リチウムの二次粒子径に対する導電材黒鉛の粒子径の比が、0.2を下回っている実施例7の電池では、連続充電時の電池表面温度が200°Cと、実施例8〜10の電池と比べて若干高い。
【0059】
無定型炭素にアセチレンブラックを用いた実施例11〜実施例16−5の電池では、より高出力が得られており、かつ、100回充放電後における出力維持率も高い。
【0060】
マンガン酸リチウムのLi/Mn比が、0.55以上である実施例12〜実施例14、実施例2−2〜実施例2−4、実施例16−2〜実施例16−4、実施例17−2〜実施例17−4の電池は、出力維持率が極めて高い。ところが、マンガン酸リチウムのLi/Mn比が0.60を上回る実施例15、実施例2−5、実施例16−5、実施例17−5の電池では、容量の低下を伴う結果となり、Li/Mn比は、0.55〜0.60の範囲が好ましいことがわかる。
【0061】
負極板に非晶質炭素を用いた実施例16、実施例16−2〜実施例16−5、実施例17、実施例17−2〜実施例17−5の電池は、極めて高い出力、かつ、極めて高い出力維持率、最も低い連続充電時の電池表面温度が得られた。従って、これら実施例16、16−2〜16−5、17、17−2〜17−5の電池は、高容量、高出力で、かつ、安全性に優れる、全体バランスのとれた電池であるということができる。
【0062】
以上のように、本実施形態の円筒形リチウムイオン電池20は、電池が異常な状態にさらされた場合の挙動が極めて穏やかで、安全性に優れた電池である。このように、高容量、高出力で、極めて安全性の高い電池は、特に電気自動車の電源に適している。
【0063】
なお、本実施形態では、電気自動車用電源に用いられる大形の二次電池について例示したが、電池の大きさ、電池容量には限定されず、電池容量としておおむね20Ah程度の電池に対して本発明は効果を著しく発揮することが確認されている。また、本実施形態では円筒形電池について例示したが、本発明は電池の形状についても限定されず、角形、その他の多角形の電池にも適用可能である。更に、本発明の適用可能な形状としては、上述したように正負外部端子が電池蓋を貫通し電池容器内で軸芯を介して正負外部端子が押し合っている状態の電池以外であっても構わない。このような構造の一例として有底筒状容器(缶)に電池上蓋がカシメによって封口されている構造の電池を挙げることができる。
【0064】
また、本実施形態では、絶縁被覆に、基材がポリイミドで、その片面にヘキサメタアクリレートからなる粘着剤を塗布した粘着テープを用いた例を示したが、例えば、基材がポリプロピレンやポリエチレン等のポリオレフィンで、その片面又は両面にヘキサメタアクリレートやブチルアクリレート等のアクリル系粘着剤を塗布した粘着テープや、粘着剤を塗布しないポリオレフィンやポリイミドからなるテープ等も好適に使用することができる。
【0065】
更に、本実施形態では、リチウムイオン電池用の正極にマンガン酸リチウム、負極に非晶質炭素、電解液にエチレンカーボネートとジメチルカーボネートとジエチルカーボネートの体積比1:1:1の混合溶液中へ6フッ化リン酸リチウムを1モル/リットル溶解したものを用いたが、本発明の電池には特に制限はなく、また、導電材、結着剤も通常用いられているいずれのものも使用可能である。なお、一般に、マンガン酸リチウムは、適当なリチウム塩と酸化マンガンとを混合、焼成して合成することができるが、リチウム塩と酸化マンガンの仕込み比を制御することによって所望のLi/Mn比とすることができる。
【0066】
また、本実施形態以外で用いることのできるリチウムイオン電池用極板活物質結着剤としては、ポリテトラフルオロエチレン、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体及びこれらの混合体などがある。
【0067】
また更に、本実施形態以外で用いることのできるリチウムイオン電池用正極活物質としては、リチウムを挿入・脱離可能な材料であり、予め十分な量のリチウムを挿入したリチウムマンガン複酸化物が好ましく、スピネル構造を有したマンガン酸リチウムや、結晶中のマンガンやリチウムの一部をそれら以外の元素で置換あるいはドープした材料を使用するようにしてもよい。
【0068】
更にまた、本実施形態以外で用いることのできるリチウムイオン電池用負極活物質も上記特許請求範囲に記載した事項以外に特に制限はない。例えば、天然黒鉛や、人造の各種黒鉛材、コークス、非晶質炭素などの炭素質材料等でよく、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。
【0069】
また、非水電解液としては、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した電解液が用いられる。しかし、用いられるリチウム塩や有機溶媒は特に制限されない。例えば、電解質としては、LiClO4、LiAsF6、LiPF6、LiBF4、LiB(C654、CH3SO3Li、CF3SO3Li等やこれらの混合物を用いることができる。非水電解液有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトニル等またはこれら2種類以上の混合溶媒を用いるようにしてもよく、混合配合比についても限定されるものではない。
【0070】
【発明の効果】
以上説明したように、本発明によれば、平均粒径0.1μm乃至2μmの一次粒子の集合体で形成された二次粒子からなるスピネル系リチウムマンガン複酸化物と、黒鉛と無定型炭素との混合物の導電材とを含む活物質合剤が帯状集電体の両面にほぼ均等量塗着された正極と充放電によりリチウムイオンを吸蔵・放出可能な負極とを用い、黒鉛の平均粒径を二次粒子の平均粒径の0.2倍乃至0.8倍としたので、高容量、高出力とすることができると共に、リチウムマンガン複酸化物を、集電体片面あたりの塗着量が270g/m乃至330g/mとし、かつ、導電材量を3重量%乃至7重量%としたので、内圧開放機構からのガス放出が極めて穏やかに行われるため、高容量、高出力でありながらも、極めて安全性の高い非水電解液二次電池を実現することができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明が適用可能な実施形態の円筒形リチウムイオン電池の断面図である。
【符号の説明】
1 正極外部端子
1’ 負極外部端子
2 ナット
3 第1のセラミックワッシャ
3’ 第2のセラミックワッシャ
4 電池蓋(電池容器の一部)
5 電池容器
6 捲回群(電極捲回群)
7 鍔部
8 絶縁被覆
9 リード片
10 開裂弁(内圧低減機構)
20 円筒形リチウムイオン電池(非水電解液二次電池)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery, and in particular, a positive electrode including a lithium manganese complex oxide composed of secondary particles formed of an aggregate of primary particles having an average particle diameter of 0.1 μm to 2 μm and a conductive material. An electrode winding group in which a positive electrode in which an active material mixture is applied to both sides of a belt-like current collector in an approximately equal amount and a negative electrode capable of inserting and extracting lithium ions by charging and discharging are wound through a separator, The present invention relates to a non-aqueous electrolyte secondary battery housed in a battery container having an internal pressure release mechanism that releases an internal pressure at a predetermined pressure.
[0002]
[Prior art]
Lithium ion secondary batteries, which are representative of non-aqueous electrolyte secondary batteries, are mainly used as power sources for portable devices such as VTR cameras, notebook computers, and mobile phones, taking advantage of the high energy density. The internal structure of this battery is usually a winding type as shown below. The electrode is in the form of a band in which an active material is applied to a metal foil for both the positive electrode and the negative electrode, and the cross section is spirally wound so that the positive electrode and the negative electrode are not in direct contact across the separator, forming a wound group. ing. The wound group is housed in a cylindrical battery can serving as a battery container, and sealed after injecting the electrolyte.
[0003]
A typical cylindrical lithium ion secondary battery has a diameter of 18 mm and a height of 65 mm, which is called 18650 type, and is widely used as a small consumer lithium ion battery. The positive electrode active material of the 18650 type lithium ion secondary battery mainly uses lithium cobaltate, which is characterized by high capacity and long life. The battery capacity is approximately 1.3 Ah to 1.7 Ah, and the output is approximately 10 W. Degree.
[0004]
On the other hand, in the automobile industry, in order to cope with environmental problems, an electric vehicle (EV) having no exhaust gas and a power source completely made of only a battery and a hybrid (power source of both an internal combustion engine and a battery) Electric) The development of automobiles has been accelerated, and some have been put to practical use.
[0005]
Naturally, a battery serving as a power source for an electric vehicle is required to have high output and high energy characteristics. Lithium ion batteries are attracting attention as batteries that meet this requirement. For the popularization of electric vehicles, it is essential to reduce the price of the battery. For this purpose, a low-cost battery material is required. For example, in the case of a positive electrode active material, a resource-rich manganese oxide is used. Particular attention has been paid to improvements aimed at improving battery performance. In addition, batteries for electric vehicles are required to have not only high capacity but also high output that affects acceleration performance and the like, that is, reduction of internal resistance of the battery. With the aim of increasing the electrode reaction area, this requirement can be met by using lithium manganate having a large specific surface area as the positive electrode active material.
[0006]
Specifically, to increase the specific surface area, it is necessary to reduce the particle size of lithium manganate. However, when the particle size is small, there are problems such as powder scattering during the manufacture of the electrode and difficulty in forming a slurry for application to both sides of the current collector. In order to improve this, it can be coped with by using lithium manganate in which secondary particles are formed by agglomerating primary particles having a small particle diameter.
[0007]
[Problems to be solved by the invention]
However, in the case of a lithium ion battery, the higher the capacity and the higher the output, the lower the safety, and in particular, when using lithium manganate aimed at higher output as described above, the battery There is a tendency that the phenomenon when it falls into an abnormal state becomes somewhat intense. High capacity and high output batteries used for power sources for electric vehicles are charged with large currents and discharged with large currents. Therefore, such batteries are used in 18650 type lithium ion batteries in an abnormal state. It is virtually impossible to provide a current interruption mechanism (a kind of disconnection switch) that operates in response to an increase in internal pressure in the battery structure.
[0008]
In the case of an electric vehicle that carries people, overcharging when the charging control system breaks down, battery crash that may occur in case of accidental collision, foreign object piercing, external short circuit Ensuring the safety of the battery itself, such as time, is a very important battery characteristic that is necessary at a minimum. Battery safety means that the behavior of the battery when exposed to abnormal conditions does not cause any physical damage to the person, but minimizes damage to the vehicle. Means.
[0009]
An object of the present invention is to provide a non-aqueous electrolyte secondary battery that has a high capacity and a high output, yet has a very high safety.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention comprises secondary particles formed of an aggregate of primary particles having an average particle size of 0.1 μm to 2 μm. Spinel Lithium manganese complex oxide and Of a mixture of graphite and amorphous carbon A positive electrode in which a positive electrode active material mixture containing a conductive material was applied to both sides of the belt-like current collector in an approximately equal amount and a negative electrode capable of inserting and extracting lithium ions by charging and discharging were wound through a separator. In the nonaqueous electrolyte secondary battery in which the electrode winding group is housed in a battery container having an internal pressure release mechanism that releases the internal pressure at a predetermined pressure, the amount of the lithium manganese complex oxide applied per one surface of the current collector 270g / m 2 ~ 330g / m 2 And ,Previous The amount of conductive material contained in the positive electrode active material mixture is 3 to 7% by weight. And the average particle size of the graphite is 0.2 to 0.8 times the average particle size of the secondary particles. It is characterized by that.
[0011]
In the present invention, in order to secure a high-capacity, high-power non-aqueous electrolyte secondary battery, it is composed of secondary particles formed of an aggregate of primary particles having an average particle size of 0.1 μm to 2 μm. Spinel Used is a positive electrode in which a positive electrode active material mixture containing a lithium manganese complex oxide and a conductive material is applied to both sides of a strip current collector in an approximately equal amount, and a negative electrode capable of inserting and extracting lithium ions by charging and discharging. It has been. In addition, a mixture of graphite and amorphous carbon is used as the conductive material, and the average particle size of graphite is 0.2 to 0.8 times the average particle size of the secondary particles. It can be set as a secondary battery. In non-aqueous electrolyte secondary batteries with high capacity and high output, when an abnormal state occurs, a large current charge or discharge state is maintained, and the battery is caused by a chemical reaction between the non-aqueous electrolyte and the active material mixture. A sudden and large amount of gas is generated in the container, increasing the internal pressure of the battery container. Generally, in a non-aqueous electrolyte secondary battery, in order to prevent an increase in internal pressure in the battery container, the battery container has an internal pressure release mechanism that releases the internal pressure at a predetermined pressure. The coating amount per one side of the current collector is 270 g / m 2 ~ 330g / m 2 In addition, by setting the amount of the conductive material contained in the positive electrode active material mixture to 3 wt% to 7 wt%, the gas release from the internal pressure release mechanism is performed extremely gently. Therefore, according to the present invention, it is possible to realize a non-aqueous electrolyte secondary battery with extremely high safety while having high capacity and high output.
[0012]
In the present invention, If amorphous carbon is acetylene black, a non-aqueous electrolyte secondary battery with higher output can be obtained. Further, when the Li / Mn ratio of the lithium manganese complex oxide is set to 0.55 to 0.60, the output maintenance ratio can be improved without accompanying a decrease in capacity. Furthermore, if amorphous carbon is used as the negative electrode active material, a non-aqueous electrolyte secondary battery with higher output, higher capacity, and higher safety can be obtained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments in which the present invention is applied to a cylindrical lithium ion battery for EV mounting will be described below with reference to the drawings.
[0014]
(Preparation of positive electrode plate)
As shown in FIG. 1, lithium manganate (LiMn) as a positive electrode active material 2 O 4 ) Powder, predetermined carbon described later as a conductive material, and polyvinylidene fluoride (PVdF) as a binder are mixed at a predetermined mixing ratio, and a dispersion solvent N-methyl-2-pyrrolidone (NMP) is added thereto. The kneaded slurry was applied to both surfaces of an aluminum foil (positive electrode current collector) having a thickness of 20 μm. At this time, an uncoated part with a width of 50 mm was left on one side edge in the longitudinal direction of the positive electrode plate. Thereafter, drying, pressing, and cutting were performed to obtain a belt-like positive electrode plate having a width of 300 mm, a predetermined length described later, and a predetermined thickness of the positive electrode active material mixture application portion. The bulk density of the positive electrode active material mixture layer is 2.65 g / cm. 3 It was. A notch was made in the slurry uncoated portion of the positive electrode plate, and the remainder of the notch was used as a lead piece. Adjacent lead pieces were spaced 50 mm apart, and the lead piece width was 10 mm.
[0015]
(Preparation of negative electrode plate)
8 parts by weight of polyvinylidene fluoride as a binder was added to 92 parts by weight of a predetermined carbon powder capable of containing and releasing lithium by charging and discharging, and N-methyl-2-pyrrolidone as a dispersion solvent was added thereto and kneaded. The slurry was applied to both surfaces of a rolled copper foil (negative electrode current collector) having a thickness of 10 μm. At this time, an uncoated part having a width of 50 mm was left on one side edge in the longitudinal direction of the negative electrode plate. Thereafter, drying, pressing, and cutting were performed to obtain a strip-shaped negative electrode plate having a width of 305 mm, a predetermined length described later, and a predetermined thickness of the negative electrode active material application portion. The negative electrode plate was compressed so that the porosity of the negative electrode active material mixture layer was about 35%. A notch was cut into the slurry-uncoated portion of the negative electrode plate in the same manner as the positive electrode plate, and the remainder of the notch was used as a lead piece. Adjacent lead pieces were spaced 50 mm apart, and the lead piece width was 10 mm.
[0016]
(Production of battery)
The produced strip-shaped positive electrode plate and negative electrode plate were wound through a polyethylene separator having a width of 310 mm and a thickness of 40 μm so that these two electrode plates were not in direct contact with each other. At this time, the lead pieces 9 of the positive electrode plate and the negative electrode plate were respectively positioned on the opposite end surfaces of the wound group 6. The lengths of the positive electrode plate, the negative electrode plate, and the separator were adjusted so that the diameter of the wound group 6 was 65 ± 0.1 mm.
[0017]
The lead pieces 9 led out from the positive electrode plate are deformed, and all of them are gathered in the vicinity of the peripheral surface of the collar portion 7 integrally projecting from the periphery of the pole column (positive electrode external terminal 1) substantially on the extension line of the shaft core 11. After the contact, the lead piece 9 and the circumferential surface of the collar portion 7 were ultrasonically welded to connect and fix the lead piece 9 to the circumferential surface of the collar portion 7. The connection operation between the negative electrode external terminal 1 ′ and the lead piece 9 led out from the negative electrode plate was performed in the same manner as the connection operation between the positive electrode external terminal 1 and the lead piece 9 led out from the positive electrode plate.
[0018]
Thereafter, an insulating coating 8 was applied to the entire periphery of the collar 7 peripheral surface of the positive electrode external terminal 1 and the negative electrode external terminal 1 ′. This insulating coating 8 also exerted on the entire outer periphery of the wound group 6. For the insulating coating 8, an adhesive tape in which the base material was polyimide and an adhesive made of hexamethacrylate was applied on one side thereof was used. This adhesive tape was wound several times from the peripheral surface of the collar portion 7 to the outer peripheral surface of the wound group 6 to form an insulating coating 8. The number of turns is adjusted so that the maximum diameter portion of the wound group 6 becomes the insulating coating 8 existing portion, and the maximum diameter is slightly smaller than the inner diameter of the stainless steel battery container 5 so that the wound group 6 becomes the battery container 5. Inserted inside. The battery container 5 has an outer diameter of 67 mm and an inner diameter of 66 mm.
[0019]
Then, the second ceramic washer 3 ′ made of alumina and having a thickness of 2 mm, an inner diameter of 16 mm, and an outer diameter of 25 mm at the portion in contact with the back surface of the disc-shaped battery lid 4, the pole column constituting the positive electrode external terminal 1 at the tip, Each was fitted into a pole column constituting the negative electrode external terminal 1 ′. Further, a flat plate-like first ceramic washer 3 made of alumina and having a thickness of 2 mm, an inner diameter of 16 mm, and an outer diameter of 28 mm is placed on the battery lid 4, and the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ are respectively connected to the first ceramic. Passed through washer 3. Thereafter, the peripheral end surface of the battery lid 4 was fitted into the opening of the battery container 5, and the entire contact portions were laser welded. At this time, the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ protrude through the hole formed in the center of the battery lid 4 and project outside the battery lid 4. Then, the first ceramic washer 3 and the metal washer 14 smoother than the bottom surface of the metal nut 2 were fitted into the positive external terminal 1 and the negative external terminal 1 ′ in this order. The battery lid 4 is provided with a cleavage valve 10 as an internal pressure reduction mechanism that cleaves in response to an increase in the internal pressure of the battery. The cleavage pressure of the cleavage valve 10 is 1.3 × 10 6 ~ 1.8 × 10 6 Pa.
[0020]
Next, the nut 2 is screwed to the positive electrode external terminal 1 and the negative electrode external terminal 1 ′, and the battery lid 4 is connected to the flange portion 7 via the second ceramic washer 3 ′, the first ceramic washer 3, and the metal washer 14. The nut 2 was fixed by tightening. The tightening torque value at this time was about 7 N · m. Note that the metal washer 14 did not rotate until the tightening operation was completed. In this state, the power generation element inside the battery container 5 is blocked from the outside air by the compression of the rubber (EPDM) O-ring 16 interposed between the back surface of the battery lid 4 and the flange portion 7.
[0021]
Thereafter, a predetermined amount of non-aqueous electrolyte was injected into the battery container 5 from the injection port 15 provided in the battery lid 4, and then the injection port 15 was sealed to complete the cylindrical lithium ion battery 20.
[0022]
Non-aqueous electrolyte includes lithium hexafluorophosphate (LiPF) into a mixed solution of ethylene carbonate, dimethyl carbonate and diethyl carbonate in a volume ratio of 1: 1: 1. 6 ) Was dissolved at 1 mol / liter. The cylindrical lithium ion battery 20 is not provided with a current interruption mechanism such as a PTC (Positive Temperature Coefficient) element that cuts off the current in response to an increase in the internal pressure of the battery container 5.
[0023]
【Example】
Next, examples of the cylindrical lithium ion battery 20 manufactured according to the present embodiment will be described. In addition, it describes together about the battery of the comparative example produced for the comparison.
[0024]
(Example 1)
As shown in Table 1 below, in Example 1, manganic acid having a primary particle diameter of about 1 to 2 μm, a secondary particle diameter of about 20 μm, and an atomic ratio of Li to Mn (Li / Mn ratio) of 0.52 as the positive electrode active material. Lithium (LiMn 2 O 4 ) The collector single-sided surface of the positive electrode active material mixture layer (active material coating portion) with a blending ratio of powder, scaly graphite having an average particle diameter of 18 μm, and polyvinylidene fluoride in weight percent of 90: 5: 5 The coating amount of lithium manganate per 270 g / m 2 The thickness of the positive electrode active material mixture layer (active material application part) (not including the current collector thickness) was 226 μm, and the length of the positive electrode plate was 615 cm. LiMn 2 O 4 The average particle size of the flake graphite with respect to the secondary particle size is 0.9 times. On the other hand, for the negative electrode plate, MCMB, which is mesophase-based spherical graphite, is used as the negative electrode active material, and the thickness of the negative electrode active material mixture layer (active material application part) (not including the current collector thickness) is 150 μm. The length was 633 cm. In addition, the average particle diameter of scaly graphite can be adjusted by sieving.
[0025]
[Table 1]
Figure 0003719139
[0026]
In addition, when the produced electrode plate is wound, the positive electrode plate does not protrude from the negative electrode plate in the winding direction on the innermost periphery of the winding, and the positive electrode plate protrudes from the negative electrode plate in the winding direction on the outermost periphery. To prevent this, the length of the negative electrode plate was set to be 18 cm longer than that of the positive electrode plate. In addition, the width of the negative electrode active material application part is 5 mm longer than the width of the positive electrode active material application part so that the positive electrode active material application part does not protrude from the negative electrode active material application part even in the winding direction and the vertical direction. (The same applies to the following examples and comparative examples.)
[0027]
(Example 2)
As shown in Table 1, in Example 2, the coating amount of lithium manganate was 300 g / m. 2 The thickness of the positive electrode active material mixture layer (active material application portion) (current collector thickness is not included) is 252 μm, the length of the positive electrode plate is 565 cm, and the negative electrode active material mixture layer (active material application portion) ) (Not including the current collector thickness) was 166 μm, and the length of the negative electrode plate was 583 cm.
[0028]
(Examples 2-2 to 2-5)
As shown in Table 1, in Examples 2-2 to 2-5, the Li / Mn ratio of lithium manganate was set to 0.55, 0.58, 0.60, and 0.61, respectively. A battery was produced in the same manner as in Example 2.
[0029]
(Example 3)
As shown in Table 1, in Example 3, the coating amount of lithium manganate was 330 g / m. 2 The thickness of the positive electrode active material mixture layer (active material application part) (not including the current collector thickness) is 277 μm, the length of the positive electrode plate is 523 cm, and the negative electrode active material mixture layer (active material application part) ) (Not including the current collector thickness) was 183 μm, and the length of the negative electrode plate was 541 cm, and a battery was fabricated in the same manner as in Example 1.
[0030]
(Example 4)
As shown in Table 1, in Example 4, the same lithium manganate powder as in Example 1 and flaky graphite (LiMn) having an average particle diameter of 18 μm 2 O 4 The ratio of the average particle size of the flake graphite to the secondary particle size of: 0.9 times the polyvinylidene fluoride was 90: 3: 7 by weight, and the positive electrode active material mixture layer (active material coating) Part) of the current collector is 300 g / m. 2 The thickness of the positive electrode active material mixture layer (active material application part) (not including the current collector thickness) was 252 μm, and the length of the positive electrode plate was 565 cm. On the other hand, for the negative electrode plate, MCMB was used as the negative electrode active material, the thickness of the negative electrode active material mixture layer (active material application part) (not including the current collector thickness) was 166 μm, and the length was 583 cm. A battery was produced.
[0031]
(Example 5)
As shown in Table 1, in Example 5, the same lithium manganate powder as in Example 1 and flaky graphite (LiMn) having an average particle diameter of 18 μm 2 O 4 The ratio of the average particle size of the flake graphite to the secondary particle size of: 0.9 times the polyvinylidene fluoride was 90: 7: 3 by weight%, and the positive electrode active material mixture layer (active material coating) Part) of the current collector is 300 g / m. 2 The thickness of the positive electrode active material mixture layer (active material application portion) (not including the current collector thickness) was 260 μm, and the length of the positive electrode plate was 556 cm. On the other hand, for the negative electrode plate, MCMB was used as the negative electrode active material, the thickness of the negative electrode active material mixture layer (active material application part) (not including the current collector thickness) was 166 μm, and the length was 574 cm. A battery was produced.
[0032]
(Example 6)
As shown in Table 1, in Example 6, the same lithium manganate powder as in Example 1 and flaky graphite (LiMn) having an average particle diameter of 18 μm 2 O 4 The average particle size of the flaky graphite with respect to the secondary particle size of: 0.9 times), the blending ratio of ketjen black (KB) and polyvinylidene fluoride is 90: 4: 1: 5 by weight%, The coating amount of lithium manganate per one side of the current collector of the positive electrode active material mixture layer (active material application part) is 300 g / m. 2 The thickness of the positive electrode active material mixture layer (active material application part) (not including the current collector thickness) was 252 μm, and the length of the positive electrode plate was 565 cm. On the other hand, for the negative electrode plate, MCMB was used as the negative electrode active material, the thickness of the negative electrode active material mixture layer (active material application part) (not including the current collector thickness) was 166 μm, and the length was 583 cm. A battery was produced.
[0033]
(Example 7)
As shown in Table 1, in Example 7, the same lithium manganate powder as in Example 1 and flaky graphite (LiMn) having an average particle diameter of 2 μm 2 O 4 The average particle size of the flake graphite with respect to the secondary particle size of: 0.1 times), the blending ratio of ketjen black (KB) and polyvinylidene fluoride is 90: 4: 1: 5 by weight%, The coating amount of lithium manganate per one side of the current collector of the positive electrode active material mixture layer (active material application part) is 300 g / m. 2 The thickness of the positive electrode active material mixture layer (active material application part) (not including the current collector thickness) was 252 μm, and the length of the positive electrode plate was 565 cm. On the other hand, for the negative electrode plate, MCMB was used as the negative electrode active material, the thickness of the negative electrode active material mixture layer (active material application part) (not including the current collector thickness) was 166 μm, and the length was 583 cm. A battery was produced.
[0034]
(Example 8)
As shown in Table 1, in Example 8, the same lithium manganate powder as in Example 1 and flaky graphite (LiMn) having an average particle diameter of 4 μm 2 O 4 The average particle size of the flake graphite with respect to the secondary particle size: 0.2 times), the blending ratio of ketjen black (KB) and polyvinylidene fluoride is 90: 4: 1: 5 by weight%, The coating amount of lithium manganate per one side of the current collector of the positive electrode active material mixture layer (active material application part) is 300 g / m. 2 The thickness of the positive electrode active material mixture layer (active material application part) (not including the current collector thickness) was 252 μm, and the length of the positive electrode plate was 565 cm. On the other hand, for the negative electrode plate, MCMB was used as the negative electrode active material, the thickness of the negative electrode active material mixture layer (active material application part) (not including the current collector thickness) was 166 μm, and the length was 583 cm. A battery was produced.
[0035]
Example 9
As shown in Table 1, in Example 9, the same lithium manganate powder as in Example 1 and flaky graphite (LiMn) having an average particle diameter of 10 μm 2 O 4 The average particle size of the flake graphite with respect to the secondary particle size: 0.5 times), the blend ratio of ketjen black (KB) and polyvinylidene fluoride is 90: 4: 1: 5 by weight%, The coating amount of lithium manganate per one side of the current collector of the positive electrode active material mixture layer (active material application part) is 300 g / m. 2 The positive electrode active material mixture layer (active material application part) had a thickness (not including the current collector thickness) of 252 μm and a length of 565 cm. On the other hand, for the negative electrode plate, MCMB was used as the negative electrode active material, the thickness of the negative electrode active material mixture layer (active material application part) (not including the current collector thickness) was 166 μm, and the length was 583 cm. A battery was produced.
[0036]
(Example 10)
As shown in Table 1, in Example 10, the same lithium manganate powder as in Example 1 and flaky graphite (LiMn) having an average particle diameter of 16 μm 2 O 4 The average particle size of the flake graphite with respect to the secondary particle size of: 0.8 times), the blending ratio of ketjen black (KB) and polyvinylidene fluoride is 90: 4: 1: 5 by weight%, The coating amount of lithium manganate per one side of the current collector of the positive electrode active material mixture layer (active material application part) is 300 g / m. 2 The positive electrode active material mixture layer (active material application part) had a thickness (not including the current collector thickness) of 252 μm and a length of 565 cm. On the other hand, for the negative electrode plate, MCMB was used as the negative electrode active material, the thickness of the negative electrode active material mixture layer (active material application part) (not including the current collector thickness) was 166 μm, and the length was 583 cm. A battery was produced.
[0037]
(Example 11)
As shown in Table 1, in Example 11, the same lithium manganate powder as in Example 1 and flaky graphite (LiMn) having an average particle diameter of 10 μm 2 O 4 The average particle size of the flaky graphite with respect to the secondary particle size of: 0.5 times), the blending ratio of acetylene black (AB) and polyvinylidene fluoride was 90: 4: 1: 5 by weight%, and the positive electrode The coating amount of lithium manganate per one side of the current collector of the active material mixture layer (active material application part) is 300 g / m 2 The positive electrode active material mixture layer (active material application part) had a thickness (not including the current collector thickness) of 252 μm and a length of 565 cm. On the other hand, for the negative electrode plate, MCMB was used as the negative electrode active material, the thickness of the negative electrode active material mixture layer (active material application part) (not including the current collector thickness) was 166 μm, and the length was 583 cm. A battery was produced.
[0038]
(Example 12)
As shown in Table 1, in Example 12, as the positive electrode active material, lithium manganate having a primary particle size of about 1 to 2 μm, a secondary particle size of about 20 μm, and an atomic ratio of Li to Mn (Li / Mn ratio) of 0.55. (LiMn 2 O 4 ) Powder and flake graphite (LiMn) with an average particle size of 10 μm 2 O 4 The average particle size of the flaky graphite with respect to the secondary particle size of: 0.5 times), the blending ratio of acetylene black (AB) and polyvinylidene fluoride was 90: 4: 1: 5 by weight%, and the positive electrode The coating amount of lithium manganate per one side of the current collector of the active material mixture layer (active material application part) is 300 g / m 2 The positive electrode active material mixture layer (active material application part) had a thickness (not including the current collector thickness) of 252 μm and a length of 565 cm. On the other hand, for the negative electrode plate, MCMB was used as the negative electrode active material, the thickness of the negative electrode active material mixture layer (active material application part) (not including the current collector thickness) was 166 μm, and the length was 583 cm. A battery was produced.
[0039]
(Example 13)
As shown in Table 1, in Example 13, as the positive electrode active material, lithium manganate having a primary particle diameter of about 1 to 2 μm, a secondary particle diameter of about 20 μm, and an atomic ratio of Li to Mn (Li / Mn ratio) of 0.58. (LiMn 2 O 4 ) Powder and flake graphite (LiMn) with an average particle size of 10 μm 2 O 4 The average particle size of the flaky graphite with respect to the secondary particle size of: 0.5 times), the blending ratio of acetylene black (AB) and polyvinylidene fluoride was 90: 4: 1: 5 by weight%, and the positive electrode The coating amount of lithium manganate per one side of the current collector of the active material mixture layer (active material application part) is 300 g / m 2 The positive electrode active material mixture layer (active material application part) had a thickness (not including the current collector thickness) of 252 μm and a length of 565 cm. On the other hand, for the negative electrode plate, MCMB was used as the negative electrode active material, the thickness of the negative electrode active material mixture layer (active material application part) (not including the current collector thickness) was 166 μm, and the length was 583 cm. A battery was produced.
[0040]
(Example 14)
As shown in Table 1, in Example 14, lithium manganate having a primary particle size of about 1 to 2 μm, a secondary particle size of about 20 μm, and an atomic ratio of Li to Mn (Li / Mn ratio) of 0.60 as the positive electrode active material. (LiMn 2 O 4 ) Powder and flake graphite (LiMn) with an average particle size of 10 μm 2 O 4 The average particle size of the flaky graphite with respect to the secondary particle size of: 0.5 times), the blending ratio of acetylene black (AB) and polyvinylidene fluoride was 90: 4: 1: 5 by weight%, and the positive electrode The coating amount of lithium manganate per one side of the current collector of the active material mixture layer (active material application part) is 300 g / m 2 The positive electrode active material mixture layer (active material application part) had a thickness (not including the current collector thickness) of 252 μm and a length of 565 cm. On the other hand, for the negative electrode plate, MCMB was used as the negative electrode active material, the thickness of the negative electrode active material mixture layer (active material application part) (not including the current collector thickness) was 166 μm, and the length was 583 cm. A battery was produced.
[0041]
(Example 15)
As shown in Table 1, in Example 15, lithium manganate having a primary particle size of about 1 to 2 μm, a secondary particle size of about 20 μm, and an atomic ratio of Li to Mn (Li / Mn ratio) of 0.61 as the positive electrode active material. (LiMn 2 O 4 ) Powder and flake graphite (LiMn) with an average particle size of 10 μm 2 O 4 The average particle size of the flaky graphite with respect to the secondary particle size of: 0.5 times), the blending ratio of acetylene black (AB) and polyvinylidene fluoride was 90: 4: 1: 5 by weight%, and the positive electrode The coating amount of lithium manganate per one side of the current collector of the active material mixture layer (active material application part) is 300 g / m 2 The positive electrode active material mixture layer (active material application part) had a thickness (not including the current collector thickness) of 252 μm and a length of 565 cm. On the other hand, for the negative electrode plate, MCMB was used as the negative electrode active material, the thickness of the negative electrode active material mixture layer (active material application part) (not including the current collector thickness) was 166 μm, and the length was 583 cm. A battery was produced.
[0042]
(Example 16)
As shown in Table 1, in Example 16, the same lithium manganate powder as in Example 1 and flaky graphite (LiMn) having an average particle diameter of 10 μm 2 O 4 The average particle size of the flaky graphite with respect to the secondary particle size of: 0.5 times), the blending ratio of acetylene black (AB) and polyvinylidene fluoride was 90: 4: 1: 5 by weight%, and the positive electrode The coating amount of lithium manganate per one side of the current collector of the active material mixture layer (active material application part) is 300 g / m 2 The positive electrode active material mixture layer (active material application part) had a thickness (not including the current collector thickness) of 252 μm and a length of 605 cm. On the other hand, for the negative electrode plate, amorphous carbon is used as the negative electrode active material, the thickness of the negative electrode active material mixture layer (active material application part) (not including the current collector thickness) is 133 μm, and the length is A battery was manufactured at 623 cm.
[0043]
(Examples 16-2 to 16-5)
As shown in Table 1, in Examples 16-2 to 16-5, the Li / Mn ratio of lithium manganate was changed to 0.55, 0.58, 0.60, and 0.61, respectively. A battery was produced in the same manner as in Example 16.
[0044]
(Example 17)
As shown in Table 1, in Example 17, the same lithium manganate powder as in Example 1 and flaky graphite (LiMn) having an average particle diameter of 10 μm 2 O 4 The ratio of the average particle size of the flake graphite to the secondary particle size of the graphite is 0.5: 5 and the blending ratio of polyvinylidene fluoride is 90: 5: 5 by weight%, and the positive electrode active material mixture layer (active material coating) Part) of the current collector is 300 g / m. 2 The positive electrode active material mixture layer (active material application part) had a thickness (not including the current collector thickness) of 252 μm and a length of 605 cm. On the other hand, for the negative electrode plate, amorphous carbon is used as the negative electrode active material, the thickness of the negative electrode active material mixture layer (active material application part) (not including the current collector thickness) is 133 μm, and the length is A battery was manufactured at 623 cm.
[0045]
(Examples 17-2 to 17-5)
As shown in Table 1, in Examples 17-2 to 17-5, the Li / Mn ratio of lithium manganate was changed to 0.55, 0.58, 0.60, and 0.61, respectively. A battery was produced in the same manner as in Example 17.
[0046]
(Comparative Example 1)
As shown in Table 1, in Comparative Example 1, the coating amount of lithium manganate was 260 g / m. 2 The thickness of the positive electrode active material mixture layer (active material application portion) (current collector thickness is not included) is 218 μm, the length is 633 cm, and the negative electrode active material mixture layer (active material application portion) A battery was prepared in the same manner as in Example 1 except that the thickness (excluding the current collector thickness) was 144 μm and the length of the negative electrode plate was 651 cm.
[0047]
(Comparative Example 2)
As shown in Table 1, in Comparative Example 2, the coating amount of lithium manganate was 340 g / m. 2 The thickness of the positive electrode active material mixture layer (active material application portion) (current collector thickness is not included) is 285 μm, the length is 511 cm, and the negative electrode active material mixture layer (active material application portion) A battery was prepared in the same manner as in Example 1 except that the thickness (not including the current collector thickness) was 189 μm and the length of the negative electrode plate was 529 cm.
[0048]
(Comparative Example 3)
As shown in Table 1, in Comparative Example 3, the same lithium manganate powder as in Example 1 and flaky graphite (LiMn) having an average particle diameter of 18 μm 2 O 4 The ratio of the average particle size of the flake graphite to the secondary particle size of: 0.9 times the polyvinylidene fluoride was 91: 2: 7 by weight%, and the positive electrode active material mixture layer (active material coating) Part) of the current collector is 300 g / m. 2 The positive electrode active material mixture layer (active material application portion) has a thickness (not including the current collector thickness) of 249 μm, the positive electrode plate has a length of 568 cm, and MCMB is used as the negative electrode active material. A battery was fabricated with a mixture layer (active material application part) thickness (not including current collector thickness) of 166 μm and a negative electrode plate length of 586 cm.
[0049]
(Comparative Example 4)
As shown in Table 1, in Comparative Example 4, the same lithium manganate powder as in Example 1 and flaky graphite (LiMn) having an average particle diameter of 18 μm 2 O 4 The ratio of the average particle size of the flake graphite to the secondary particle size of: 0.9 times and the blend ratio of polyvinylidene fluoride is 86: 8: 6 by weight%, and the positive electrode active material mixture layer (active material coating) Part) of the current collector is 300 g / m. 2 The thickness of the positive electrode active material mixture layer (active material application part) (not including the current collector thickness) was 263 μm, and the length of the positive electrode plate was 553 cm. On the other hand, for the negative electrode plate, MCMB was used as the negative electrode active material, the thickness of the negative electrode active material mixture layer (active material application part) (not including the current collector thickness) was 166 μm, and the length of the negative electrode plate was A battery was manufactured at 571 cm.
[0050]
<Test and evaluation>
Next, the following series of tests were performed on the batteries of Examples and Comparative Examples manufactured as described above.
[0051]
Each battery of the examples and comparative examples was charged and then discharged, and the discharge capacity was measured. The charging conditions were a 4.2 V constant voltage, a limiting current of 80 A, and 3.5 hours. The discharge conditions were a 20 A constant current and a final voltage of 2.7 V.
[0052]
Further, the discharge output of the charged battery was measured under the above conditions. Measurement conditions are 20A, 40A, and 80A. The voltage at 5 seconds is read for each discharge current, plotted on the vertical axis against the horizontal axis current value, and the approximate straight line connecting the three points intersects with 2.7V. The product of the current value of 2.7 and 2.7 V was used as the output.
[0053]
Furthermore, each battery of the example and the comparative example was charged and discharged 100 times under the above conditions, and then the output (capacity) was measured. Naturally, the higher the maintenance ratio, the better the life characteristics.
[0054]
These measurements of charge, discharge, and output were all performed in an atmosphere having an environmental temperature of 25 ± 1 ° C.
[0055]
Thereafter, the produced battery was continuously charged at a constant current of 80 A at room temperature, and the behavior of the battery was observed. The results are shown in Table 2 below. The phenomenon is that gas release consisting of volatiles of electrolyte occurs after cleavage valve cleavage. In order to compare the degree of gas release, the battery surface temperature immediately after the occurrence of the phenomenon was measured. Further, after the gas was released, the battery container was checked for deformation. In Table 2, “◯” indicates that no deformation of the battery container was observed, “Δ” indicates that the battery container was slightly deformed, and “×” indicates that the battery container was greatly deformed. Show.
[0056]
[Table 2]
Figure 0003719139
[0057]
As shown in Table 2, in the batteries of Examples 1 to 5, high-capacity and high-power batteries were obtained, and the battery behavior during continuous charging was gentle. The surface temperature of the battery at this time was 140 ° C. to 210 ° C. On the other hand, the coating amount of lithium manganate is 270 g / m. 2 Although the battery of Comparative Example 1 having a lower temperature than the above yields a battery with a high capacity and a high output, the battery behavior during continuous charging becomes intense with deformation of the battery, and the battery surface temperature exceeds 300 ° C. It was. Conversely, the coating amount of lithium manganate is 330 g / m. 2 The battery of Comparative Example 2, which exceeded the above, had a gentle battery behavior during continuous charging, but was accompanied by a decrease in output, and was not suitable as a battery for electric vehicles. Similarly, in the battery of Comparative Example 3, the amount of graphite of the positive electrode conductive material was less than 3% by weight, resulting in a decrease in output. On the other hand, in the battery of Comparative Example 4 in which the amount of graphite of the positive electrode conductive material exceeds 7% by weight, a battery with high capacity and high output can be obtained, but the battery behavior during continuous charging was accompanied by deformation of the battery. As a result, the battery surface temperature was 300 ° C.
[0058]
In the batteries of Examples 6 to 16-5 in which graphite and amorphous carbon were mixed in the positive electrode conductive material, a battery with high output could be obtained. In the batteries of Examples 6 to 10 using ketjen black as amorphous carbon, the ratio of the particle diameter of the conductive graphite to the secondary particle diameter of lithium manganate as the positive electrode active material was 0.2 to 0.00. The batteries of Examples 8 to 10 which are 8, in particular, have higher output. In the battery of Example 7 in which the ratio of the particle diameter of the conductive material graphite to the secondary particle diameter of lithium manganate is less than 0.2, the battery surface temperature during continuous charging was 200 ° C., and Examples 8 to It is slightly higher than 10 batteries.
[0059]
In the batteries of Examples 11 to 16-5 using acetylene black for amorphous carbon, a higher output was obtained and the output retention rate after 100 times of charge / discharge was also high.
[0060]
Example 12 to Example 14, Example 2-2 to Example 2-4, Example 16-2 to Example 16-4, Example in which Li / Mn ratio of lithium manganate is 0.55 or more The batteries of 17-2 to Example 17-4 have an extremely high output retention rate. However, in the batteries of Example 15, Example 2-5, Example 16-5, and Example 17-5 in which the Li / Mn ratio of lithium manganate exceeds 0.60, the result is accompanied by a decrease in capacity. It can be seen that the / Mn ratio is preferably in the range of 0.55 to 0.60.
[0061]
The batteries of Example 16, Example 16-2 to Example 16-5, Example 17, and Example 17-2 to Example 17-5 using amorphous carbon for the negative electrode plate had extremely high output power and An extremely high output retention rate and the lowest battery surface temperature during continuous charging were obtained. Therefore, the batteries of Examples 16, 16-2 to 16-5, 17, 17-2 to 17-5 are high-capacity, high-output, and excellent in safety, and are well-balanced. It can be said.
[0062]
As described above, the cylindrical lithium ion battery 20 of the present embodiment is a battery that exhibits extremely gentle behavior when the battery is exposed to an abnormal state and is excellent in safety. Thus, a battery with high capacity, high output, and extremely high safety is particularly suitable for a power source of an electric vehicle.
[0063]
In this embodiment, the large secondary battery used for the power source for the electric vehicle is exemplified, but the present invention is not limited to the size and the battery capacity of the battery, and the battery capacity is about 20 Ah. It has been confirmed that the invention exerts remarkable effects. In the present embodiment, the cylindrical battery is exemplified, but the present invention is not limited to the shape of the battery, and can be applied to a rectangular battery or other polygonal batteries. Further, as a shape applicable to the present invention, as described above, the battery may be other than a battery in which the positive and negative external terminals penetrate the battery lid and the positive and negative external terminals are pressed through the shaft core in the battery container. I do not care. As an example of such a structure, a battery having a structure in which a battery upper lid is sealed by caulking in a bottomed cylindrical container (can) can be exemplified.
[0064]
Moreover, in this embodiment, although the base material is a polyimide and the example which used the adhesive tape which apply | coated the adhesive which consists of hexamethacrylate to the one side was shown for insulation coating, for example, a base material is polypropylene, polyethylene, etc. In particular, an adhesive tape in which an acrylic adhesive such as hexamethacrylate or butyl acrylate is applied to one or both surfaces thereof, a tape made of polyolefin or polyimide to which no adhesive is applied, and the like can be suitably used.
[0065]
Furthermore, in this embodiment, lithium manganate is used as the positive electrode for the lithium ion battery, amorphous carbon is used as the negative electrode, and a mixed solution of ethylene carbonate, dimethyl carbonate, and diethyl carbonate in a volume ratio of 1: 1: 1 is used as the electrolytic solution. A solution obtained by dissolving 1 mol / liter of lithium fluorophosphate was used, but the battery of the present invention is not particularly limited, and any of the conductive materials and binders that are usually used can be used. is there. In general, lithium manganate can be synthesized by mixing and baking an appropriate lithium salt and manganese oxide, but the desired Li / Mn ratio can be adjusted by controlling the charging ratio of the lithium salt and manganese oxide. can do.
[0066]
Moreover, as an electrode plate active material binder for lithium ion batteries that can be used in other than this embodiment, Polytetrafluoroethylene , Polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, etc. There are coalescence and a mixture thereof.
[0067]
Further, as the positive electrode active material for lithium ion batteries that can be used in other embodiments, lithium is a material capable of inserting / extracting lithium, and lithium manganese complex oxide in which a sufficient amount of lithium is inserted in advance is preferable. Alternatively, lithium manganate having a spinel structure, or a material obtained by substituting or doping a part of manganese or lithium in a crystal with an element other than those may be used.
[0068]
Furthermore, the negative electrode active material for lithium ion batteries that can be used other than in the present embodiment is not particularly limited other than the matters described in the claims. For example, natural graphite, various artificial graphite materials, carbonaceous materials such as coke, amorphous carbon, etc. may be used, and the particle shape is not particularly limited, such as scaly, spherical, fibrous, massive, etc. Absent.
[0069]
As the nonaqueous electrolytic solution, an electrolytic solution in which a general lithium salt is used as an electrolyte and this is dissolved in an organic solvent is used. However, the lithium salt and organic solvent used are not particularly limited. For example, as an electrolyte, LiClO Four , LiAsF 6 , LiPF 6 , LiBF Four , LiB (C 6 H Five ) Four , CH Three SO Three Li, CF Three SO Three Li or the like or a mixture thereof can be used. Nonaqueous electrolyte organic solvents include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3- Dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propiontonyl, or a mixed solvent of two or more of these may be used, and the mixing ratio is not limited.
[0070]
【The invention's effect】
As described above, according to the present invention, the secondary particles are formed of an aggregate of primary particles having an average particle diameter of 0.1 μm to 2 μm. Spinel Lithium manganese complex oxide and Of a mixture of graphite and amorphous carbon Using a positive electrode in which an active material mixture containing a conductive material is applied to both sides of a strip-shaped current collector in an approximately equal amount and a negative electrode capable of inserting and extracting lithium ions by charging and discharging The average particle size of graphite is 0.2 to 0.8 times the average particle size of secondary particles. Therefore, high capacity and high output can be achieved, and the coating amount of lithium manganese complex oxide on one side of the current collector is 270 g / m. 2 ~ 330g / m 2 In addition, since the amount of the conductive material is set to 3 to 7% by weight, the gas release from the internal pressure release mechanism is performed very gently. The effect that a water electrolyte secondary battery is realizable can be acquired.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a cylindrical lithium ion battery according to an embodiment to which the present invention is applicable.
[Explanation of symbols]
1 Positive external terminal
1 'Negative external terminal
2 nuts
3 First ceramic washer
3 'second ceramic washer
4 Battery cover (part of battery container)
5 Battery container
6 Winding group (electrode winding group)
7 Buttocks
8 Insulation coating
9 Lead piece
10 Cleavage valve (Internal pressure reduction mechanism)
20 Cylindrical lithium ion battery (non-aqueous electrolyte secondary battery)

Claims (4)

平均粒径0.1μm乃至2μmの一次粒子の集合体で形成された二次粒子からなるスピネル系リチウムマンガン複酸化物と、黒鉛と無定型炭素との混合物の導電材とを含む正極活物質合剤が帯状集電体の両面にほぼ均等量塗着された正極と、充放電によりリチウムイオンを吸蔵・放出可能な負極と、をセパレータを介して捲回した電極捲回群を、所定圧で内圧を開放する内圧開放機構を有する電池容器内に収容した非水電解液二次電池において、前記リチウムマンガン複酸化物の前記集電体片面あたりの塗着量が270g/m乃至330g/mであり、前記正極活物質合剤に含有される導電材量が3重量%乃至7重量%であり、かつ、前記黒鉛の平均粒径が、前記二次粒子の平均粒径の0.2倍乃至0.8倍であることを特徴とする非水電解液二次電池。A positive electrode active material composition comprising a spinel-based lithium manganese complex oxide composed of secondary particles formed of an aggregate of primary particles having an average particle diameter of 0.1 μm to 2 μm, and a conductive material of a mixture of graphite and amorphous carbon. An electrode winding group in which a positive electrode in which an agent is applied on both surfaces of a strip-shaped current collector and a negative electrode capable of occluding and releasing lithium ions by charging and discharging is wound through a separator at a predetermined pressure. In a non-aqueous electrolyte secondary battery housed in a battery container having an internal pressure release mechanism for releasing internal pressure, a coating amount of the lithium manganese complex oxide per one surface of the current collector is 270 g / m 2 to 330 g / m. 2, before Symbol positive electrode active conducting material amount contained in the material mixture is 3% to 7 wt% der is, and the average particle diameter of the graphite, 0 of the average particle diameter of the secondary particles .2-fold to a non-aqueous, wherein 0.8 Baidea Rukoto Solution solution secondary battery. 前記無定型炭素はアセチレンブラックであることを特徴とする請求項1に記載の非水電解液二次電池。The non-aqueous electrolyte secondary battery according to claim 1 , wherein the amorphous carbon is acetylene black. 前記リチウムマンガン複酸化物のLi/Mn比が、0.55乃至0.60であることを特徴とする請求項 1 又は請求項2に記載の非水電解液二次電池。The non-aqueous electrolyte secondary battery according to claim 1 or 2 , wherein a Li / Mn ratio of the lithium manganese complex oxide is 0.55 to 0.60. 前記負極の活物質は非晶質炭素であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の非水電解液二次電池。The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3 , wherein the negative electrode active material is amorphous carbon.
JP2000394095A 2000-12-26 2000-12-26 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3719139B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000394095A JP3719139B2 (en) 2000-12-26 2000-12-26 Non-aqueous electrolyte secondary battery
US09/977,305 US6706446B2 (en) 2000-12-26 2001-10-16 Non-aqueous electrolytic solution secondary battery
EP01124876A EP1220343B1 (en) 2000-12-26 2001-10-18 Non-aqueous electrolytic solution secondary battery
TW090125980A TW522593B (en) 2000-12-26 2001-10-19 Non-aqueous electrolytic solution secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000394095A JP3719139B2 (en) 2000-12-26 2000-12-26 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002198034A JP2002198034A (en) 2002-07-12
JP3719139B2 true JP3719139B2 (en) 2005-11-24

Family

ID=18859780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000394095A Expired - Fee Related JP3719139B2 (en) 2000-12-26 2000-12-26 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3719139B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6315230B2 (en) * 2013-08-28 2018-04-25 日立化成株式会社 Lithium ion battery
KR102270513B1 (en) 2014-08-05 2021-06-30 삼성에스디아이 주식회사 Positive electrode composition for rechargeable lithium battery, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
CN115566137B (en) * 2022-11-09 2023-05-26 楚能新能源股份有限公司 High-energy-density pole piece, preparation method thereof and battery cell

Also Published As

Publication number Publication date
JP2002198034A (en) 2002-07-12

Similar Documents

Publication Publication Date Title
JP3541723B2 (en) Cylindrical lithium-ion battery
JP4305035B2 (en) Winding cylindrical lithium-ion battery
US20090286139A1 (en) Lithium secondary battery
JP2004006264A (en) Lithium secondary battery
JP2003308842A (en) Nonaqueous electrolyte lithium secondary battery
JP4752154B2 (en) Method for manufacturing lithium secondary battery
JP2002015774A (en) Nonaqueous electrolyte lithium secondary cell
JP3988384B2 (en) Non-aqueous electrolyte secondary battery
JP2000311677A (en) Rolled type cylindrical lithium secondary battery
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP3719139B2 (en) Non-aqueous electrolyte secondary battery
JP3591506B2 (en) Non-aqueous electrolyte secondary battery
JP4048763B2 (en) Non-aqueous electrolyte secondary battery
JP2004186130A (en) Non-aqueous lithium secondary battery
JP2000311705A (en) Cylindrical lithium ion battery
JP3783503B2 (en) Lithium secondary battery
JP3624793B2 (en) Lithium ion battery
JP4839517B2 (en) Nonaqueous electrolyte secondary battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JP3440870B2 (en) Cylindrical lithium-ion battery
JP3518484B2 (en) Lithium ion battery
JP2004152718A (en) Lithium-ion secondary battery
JP5254722B2 (en) Lithium secondary battery
JP3620512B2 (en) Non-aqueous electrolyte secondary battery
JP2001185154A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees