JP3440870B2 - Cylindrical lithium-ion battery - Google Patents

Cylindrical lithium-ion battery

Info

Publication number
JP3440870B2
JP3440870B2 JP11960999A JP11960999A JP3440870B2 JP 3440870 B2 JP3440870 B2 JP 3440870B2 JP 11960999 A JP11960999 A JP 11960999A JP 11960999 A JP11960999 A JP 11960999A JP 3440870 B2 JP3440870 B2 JP 3440870B2
Authority
JP
Japan
Prior art keywords
carbonate
battery
lithium
electrolytic solution
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11960999A
Other languages
Japanese (ja)
Other versions
JP2000311706A (en
Inventor
賢治 中井
健介 弘中
剛 中野
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to JP11960999A priority Critical patent/JP3440870B2/en
Publication of JP2000311706A publication Critical patent/JP2000311706A/en
Application granted granted Critical
Publication of JP3440870B2 publication Critical patent/JP3440870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は円筒形リチウムイオ
ン電池に係り、特に、円筒形電池容器に正極、負極及び
セパレータを捲回した電極捲回群と該電極捲回群から各
極端子へ接続するための接続部と電解液とを内蔵し、前
記電池容器の内圧の上昇に応じてガスを放出する内圧低
減機構を備えた円筒形リチウムイオン電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical lithium ion battery, and more particularly to an electrode winding group in which a positive electrode, a negative electrode and a separator are wound in a cylindrical battery container, and the electrode winding group is connected to each electrode terminal. The present invention relates to a cylindrical lithium ion battery including a connecting portion and an electrolytic solution for controlling the internal pressure, and including an internal pressure reduction mechanism that releases gas in response to an increase in internal pressure of the battery container.

【0002】[0002]

【従来の技術】リチウムイオン二次電池は、高エネルギ
ー密度であるメリットを活かして、主にVTRカメラや
ノートパソコン、携帯電話等のポータブル機器の電源に
使用されている。円筒形リチウムイオン二次電池の内部
は、正極及び負極の両電極が共に活物質が金属箔に塗着
された帯状であり、セパレータを挟んでこれら両電極が
直接接触しないように断面が渦巻状に捲回され、捲回群
が形成された捲回式の構造とされている。そして、この
捲回群が電池容器となる円筒形の電池缶内に収納され、
電解液注液後、封口されている。
2. Description of the Related Art A lithium ion secondary battery is mainly used as a power source for a portable device such as a VTR camera, a notebook computer, a mobile phone or the like, taking advantage of its high energy density. Inside the cylindrical lithium-ion secondary battery, both the positive electrode and the negative electrode have a strip shape in which the active material is applied to the metal foil, and the cross section is spiral so that these electrodes do not come into direct contact with the separator in between. It has a winding-type structure in which a winding group is formed by winding. Then, this winding group is housed in a cylindrical battery can that serves as a battery container.
It is sealed after injecting the electrolyte.

【0003】一般的な円筒形リチウムイオン二次電池の
外形寸法は、18650型と呼ばれる、直径18mm、
高さ65mmであり、小型民生用リチウムイオン電池と
して広く普及している。18650型リチウムイオン二
次電池の正極活物質には、高容量、長寿命を特徴とする
コバルト酸リチウムが主として用いられており、電池容
量は、おおむね1.3Ah〜1.7Ah、出力はおよそ
10W程度である。
The external dimensions of a general cylindrical lithium-ion secondary battery are called 18650 type, diameter 18 mm,
It has a height of 65 mm and is widely used as a small-sized consumer lithium-ion battery. Lithium cobalt oxide, which is characterized by high capacity and long life, is mainly used for the positive electrode active material of the 18650 type lithium ion secondary battery, the battery capacity is about 1.3 Ah to 1.7 Ah, and the output is about 10 W. It is a degree.

【0004】一方、自動車産業界においては環境問題に
対応すべく、排出ガスのない、動力源を完全に電池のみ
とした電気自動車の開発や内燃機関エンジンと電池との
両方を動力源とするハイブリッド(電気)自動車の開発
が加速され、一部実用段階に到達している。電気自動車
の電源となる二次電池には当然高出力、高エネルギーが
得られる特性が要求され、この要求を満足する二次電池
としてリチウムイオン電池が注目されている。
On the other hand, in the automobile industry, in order to deal with environmental problems, the development of an electric vehicle without exhaust gas and a battery whose power source is completely a battery, or a hybrid using both an internal combustion engine and a battery as a power source. The development of (electric) vehicles has accelerated, and some have reached the stage of practical use. Naturally, a secondary battery serving as a power source of an electric vehicle is required to have characteristics such that high output and high energy can be obtained, and a lithium ion battery is receiving attention as a secondary battery satisfying these requirements.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、リチウ
ムイオン電池の場合、高出力になればなるほど安全性が
重視される傾向にあり、特に電気自動車用電源に用いら
れるような高容量、高出力の電池においては、なおさら
である。また、高容量、高出力の電池ともなると、大電
流充電、大電流放電がなされるために、18650型リ
チウムイオン電池には一般に採用されているような、異
常時の電池内圧上昇に応じて作動する電流遮断機構(一
種の切断スイッチ)を電池構造内に設けることは難し
い。
However, in the case of a lithium-ion battery, the higher the output, the more the safety tends to be emphasized, and in particular, the high-capacity, high-output battery used for a power source for electric vehicles. Especially in. In addition, since a high-capacity, high-output battery is charged with a large amount of current and discharged, it operates according to an increase in battery internal pressure during an abnormality, which is generally adopted for 18650 type lithium-ion batteries. It is difficult to provide a current cutoff mechanism (a kind of disconnection switch) in the battery structure.

【0006】人を乗せて走る電気自動車の場合、充電制
御システムが故障してしまった場合の過充電時、不慮の
衝突事故の場合に遭遇する可能性のある電池のクラッシ
ュ時あるいは、異物突き刺し時、外部短絡時等の電池自
体の安全性を確保することは、最低限必要かつ非常に重
要な電池特性である。ここでいう電池の安全性とは、電
池が異常な状態にさらされた場合の電池の挙動が、人に
身体的損害を与えないことは当然のことながら、車両へ
の損傷を最小限に抑えることを意味する。
In the case of an electric vehicle that carries passengers, during overcharging when the charging control system fails, when a battery crashes that may occur in an accidental collision, or when a foreign object is stabbed. Securing the safety of the battery itself when an external short circuit occurs is a minimum and very important battery characteristic. Battery safety here means that the behavior of the battery when it is exposed to abnormal conditions does not cause any physical damage to people, but it also minimizes damage to the vehicle. Means that.

【0007】本発明は上記事案に鑑み、高容量、高出力
でありながらも、極めて安全性の高い円筒形リチウムイ
オン電池を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a cylindrical lithium ion battery having a high capacity and a high output, but having an extremely high safety.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するために、円筒形電池容器に正極、負極及びセパレー
タを捲回した電極捲回群と該電極捲回群から各極端子へ
接続するための接続部と電解液とを内蔵し、前記電池容
器の内圧の上昇に応じてガスを放出する内圧低減機構を
備えた円筒形リチウムイオン電池において、前記正極に
リチウムマンガン複酸化物を含む活物質合剤が塗布さ
れ、前記電解液の溶媒は少なくともエチレンカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート及び
エチルメチルカーボネートを含む混合溶媒であってその
混合体積比において前記エチレンカーボネートが30%
乃至50%、前記ジメチルカーボネートが15%以上、
前記ジエチルカーボネートが15%以上、前記エチルメ
チルカーボネートが10%以上であり、前記電解液の溶
質は6フッ化燐酸リチウム(LiPF)であって該溶
質溶解後の電解液の濃度は0.7モル/リットル乃至
1.3モル/リットルであり、前記電解液には0.5%
乃至2.0%のビニレンカーボネートが添加されている
ことを特徴とする。
In order to achieve the above object, the present invention provides an electrode winding group in which a positive electrode, a negative electrode and a separator are wound in a cylindrical battery container, and the electrode winding group is connected to each electrode terminal. In a cylindrical lithium-ion battery having a connection part and an electrolytic solution for performing internal pressure reduction mechanism that releases gas in response to an increase in internal pressure of the battery container, the positive electrode contains lithium manganese complex oxide. Active material mixture is applied, the solvent of the electrolytic solution is at least ethylene carbonate, dimethyl carbonate, diethyl carbonate and
A mixed solvent containing ethyl methyl carbonate , wherein the ethylene carbonate is 30% in the mixed volume ratio.
To 50%, the dimethyl carbonate is 15% or more,
15% or more of the diethyl carbonate,
Chill carbonate is not less than 10%, the solute of the electrolyte concentration of the electrolytic solution after the A and solute dissolved hexafluoro lithium phosphate (LiPF 6) is to 0.7 mol / l
1.3 mol / l , 0.5% in the electrolyte
It is characterized in that vinylene carbonate is added in an amount of from 2.0% to 2.0% .

【0009】本発明では、高容量、高出力の円筒形リチ
ウムイオン電池を確保するために、正極にリチウムマン
ガン複酸化物を含む活物質合剤が塗布されている。電流
遮断機構を有しない円筒形リチウムイオン電池では、上
述した異常状態にさらされたときに、大電流充電又は大
電流放電状態が維持され電解液とリチウムマンガン複酸
化物との化学反応によりガスを発生し円筒形電池容器の
内圧を上昇させる。一般に、円筒形リチウムイオン電池
ではこの円筒形電池容器の内圧上昇を防止するために、
例えば所定内圧で開裂してガスを円筒形電池容器外へ放
出する開裂弁等の内圧低減機構を有しているが、電解液
の溶媒を少なくともエチレンカーボネート、ジメチルカ
ーボネート、ジエチルカーボネート及びエチルメチルカ
ーボネートを含む混合溶媒であってその混合体積比にお
いてエチレンカーボネートを30%乃至50%、ジメチ
ルカーボネートを15%以上、ジエチルカーボネートを
15%以上、エチルメチルカーボネートを10%以上
し、電解液の溶質を6フッ化燐酸リチウム(LiP
)として該溶質溶解後の電解液の濃度を0.7モル
/リットル乃至1.3モル/リットルとし、この電解液
0.5%乃至2.0%のビニレンカーボネートを添加
した電解液とすることにより、内圧低減機構からのガス
放出が急激に行われることなく極めて穏やかに行われる
ので、安全性に優れると共に、高出力の円筒形リチウム
イオン電池を実現することができる。
In the present invention, in order to secure a cylindrical lithium ion battery having a high capacity and a high output, an active material mixture containing lithium manganese oxide is applied to the positive electrode. In a cylindrical lithium-ion battery that does not have a current interruption mechanism, when exposed to the above-mentioned abnormal state, a high-current charge or high-current discharge state is maintained and gas is generated by a chemical reaction between the electrolytic solution and lithium manganese complex oxide. Generates and raises the internal pressure of the cylindrical battery container. Generally, in a cylindrical lithium ion battery, in order to prevent an increase in internal pressure of the cylindrical battery container,
For example, it has an internal pressure reduction mechanism such as a cleavage valve that cleaves at a predetermined internal pressure to release gas to the outside of the cylindrical battery container, but the solvent of the electrolytic solution is at least ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate.
It is a mixed solvent containing carbonate and the mixed volume ratio of ethylene carbonate is 30% to 50%.
15% or more of lu carbonate and diethyl carbonate
15% or more, ethyl methyl carbonate is 10% or more, and the solute of the electrolytic solution is lithium hexafluorophosphate (LiP).
The concentration of the electrolyte solution after dissolving the solute is 0.7 mol as F 6 ).
/ L to 1.3 mol / L, and by using 0.5% to 2.0% of vinylene carbonate added to this electrolyte, gas is rapidly released from the internal pressure reducing mechanism. since no is very gently performed, excellent safety Rutotomoni, cylindrical lithium high output
An ion battery can be realized .

【0010】[0010]

【0011】のとき、ジメチルカーボネート、ジエチ
ルカーボネート及びエチルメチルカーボネートの各溶媒
の合計体積比を混合溶媒の50%以上とすることが好ま
しい。
[0011] At this time, dimethyl carbonate, is preferably not less than 50% of the mixed solvent total volume ratio of each solvent diethyl carbonate and ethyl methyl carbonate.

【0012】[0012]

【発明の実施の形態】下、図面を参照して本発明に係
る円筒形リチウムイオン電池の実施の形態について説明
する。
DETAILED DESCRIPTION OF THE INVENTION hereinafter, for implementation in the form of a cylindrical lithium ion battery according to the present invention will be described with reference to the drawings.

【0013】<電池製造方法> [正極板の作製]正極板の作製では、活物質であるマンガ
ン酸リチウム(LiMn)粉末87重量部に、導
電剤として8.7重量部の鱗片状黒鉛(平均粒径:20
μm)と結着剤として4.3重量部のポリフッ化ビニリ
デンを添加し、これに分散溶媒のN−メチルピロリドン
を添加、混練したスラリを厚さ20μmのアルミニウム
箔(正極集電体)の両面に実質的に均等かつ均質に塗布
した。このとき、正極板長寸方向の一方の側縁に幅50
mmの未塗布部を残した。その後乾燥、プレス、裁断し
て幅300mm、長さ690cm、アルミニウム箔を含
まない活物質塗布部厚さ210μmの正極板を得た。正
極活物質層のかさ密度は2.65g/cm とした。正
極板のスラリ未塗布部に切り欠きを入れ、切り欠き残部
をリード片とした。また、隣り合うリード片を20mm
間隔とし、リード片の幅を10mmとした。
<Battery manufacturing method> [Production of positive electrode plate] Manganese, which is an active material, is used in the production of the positive electrode plate.
Lithium oxide (LiMnTwoOFour) To 87 parts by weight of powder,
8.7 parts by weight of flake graphite (average particle size: 20
μm) and 4.3 parts by weight of polyvinylidene fluoride as a binder
Den was added to this and N-methylpyrrolidone as a dispersion solvent was added.
20 μm thick aluminum was added and kneaded
Substantially even and uniform application on both sides of foil (positive electrode current collector)
did. At this time, the width of 50
The uncoated part of mm was left. Then dry, press, cut
Width 300 mm, length 690 cm, including aluminum foil
A positive electrode plate having a thickness of 210 μm was obtained. Positive
The bulk density of the active material layer is 2.65 g / cm. ThreeAnd Positive
Make a notch in the part of the electrode plate that has not been applied with the slurry, and leave the notch
Was used as the lead piece. In addition, the adjacent lead pieces are 20 mm
The width of the lead pieces was 10 mm.

【0014】[負極板の作製]負極板の作製では、非晶質
炭素である呉羽化学工業株式会社製の商品名カーボトロ
ンP粉末92重量部に結着剤として8重量部のポリフッ
化ビニリデンを添加し、これに分散溶媒のN−メチルピ
ロリドンを添加、混練したスラリを厚さ10μmの圧延
銅箔(負極集電体)の両面に塗布した。このとき極板長
寸方向の一方の側縁に幅50mmの未塗布部を残した。
その後乾燥、プレス、裁断して幅305mm、長さ70
8cm、圧延銅箔を含まない活物質塗布部厚さ130μ
mの負極板を得た。負極活物質層のかさ密度は1.0g
/cmとした。負極板のスラリ未塗布部に正極板と同
様に切り欠きを入れ、切り欠き残部をリード片とした。
また、隣り合うリード片を20mm間隔とし、リード片
の幅を10mmとした。
[Production of Negative Electrode Plate] In the production of the negative electrode plate, 8 parts by weight of polyvinylidene fluoride as a binder was added to 92 parts by weight of amorphous carbon, which is a product name of CARBOTRON P powder manufactured by Kureha Chemical Industry Co., Ltd. Then, N-methylpyrrolidone as a dispersion solvent was added thereto, and the kneaded slurry was applied to both surfaces of a rolled copper foil (negative electrode current collector) having a thickness of 10 μm. At this time, an uncoated portion having a width of 50 mm was left on one side edge in the lengthwise direction of the electrode plate.
After that, it is dried, pressed and cut to a width of 305 mm and a length of 70.
8 cm, thickness of active material coating 130 μm without rolled copper foil
m negative electrode plate was obtained. The bulk density of the negative electrode active material layer is 1.0 g
/ Cm 3 . A notch was made in the uncoated portion of the negative electrode plate in the same manner as the positive electrode plate, and the remaining notch was used as a lead piece.
In addition, adjacent lead pieces were spaced at 20 mm, and the width of the lead pieces was 10 mm.

【0015】なお、各電池の正極と負極の仕込み量は次
のようにして決定した。セパレータを介して対向する単
位面積あたりで、正極の充電終止電位4.5V(Li/
Li+基準)までの充電可能容量と負極の終止電圧0V
(Li/Li+基準)までの充電可能容量が同じになる
ようにした。ちなみに正極活物質では、マンガン酸リチ
ウムの単位活物質重量あたりの充電可能容量は105m
Ah/g、コバルト酸リチウムの充電可能容量は155
mAh/gであった。負極活物質の充電可能容量は45
0mAh/gであった。捲回したときに、捲回最内周で
は捲回方向に正極が負極からはみ出すことがなく、また
最外周でも捲回方向に正極が負極からはみ出すことがな
いように負極長さは正極長さよりも18cm長くなるよ
うにした。捲回方向と垂直方向においても正極活物質塗
布部が負極活物質塗布部からはみ出すことがないよう、
負極活物質塗布部の幅は、正極活物質塗布部の幅よりも
5mm長くした。
The charging amount of the positive electrode and the negative electrode of each battery was determined as follows. The charge end potential of the positive electrode is 4.5 V (Li /
Rechargeable capacity up to Li +) and final voltage of negative electrode 0V
The rechargeable capacity up to (Li / Li + reference) was set to be the same. By the way, in the positive electrode active material, the chargeable capacity per unit weight of lithium manganate active material is 105 m.
Ah / g, lithium cobalt oxide rechargeable capacity is 155
It was mAh / g. The chargeable capacity of the negative electrode active material is 45
It was 0 mAh / g. When wound, the length of the negative electrode is greater than the length of the positive electrode so that the positive electrode does not protrude from the negative electrode in the winding direction at the innermost circumference of the winding and the positive electrode does not protrude from the negative electrode in the winding direction at the outermost circumference. I also made it 18 cm longer. In order to prevent the positive electrode active material coating portion from protruding from the negative electrode active material coating portion even in the direction perpendicular to the winding direction,
The width of the negative electrode active material applied portion was made 5 mm longer than the width of the positive electrode active material applied portion.

【0016】[電池の作製]上記作製した正極板と負極板
とを、これら両極板が直接接触しないように厚さ40μ
mのポリエチレン製セパレータを挟んで捲回する。この
とき正極板のリード片と負極板のリード片とが、それぞ
れ捲回群の互いに反対側の両端面に位置するようにす
る。
[Manufacture of Battery] The positive electrode plate and the negative electrode plate manufactured as described above have a thickness of 40 μm so that the two electrode plates do not come into direct contact with each other.
m polyethylene separator is sandwiched and wound. At this time, the lead pieces of the positive electrode plate and the lead pieces of the negative electrode plate are positioned on opposite end surfaces of the winding group, respectively.

【0017】図1に示すように、正極板から導出されて
いるリード片9を変形させ、その全てを、捲回群6軸芯
のほぼ延長線上にある極柱(正極外部端子1)周囲から
一体に張り出している鍔部7周面付近に集合、接触させ
る。リード片9を鍔部7周面付近に接触させた後に、リ
ード片9と鍔部7周面とを超音波溶接してリード片9を
鍔部7周面に接続し固定する。
As shown in FIG. 1, the lead pieces 9 led out from the positive electrode plate are deformed, and all of them are deformed from the periphery of the pole column (positive electrode external terminal 1) which is almost on the extension line of the winding group 6 axis core. Collect and contact around the circumference of the collar 7 that is overhanging integrally. After the lead piece 9 is brought into contact with the peripheral surface of the collar portion 7, the lead piece 9 and the peripheral surface of the collar portion 7 are ultrasonically welded to connect and fix the lead piece 9 to the peripheral surface of the collar portion 7.

【0018】負極外部端子1’と負極板から導出されて
いるリード片9との接続操作も、上述した正極外部端子
1と正極板から導出されているリード片9との接続操作
と同様に行う。
The connecting operation between the negative electrode external terminal 1'and the lead piece 9 led out from the negative electrode plate is performed in the same manner as the above-mentioned connecting operation between the positive electrode external terminal 1 and the lead piece 9 led out from the positive electrode plate. .

【0019】その後、正極外部端子1及び負極外部端子
1’の鍔部7周面全周に絶縁被覆8を施す。この絶縁被
覆8は、捲回群6外周面全周にも及ぼす。絶縁被覆8に
は、基材がポリイミドで、その片面にヘキサメタアクリ
レートからなる粘着剤を塗布した粘着テープを用いた。
この粘着テープを鍔部7周面から捲回群6外周面に亘っ
て何重にも巻いて絶縁被覆8とする。捲回群6の最大径
部が絶縁被覆8存在部となるように巻き数を調整し、該
最大径を電池容器5内径よりも僅かに小さくして捲回群
6を電池容器5内に挿入する。
After that, an insulating coating 8 is applied to the entire circumference of the flange 7 of the positive electrode external terminal 1 and the negative electrode external terminal 1 '. The insulating coating 8 also affects the entire outer peripheral surface of the winding group 6. As the insulating coating 8, an adhesive tape was used in which the base material was polyimide, and one surface of which was coated with an adhesive made of hexamethacrylate.
The adhesive tape is wound in multiple layers from the peripheral surface of the collar portion 7 to the outer peripheral surface of the winding group 6 to form the insulating coating 8. The winding group 6 is inserted into the battery container 5 by adjusting the number of windings so that the maximum diameter part of the winding group 6 becomes the insulating coating 8 existing part and making the maximum diameter slightly smaller than the inner diameter of the battery container 5. To do.

【0020】次に、アルミナ製で電池蓋4裏面と当接す
る部分の厚さ2mm、内径16mm、外径25mmの第
2のセラミックワッシャ3’を、図1に示すように先端
が正極外部端子1を構成する極柱、先端が負極外部端子
1’を構成する極柱にそれぞれ嵌め込む。また、第1の
セラミックワッシャ3を電池蓋4に載置し、正極外部端
子1、負極外部端子1’をそれぞれ第1のセラミックワ
ッシャ3に通す。その後円盤状電池蓋4周端面を電池容
器5開口部に嵌合し、双方の接触部全域をレーザ溶接す
る。このとき正極外部端子1、負極外部端子1’は、電
池蓋4の中心にある穴を貫通して電池蓋4外部に突出し
ている。そして図1に示すように、アルミナ製で厚さ2
mm、内径16mm、外径28mmの平状の第1のセラ
ミックワッシャ3、ナット2底面よりも平滑な金属ワッ
シャ11を、この順に正極外部端子1、負極外部端子
1’にそれぞれ嵌め込む。電池蓋4には、電池の内圧上
昇に応じて開裂する開裂弁10が設けられている。な
お、開裂弁10の開裂圧を13〜18kg/cmとし
た。
Next, a second ceramic washer 3'having a thickness of 2 mm, an inner diameter of 16 mm and an outer diameter of 25 mm, which is made of alumina and comes into contact with the back surface of the battery lid 4, has a tip as shown in FIG. And the tip of the pole column constituting the negative pole external terminal 1 '. Further, the first ceramic washer 3 is placed on the battery lid 4, and the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ are respectively passed through the first ceramic washer 3. After that, the peripheral end surface of the disk-shaped battery lid 4 is fitted into the opening of the battery container 5, and the entire contact portions of both are laser-welded. At this time, the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ penetrate the hole in the center of the battery lid 4 and project to the outside of the battery lid 4. And as shown in FIG. 1, it is made of alumina and has a thickness of 2
mm, an inner diameter of 16 mm, and an outer diameter of 28 mm, and a flat first ceramic washer 3 and a metal washer 11 that is smoother than the bottom surface of the nut 2 are fitted into the positive electrode external terminal 1 and the negative electrode external terminal 1'in that order. The battery lid 4 is provided with a cleaving valve 10 that cleaves in response to an increase in internal pressure of the battery. The cleavage pressure of the cleavage valve 10 was set to 13 to 18 kg / cm 2 .

【0021】次に、金属製のナット2を正極外部端子
1、負極外部端子1’にそれぞれ螺着し、第2のセラミ
ックワッシャ3’、第1のセラミックワッシャ3、金属
ワッシャ11を介して電池蓋4を鍔部7とナット2間で
締め付けて固定する。このときの締め付けトルク値は7
0kgf・cmとした。なお、締め付け作業が終了する
まで金属ワッシャ11は回転しなかった。この状態で
は、電池蓋4裏面と鍔部7の間に介在させたゴム(EP
DM)製Oリング12の圧縮により電池容器内部の発電
要素は外気から遮断されている。
Next, a metal nut 2 is screwed to each of the positive electrode external terminal 1 and the negative electrode external terminal 1 ', and the battery is inserted through the second ceramic washer 3', the first ceramic washer 3 and the metal washer 11. Tighten the lid 4 between the collar portion 7 and the nut 2 to fix it. The tightening torque value at this time is 7
It was set to 0 kgf · cm. The metal washer 11 did not rotate until the tightening work was completed. In this state, the rubber (EP
The power generation element inside the battery container is shielded from the outside air by the compression of the DM) O-ring 12.

【0022】その後、電池蓋4に設けた注液口13から
0.33リットルの電解液を電池容器5内に注入し、そ
の後注液口を封止することにより円筒形リチウムイオン
電池20を完成させた。円筒形リチウムイオン電池20
の定格容量は80Ahである。なお、円筒形リチウムイ
オン電池20には、電池容器5の内圧の上昇に応じて電
流を遮断するように作動する電流遮断機構は設けられて
いない。
Then, a cylindrical lithium ion battery 20 is completed by injecting 0.33 liter of electrolytic solution into the battery container 5 through the liquid injection port 13 provided in the battery lid 4, and then sealing the liquid injection port. Let Cylindrical lithium-ion battery 20
Has a rated capacity of 80 Ah. It should be noted that the cylindrical lithium ion battery 20 is not provided with a current interruption mechanism that operates so as to interrupt the current in response to the increase in the internal pressure of the battery container 5.

【0023】[電解液] 次に、電池容器5に注入した電解液について詳述する。
本実施形態の電解液では、エチレンカーボネートとジメ
チルカーボネートとジエチルカーボネートとエチルメチ
ルカーボネートの所定体積比の混合溶液中へ6フッ化燐
酸リチウム(LiPF)を所定モル/リットル溶解
し、所定量のビニレンカーボネートを添加したものを使
用した。
[Electrolytic Solution] Next, the electrolytic solution injected into the battery container 5 will be described in detail.
In the electrolytic solution of the present embodiment, ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate are used.
Le carbonate to a mixed solution of a predetermined volume ratio hexafluoride phosphate lithium (LiPF 6) was dissolved a predetermined mol / l, it was used after adding a predetermined amount of vinylene carbonate.

【0024】[0024]

【0025】[0025]

【0026】[0026]

【0027】[0027]

【0028】[0028]

【0029】[0029]

【0030】[0030]

【0031】[0031]

【0032】[0032]

【0033】[0033]

【0034】[0034]

【0035】[0035]

【0036】[0036]

【0037】[0037]

【0038】[0038]

【0039】[0039]

【0040】[0040]

【0041】[0041]

【0042】[0042]

【0043】表1に示すように、本実施形態では本発明
を適用した実施例13〜22の電解液及び実施例の効果
を確認するための比較例23〜27、4〜7の電解液を
各々作製した(以下、これらの各電解液を注入した円筒
形リチウムイオン電池20をそれぞれ実施例13〜22
の電池、比較例23〜27、4〜7の電池という。)。
なお、表1において、Dはエチルメチルカーボネートを
表し、Aはエチレンカーボネート、Bはジメチルカーボ
ネート、Cはジエチルカーボネート、Eは6フッ化燐酸
リチウム、Fはビニレンカーボネートを表す
As shown in Table 1 , in this embodiment, the electrolytic solutions of Examples 13 to 22 to which the present invention was applied and the electrolytic solutions of Comparative Examples 23 to 27 and 4 to 7 for confirming the effects of the examples were used. Each was manufactured (hereinafter, the cylindrical lithium ion battery 20 into which each of these electrolytic solutions was injected was used in Examples 13 to 22.
Batteries of Comparative Examples 23 to 27 and 4 to 7. ).
In Table 1 , D represents ethylmethyl carbonate, A is ethylene carbonate , and B is dimethylcarbocarbon.
Nate , C is diethyl carbonate , E is hexafluorophosphoric acid
Lithium and F represent vinylene carbonate .

【0044】[0044]

【表1】 [Table 1]

【0045】実施例13の電池の電解液は、エチレンカ
ーボネート(A)30体積%、ジメチルカーボネート
(B)25体積%、ジエチルカーボネート(C)25体
積%、エチルメチルカーボネート(D)20体積%の混
合溶媒に、6フッ化燐酸リチウム(E)を溶解させ0.
8モル/リットルとし、ビニレンカーボネート(F)
1.0%を添加したものである(以下の実施例、比較例
の電池の電解液においても表の見方は同じ。)。な
お、比較例23〜27、4〜7の電池は、実施例13〜
22の電池と同様、いずれも定格容量80Ahである。
The electrolytic solution of the battery of Example 13 was 30% by volume of ethylene carbonate (A), 25% by volume of dimethyl carbonate (B), 25% by volume of diethyl carbonate (C), and 20% by volume of ethylmethyl carbonate (D). Lithium hexafluorophosphate (E) was dissolved in a mixed solvent to prepare a solution of 0.1.
8 mol / liter, vinylene carbonate (F)
1.0% was added (the same applies to the electrolytic solutions of the batteries of Examples and Comparative Examples described below in Table 1 ). The batteries of Comparative Examples 23 to 27 and 4 to 7 are the same as those of Examples 13 to
Like the battery of No. 22 , each has a rated capacity of 80 Ah.

【0046】次に、このようにして作製した各電池につ
いて、次の試験1及び試験2による試験を行った。試験
1及び試験2の試験結果を次表に示す。[試験1] 室
温で、4.2V定電圧、制限電流80A、4時間充電
し、1時間の休止の後、80A、160A、240A各
定電流で10秒間放電し、10秒目の電圧をグラフの縦
軸に、横軸電流に対してプロットし、直線近似する。こ
の直線が電圧2.8Vと交差する電流値と電圧値2.8
Vとの積を出力(kW)とする。[試験2] 室温で80
A定電流で連続充電し、電池挙動を観察した。現象は、
開裂弁開裂の後、ガス放出が起こる。このガス放出の程
度を示すために、現象発生後の電池重量を測定し、現象
前の重量に対する百分率で示す。また、ガス放出後、電
池容器の変形の有無を確認する。
Next, for each of the batteries thus manufactured, the following tests 1 and 2 were conducted. The test results of Test 1 and Test 2 are shown in Table 2 below. [Test 1] room
Charge at 4.2V constant voltage, limited current 80A for 4 hours at high temperature
After 1 hour rest, 80A, 160A, 240A
Discharge at a constant current for 10 seconds, and change the voltage at the 10th second
On the axis, the current is plotted against the horizontal axis, and a linear approximation is made. This
And the voltage value 2.8 where the straight line intersects the voltage 2.8V
The product of V and the output (kW). [Test 2] 80 at room temperature
The battery behavior was observed by continuously charging at A constant current. The phenomenon is
After the cleaving valve is cleaved, gas release occurs. The extent of this gas release
In order to show the degree, weigh the battery after the phenomenon
Shown as a percentage of the previous weight. Also, after releasing the gas,
Check if the pond container is deformed.

【0047】[0047]

【表2】 [Table 2]

【0048】本実施形態のすべての実施例の電池では、
試験2の結果、開裂弁開裂後はガスの穏やかな放出のみ
で、電池の変形もなく、電池重量は81〜84%と高い
維持率を確保しており、電池内容物は殆ど放出されてい
ない、極めて穏やかな挙動であった。施例13〜22
の電池は、試験1の結果、5.1〜5.4kWと高出力
が得られた。
In all the batteries of this embodiment,
As a result of the test 2, after the cleaving valve was cleaved, only a gentle discharge of gas was observed, the battery was not deformed, the battery weight was as high as 81 to 84%, and a high maintenance rate was secured, and the battery contents were hardly discharged. The behavior was extremely gentle. Real施例13-22
As a result of the test 1, the battery of No. 1 obtained a high output of 5.1 to 5.4 kW.

【0049】一方、比較例23の電池では、電解液の溶
媒組成で、ジメチルカーボネート(B)が15体積%を
下回っており、試験1の結果、出力が4.6kWと低下
した。
On the other hand, in the battery of Comparative Example 23, the solvent composition of the electrolytic solution contained less than 15% by volume of dimethyl carbonate (B), and as a result of Test 1, the output decreased to 4.6 kW.

【0050】比較例24の電池では、電解液の溶媒組成
で、エチルメチルカーボネート(D)が10体積%を下
回っており、試験1の結果、出力が4.7kWと低下し
た。
In the battery of Comparative Example 24, the solvent composition of the electrolytic solution contained less than 10% by volume of ethylmethyl carbonate (D), and as a result of Test 1, the output decreased to 4.7 kW.

【0051】比較例25の電池では、電解液の溶媒組成
で、ジメチルカーボネート(B)とジエチルカーボネー
ト(C)とエチルメチルカーボネート(D)の総量が5
0体積%を下回っており、試験1の結果、出力が4.4
kWと低下した。
In the battery of Comparative Example 25, the total amount of dimethyl carbonate (B), diethyl carbonate (C) and ethyl methyl carbonate (D) was 5 in the solvent composition of the electrolytic solution.
It is less than 0% by volume, and as a result of Test 1, the output is 4.4.
It was lowered to kW.

【0052】比較例26の電池では、6フッ化燐酸リチ
ウム(E)溶解後の電解液の濃度を0.6モル/リット
ルとしたので、試験1の結果、出力が4.4kWと低下
した。
In the battery of Comparative Example 26, the concentration of the electrolytic solution after dissolving lithium hexafluorophosphate (E) was set to 0.6 mol / liter, and as a result of Test 1, the output decreased to 4.4 kW.

【0053】比較例27の電池では、ビニレンカーボネ
ート(F)の添加量が2%を越えており、試験1の結
果、出力が4.7kWと低下した。
In the battery of Comparative Example 27, the amount of vinylene carbonate (F) added exceeded 2%, and as a result of Test 1, the output decreased to 4.7 kW.

【0054】較例4の電池では、エチレンカーボネー
ト(A)が30体積%を下回っており、試験1の結果
5.2kWと高出力が得られているものの、試験2の結
果では開裂弁開裂後、開裂弁から、電池内容物の一部の
放出を伴って比較的激しくガスが放出しており、現象後
の電池重量は72%であったことからガス放出の程度が
大きいことがわかる。
[0054] In the battery of specific Comparative Examples 4, ethylene carbonate (A) is below 30 vol%, although the results 5.2kW and high power test 1 is obtained, cleavage valve cleavage results of Test 2 After that, the gas was relatively violently discharged from the cleaving valve along with the discharge of a part of the battery contents, and the battery weight after the phenomenon was 72%, which shows that the degree of gas discharge is large.

【0055】比較例5の電池では、試験1の結果、出力
が5.2kWと高くなっているが、電解液の溶媒組成
で、ジエチルカーボネート(C)が15体積%を下回っ
ており、試験2の結果、開裂弁開裂後、開裂弁から、電
池内容物の一部の放出を伴って比較的激しくガスが放出
しており、電池容器の変形は見られていないが、現象後
の電池重量は71%となったことから、ガス放出の程度
が大きいことがわかる。
In the battery of Comparative Example 5, the output of Test 1 was as high as 5.2 kW, but the solvent composition of the electrolytic solution contained less than 15% by volume of diethyl carbonate (C). As a result, after the cleaving valve was cleaved, gas was relatively violently discharged from the cleaving valve with the release of a part of the battery contents, and no deformation of the battery container was observed. From 71%, it can be seen that the degree of gas release is large.

【0056】比較例6の電池では、6フッ化燐酸リチウ
ム(E)溶解後の電解液の濃度を1.6モル/リットル
としたので、試験1の結果、出力が5.7kWと高くな
っているが、試験2の結果、開裂弁開裂後、開裂弁か
ら、電池内容物の一部の放出を伴って比較的激しくガス
が放出しており、現象後の電池重量は70%となった。
また、電池容器が僅かに膨らむ変形が見られたことか
ら、ガス放出の程度が大きいことがわかる。
In the battery of Comparative Example 6, since the concentration of the electrolytic solution after dissolving lithium hexafluorophosphate (E) was 1.6 mol / liter, the result of Test 1 was a high output of 5.7 kW. However, as a result of Test 2, after the cleaving valve was cleaved, gas was relatively violently discharged from the cleaving valve along with the release of a part of the battery contents, and the battery weight after the phenomenon was 70%.
In addition, since the battery container was found to be slightly bulged, it was found that the degree of gas release was large.

【0057】比較例7の電池では、ビニレンカーボネー
ト(F)の添加量が0.5%を下回っており、5.6k
Wと高出力が得られているものの、試験2の結果、開裂
弁開裂後、開裂弁から、電池内容物の一部の放出を伴っ
て比較的激しくガスが放出しており、現象後の電池重量
は70%となった。また、電池容器が僅かに膨らむ変形
が見られたことから、ガス放出の程度が大きいことがわ
かる。
In the battery of Comparative Example 7, the amount of vinylene carbonate (F) added was less than 0.5%, and 5.6k.
Although a high output of W was obtained, as a result of Test 2, after the cleaving valve was cleaved, gas was relatively violently discharged from the cleaving valve accompanied by partial discharge of the battery contents. The weight was 70%. In addition, since the battery container was found to be slightly bulged, it was found that the degree of gas release was large.

【0058】従って、本実施形態における実施例13〜
22の各電池はいずれも、電解液の溶媒をエチレンカー
ボネート(A)、ジメチルカーボネート(B)、ジエチ
ルカーボネート(C)及びエチルメチルカーボネート
(D)の混合溶媒としたものあってその混合体積比にお
いてエチレンカーボネート(A)30%以上、ジエチル
カーボネート(C)15%以上とし、電解液の溶質を6
フッ化燐酸リチウム(E)として6フッ化燐酸リチウム
溶解後の電解液の濃度を1.5モル/リットル以下と
し、この電解液にビニレンカーボネート(F)を0.5
%以上添加して電解液としたものであり、高容量、高出
力でありながらも、電池が異常な状態にさらされた場合
の挙動が極めて穏やかで、安全性に優れた電池であると
いえる。特に電気自動車用電源としての電池は、比較的
高容量、高出力な特性が要求されるので、実施例13〜
22の電池のように、高容量、高出力で、極めて安全性
の高い電池は、電気自動車の電源に適している。
Therefore, the thirteenth embodiment of the present embodiment
In each of the batteries No. 22 and No. 22 , the solvent of the electrolytic solution was a mixed solvent of ethylene carbonate (A), dimethyl carbonate (B), diethyl carbonate (C) and ethyl methyl carbonate (D). Ethylene carbonate (A) 30% or more, diethyl carbonate (C) 15% or more, the solute of the electrolytic solution 6
The concentration of the electrolyte solution after dissolving lithium hexafluorophosphate (E) as lithium fluorophosphate (E) was set to 1.5 mol / liter or less, and vinylene carbonate (F) was added to 0.5
% And added as an electrolytic solution, it has a high capacity and a high output, but the behavior is extremely gentle when the battery is exposed to abnormal conditions, and it can be said that the battery has excellent safety. . In particular, a battery as a power source for an electric vehicle is required to have relatively high capacity and high output characteristics.
Batteries with high capacity, high output, and extremely high safety, such as the battery No. 22 , are suitable as a power source for electric vehicles.

【0059】また、上述したように本実施形態の実施例
13〜22の電池は5.1kW以上の高出力が得られる
が、これらの電池はいずれも、混合溶媒の混合体積比を
エチレンカーボネート(A)30%〜50%、ジメチル
カーボネート(B)15%以上、ジエチルカーボネート
(C)15%以上、エチルメチルカーボネート(D)1
0%以上とし、6フッ化燐酸リチウム(E)溶解後の電
解液の濃度を0.7〜1.3モル/リットルとし、この
電解液にビニレンカーボネート(F)を0.5〜2.0
%添加して電解液としたものである。このとき、実施例
17及び比較例25の電池からも明らかな通り、ジメチ
ルカーボネート(B)、ジエチルカーボネート(C)及
びエチルメチルカーボネート(D)の各溶媒の合計体積
比を混合溶媒の50%以上とすることが好ましい。
Further, as described above, the batteries of Examples 13 to 22 of the present embodiment can obtain a high output of 5.1 kW or more, but in all of these batteries, the mixing volume ratio of the mixed solvent was ethylene carbonate ( A) 30% to 50%, dimethyl carbonate (B) 15% or more, diethyl carbonate (C) 15% or more, ethyl methyl carbonate (D) 1
0% or more, the concentration of the electrolytic solution after dissolving the lithium hexafluorophosphate (E) is 0.7 to 1.3 mol / liter, and vinylene carbonate (F) is 0.5 to 2.0 in this electrolytic solution.
% To make an electrolytic solution. At this time, as apparent from the batteries of Example 17 and Comparative Example 25, the total volume ratio of each solvent of dimethyl carbonate (B), diethyl carbonate (C) and ethyl methyl carbonate (D) was 50% or more of the mixed solvent. It is preferable that

【0060】なお、以上の実施形態では、電流遮断機構
を有していない円筒形リチウムイオン電池について例示
したが、本発明は電流遮断機構の有無により制限される
ものではない。電流遮断機構を有する電池でも、上述し
たように電池が異常な状態にさらされたときには、電流
遮断機構により電流が遮断されないことも想定されるの
で、本発明を適用することにより電池の安全性を更に向
上させることができる。
In the above embodiment, the cylindrical lithium ion battery having no current interruption mechanism has been exemplified, but the present invention is not limited by the presence or absence of the current interruption mechanism. Even with a battery having a current cutoff mechanism, it is assumed that the current will not be cut off by the current cutoff mechanism when the battery is exposed to an abnormal state as described above, and therefore the safety of the battery can be improved by applying the present invention. It can be further improved.

【0061】また、以上の実施形態では電気自動車用電
源等に用いられる大形の二次電池について例示したが、
電池の大きさ、電池容量には限定されないことはいうま
でもない。
In the above embodiment, the large-sized secondary battery used as the power source for the electric vehicle is exemplified.
Needless to say, the size and capacity of the battery are not limited.

【0062】また、以上の実施形態では、絶縁被覆8
に、基材がポリイミドで、その片面にヘキサメタアクリ
レートからなる粘着剤を塗布した粘着テープを用いた
が、これに限定されるものではなく、例えば、基材がポ
リプロピレンやポリエチレン等のポリオレフィンで、そ
の片面又は両面にヘキサメタアクリレートやブチルアク
リレート等のアクリル系粘着剤を塗布した粘着テープ
や、粘着剤を塗布しないポリオレフィンやポリイミドか
らなるテープ等を好適に使用することができる。
In the above embodiment, the insulating coating 8
In, the substrate is a polyimide, using an adhesive tape coated with an adhesive consisting of hexamethacrylate on one side, but not limited to this, for example, the substrate is a polyolefin such as polypropylene or polyethylene, A pressure-sensitive adhesive tape having an acrylic pressure-sensitive adhesive such as hexamethacrylate or butyl acrylate coated on one or both sides thereof, or a tape made of polyolefin or polyimide not coated with a pressure-sensitive adhesive can be preferably used.

【0063】更に、以上の実施形態ではリチウムイオン
電池用の正極にマンガン酸リチウム、負極に非晶質炭素
を用いたが、本発明の電池の製造方法には特に制限はな
く、また結着剤、負極活物質も通常用いられているいず
れのものも使用可能である。しかし、高容量、高出力
で、かつ安全性を確実に確保するためには、正極活物質
としてリチウム・コバルト複合酸化物、リチウム・ニッ
ケル複合酸化物ではなく、リチウムマンガン複酸化物用
いることが必要である。
Furthermore, in the above embodiment, lithium manganate was used for the positive electrode and lithium carbon for the negative electrode for the lithium ion battery, but the method for producing the battery of the present invention is not particularly limited, and the binder is used. Any of the commonly used negative electrode active materials can be used. However, in order to ensure high capacity, high output, and safety, it is necessary to use lithium-manganese composite oxide as the positive electrode active material, not lithium-cobalt composite oxide or lithium-nickel composite oxide. Is.

【0064】また、以上の実施形態ではポリフッ化ビニ
リデンを結着剤として使用したが、これ以外のリチウム
イオン電池用極板活物質結着剤としては、テフロン、ポ
リエチレン、ポリスチレン、ポリブタジエン、ブチルゴ
ム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化
ゴム、ニトロセルロース、シアノエチルセルロース、各
種ラテックス、アクリロニトリル、フッ化ビニル、フッ
化ビニリデン、フッ化プロピレン、フッ化クロロプレン
等の重合体及びこれらの混合体等がある。
Although polyvinylidene fluoride is used as the binder in the above embodiments, other electrode active material binders for lithium ion batteries include Teflon, polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile. Polymers such as rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethylcellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride and chloroprene fluoride, and mixtures thereof are available.

【0065】更に、以上の実施形態に示した以外のリチ
ウムイオン電池用正極活物質としては、リチウムを挿入
・脱離可能な材料であり、予め十分な量のリチウムを挿
入したリチウムマンガン複酸化物が好ましく、スピネル
構造を有したマンガン酸リチウムや、結晶中のマンガン
やリチウムの一部をそれら以外の元素で置換又はドープ
した材料を使用してもよい。
Further, as the positive electrode active material for lithium ion batteries other than those shown in the above embodiments, a material capable of inserting and releasing lithium, and a lithium manganese compound oxide into which a sufficient amount of lithium has been inserted in advance is used. However, lithium manganate having a spinel structure or a material in which a part of manganese or lithium in the crystal is replaced or doped with an element other than these may be used.

【0066】そして、以上の実施形態に示した以外のリ
チウムイオン電池用負極活物質を使用しても本発明の適
用は制限されない。例えば、天然黒鉛や、人造の各種黒
鉛材、コークスなどの炭素質材料等を使用してもよく、
その粒子形状においても、鱗片状、球状、繊維状、塊状
等、特に制限されるものではない。
The application of the present invention is not limited even if a negative electrode active material for lithium ion batteries other than those shown in the above embodiments is used. For example, natural graphite, various artificial graphite materials, and carbonaceous materials such as coke may be used.
The shape of the particles is not particularly limited, and may be scaly, spherical, fibrous, lumpy, or the like.

【0067】[0067]

【発明の効果】以上説明したように、本発明によれば、
ガスを放出する内圧低減機構を備えた円筒形リチウムイ
オン電池では円筒形電池容器の内圧上昇を防止するため
に、例えば所定内圧で開裂してガスを円筒形電池容器外
へ放出する開裂弁等の内圧低減機構を有しているが、電
解液の溶媒を少なくともエチレンカーボネート、ジメチ
ルカーボネート、ジエチルカーボネート及びエチルメチ
ルカーボネートを含む混合溶媒であってその混合体積比
においてエチレンカーボネートを30%乃至50%、ジ
メチルカーボネートを15%以上、ジエチルカーボネー
トを15%以上、エチルメチルカーボネートを10%以
とし、電解液の溶質を6フッ化燐酸リチウム(LiP
)として該溶質溶解後の電解液の濃度を0.7モル
/リットル乃至1.3モル/リットルとし、この電解液
0.5%乃至2.0%のビニレンカーボネートを添加
した電解液とすることにより、内圧低減機構からのガス
放出が急激に行われることなく極めて穏やかに行われる
ので、安全性に優れると共に、高出力の円筒形リチウム
イオン電池を実現することができる、という効果を得る
ことができる。
As described above, according to the present invention,
In a cylindrical lithium-ion battery equipped with an internal pressure reduction mechanism that releases gas, in order to prevent an increase in internal pressure of the cylindrical battery container, for example, a cleavage valve that cleaves at a predetermined internal pressure to release the gas to the outside of the cylindrical battery container. Although it has a mechanism to reduce internal pressure, the solvent of the electrolytic solution should be at least ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl ether.
30% to 50% of ethylene carbonate in a mixture volume ratio a mixed solvent containing Le carbonate, di
More than 15% methyl carbonate, diethyl carbonate
15% or more, ethyl methyl carbonate 10% or more
Above , the solute of the electrolyte is lithium hexafluorophosphate (LiP
The concentration of the electrolyte solution after dissolving the solute is 0.7 mol as F 6 ).
/ L to 1.3 mol / L, and by using 0.5% to 2.0% of vinylene carbonate added to this electrolyte, gas can be rapidly released from the internal pressure reducing mechanism. since no is very gently performed, excellent safety Rutotomoni, cylindrical lithium high output
The effect that an ion battery can be realized can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した第1の実施の形態の円筒形リ
チウム二次電池の断面図である。
FIG. 1 is a cross-sectional view of a cylindrical lithium secondary battery according to a first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極外部端子 1’ 負極外部端子 2 ナット 3 第1のセラミックワッシャ 3’ 第2のセラミックワッシャ 4 電池蓋 5 電池容器(円筒形電池容器) 6 捲回群(電極捲回群) 7 鍔部 8 絶縁被覆 9 リード片 10 開裂弁 11 金属ワッシャ 12 Oリング 13 注液口 20 円筒形リチウムイオン電池 1 Positive external terminal 1'negative electrode external terminal 2 nuts 3 First ceramic washer 3'second ceramic washer 4 Battery lid 5 Battery case (cylindrical battery case) 6 winding group (electrode winding group) 7 collar part 8 Insulation coating 9 lead pieces 10 Cleavage valve 11 metal washers 12 O-ring 13 Injection port 20 Cylindrical lithium-ion battery

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開2000−138071(JP,A) 特開 平5−211070(JP,A) 特開 平5−13088(JP,A) 特開 平5−283104(JP,A) 特開 平9−63642(JP,A) 特開 平8−45545(JP,A) 特開 平8−96852(JP,A) 特開 平7−122296(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 2/12 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP 2000-138071 (JP, A) JP 5-211070 (JP, A) JP 5-13088 (JP, A) JP 5-283104 (JP, A) JP-A-9-63642 (JP, A) JP-A-8-45545 (JP, A) JP-A-8-96852 (JP, A) JP-A-7-122296 (JP, A) (JP-A) 58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/40 H01M 2/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 円筒形電池容器に正極、負極及びセパレ
ータを捲回した電極捲回群と該電極捲回群から各極端子
へ接続するための接続部と電解液とを内蔵し、前記電池
容器の内圧の上昇に応じてガスを放出する内圧低減機構
を備えた円筒形リチウムイオン電池において、前記正極
にリチウムマンガン複酸化物を含む活物質合剤が塗布さ
れ、前記電解液の溶媒は少なくともエチレンカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート及び
エチルメチルカーボネートを含む混合溶媒であってその
混合体積比において前記エチレンカーボネートが30%
乃至50%、前記ジメチルカーボネートが15%以上、
前記ジエチルカーボネートが15%以上、前記エチルメ
チルカーボネートが10%以上であり、前記電解液の溶
質は6フッ化燐酸リチウム(LiPF)であって該溶
質溶解後の電解液の濃度は0.7モル/リットル乃至
1.3モル/リットルであり、前記電解液には0.5%
乃至2.0%のビニレンカーボネートが添加されている
ことを特徴とする円筒形リチウムイオン電池。
1. A cylindrical battery container, which contains therein an electrode winding group in which a positive electrode, a negative electrode, and a separator are wound, a connecting portion for connecting the electrode winding group to each electrode terminal, and an electrolytic solution. In a cylindrical lithium-ion battery having an internal pressure reduction mechanism that releases gas according to an increase in internal pressure of the container, an active material mixture containing lithium manganese oxide is applied to the positive electrode, and the solvent of the electrolytic solution is at least Ethylene carbonate, dimethyl carbonate, diethyl carbonate and
A mixed solvent containing ethyl methyl carbonate , wherein the ethylene carbonate is 30% in the mixed volume ratio.
To 50%, the dimethyl carbonate is 15% or more,
15% or more of the diethyl carbonate,
Chill carbonate is not less than 10%, the solute of the electrolyte concentration of the electrolytic solution after the A and solute dissolved hexafluoro lithium phosphate (LiPF 6) is to 0.7 mol / l
1.3 mol / l , 0.5% in the electrolyte
A cylindrical lithium-ion battery, to which 2.0 to 2.0% of vinylene carbonate is added.
【請求項2】 前記ジメチルカーボネート、ジエチルカ
ーボネート及びエチルメチルカーボネートの各溶媒の合
計体積比は前記混合溶媒において50%以上であること
を特徴とする請求項1に記載の円筒形リチウムイオン電
池。
2. The cylindrical lithium ion battery according to claim 1 , wherein a total volume ratio of the respective solvents of dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate is 50% or more in the mixed solvent.
JP11960999A 1999-04-27 1999-04-27 Cylindrical lithium-ion battery Expired - Fee Related JP3440870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11960999A JP3440870B2 (en) 1999-04-27 1999-04-27 Cylindrical lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11960999A JP3440870B2 (en) 1999-04-27 1999-04-27 Cylindrical lithium-ion battery

Publications (2)

Publication Number Publication Date
JP2000311706A JP2000311706A (en) 2000-11-07
JP3440870B2 true JP3440870B2 (en) 2003-08-25

Family

ID=14765658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11960999A Expired - Fee Related JP3440870B2 (en) 1999-04-27 1999-04-27 Cylindrical lithium-ion battery

Country Status (1)

Country Link
JP (1) JP3440870B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9929698D0 (en) * 1999-12-15 2000-02-09 Danionics As Non-aqueous electrochemical cell
CN1299387C (en) 2001-01-18 2007-02-07 三洋电机株式会社 Lithium secondary battery
KR100765053B1 (en) * 2003-06-09 2007-10-09 산요덴키가부시키가이샤 Lithium secondary battery and method for producing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69127266T2 (en) * 1990-12-12 1998-03-12 Sanyo Electric Co., Ltd., Moriguchi, Osaka Non-aqueous electrolyte cell
JP3229635B2 (en) * 1991-11-12 2001-11-19 三洋電機株式会社 Lithium secondary battery
JP2845069B2 (en) * 1992-01-13 1999-01-13 日本電池株式会社 Organic electrolyte secondary battery
JP3213459B2 (en) * 1993-10-20 2001-10-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery
FR2719161B1 (en) * 1994-04-22 1996-08-02 Accumulateurs Fixes Electrochemical rechargeable lithium battery with carbon anode.
JPH0896852A (en) * 1994-07-29 1996-04-12 Sony Corp Nonaqueous electrolytic secondary battery
JPH0963642A (en) * 1995-08-28 1997-03-07 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JP3438636B2 (en) * 1998-08-27 2003-08-18 宇部興産株式会社 Non-aqueous electrolyte and lithium secondary battery using the same

Also Published As

Publication number Publication date
JP2000311706A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
JP3541723B2 (en) Cylindrical lithium-ion battery
JP2001143762A (en) Cylindrical lithium ion battery
JP4305035B2 (en) Winding cylindrical lithium-ion battery
JP2003308842A (en) Nonaqueous electrolyte lithium secondary battery
JP4752154B2 (en) Method for manufacturing lithium secondary battery
JP4055307B2 (en) Cylindrical lithium-ion battery
JP2002015774A (en) Nonaqueous electrolyte lithium secondary cell
JP2001229970A (en) Cylindrical lithium battery
JP2000311677A (en) Rolled type cylindrical lithium secondary battery
JP3440870B2 (en) Cylindrical lithium-ion battery
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP2000311705A (en) Cylindrical lithium ion battery
JP3988384B2 (en) Non-aqueous electrolyte secondary battery
JP2004186130A (en) Non-aqueous lithium secondary battery
JP2002373701A (en) Method of manufacturing for nonaqueous electrolyte secondary battery
JP3511966B2 (en) Cylindrical lithium-ion battery
JP2001185220A (en) Cylindrical lithium ion battery
JP3783503B2 (en) Lithium secondary battery
JP4839518B2 (en) Non-aqueous electrolyte secondary battery
JP3518484B2 (en) Lithium ion battery
JP4839517B2 (en) Nonaqueous electrolyte secondary battery
JP3719139B2 (en) Non-aqueous electrolyte secondary battery
JP3624793B2 (en) Lithium ion battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JP2001229974A (en) Cylindrical lithium ion battery

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees