JP2002373701A - Method of manufacturing for nonaqueous electrolyte secondary battery - Google Patents

Method of manufacturing for nonaqueous electrolyte secondary battery

Info

Publication number
JP2002373701A
JP2002373701A JP2001179456A JP2001179456A JP2002373701A JP 2002373701 A JP2002373701 A JP 2002373701A JP 2001179456 A JP2001179456 A JP 2001179456A JP 2001179456 A JP2001179456 A JP 2001179456A JP 2002373701 A JP2002373701 A JP 2002373701A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode
positive electrode
binder
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001179456A
Other languages
Japanese (ja)
Other versions
JP4904639B2 (en
Inventor
Kenji Nakai
賢治 中井
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2001179456A priority Critical patent/JP4904639B2/en
Publication of JP2002373701A publication Critical patent/JP2002373701A/en
Application granted granted Critical
Publication of JP4904639B2 publication Critical patent/JP4904639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a nonaqueous electrolyte secondary battery capable of inhibiting a decrease in battery performance and reducing manufacturing costs. SOLUTION: In a preparation step, a positive electrode is fabricated using a positive electrode mix mixed with a binder containing lithium manganate, graphite, and an acrylic polymer of polyacrylic acid or polyacrylic acid ester, and a negative electrode is fabricated using a negative mix mixed with a binder containing graphite or amorphous carbon, and an acrylic polymer of polyacrylic acid or polyacrylic acid ester. In a fabrication step, the positive and negative electrodes are wound via a separator made from polyethylene to fabricate a group of windings. In a drying step, it is heated and dried at reduced pressure. The binders containing the acrylic polymers absorb moisture in the positive and negative electrodes, with the moisture being eliminated in the drying step.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池の製造方法に係り、特に、非水電解液に浸潤した電極
捲回群を有する非水電解液二次電池の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery, and more particularly to a method for manufacturing a non-aqueous electrolyte secondary battery having a group of electrode windings soaked in the non-aqueous electrolyte. .

【0002】[0002]

【従来の技術】非水電解液二次電池を代表するリチウム
イオン二次電池は、高エネルギー密度であるメリットを
活かして、主にVTRカメラやノートパソコン、携帯電
話等のポータブル機器の電源に使用されている。この電
池の内部構造は、通常以下に示されるような捲回式構造
とされている。電極は正極、負極共に活物質が金属箔に
塗着された帯状であり、セパレ−タを挟んで正極、負極
が直接接触しないように断面が渦巻状に捲回され、電極
捲回群が形成されている。この電極捲回群が電池容器と
なる円筒状の電池缶に収納され、電解液注液後、封口さ
れている。
2. Description of the Related Art Lithium ion secondary batteries, which represent non-aqueous electrolyte secondary batteries, are mainly used for powering portable devices such as VTR cameras, notebook computers, and mobile phones, taking advantage of their high energy density. Have been. The internal structure of this battery is usually a wound structure as shown below. The electrode is a belt-like shape in which the active material is coated on a metal foil for both the positive electrode and the negative electrode. The cross section is spirally wound so that the positive electrode and the negative electrode do not come into direct contact with each other with a separator interposed therebetween, forming an electrode winding group. Have been. The electrode wound group is housed in a cylindrical battery can serving as a battery container, and is sealed after the electrolyte is injected.

【0003】一般的な円筒形リチウムイオン二次電池の
寸法は、18650型と呼ばれる、直径が18mm、高
さ65mmであり、小形民生用リチウムイオン電池とし
て広く普及している。18650型リチウムイオン二次
電池の正極活物質には、高容量、長寿命を特徴とするコ
バルト酸リチウムが主として用いられており、電池容量
は、おおむね1.3Ah〜1.7Ah、出力はおよそ1
0W程度である。
The size of a general cylindrical lithium ion secondary battery is 18650 type, which has a diameter of 18 mm and a height of 65 mm, and is widely used as a small consumer lithium ion battery. As the positive electrode active material of the 18650 type lithium ion secondary battery, lithium cobalt oxide characterized by high capacity and long life is mainly used. The battery capacity is approximately 1.3 Ah to 1.7 Ah, and the output is approximately 1 Ah.
It is about 0W.

【0004】一方、自動車産業界においては環境問題に
対応すべく、排出ガスのない、動力源を完全に電池のみ
にした電気自動車と、内燃機関エンジンと電池との両方
を動力源とするハイブリッド(電気)自動車の開発が加
速され、一部実用化の段階にきている。
On the other hand, in the automobile industry, in order to cope with environmental problems, an electric vehicle having no exhaust gas and having only a power source entirely of a battery and a hybrid having both an internal combustion engine and a battery as a power source ( The development of electric vehicles has been accelerated and some of them are now in practical use.

【0005】電気自動車の電源となる電池には当然高出
力、高エネルギーが得られる特性が要求され、この要求
にマッチした電池として非水電解液二次電池が注目され
ている。電気自動車の普及のためには、電池の低価格化
が必須であり、そのためには、低コスト電池材料が求め
られ、例えば、正極活物質であれば、資源的に豊富なマ
ンガンの酸化物として、スピネル結晶構造を有したマン
ガン酸リチウムLiMnが特に注目され、電池の
高性能化を狙った改善がなされてきている。具体的には
リチウムとマンガンの原子比(Li/Mn)を0.5よ
りも大きいリチウムリッチの組成にしたり、スピネル結
晶中のマンガン原子の一部を、Fe、Co、Ni、C
r、Cu、Al、Mg、等の他の金属元素に置換した
り、ドープする試みがなされている。コバルト酸リチウ
ムやマンガン酸リチウム等の正極活物質と導電材として
黒鉛やアセチレンブラック等の炭素材とバインダとを混
合した正極合材が、箔状集電体に帯状に塗着し、必要に
応じて厚さ方向に圧縮することで電極が形成されてい
る。バインダ(結着剤)には一般にポリフッ化ビニリデ
ン(PVDF)が用いられている。
[0005] A battery serving as a power source of an electric vehicle is naturally required to have characteristics capable of obtaining high output and high energy, and a non-aqueous electrolyte secondary battery has attracted attention as a battery that meets these requirements. For the spread of electric vehicles, it is essential to lower the price of batteries, and for that purpose, low-cost battery materials are required. In particular, lithium manganate LiMn 2 O 4 having a spinel crystal structure has attracted particular attention, and improvements have been made for higher performance of batteries. Specifically, a lithium-rich composition in which the atomic ratio of lithium to manganese (Li / Mn) is larger than 0.5 or a part of manganese atoms in the spinel crystal is replaced with Fe, Co, Ni, C
Attempts have been made to substitute or dope other metal elements such as r, Cu, Al, and Mg. A positive electrode mixture obtained by mixing a positive electrode active material such as lithium cobaltate or lithium manganate, a carbon material such as graphite or acetylene black as a conductive material, and a binder is applied to the foil-shaped current collector in a strip shape. The electrode is formed by compressing in the thickness direction. Generally, polyvinylidene fluoride (PVDF) is used as a binder (binder).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、非水電
解液二次電池の場合、電池内に水分が混入すると電極が
劣化したり、充放電電極反応に重要な機能を果たしてい
る非水電解液中に拡散されたリチウムイオンと水分とが
反応することにより、リチウムイオンの移動を阻害し、
充放電容量や放電出力の低下、更には寿命低下を引き起
こす。従って、水分の混入を避けるために、電池の製造
工程では乾燥雰囲気が必要となり、コスト高の一因とな
っている。コスト低減のために非乾燥雰囲気で電極や電
極捲回群を作製することはできるが、一般にバインダに
用いられるPVDFは水分を吸収しやすく、しかも吸収
した水分は、その後に加熱、減圧等の操作を行っても簡
単には除去することができない。PVDF中に残留した
水分は、電池が充放電されたときに非水電解液中に洩出
し、その結果、非水電解液が劣化して電池性能の低下を
招く。とりわけ、負極炭素材に非晶質炭素を用いた場合
には、非晶質炭素が水分を吸着しやすい性質を有するた
め、負極の劣化が著しくなり、電池性能が著しく低下す
る、という問題点があった。
However, in the case of a non-aqueous electrolyte secondary battery, if water is mixed in the battery, the electrode is deteriorated or the non-aqueous electrolyte which plays an important function in the charge / discharge electrode reaction is not used. By reacting the lithium ions diffused with the water and the water, the movement of the lithium ions is inhibited,
This causes a reduction in charge / discharge capacity and discharge output, and a reduction in life. Therefore, a dry atmosphere is required in the battery manufacturing process in order to avoid the incorporation of moisture, which contributes to high cost. Although electrodes and electrode winding groups can be manufactured in a non-dry atmosphere to reduce costs, PVDF, which is generally used as a binder, easily absorbs moisture, and the absorbed moisture is then subjected to operations such as heating and decompression. Cannot be easily removed. Moisture remaining in the PVDF leaks into the non-aqueous electrolyte when the battery is charged and discharged, and as a result, the non-aqueous electrolyte is deteriorated, leading to a decrease in battery performance. In particular, when amorphous carbon is used as the negative electrode carbon material, the amorphous carbon has a property of easily adsorbing moisture, so that the negative electrode is significantly deteriorated and the battery performance is significantly lowered. there were.

【0007】本発明は上記事案に鑑み、電池性能の低下
を抑制し、製造コストの低減を図ることができる非水電
解液二次電池の製造方法を提供することを課題とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a method of manufacturing a non-aqueous electrolyte secondary battery capable of suppressing a decrease in battery performance and reducing manufacturing costs.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の第一態様は、非水電解液に浸潤した電極捲
回群を有する非水電解液二次電池の製造方法であって、
リチウム遷移金属複酸化物、導電材及びアクリル系重合
体を含むバインダを混合した正極合材を帯状集電体に塗
着した非乾燥状態の正極と、炭素材及びアクリル系重合
体を含むバインダを混合した負極合材を帯状集電体に塗
着した非乾燥状態の負極と、リチウムイオンが通過可能
な微多孔を有するセパレータとを準備し、前記正極及び
負極を、前記セパレータを介して捲回して電極捲回群を
作製し、前記電極捲回群を減圧加熱下で乾燥させる、ス
テップを含む。
In order to solve the above-mentioned problems, a first aspect of the present invention is a method for producing a non-aqueous electrolyte secondary battery having a group of electrode windings soaked in a non-aqueous electrolyte. hand,
Lithium transition metal double oxide, a non-dried positive electrode coated with a positive electrode mixture obtained by mixing a binder containing a conductive material and an acrylic polymer, and a binder containing a carbon material and an acrylic polymer. Preparing a non-dried negative electrode in which the mixed negative electrode mixture is applied to a belt-shaped current collector and a separator having microporosity through which lithium ions can pass, and winding the positive electrode and the negative electrode through the separator To form an electrode winding group, and drying the electrode winding group under reduced pressure heating.

【0009】本態様では、非水電解液中に水分が洩入す
ると、電極の劣化や電池性能の低下を引き起こすので、
準備ステップでアクリル系重合体を含むバインダを正極
合材及び負極合材に混合・含有させ、バインダにより正
極及び負極中の水分を吸収し、作製ステップで電極捲回
群を作製した後に、乾燥ステップで電極捲回群を減圧加
熱下で乾燥させることで、非乾燥状態の正極及び負極の
バインダに吸収された水分が除去される。このため、水
分混入による電池性能の低下を抑制することができると
共に、アクリル系重合体を含むバインダを用いた正極及
び負極は乾燥状態では可撓性が低下するので、作製ステ
ップで非乾燥状態のまま捲回して電極捲回群を作製する
ため、捲回作業が容易となり、電極の損傷を防ぐことが
できる。また、正極及び負極にアクリル系重合体を含む
バインダを用いることで、電極を非乾燥状態のまま電極
捲回群を作製することができるので、準備ステップや作
製ステップをコスト高となる乾燥雰囲気で行う必要がな
く、コスト低減を図ることができる。
In this embodiment, leakage of water into the non-aqueous electrolyte causes deterioration of electrodes and deterioration of battery performance.
In the preparation step, a binder containing an acrylic polymer is mixed and contained in the positive electrode mixture and the negative electrode mixture, the binder absorbs moisture in the positive electrode and the negative electrode, and after the electrode winding group is produced in the production step, a drying step is performed. The electrode winding group is dried under reduced pressure and heating to remove moisture absorbed by the non-dried positive and negative electrode binders. For this reason, it is possible to suppress a decrease in battery performance due to water contamination, and since the flexibility of the positive electrode and the negative electrode using a binder containing an acrylic polymer decreases in a dry state, the non-dry state in the manufacturing step is reduced. Since the electrode winding group is formed by being wound as it is, the winding operation becomes easy, and damage to the electrode can be prevented. In addition, by using a binder containing an acrylic polymer for the positive electrode and the negative electrode, the electrode winding group can be manufactured while the electrodes are not dried, so that the preparation step and the manufacturing step are performed in a dry atmosphere that increases costs. There is no need to perform this, and cost can be reduced.

【0010】本発明の第二態様は、非水電解液に浸潤し
た電極捲回群を有する非水電解液二次電池の製造方法で
あって、リチウム遷移金属複酸化物、導電材及びバイン
ダを混合した正極合材を帯状集電体に塗着した乾燥状態
の正極と、非晶質炭素及びアクリル系重合体を含むバイ
ンダを混合した負極合材を帯状集電体に塗着した非乾燥
状態の負極と、リチウムイオンが通過可能な微多孔を有
するセパレータとを準備し、前記正極及び負極を、前記
セパレータを介して捲回して電極捲回群を作製し、前記
電極捲回群を減圧加熱下で乾燥させる、ステップを含
む。また、本発明の第三態様は、非水電解液に浸潤した
電極捲回群を有する非水電解液二次電池の製造方法であ
って、リチウム遷移金属複酸化物、導電材及びアクリル
系重合体を含むバインダを混合した正極合材を帯状集電
体に塗着した非乾燥状態の正極と、炭素材及びバインダ
を混合した負極合材を帯状集電体に塗着した乾燥状態の
負極と、リチウムイオンが通過可能な微多孔を有するセ
パレータとを準備し、前記正極及び負極を、前記セパレ
ータを介して捲回して電極捲回群を作製し、前記電極捲
回群を減圧加熱下で乾燥させる、ステップを含む。
A second aspect of the present invention is a method for producing a non-aqueous electrolyte secondary battery having an electrode winding group soaked in a non-aqueous electrolyte, comprising a lithium transition metal double oxide, a conductive material and a binder. A positive electrode in a dry state in which a mixed positive electrode mixture is applied to a belt-shaped current collector, and a non-dried state in which a negative electrode mixture in which a binder containing amorphous carbon and an acrylic polymer is mixed is applied to a band-shaped current collector A negative electrode and a separator having microporosity through which lithium ions can pass are prepared, and the positive electrode and the negative electrode are wound through the separator to form an electrode winding group, and the electrode winding group is heated under reduced pressure. Drying underneath. Further, a third aspect of the present invention is a method for producing a nonaqueous electrolyte secondary battery having an electrode winding group soaked in a nonaqueous electrolyte, comprising a lithium transition metal double oxide, a conductive material, and an acrylic polymer. A positive electrode in a non-dried state in which a positive electrode mixture mixed with a binder containing the union is applied to a band-shaped current collector, and a negative electrode in a dry state in which a negative electrode mixture mixed with a carbon material and a binder is applied to a band-shaped current collector Prepare a separator having a microporous through which lithium ions can pass, prepare the electrode winding group by winding the positive electrode and the negative electrode through the separator, and dry the electrode winding group under reduced pressure heating Including the steps.

【0011】第二態様では、準備ステップでアクリル系
重合体を含むバインダ以外のバインダ、例えば、一般に
用いられるPVDF等のバインダを正極合材に混合・含
有させ正極を乾燥状態とし、非晶質炭素及びアクリル系
重合体を含むバインダを負極合材に混合・含有させる点
で上述した第一態様と異なる。PVDF等のバインダを
用いた正極は乾燥状態で可撓性が低下することはなく、
作製ステップで捲回作業が容易となると共に、非晶質炭
素を用いた負極は非晶質炭素が水分を吸着しやすい性質
を有し、正極は乾燥状態のため、水分混入を防止するこ
とができる。従って、作製ステップの後に乾燥ステップ
を経ることにより水分混入による極板の劣化や電池性能
の低下を招くことがない。また、第三態様では、準備ス
テップでアクリル系重合体を含むバインダを正極合材に
混合・含有させ、アクリル系重合体を含むバインダ以外
のバインダ、例えば、一般に用いられるPVDF等のバ
インダを負極合材に混合・含有させ乾燥状態とする。ア
クリル系重合体を含むバインダを用いた正極は上述した
第一態様の正極と同様の作用効果を奏し、PVDF等の
バインダを用いた負極は上述した第二態様の正極と同様
の作用効果を奏する。
In the second embodiment, in the preparatory step, a binder other than the binder containing an acrylic polymer, for example, a commonly used binder such as PVDF is mixed and contained in the positive electrode mixture, the positive electrode is dried, and the amorphous carbon is removed. The second embodiment is different from the first embodiment in that a binder containing an acrylic polymer and an acrylic polymer are mixed and contained in the negative electrode mixture. The positive electrode using a binder such as PVDF does not lose its flexibility in the dry state.
In the manufacturing step, the winding operation is facilitated, and the negative electrode using amorphous carbon has a property that amorphous carbon easily adsorbs moisture, and the positive electrode is in a dry state, so that it is possible to prevent water contamination. it can. Therefore, by performing the drying step after the manufacturing step, the deterioration of the electrode plate and the deterioration of the battery performance due to the mixing of moisture do not occur. In the third embodiment, in the preparation step, a binder containing an acrylic polymer is mixed and contained in the positive electrode mixture, and a binder other than the binder containing the acrylic polymer, for example, a commonly used binder such as PVDF is mixed with the negative electrode. Mix and contain in the material to make it dry. The positive electrode using the binder containing the acrylic polymer has the same function and effect as the positive electrode of the first embodiment described above, and the negative electrode using the binder such as PVDF has the same function and effect as the positive electrode of the second embodiment described above. .

【0012】上述した第一態様及び第三態様において、
準備ステップでの正極の水分含有量を1000ppm以
上とすれば、正極の可撓性を十分に確保することができ
るので、作製ステップでの捲回作業が一層容易となり正
極の損傷を確実に防止することができる。また、第一態
様及び第二態様において、準備ステップでの負極の水分
含有量を500ppm以上とすれば、負極の可撓性を十
分に確保することができるので、作製ステップでの捲回
作業が一層容易となり負極の損傷を確実に防止すること
ができる。更に、第一態様において、準備ステップでの
正極の水分含有量を1000ppm以上とし、かつ、負
極の水分含有量を500ppm以上とすれば、電極の可
撓性を十分に確保することができるので、作製ステップ
での捲回作業がより一層容易となり電極の損傷を確実に
防止することができる。
In the first and third aspects described above,
If the water content of the positive electrode in the preparation step is 1000 ppm or more, the flexibility of the positive electrode can be sufficiently ensured, so that the winding operation in the manufacturing step is further facilitated and the damage to the positive electrode is reliably prevented. be able to. Further, in the first aspect and the second aspect, if the water content of the negative electrode in the preparation step is 500 ppm or more, the flexibility of the negative electrode can be sufficiently ensured, so that the winding operation in the manufacturing step is not required. This further facilitates the prevention of damage to the negative electrode. Furthermore, in the first aspect, the water content of the positive electrode in the preparation step is 1000 ppm or more, and if the water content of the negative electrode is 500 ppm or more, the flexibility of the electrode can be sufficiently ensured. The winding operation in the manufacturing step is further facilitated, and damage to the electrode can be reliably prevented.

【0013】[0013]

【発明の実施の形態】(第一実施形態)以下、図面を参
照して本発明を電気自動車用電源の円筒形リチウムイオ
ン電池に適用した第一実施形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) A first embodiment in which the present invention is applied to a cylindrical lithium ion battery of a power source for an electric vehicle will be described below with reference to the drawings.

【0014】<準備ステップ>本実施形態の準備ステッ
プについて一言すれば、下表1に示すように、バインダ
にアクリル系重合体を用い、非乾燥状態の正極及び負極
を作製するが、詳細は以下の通りである。
<Preparation Step> To briefly explain the preparation step of the present embodiment, as shown in Table 1 below, an acrylic polymer is used as a binder to prepare a non-dried positive electrode and negative electrode. It is as follows.

【0015】[0015]

【表1】 [Table 1]

【0016】(正極)平均粒径15μmのマンガン酸リ
チウム(LiMn)粉末と、導電材として平均粒
径5μmの黒鉛粉末と、アセチレンブラックと、ポリア
クリル酸やポリアクリル酸エステルのアクリル系重合体
を含むバインダと、を質量比で80:12:3:5とな
るように混合し、これに分散溶媒のN−メチル−2−ピ
ロリドン(NMP)を添加し、混練してスラリを作製し
た。得られたスラリを厚さ20μmの帯状アルミニウム
箔(正極集電体)の両面に、NMPを除く混合材(正極
合材)の塗布量が130g/mとなるように塗布し
た。このとき、正極長寸方向の一方の側縁に幅30mm
の未塗布部を残した。その後、NMPを揮発除去し、プ
レス、裁断して、幅82mm、長さ374cm、正極合
材塗布部厚さ(アルミニウム箔の厚さを除く)98μm
の正極を得た。プレス時の圧力を調整して、正極合材層
のかさ密度を2.65g/cmとした。次に、上記未
塗布部に切り欠きを入れ、切り欠き残部を正極リード片
とした。隣り合う正極リード片を50mm間隔とし、正
極リード片の幅を5mmとした。なお、準備した正極は
水分の乾燥操作を行うことなく、非乾燥状態のままとし
た。
(Positive electrode) Lithium manganate (LiMn 2 O 4 ) powder having an average particle size of 15 μm, graphite powder having an average particle size of 5 μm as a conductive material, acetylene black, and an acrylic material such as polyacrylic acid or polyacrylate. A binder containing a polymer is mixed in a mass ratio of 80: 12: 3: 5, N-methyl-2-pyrrolidone (NMP) as a dispersion solvent is added thereto, and the mixture is kneaded to prepare a slurry. did. The obtained slurry was applied to both sides of a 20-μm-thick strip-shaped aluminum foil (positive electrode current collector) so that the application amount of the mixture (positive electrode mixture) excluding NMP was 130 g / m 2 . At this time, a width of 30 mm
Was left uncoated. Thereafter, the NMP was volatilized and removed, and then pressed and cut to a width of 82 mm, a length of 374 cm, and a thickness of the positive electrode mixture application portion (excluding the thickness of the aluminum foil) of 98 μm.
Was obtained. The pressure at the time of pressing was adjusted to make the bulk density of the positive electrode mixture layer 2.65 g / cm 3 . Next, a cutout was made in the uncoated portion, and the remaining cutout was used as a positive electrode lead piece. Adjacent positive electrode lead pieces were set at intervals of 50 mm, and the width of the positive electrode lead piece was set at 5 mm. The prepared positive electrode was kept in a non-dried state without performing a moisture drying operation.

【0017】ここで、上述したアクリル系重合体として
は、ポリアクリル酸、ポリアクリル酸メチル等のポリア
クリル酸エステル、ポリメタクリル酸メチル等のポリメ
タクリル酸エステル等を挙げることができ、2種以上を
適宜混合して用いてもよい。
Here, examples of the acrylic polymer include polyacrylic acid esters such as polyacrylic acid and polymethyl acrylate, and polymethacrylic esters such as polymethyl methacrylate. May be appropriately mixed and used.

【0018】(負極)負極炭素材として黒鉛又は非晶質
炭素粉末92質量部に、上述したアクリル系重合体を含
むバインダを8質量部混合し、これに分散溶媒のNMP
を添加し、混練してスラリを作製した。得られたスラリ
を厚さ10μmの帯状圧延銅箔(負極集電体)の両面
に、NMPを除く混合材(負極合材)の塗布量が45.
2又は33.3g/mとなるように塗布した。このと
き、負極長寸方向の一方の側縁に幅30mmの未塗布部
を残した。その後、NMPを揮発除去し、プレス、裁断
して、幅86mm、長さ386cm、負極合材塗布部厚
さ(銅箔の厚さを除く)66μmの負極を得た。プレス
時の圧力を調整して、負極合材層の空隙率が約35%と
なるように負極を圧縮した。次に、上記未塗布部に正極
と同様に切り欠きを入れ、切り欠き残部を負極リード片
とした。隣り合う負極リード片を50mm間隔とし、負
極リード片の幅を5mmとした。なお、負極の準備は一
定水分の雰囲気で行い、正極と同様に、NMPの揮発除
去を完全に行い、準備した負極は非乾燥状態のままとし
た。
(Negative Electrode) 92 parts by mass of graphite or amorphous carbon powder as a negative electrode carbon material were mixed with 8 parts by mass of a binder containing the acrylic polymer described above, and NMP as a dispersion solvent was added thereto.
Was added and kneaded to prepare a slurry. The obtained slurry was coated on both sides of a 10 μm-thick strip-shaped rolled copper foil (negative electrode current collector) with an application amount of a mixture material (negative electrode mixture material) excluding NMP of 45.
2 or 33.3 g / m 2 . At this time, an uncoated portion having a width of 30 mm was left on one side edge in the negative electrode long dimension direction. Thereafter, NMP was volatilized and removed, followed by pressing and cutting to obtain a negative electrode having a width of 86 mm, a length of 386 cm, and a thickness of the negative electrode mixture application portion (excluding the thickness of the copper foil) of 66 μm. The pressure at the time of pressing was adjusted, and the negative electrode was compressed so that the porosity of the negative electrode mixture layer became about 35%. Next, a cutout was made in the uncoated portion in the same manner as the positive electrode, and the remaining cutout was used as a negative electrode lead piece. Adjacent negative electrode lead pieces were set at intervals of 50 mm, and the width of the negative electrode lead piece was set at 5 mm. The preparation of the negative electrode was performed in an atmosphere of constant moisture, and the NMP was completely removed by volatilization similarly to the positive electrode, and the prepared negative electrode was kept in a non-dried state.

【0019】(セパレータ)リチウムイオンが通過可能
な微多孔を有する、厚さ40μmのポリエチレン製フィ
ルムを、幅90mm、所定長さに裁断してセパレータを
準備した。
(Separator) A separator was prepared by cutting a polyethylene film having a thickness of 40 μm and having a microporosity through which lithium ions could pass through to a width of 90 mm and a predetermined length.

【0020】<作製ステップ>図1に示すように、準備
ステップで準備した非乾燥状態の正極及び負極を、これ
ら両極板が直接接触しないように、準備したセパレータ
W5と共に捲回して電極捲回群を作製した。捲回作業
は、30±10%RHの雰囲気で行った。捲回の中心に
は、ポリプロピレン製の中空円筒状の軸芯1を用い、こ
のとき、正極リード片2と負極リード片3とが、それぞ
れ捲回群(電極捲回群)6の互いに反対側の両端面に位
置するようにした。また、セパレータW5の長さを調整
し、捲回群6の直径を38±0.1mmとした。
<Preparation Step> As shown in FIG. 1, the non-dried positive electrode and negative electrode prepared in the preparation step are wound together with the prepared separator W5 so that these two electrode plates do not come into direct contact with each other. Was prepared. The winding operation was performed in an atmosphere of 30 ± 10% RH. At the center of the winding, a hollow cylindrical shaft core 1 made of polypropylene is used. At this time, the positive electrode lead piece 2 and the negative electrode lead piece 3 are on the opposite sides of the winding group (electrode winding group) 6, respectively. At both ends. Further, the length of the separator W5 was adjusted, and the diameter of the winding group 6 was set to 38 ± 0.1 mm.

【0021】<乾燥ステップ>上述のように、非乾燥状
態の電極を捲回して作製した捲回群6を、後述するよう
に、所定の圧力に減圧した環境下で、所定温度に加熱し
て所定時間乾燥させた。
<Drying Step> As described above, the wound group 6 formed by winding the electrode in a non-dried state is heated to a predetermined temperature in an environment where the pressure is reduced to a predetermined pressure as described later. It was dried for a predetermined time.

【0022】<電池の組立>次いで、円筒形リチウムイ
オン電池20は、上述のように乾燥させた捲回群6を用
いて、以下のようにして作製した。正極リード片2を変
形させ、その全てを、捲回群6の軸芯1のほぼ延長線上
にある正極集電リング4の周囲から一体に張り出してい
る鍔部周面付近に集合、接触させた後、正極リード片2
と鍔部周面とを超音波溶接して正極リード片2を鍔部周
面に接続した。一方、負極集電リング5と負極リード片
3との接続操作も、正極集電リング4と正極リード片2
との接続操作と同様に実施した。
<Assembly of Battery> Next, the cylindrical lithium ion battery 20 was manufactured as follows using the wound group 6 dried as described above. The positive electrode lead pieces 2 were deformed, and all of them were gathered and brought into contact with the vicinity of the flange peripheral surface integrally projecting from the periphery of the positive electrode current collecting ring 4 substantially on the extension of the axis 1 of the winding group 6. After that, positive electrode lead 2
The positive electrode lead 2 was connected to the flange peripheral surface by ultrasonic welding. On the other hand, the connection operation between the negative electrode current collecting ring 5 and the negative electrode lead
The connection operation was performed in the same manner.

【0023】その後、正極集電リング4の鍔部周面全周
に絶縁被覆を施した。この絶縁被覆には、基材がポリイ
ミドで、その片面にヘキサメタアクリレートからなる粘
着剤を塗布した粘着テープを用いた。この粘着テープを
鍔部周面から捲回群6外周面に亘って一重以上巻いて絶
縁被覆とし、捲回群6をニッケルメッキが施されたスチ
ール製の電池容器7内に挿入した。電池容器7の外径は
40mm、内径は39mmである。
Thereafter, an insulating coating was applied to the entire peripheral surface of the flange portion of the positive electrode current collecting ring 4. For this insulating coating, a pressure-sensitive adhesive tape was used in which the base material was polyimide and one side thereof was coated with a pressure-sensitive adhesive composed of hexamethacrylate. This adhesive tape was wound one or more times from the peripheral surface of the flange portion to the outer peripheral surface of the winding group 6 to form an insulating coating, and the winding group 6 was inserted into a nickel-plated steel battery container 7. The outer diameter of the battery container 7 is 40 mm, and the inner diameter is 39 mm.

【0024】負極集電リング5には、予め電気的導通の
ための負極リード板8を溶接しておき、電池容器7に捲
回群6を挿入後、電池容器7の底部と負極リード板8と
を溶接した。
A negative electrode lead plate 8 for electrical conduction is welded to the negative electrode current collecting ring 5 in advance, and after the winding group 6 is inserted into the battery container 7, the bottom of the battery container 7 and the negative electrode lead plate 8 And was welded.

【0025】一方、正極集電リング4には、予め複数枚
のアルミニウム製のリボンを重ね合わせて構成した正極
リード9を溶接しておき、正極リード9の他端を、電池
容器7を封口するための電池蓋の下面に溶接した。電池
蓋には、円筒形リチウムイオン電池20の内圧上昇に応
じて開裂する内圧開放機構として開裂弁11を設けてい
る。開裂弁11の開裂圧は、約9×10Paに設定し
た。電池蓋は、蓋ケース12と、蓋キャップ13と、気
密を保つ弁押え14と、開裂弁11とで構成されてお
り、これらを積層して蓋ケース12の周縁をカシメるこ
とによって組立ててある。
On the other hand, a positive electrode lead 9 formed by laminating a plurality of aluminum ribbons is welded to the positive electrode current collecting ring 4 in advance, and the other end of the positive electrode lead 9 is sealed with the battery container 7. To the lower surface of the battery lid. The battery lid is provided with a cleavage valve 11 as an internal pressure release mechanism that is opened in accordance with an increase in the internal pressure of the cylindrical lithium ion battery 20. The cleavage pressure of the cleavage valve 11 was set to about 9 × 10 5 Pa. The battery lid is composed of a lid case 12, a lid cap 13, a valve retainer 14 for keeping airtightness, and a cleavage valve 11, and these are stacked and assembled by caulking the periphery of the lid case 12. .

【0026】非水電解液を所定量電池容器7内に注入
し、その後、正極リード9を折りたたむようにして電池
蓋で電池容器7に蓋をし、EPDM樹脂製ガスケット1
0を介してカシメて密封することにより円筒形リチウム
イオン電池20を完成させた。
A predetermined amount of the non-aqueous electrolyte is poured into the battery case 7, and then the battery case 7 is covered with the battery cover so that the positive electrode lead 9 is folded.
The cylindrical lithium-ion battery 20 was completed by caulking and sealing through the inside of the battery.

【0027】非水電解液には、エチレンカーボネートと
ジメチルカーボネートとジエチルカーボネートの体積比
1:1:1の混合溶液中へ6フッ化リン酸リチウム(L
iPF)を1モル/リットル溶解したものを用いた。
The non-aqueous electrolyte contains lithium hexafluorophosphate (L) in a mixed solution of ethylene carbonate, dimethyl carbonate and diethyl carbonate in a volume ratio of 1: 1: 1.
iPF 6 ) dissolved at 1 mol / liter was used.

【0028】本実施形態では、アクリル系重合体を含む
バインダを用いることにより、バインダが正極及び負極
中の水分を吸収し、非乾燥状態の電極を捲回して作製し
た捲回群6を減圧加熱下で乾燥させる。これにより、ア
クリル系重合体を含むバインダに吸収された正極及び負
極中の水分が除去され、特に、水分を吸着しやすい性質
を有する非晶質炭素を負極炭素材に用いた場合には、負
極を劣化させることなく水分を除去することができる。
従って、水分混入による電池性能の低下を抑制し、容
量、出力、寿命共に優れた円筒形リチウムイオン電池2
0を得ることができる。また、アクリル系重合体を含む
バインダを用いた電極は脱水乾燥状態では可撓性が低下
し、捲回することによりひび割れ等を引き起こす原因と
なるので、準備ステップの電極を非乾燥状態のまま次の
作製ステップに供給する。これにより、捲回作業が容易
となり、電極の損傷を防ぐことができる。このとき、正
極の水分含有量を1000ppm以上とすることが好ま
しく、また、負極の水分含有量を500ppm以上とす
ることが好ましい。
In this embodiment, by using a binder containing an acrylic polymer, the binder absorbs moisture in the positive electrode and the negative electrode, and the wound group 6 formed by winding the non-dried electrode is heated under reduced pressure. Dry underneath. Thereby, the water in the positive electrode and the negative electrode absorbed by the binder containing the acrylic polymer is removed, and in particular, when amorphous carbon having a property of easily adsorbing water is used for the negative electrode carbon material, the negative electrode Can be removed without deteriorating the water content.
Accordingly, the reduction in battery performance due to water contamination is suppressed, and the capacity, output, and life of the cylindrical lithium-ion battery 2 are excellent.
0 can be obtained. In addition, an electrode using a binder containing an acrylic polymer has a reduced flexibility in a dehydrated and dried state, and may cause cracks or the like by being wound. To the manufacturing step. This facilitates the winding operation and prevents damage to the electrodes. At this time, the water content of the positive electrode is preferably 1000 ppm or more, and the water content of the negative electrode is preferably 500 ppm or more.

【0029】(第二実施形態)次に、本発明を電気自動
車用電源の円筒形リチウムイオン電池に適用した第二実
施形態について説明する。なお、本実施形態以下の実施
形態において第一実施形態と同一の部材には同一の符号
を付してその説明を省略し、異なる箇所のみ説明する。
本実施形態では、表1に示したように、準備ステップに
おいて、バインダにPVDFを用いた乾燥状態の正極
と、バインダにアクリル系重合体を用いた非乾燥状態の
負極を作製するものであるが、詳細は次の通りである。
(Second Embodiment) Next, a second embodiment in which the present invention is applied to a cylindrical lithium ion battery of a power supply for an electric vehicle will be described. In the following embodiments, the same members as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. Only different points will be described.
In the present embodiment, as shown in Table 1, in the preparation step, a positive electrode in a dry state using PVDF for a binder and a negative electrode in a non-dry state using an acrylic polymer for a binder are prepared. The details are as follows.

【0030】<準備ステップ> (正極)平均粒径15μmのマンガン酸リチウム(Li
Mn)粉末と、導電材として平均粒径5μmの黒
鉛粉末と、アセチレンブラックと、PVDFと、を質量
比で80:12:3:5となるように混合し、これに分
散溶媒のN−メチル−2−ピロリドン(NMP)を添加
し、混練してスラリを作製した。得られたスラリを用
い、第一実施形態と同様にして正極を準備した。次に、
準備した正極を所定圧力の減圧下で、所定温度に加熱し
て所定時間乾燥した。
<Preparation Step> (Positive electrode) Lithium manganate (Li) having an average particle size of 15 μm
Mn 2 O 4 ) powder, graphite powder having an average particle size of 5 μm as a conductive material, acetylene black, and PVDF were mixed at a mass ratio of 80: 12: 3: 5, and a dispersion solvent was added thereto. N-methyl-2-pyrrolidone (NMP) was added and kneaded to prepare a slurry. Using the obtained slurry, a positive electrode was prepared in the same manner as in the first embodiment. next,
The prepared positive electrode was heated to a predetermined temperature under a reduced pressure of a predetermined pressure and dried for a predetermined time.

【0031】(負極)負極炭素材として非晶質炭素粉末
92質量部に、上述したアクリル系重合体を含むバイン
ダを8質量部混合し、これに分散溶媒のNMPを添加
し、混練してスラリを作製した。得られたスラリを用
い、第一実施形態と同様にして負極を得た。なお、準備
した負極は非乾燥状態のままとした。
(Negative Electrode) 92 parts by mass of amorphous carbon powder as a negative electrode carbon material was mixed with 8 parts by mass of a binder containing the above-mentioned acrylic polymer, NMP as a dispersion solvent was added thereto, and kneaded to obtain a slurry. Was prepared. A negative electrode was obtained using the obtained slurry in the same manner as in the first embodiment. The prepared negative electrode was kept in a non-dried state.

【0032】<作製ステップ>図1に示すように、準備
ステップで準備した乾燥状態の正極及び非乾燥状態の負
極を用いて、第一実施形態と同様に電極捲回群を作製し
た。また、捲回作業も同様に30±10%RHの雰囲気
で行ったが、PVDFが水分を吸収しやすいことを考慮
して、捲回作業中に電極に水分が混入することを極力避
けるため迅速に作業を行うようにした。
<Preparation Step> As shown in FIG. 1, an electrode wound group was prepared in the same manner as in the first embodiment, using the dried positive electrode and the non-dried negative electrode prepared in the preparation step. Similarly, the winding operation was performed in an atmosphere of 30 ± 10% RH. However, in consideration of the fact that PVDF easily absorbs moisture, it is necessary to minimize the possibility of mixing of water into the electrode during the winding operation. To work.

【0033】次いで、第一実施形態と同様に、乾燥ステ
ップ、電池の組立、を経て、円筒形リチウムイオン電池
20を完成させた。
Next, as in the first embodiment, a cylindrical lithium ion battery 20 was completed through a drying step and battery assembly.

【0034】本実施形態によれば、PVDFをバインダ
に用いた正極は乾燥状態で可撓性が低下することはな
く、作製ステップで捲回作業が容易となると共に、非晶
質炭素を用いた負極は非晶質炭素が水分を吸着しやすい
性質を有し、正極は乾燥状態のため、水分混入を防止す
ることができる。従って、作製ステップの後に乾燥ステ
ップを経ることにより水分混入による極板の劣化や電池
性能の低下を抑制し、容量、出力、寿命共に優れた円筒
形リチウムイオン電池20を得ることができる。
According to the present embodiment, the positive electrode using PVDF as the binder does not lose its flexibility in the dry state, the winding operation is easy in the manufacturing step, and amorphous carbon is used. Since the negative electrode has a property that amorphous carbon easily adsorbs moisture, and the positive electrode is in a dry state, it is possible to prevent moisture from being mixed. Therefore, by performing the drying step after the manufacturing step, it is possible to suppress the deterioration of the electrode plate and the deterioration of the battery performance due to the incorporation of moisture, and to obtain the cylindrical lithium ion battery 20 excellent in capacity, output, and life.

【0035】(第三実施形態)第三実施形態では、表1
に示したように、準備ステップにおいて、バインダにア
クリル系重合体を用いた非乾燥状態の正極と、バインダ
にPVDFを用いた乾燥状態の負極を作製するものであ
るが、詳細は次の通りである。
(Third Embodiment) In the third embodiment, Table 1
As shown in the above, in the preparation step, a non-dried positive electrode using an acrylic polymer as a binder and a dry negative electrode using PVDF as a binder are prepared, and details are as follows. is there.

【0036】<準備ステップ> (正極)第一実施形態と同様にして、バインダにアクリ
ル系重合体を用いた正極を準備した。なお、正極の準備
は一定水分の雰囲気で行い、準備した正極は非乾燥状態
のままとした。
<Preparation Step> (Positive Electrode) In the same manner as in the first embodiment, a positive electrode using an acrylic polymer as a binder was prepared. The preparation of the positive electrode was performed in an atmosphere of constant moisture, and the prepared positive electrode was kept in a non-dried state.

【0037】(負極)負極炭素材として黒鉛又は非晶質
炭素粉末92質量部に、バインダとしてPVDFを8質
量部混合し、これに分散溶媒のNMPを添加し、混練し
てスラリを作製した。得られたスラリを用い、第一実施
形態と同様にして負極を準備した。次に、準備した正極
を所定圧力の減圧下で、所定温度に加熱して所定時間乾
燥した。
(Negative Electrode) 92 parts by mass of graphite or amorphous carbon powder as a negative electrode carbon material was mixed with 8 parts by mass of PVDF as a binder, and NMP as a dispersion solvent was added thereto and kneaded to prepare a slurry. A negative electrode was prepared using the obtained slurry in the same manner as in the first embodiment. Next, the prepared positive electrode was heated to a predetermined temperature under a reduced pressure of a predetermined pressure and dried for a predetermined time.

【0038】<作製ステップ>図1に示すように、準備
ステップで準備した非乾燥状態の正極及び乾燥状態の負
極を用いて、第一実施形態と同様に電極捲回群を作製し
た。また、捲回作業も同様に30±10%RHの雰囲気
で行ったが、PVDFが水分を吸収しやすいことを考慮
して、捲回作業中に電極に水分が混入することを極力避
けるため迅速に作業を行うようにした。
<Preparation Step> As shown in FIG. 1, an electrode winding group was prepared in the same manner as in the first embodiment, using the non-dried positive electrode and the dried negative electrode prepared in the preparation step. Similarly, the winding operation was performed in an atmosphere of 30 ± 10% RH. However, in consideration of the fact that PVDF easily absorbs moisture, it is necessary to minimize the possibility of mixing of water into the electrode during the winding operation. To work.

【0039】次いで、第一実施形態と同様に、乾燥ステ
ップ、電池の組立、を経て、円筒形リチウムイオン電池
20を完成させた。
Next, as in the first embodiment, a cylindrical lithium ion battery 20 was completed through a drying step and battery assembly.

【0040】本実施形態では、正極にアクリル系重合体
を含むバインダを用いることにより、バインダが正極中
の水分を吸収し、非乾燥状態の正極を捲回して作製した
捲回群6を減圧加熱下で乾燥させる。これにより、アク
リル系重合体を含むバインダに吸収された正極中の水分
が除去される。また、アクリル系重合体を含むバインダ
を用いた正極は脱水乾燥状態では可撓性が低下し、捲回
することによりひび割れ等を引き起こす原因となるの
で、準備ステップの正極を非乾燥状態のまま次の作製ス
テップに供給する。これにより、捲回作業が容易とな
り、正極の損傷を防ぐことができる。このとき、正極の
水分含有量を1000ppm以上とすることが好まし
い。また、PVDFをバインダに用いた負極は乾燥状態
で可撓性が低下することはなく、作製ステップで捲回作
業が容易となると共に、乾燥状態のため、水分混入を防
止することができる。従って、作製ステップの後に乾燥
ステップを経ることにより水分混入による電池性能の低
下を抑制し、容量、出力、寿命共に優れた円筒形リチウ
ムイオン電池20を得ることができる。
In this embodiment, by using a binder containing an acrylic polymer for the positive electrode, the binder absorbs moisture in the positive electrode, and the wound group 6 formed by winding the non-dried positive electrode is heated under reduced pressure. Dry underneath. Thereby, the moisture in the positive electrode absorbed by the binder containing the acrylic polymer is removed. In addition, a positive electrode using a binder containing an acrylic polymer has a reduced flexibility in a dehydrated and dried state, and may cause cracking or the like by being wound. To the manufacturing step. This facilitates the winding operation and prevents damage to the positive electrode. At this time, the water content of the positive electrode is preferably set to 1000 ppm or more. In addition, the negative electrode using PVDF as a binder does not decrease in flexibility in a dry state, the winding operation is facilitated in the manufacturing step, and the dry state can prevent the incorporation of moisture. Therefore, a reduction in battery performance due to the incorporation of moisture can be suppressed by passing through a drying step after the fabrication step, and the cylindrical lithium ion battery 20 excellent in capacity, output, and life can be obtained.

【0041】[0041]

【実施例】次に、以上の実施形態に従って作製した円筒
形リチウムイオン電池20の実施例について説明する。
なお、比較のために作製した比較例の電池についても併
記する。
Next, examples of the cylindrical lithium ion battery 20 manufactured according to the above embodiment will be described.
Note that a battery of a comparative example manufactured for comparison is also described.

【0042】(実施例1)下表2に示すように、実施例
1では第一実施形態に従い、正極、負極共に以下に述べ
るバインダAを用い、負極炭素材にメソフェーズ系球状
黒鉛(川崎製鉄株式会社製、商品名KMFC)を用い、
30±10%RHの雰囲気で正極及び負極を作製した。
負極合材の塗布量は、45.2g/mとした。また、
電極の水分含有量は、電池の作製に使用する電極と同一
の電極を準備し、質量を測定した後に、圧力を大気圧よ
り90kPa低い圧力以下とした減圧下で、120°C
にて24時間乾燥し、乾燥後の質量を測定し、乾燥前後
の質量差を算出して求めた(以下の実施例及び比較例に
おいても電極の水分含有量の算出方法は同じ。)。この
ようにして求めた本実施例の正極の水分含有量は870
ppmであり、負極の水分含有量は490ppmであっ
た。また、乾燥ステップでの電極捲回群の乾燥条件は、
圧力を大気圧より90kPa低い圧力以下の減圧下と
し、60°Cにて72時間とした(以下の実施例及び比
較例においても電極捲回群の乾燥条件は同じ。)。な
お、表2において、バインダAはポリアクリル酸のみ、
バインダBはポリアクリル酸とポリアクリル酸メチル
(ポリアクリル酸エステル)とを質量比7:3となるよ
うに混合した混合物、バインダCはポリアクリル酸とポ
リメタクリル酸メチル(ポリメタクリル酸エステル)と
を質量比7:3となるように混合した混合物、バインダ
Dはポリアクリル酸とポリアクリル酸メチルとポリメタ
クリル酸メチル(ポリメタクリル酸エステル)とを質量
比5:2:3となるように混合した混合物、のバインダ
である。また、集電体に合材を塗布し、NMPを揮発除
去した後に、合材層にNMPの残留がないことをガスク
ロマトグラフィー・質量分析によって確認した。
(Example 1) As shown in Table 2 below, in Example 1, according to the first embodiment, the binder A described below was used for both the positive electrode and the negative electrode, and the mesophase-based spherical graphite (Kawasaki Steel Co., Ltd.) was used as the negative electrode carbon material. Company name, KMFC)
A positive electrode and a negative electrode were produced in an atmosphere of 30 ± 10% RH.
The application amount of the negative electrode mixture was 45.2 g / m 2 . Also,
After preparing the same electrode as the electrode used for producing the battery and measuring the mass, the water content of the electrode was reduced to 120 ° C. under a reduced pressure of 90 kPa lower than the atmospheric pressure.
For 24 hours, the mass after drying was measured, and the mass difference before and after the drying was calculated and determined (the method of calculating the water content of the electrode is the same in the following Examples and Comparative Examples). The water content of the positive electrode of this example thus determined was 870.
ppm, and the water content of the negative electrode was 490 ppm. Further, the drying conditions of the electrode winding group in the drying step,
The pressure was reduced to 90 kPa lower than the atmospheric pressure or less, and the temperature was set to 60 ° C. for 72 hours (the drying conditions of the electrode winding group are the same in the following Examples and Comparative Examples). In Table 2, the binder A was only polyacrylic acid,
Binder B is a mixture of polyacrylic acid and polymethyl acrylate (polyacrylate) mixed at a mass ratio of 7: 3, and binder C is a mixture of polyacrylic acid and polymethyl methacrylate (polymethacrylate). And Binder D is a mixture of polyacrylic acid, polymethyl acrylate, and polymethyl methacrylate (polymethacrylate) in a mass ratio of 5: 2: 3. Of the resulting mixture. Further, after applying the mixture to the current collector and evaporating and removing NMP, it was confirmed by gas chromatography / mass spectrometry that no NMP remained in the mixture layer.

【0043】[0043]

【表2】 [Table 2]

【0044】(実施例2〜実施例4)表2に示すよう
に、実施例2〜実施例4では、バインダを変えた以外は
実施例1と同様に正極及び負極を作製した。実施例2で
はバインダBを用い、実施例3ではバインダCを用い、
実施例4ではバインダDを用いた。正極の水分含有量
は、実施例2では920ppm、実施例3では840p
pm、実施例4では960ppmであった。また、負極
の水分含有量は、それぞれ、430ppm、470pp
m、440ppmであった。
(Examples 2 to 4) As shown in Table 2, in Examples 2 to 4, positive electrodes and negative electrodes were produced in the same manner as in Example 1 except that the binder was changed. In the second embodiment, the binder B is used. In the third embodiment, the binder C is used.
In Example 4, binder D was used. The water content of the positive electrode was 920 ppm in Example 2, and 840 p in Example 3.
pm and 960 ppm in Example 4. The water content of the negative electrode was 430 ppm and 470 pp, respectively.
m and 440 ppm.

【0045】(実施例5)表2に示すように、実施例5
では、正極は実施例1の正極と同様に作製した。また、
負極は、負極炭素材に非晶質炭素(呉羽化学工業株式会
社製、商品名カーボトロン)を用い、バインダAを用い
て、30±10%RHの雰囲気で作製した。負極合材の
塗布量は、33.3g/mとした。正極の水分含有量
は870ppmであり、負極の水分含有量は470pp
mであった。
Example 5 As shown in Table 2, Example 5
Then, the positive electrode was manufactured in the same manner as the positive electrode of Example 1. Also,
The negative electrode was prepared using amorphous carbon (Carbotron, trade name, manufactured by Kureha Chemical Industry Co., Ltd.) as the negative electrode carbon material and using a binder A in an atmosphere of 30 ± 10% RH. The applied amount of the negative electrode mixture was 33.3 g / m 2 . The water content of the positive electrode was 870 ppm, and the water content of the negative electrode was 470 pp.
m.

【0046】(実施例6〜実施例8)表2に示すよう
に、実施例6〜実施例8では、バインダを変えた以外は
実施例5と同様に正極及び負極を作製した。実施例6で
はバインダBを用い、実施例7ではバインダCを用い、
実施例8ではバインダDを用いた。正極の水分含有量
は、実施例6では920ppm、実施例7では840p
pm、実施例8では960ppmであった。また、負極
の水分含有量は、それぞれ、460ppm、490pp
m、480ppmであった。
(Examples 6 to 8) As shown in Table 2, in Examples 6 to 8, positive electrodes and negative electrodes were produced in the same manner as in Example 5 except that the binder was changed. In the sixth embodiment, the binder B is used. In the seventh embodiment, the binder C is used.
In Example 8, the binder D was used. The water content of the positive electrode was 920 ppm in Example 6, and 840 p in Example 7.
pm and 960 ppm in Example 8. The water content of the negative electrode was 460 ppm and 490 pp, respectively.
m and 480 ppm.

【0047】(実施例9〜実施例10)表2に示すよう
に、実施例9〜実施例10では、正極の作製を60±2
0%RHの雰囲気で行う以外は実施例1と同様に正極及
び負極を作製した。正極の水分含有量は、実施例9では
1000ppm、実施例10では2700ppmであっ
た。また、負極の水分含有量は、それぞれ、実施例9、
実施例10いずれも490ppmであった。
(Examples 9 and 10) As shown in Table 2, in Examples 9 and 10, the production of the positive electrode was 60 ± 2.
A positive electrode and a negative electrode were produced in the same manner as in Example 1 except that the reaction was performed in an atmosphere of 0% RH. The water content of the positive electrode was 1000 ppm in Example 9 and 2700 ppm in Example 10. The water content of the negative electrode was determined in Example 9,
In all of Examples 10, the content was 490 ppm.

【0048】(実施例11〜実施例12)表2に示すよ
うに、実施例11〜実施例12では、バインダBを用
い、負極の作製を60±20%RHの雰囲気で行う以外
は実施例1と同様に正極及び負極を作製した。正極の水
分含有量は、実施例11、実施例12いずれも920p
pmであった。また、負極の水分含有量は、それぞれ、
500ppm、900ppmであった。
(Examples 11 to 12) As shown in Table 2, in Examples 11 to 12, the binders were used and the negative electrodes were produced in an atmosphere of 60 ± 20% RH. In the same manner as in Example 1, a positive electrode and a negative electrode were produced. The water content of the positive electrode was 920 p in both Examples 11 and 12.
pm. The water content of the negative electrode was
500 ppm and 900 ppm.

【0049】(実施例13〜実施例14)表2に示すよ
うに、実施例13〜実施例14では、バインダCを用
い、60±20%RHの雰囲気で行う以外は実施例1と
同様に正極及び負極を作製した。正極の水分含有量は、
実施例13では1000ppm、実施例14では270
0ppmであった。また、負極の水分含有量は、それぞ
れ、500ppm、900ppmであった。
(Examples 13 and 14) As shown in Table 2, Examples 13 and 14 were the same as Example 1 except that the binder C was used and an atmosphere of 60 ± 20% RH was used. A positive electrode and a negative electrode were produced. The water content of the positive electrode is
In Example 13, 1000 ppm, and in Example 14, 270 ppm.
It was 0 ppm. The water content of the negative electrode was 500 ppm and 900 ppm, respectively.

【0050】(実施例15〜実施例16)表2に示すよ
うに、実施例15〜実施例16では、バインダDを用
い、60±20%RHの雰囲気で行う以外は実施例5と
同様に正極及び負極を作製した。正極の水分含有量は、
実施例15では1000ppm、実施例16では270
0ppmであった。また、負極の水分含有量は、それぞ
れ、500ppm、1200ppmであった。
(Examples 15 to 16) As shown in Table 2, in Examples 15 to 16, in the same manner as in Example 5 except that the binder D was used and the atmosphere was 60 ± 20% RH. A positive electrode and a negative electrode were produced. The water content of the positive electrode is
In Example 15, 1000 ppm, and in Example 16, 270 ppm.
It was 0 ppm. The water content of the negative electrode was 500 ppm and 1200 ppm, respectively.

【0051】(実施例17〜実施例18)表2に示すよ
うに、実施例17〜実施例18では、バインダDを用
い、負極の作製を60±20%RHの雰囲気で行う以外
は実施例5と同様に正極及び負極を作製した。正極の水
分含有量は、実施例17、実施例18いずれも920p
pmであった。また、負極の水分含有量は、それぞれ、
500ppm、1200ppmであった。
(Examples 17 and 18) As shown in Table 2, in Examples 17 and 18, except that the negative electrode was produced in an atmosphere of 60 ± 20% RH using the binder D. In the same manner as in Example 5, a positive electrode and a negative electrode were produced. The water content of the positive electrode was 920 p in both Examples 17 and 18.
pm. The water content of the negative electrode was
500 ppm and 1200 ppm.

【0052】(実施例19)表2に示すように、実施例
19では第二実施形態に従い、正極は、バインダにPV
DFを用い、5±2%RHの雰囲気で作製した後、圧力
が大気圧より90kPa低い圧力以下の減圧下で、60
°Cにて24時間乾燥を行った。また、負極は、バイン
ダBを用い、60±20%RHの雰囲気で行う以外は実
施例1の負極と同様に作製した。正極の水分含有量は3
00ppmであり、負極の水分含有量は620ppmで
あった。
(Example 19) As shown in Table 2, in Example 19, according to the second embodiment, the positive electrode was PV
After the DF was prepared in an atmosphere of 5 ± 2% RH, the pressure was reduced to 60 kPa lower than the atmospheric pressure by 60 kPa or less.
Drying was performed at 24 ° C. for 24 hours. The negative electrode was manufactured in the same manner as the negative electrode of Example 1 except that the negative electrode was used in an atmosphere of 60 ± 20% RH using a binder B. The water content of the positive electrode is 3
The water content of the negative electrode was 620 ppm.

【0053】(実施例20)表2に示すように、実施例
20では第三実施形態に従い、正極は、バインダBを用
いる以外は実施例1の正極と同様に作製した。また、負
極は、負極炭素材にメソフェーズ系球状黒鉛を用い、バ
インダにPVDFを用いて、5±2%RHの雰囲気で作
製した後、圧力が大気圧より90kPa低い圧力以下の
減圧下で、60°Cにて24時間乾燥を行った。負極合
材の塗布量は、45.2g/mとした。正極の水分含
有量は920ppmであり、負極の水分含有量は280
ppmであった。
(Example 20) As shown in Table 2, in Example 20, according to the third embodiment, the positive electrode was manufactured in the same manner as the positive electrode of Example 1 except that binder B was used. In addition, the negative electrode was manufactured in an atmosphere of 5 ± 2% RH using mesophase-based spheroidal graphite as a negative electrode carbon material and PVDF as a binder. Drying was performed at 24 ° C. for 24 hours. The application amount of the negative electrode mixture was 45.2 g / m 2 . The water content of the positive electrode was 920 ppm, and the water content of the negative electrode was 280 ppm.
ppm.

【0054】(実施例21)表2に示すように、実施例
21では第二実施形態に従い、正極は、実施例19の正
極と同様に作製し、乾燥を行った。また、負極は、負極
炭素材に非晶質炭素を用いる以外は実施例19の負極と
同様に作製した。正極の水分含有量は300ppmであ
り、負極の水分含有量は620ppmであった。
Example 21 As shown in Table 2, in Example 21, according to the second embodiment, a positive electrode was manufactured and dried in the same manner as the positive electrode of Example 19. The negative electrode was manufactured in the same manner as the negative electrode of Example 19 except that amorphous carbon was used as the negative electrode carbon material. The water content of the positive electrode was 300 ppm, and the water content of the negative electrode was 620 ppm.

【0055】(比較例1)表2に示すように、比較例1
では、正極は、バインダにPVDFを用い、5±2%R
Hの雰囲気で作製し、次いで圧力が大気圧より90kP
a低い圧力以下の減圧下で60°Cにて24時間乾燥さ
せた。また、負極は、負極炭素材にメソフェーズ系球状
黒鉛を用い、バインダBを用いて、5±2%RHの雰囲
気で作製した後、圧力が大気圧より90kPa低い圧力
以下の減圧下で60°Cにて24時間乾燥させた。負極
合材の塗布量は、45.2g/mとした。正極の水分
含有量は300ppmであり、負極の水分含有量は19
0ppmであった。なお、電極捲回群の乾燥は行わなか
った。
Comparative Example 1 As shown in Table 2, Comparative Example 1
Then, the positive electrode uses PVDF for the binder, and 5 ± 2% R
H atmosphere, then 90 kP below atmospheric pressure
a Drying was performed at 60 ° C. for 24 hours under reduced pressure below the low pressure. Further, the negative electrode was manufactured using mesophase-based spheroidal graphite as the negative electrode carbon material, using a binder B in an atmosphere of 5 ± 2% RH, and then operating at 60 ° C. under a reduced pressure of 90 kPa lower than the atmospheric pressure. For 24 hours. The application amount of the negative electrode mixture was 45.2 g / m 2 . The water content of the positive electrode was 300 ppm, and the water content of the negative electrode was 19 ppm.
It was 0 ppm. The electrode wound group was not dried.

【0056】(比較例2)表2に示すように、比較例2
では、負極炭素材に非晶質炭素を用い、負極合材の塗布
量を33.3g/mとした以外は比較例1と同様に正
極及び負極を作製し、乾燥させた。正極の水分含有量は
300ppmであり、負極の水分含有量は220ppm
であった。なお、電極捲回群の乾燥は行わなかった。
Comparative Example 2 As shown in Table 2, Comparative Example 2
Then, a positive electrode and a negative electrode were prepared and dried in the same manner as in Comparative Example 1 except that amorphous carbon was used as the negative electrode carbon material, and the coating amount of the negative electrode mixture was 33.3 g / m 2 . The water content of the positive electrode is 300 ppm, and the water content of the negative electrode is 220 ppm.
Met. The electrode winding group was not dried.

【0057】(比較例3)表2に示すように、比較例3
では、正極にバインダBを用い、負極のバインダにPV
DFを用いる以外は比較例1と同様に正極及び負極を作
製し、乾燥させた。正極の水分含有量は290ppmで
あり、負極の水分含有量は280ppmであった。な
お、電極捲回群の乾燥は行わなかった。
Comparative Example 3 As shown in Table 2, Comparative Example 3
Then, binder B is used for the positive electrode, and PV is used for the binder of the negative electrode.
A positive electrode and a negative electrode were prepared and dried in the same manner as in Comparative Example 1 except that DF was used. The water content of the positive electrode was 290 ppm, and the water content of the negative electrode was 280 ppm. The electrode wound group was not dried.

【0058】(比較例4)表2に示すように、比較例4
では、正極は、バインダにPVDFを用い、60±20
%RHの雰囲気で作製し、乾燥は行わなかった。また、
負極は比較例1の負極と同様に作製し、乾燥させた。正
極の水分含有量は1680ppmであり、負極の水分含
有量は220ppmであった。なお、電極捲回群の乾燥
は行わなかった。
Comparative Example 4 As shown in Table 2, Comparative Example 4
Then, the positive electrode uses PVDF for the binder,
% RH and was not dried. Also,
The negative electrode was prepared and dried in the same manner as the negative electrode of Comparative Example 1. The water content of the positive electrode was 1680 ppm, and the water content of the negative electrode was 220 ppm. The electrode wound group was not dried.

【0059】(比較例5)表2に示すように、比較例5
では、正極は、バインダBを用い、60±20%RHの
雰囲気で作製した。また、負極は、負極炭素材にメソフ
ェーズ系球状黒鉛を用い、バインダにPVDFを用い
て、60±20%RHの雰囲気で作製した。負極合材の
塗布量は、45.2g/mとした。正極の水分含有量
は1000ppmであり、負極の水分含有量は660p
pmであった。なお、正極、負極は乾燥させずに捲回
し、捲回後に上述した乾燥条件で電極捲回群を乾燥させ
た。
Comparative Example 5 As shown in Table 2, Comparative Example 5
Then, the positive electrode was manufactured using a binder B in an atmosphere of 60 ± 20% RH. In addition, the negative electrode was manufactured in a 60 ± 20% RH atmosphere using mesophase-based spherical graphite as the negative electrode carbon material and PVDF as the binder. The application amount of the negative electrode mixture was 45.2 g / m 2 . The water content of the positive electrode was 1000 ppm, and the water content of the negative electrode was 660 p.
pm. The positive electrode and the negative electrode were wound without drying, and after the winding, the electrode wound group was dried under the above-mentioned drying conditions.

【0060】(比較例6)表2に示すように、比較例6
では、負極炭素材に非晶質炭素を用い、負極合材の塗布
量を33.3g/mとした以外は比較例5と同様に正
極及び負極を作製した。正極の水分含有量は1000p
pmであり、負極の水分含有量は750ppmであっ
た。なお、正極、負極は乾燥させずに捲回し、捲回後に
上述した乾燥条件で電極捲回群を乾燥させた。
Comparative Example 6 As shown in Table 2, Comparative Example 6
Then, a positive electrode and a negative electrode were produced in the same manner as in Comparative Example 5, except that amorphous carbon was used as the negative electrode carbon material, and the coating amount of the negative electrode mixture was 33.3 g / m 2 . Water content of the positive electrode is 1000p
pm, and the water content of the negative electrode was 750 ppm. The positive electrode and the negative electrode were wound without drying, and after the winding, the electrode wound group was dried under the above-mentioned drying conditions.

【0061】<試験・評価>次に、以上のようにして作
製した実施例及び比較例の各電池について、以下の一連
の試験を行った。
<Test / Evaluation> Next, the following series of tests were performed on the batteries of the examples and comparative examples manufactured as described above.

【0062】実施例及び比較例の各電池を、充電した後
放電し、放電容量を測定した。充電条件は、4.2V定
電圧、制限電流5A、3.5時間とした。放電条件は、
5A定電流、終止電圧2.7Vとした。
The batteries of Examples and Comparative Examples were charged and then discharged, and the discharge capacities were measured. The charging conditions were a constant voltage of 4.2 V, a limited current of 5 A, and 3.5 hours. The discharge conditions are
The constant current was 5 A, and the final voltage was 2.7 V.

【0063】また、上記条件で充電状態の電池の放電出
力を測定した。測定条件は、1A、3A、6A、各放電
電流で5秒目の電圧を読み取り、横軸電流値に対して縦
軸に電圧をプロットし、3点を結ぶ近似直線が、2.7
Vと交差するところの電流値と、2.7Vとの積を出力
とした。
The discharge output of the battery in the charged state under the above conditions was measured. The measurement conditions were 1A, 3A, and 6A. The voltage at 5 seconds was read at each discharge current, the voltage was plotted on the vertical axis against the current value on the horizontal axis, and an approximate straight line connecting three points was 2.7.
The product of the current value at the intersection with V and 2.7 V was used as the output.

【0064】更に、実施例、比較例の各電池を、上記条
件で充放電を100回繰り返した後、放電容量を測定
し、初期の放電容量に対する容量維持率を百分率で示し
た。当然のことながら、この容量維持率が高いほうが寿
命特性はよいことになる。
Further, each of the batteries of Examples and Comparative Examples was repeatedly charged and discharged 100 times under the above conditions, and then the discharge capacity was measured. The capacity retention ratio with respect to the initial discharge capacity was shown as a percentage. Naturally, the higher the capacity retention ratio, the better the life characteristics.

【0065】これら充電、放電、出力の測定は、いずれ
も環境温度25±1°Cの雰囲気で行った。各測定結果
を下表3に示す。
The charge, discharge, and output measurements were all performed in an atmosphere at an ambient temperature of 25 ± 1 ° C. The results of each measurement are shown in Table 3 below.

【0066】[0066]

【表3】 [Table 3]

【0067】表3に示すように、正負極合材のバインダ
にアクリル系重合体を用い、電極捲回群を乾燥させた実
施例の電池は、比較例の電池に対して高容量、高出力、
長寿命の電池となった。また、負極炭素材に非晶質炭素
を用いた実施例5〜実施例8及び実施例15〜実施例1
8の電池では、負極炭素材に黒鉛を用いた以外はほぼ同
条件の実施例1〜実施例4及び実施例9〜実施例14の
電池に比べて、より高出力の電池となった。また、正極
の水分含有量を1000ppm以上とした実施例9、実
施例10及び実施例13〜実施例16の電池では、より
高容量、高出力、長寿命の電池となった。また、負極の
水分含有量を500ppm以上とした実施例11〜実施
例18の電池では、より高容量、高出力、長寿命の電池
となった。特に、正極の水分含有量を1000ppm以
上とし、且つ負極の水分含有量を500ppm以上とし
た実施例13〜実施例16の電池は、電池性能の劣化が
抑制され、容量、出力、容量維持率がいずれも高い電池
となった。
As shown in Table 3, the battery of the example in which the acrylic polymer was used as the binder of the positive and negative electrode mixture and the electrode winding group was dried was higher in capacity and output than the battery of the comparative example. ,
It became a long-life battery. Examples 5 to 8 and Examples 15 to 1 using amorphous carbon as the negative electrode carbon material
In the battery of No. 8, the output was higher than those of the batteries of Examples 1 to 4 and Examples 9 to 14 under almost the same conditions except that graphite was used as the negative electrode carbon material. The batteries of Examples 9, 10, and 13 to 16 in which the water content of the positive electrode was 1000 ppm or more were higher capacity, higher output, and longer life. In addition, the batteries of Examples 11 to 18 in which the water content of the negative electrode was 500 ppm or more were batteries with higher capacity, higher output, and longer life. In particular, in the batteries of Examples 13 to 16 in which the water content of the positive electrode was 1000 ppm or more and the water content of the negative electrode was 500 ppm or more, the deterioration of the battery performance was suppressed, and the capacity, output, and capacity retention were reduced. All were high batteries.

【0068】実施例19〜実施例21の電池は、電池性
能は優れているが、実施例19及び実施例21では正極
のバインダにPVDFを用いており、実施例20では負
極のバインダにPVDFを用いているので、水分の残留
を避けるために、準備ステップでの電極作製を乾燥雰囲
気で行い、乾燥させて乾燥状態とし、作製ステップを経
て、更に電極捲回群の乾燥も行っている。従って、製造
コストの点では好ましくない。
The batteries of Examples 19 to 21 are excellent in battery performance. However, in Examples 19 and 21, PVDF is used for the positive electrode binder. In Example 20, PVDF is used for the negative electrode binder. Since the electrode is used, in order to avoid the residual water, the electrode preparation in the preparation step is performed in a dry atmosphere, dried to a dry state, and the electrode winding group is further dried through the preparation step. Therefore, it is not preferable in terms of manufacturing cost.

【0069】比較例1及び比較例2の電池は、電池の放
電容量、出力、容量維持率がいずれも著しく低下してい
る。当該電池を解体し、電極を観察したところ、正極に
は異常が見られなかったが、負極では合材層の一部にひ
び割れが発生し、集電体から一部剥離脱落していた。こ
のひび割れや剥離の原因は、バインダにアクリル系重合
体を用いた負極を準備ステップで乾燥状態とし、作製ス
テップで乾燥状態の負極を捲回したためである。すなわ
ち、アクリル系重合体は、完全脱水乾燥状態では可撓性
が低下し、捲回時の捲回曲率に電極が追随できなかった
ことによるものと思われる。このため、電極反応が十分
にかつ均質に行われず、放電容量、出力が低下し、また
均質反応でないために電極反応部位が限定され、電流密
度が集中して寿命低下につながったと推察している。
In the batteries of Comparative Examples 1 and 2, the discharge capacity, output, and capacity retention of the batteries were all significantly reduced. When the battery was disassembled and the electrodes were observed, no abnormality was found in the positive electrode. However, in the negative electrode, cracks occurred in a part of the mixture layer, and a part of the mixture was peeled off from the current collector. The cause of the cracks and peeling is that the negative electrode using an acrylic polymer as a binder was dried in a preparation step, and the dried negative electrode was wound in a manufacturing step. That is, it is considered that the acrylic polymer had a reduced flexibility in the completely dehydrated and dried state, and the electrode could not follow the winding curvature at the time of winding. For this reason, it is speculated that the electrode reaction was not performed sufficiently and uniformly, the discharge capacity and output were reduced, and because the reaction was not homogeneous, the electrode reaction site was limited and the current density was concentrated, leading to a reduction in life. .

【0070】一方、バインダにアクリル系重合体を用い
た実施例の電極は、非乾燥状態で捲回したので、捲回時
に可撓性が低下することはなく、捲回曲率に追随可能で
あったと思われ、正負極合材のひび割れや剥離はなかっ
た。捲回することにより電極は捲回状態(捲回曲率)に
固定されるため、捲回して捲回群を作製した後に乾燥さ
せて可撓性が低下しても、ひび割れ、剥離することはな
かった。
On the other hand, the electrodes of the examples using the acrylic polymer as the binder were wound in a non-dried state, so that the flexibility did not decrease at the time of winding and could follow the winding curvature. It was considered that there was no cracking or peeling of the positive / negative electrode mixture. Since the electrode is fixed in a wound state (wound curvature) by being wound, even if it is rolled and then dried after forming a wound group to reduce flexibility, it does not crack or peel. Was.

【0071】また、比較例3の電池においても解体観察
したところ、負極には異常が認められないが、正極合材
層の一部にやはり同様にひび割れ、剥離が見られた。比
較例4においては、負極に上述したような異常が発生し
たことに加え、正極のバインダに用いたPVDFが十分
に乾燥されなかったために、電池内でPVDFから洩出
した水分が電解液を劣化させ、容量維持率の低下に結び
ついたものである。また、比較例5及び比較例6の電池
についても、バインダにPVDFを用いた負極の乾燥が
不十分で、水分が残留していたことにより電池性能が劣
化した。電極捲回群を乾燥させたにもかかわらず、電池
性能の低下を招いたのは、PVDF中に残留した水分
は、一般的な乾燥操作では容易に除去できないことを示
している。特に、非晶質炭素を用いた電極は、水分によ
る性能低下が黒鉛を用いた電極に比べて大きく、比較例
6の電池において更に容量維持率の低下が著しい。
When the battery of Comparative Example 3 was dismantled and observed, no abnormality was observed in the negative electrode, but cracks and peeling were also observed in a part of the positive electrode mixture layer. In Comparative Example 4, in addition to the occurrence of the above-described abnormality in the negative electrode, the PVDF used as the binder of the positive electrode was not sufficiently dried, so that the water leaked from the PVDF in the battery deteriorated the electrolyte. As a result, the capacity retention rate is reduced. Also in the batteries of Comparative Examples 5 and 6, the negative electrode using PVDF as a binder was insufficiently dried, and the battery performance was deteriorated due to residual moisture. The fact that the battery performance was lowered despite drying the electrode winding group indicates that water remaining in PVDF cannot be easily removed by a general drying operation. In particular, in the electrode using amorphous carbon, the performance decrease due to moisture is larger than that in the electrode using graphite, and the capacity retention ratio of the battery of Comparative Example 6 is further remarkably reduced.

【0072】以上のように、上記実施形態の円筒形リチ
ウムイオン電池20は、正極及び/又は負極合材のバイ
ンダにアクリル系重合体を含むバインダを用いて作製し
た電極を、捲回して電極捲回群を作製した後に電極捲回
群を乾燥させることで、バインダに吸収された正極及び
/又は負極中の水分が十分に除去されるので、水分混入
による電池性能の低下を抑制することができる。また、
第一実施形態においては、準備ステップや作製ステップ
をコスト高となる乾燥雰囲気で行う必要はなく、コスト
を低減することができる。また、第一実施形態及び第三
実施形態において、準備ステップで作製した正極の水分
含有量を1000ppm以上とすれば、捲回作業を容易
に行うことができる。更に、第一実施形態及び第二実施
形態において、準備ステップで作製した負極の水分含有
量を500ppm以上とすれば、捲回作業を容易に行う
ことができる。
As described above, the cylindrical lithium ion battery 20 of the above embodiment is formed by winding an electrode manufactured by using a binder containing an acrylic polymer for the binder of the positive electrode and / or the negative electrode mixture. By drying the electrode-wound group after forming the group, the water in the positive electrode and / or the negative electrode absorbed by the binder is sufficiently removed, so that a decrease in battery performance due to water contamination can be suppressed. . Also,
In the first embodiment, it is not necessary to perform the preparation step and the manufacturing step in a dry atmosphere that increases the cost, and the cost can be reduced. In the first and third embodiments, if the water content of the positive electrode produced in the preparation step is set to 1000 ppm or more, the winding operation can be easily performed. Furthermore, in the first embodiment and the second embodiment, if the water content of the negative electrode manufactured in the preparation step is set to 500 ppm or more, the winding operation can be easily performed.

【0073】なお、上記実施形態では、電気自動車用電
源に用いられる比較的大形の二次電池について例示した
が、本発明は、電池の大きさ、電池容量には限定される
ことなく、効果を発揮することが確認されている。ま
た、本発明の適用可能な電池の形状としては、上述した
有底筒状容器(缶)に電池上蓋がカシメによって封口さ
れている構造の電池以外であっても構わない。このよう
な構造の一例として正負外部端子が電池蓋を貫通し電池
容器内で軸芯を介して正負外部端子が押し合っている状
態の電池を挙げることができる。更に、本発明は、円筒
形電池に限らず、例えば、正負極を三角形、四角形、角
形又は多角形状に捲回して電極捲回群とした非水電解液
二次電池にも適用が可能である。
In the above embodiment, a comparatively large secondary battery used for a power supply for an electric vehicle has been described as an example. However, the present invention is not limited to the size and the battery capacity of the battery. Has been confirmed to exhibit Further, the shape of the battery to which the present invention can be applied may be other than the battery having a structure in which the battery upper lid is sealed by caulking in the above-described bottomed cylindrical container (can). An example of such a structure is a battery in which the positive and negative external terminals penetrate the battery cover and the positive and negative external terminals press against each other via the shaft core in the battery container. Furthermore, the present invention is not limited to a cylindrical battery, and can be applied to, for example, a nonaqueous electrolyte secondary battery in which a positive electrode and a negative electrode are wound in a triangular, quadrangular, square, or polygonal shape to form an electrode winding group. .

【0074】また、上記実施形態では、電極捲回群の乾
燥を、圧力が大気圧より90kPa低い圧力以下の減圧
下で、60°Cにて72時間行ったが、圧力条件、温度
条件、乾燥時間は適宜定めればよく、水分が十分に除去
される条件であればよい。
In the above embodiment, the electrode winding group was dried at 60 ° C. for 72 hours under reduced pressure of 90 kPa lower than the atmospheric pressure. The time may be appropriately determined, and may be any condition as long as moisture is sufficiently removed.

【0075】更に、上記実施形態では、リチウムイオン
電池用の正極にマンガン酸リチウム、負極に黒鉛又は非
晶質炭素、電解液にエチレンカーボネートとジメチルカ
ーボネートとジエチルカーボネートの体積比1:1:1
の混合溶液中へ6フッ化リン酸リチウムを1モル/リッ
トル溶解したものを用いたが、本発明の電池には特に制
限はなく、また、正極の導電材も通常用いられているい
ずれのものも使用可能である。また、正極合材及び負極
合材の混合材組成、合材塗布量、合材密度、電極厚さに
制限はない。なお、一般に、マンガン酸リチウムは、適
当なリチウム塩と酸化マンガンとを混合、焼成して合成
することができるが、リチウム塩と酸化マンガンの仕込
み比を制御することによって所望のLi/Mn比とする
ことができる。
Furthermore, in the above embodiment, the positive electrode for a lithium ion battery is lithium manganate, the negative electrode is graphite or amorphous carbon, and the electrolyte is ethylene carbonate, dimethyl carbonate and diethyl carbonate in a volume ratio of 1: 1: 1.
A solution in which lithium hexafluorophosphate was dissolved at 1 mol / l in a mixed solution of was used. However, the battery of the present invention is not particularly limited, and any of the commonly used positive electrode conductive materials is also used. Can also be used. There is no limitation on the composition of the mixture of the positive electrode mixture and the negative electrode mixture, the amount of the mixture applied, the mixture density, and the electrode thickness. In general, lithium manganate can be synthesized by mixing and baking an appropriate lithium salt and manganese oxide. However, by controlling the charging ratio of the lithium salt and manganese oxide, the desired Li / Mn ratio can be obtained. can do.

【0076】また、上記実施形態以外で用いることので
きるリチウム遷移金属複酸化物としては、コバルト酸リ
チウム他、リチウムを挿入・脱離可能な材料であり、予
め十分な量のリチウムを挿入したリチウムマンガン複酸
化物であればよく、スピネル構造を有したマンガン酸リ
チウムや、結晶中のマンガンやリチウムの一部をそれら
以外の元素(例えば、Li、Fe、Co、Ni、Cr、
Al、Mg、等)で置換あるいはドープした材料を使用
するようにしてもよい。また、結晶構造が、層状構造を
有し、結晶中のマンガンやリチウムの一部をそれら以外
の元素(例えば、Li、Fe、Co、Ni、Cr、A
l、Mg、等)で置換あるいはドープしたリチウムマン
ガン複酸化物でもよい。
Examples of the lithium transition metal double oxide that can be used in other than the above-mentioned embodiment include lithium cobalt oxide and other materials into which lithium can be inserted and desorbed, and lithium in which a sufficient amount of lithium has been inserted in advance. As long as it is a manganese double oxide, lithium manganate having a spinel structure, or a part of manganese or lithium in a crystal may be replaced with another element (eg, Li, Fe, Co, Ni, Cr,
Al, Mg, etc.) may be used. Further, the crystal structure has a layered structure, and some of manganese and lithium in the crystal are replaced with other elements (eg, Li, Fe, Co, Ni, Cr, A).
1, manganese, etc.).

【0077】更に、第二実施形態の正極及び第三実施形
態の負極のバインダとしてPVDFを例示したが、通常
用いられているいずれのものも使用可能である。例え
ば、テフロン(登録商標)、ポリエチレン、ポリスチレ
ン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチ
レン/ブタジエンゴム、多硫化ゴム、ニトロセルロー
ス、シアノエチルセルロース、各種ラテックス、アクリ
ロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化
プロピレン、フッ化クロロプレン等の重合体及びこれら
の混合体などが挙げられる。
Furthermore, although PVDF has been exemplified as the binder of the positive electrode of the second embodiment and the negative electrode of the third embodiment, any commonly used binder can be used. For example, Teflon (registered trademark), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethylcellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride And polymers such as chloroprene fluoride and mixtures thereof.

【0078】また更に、上記実施形態以外で用いること
のできるリチウムイオン電池用負極炭素材も上記特許請
求範囲に記載した事項以外に特に制限はない。例えば、
天然黒鉛や、人造の各種黒鉛材、コークス、非晶質炭素
などの炭素質材料等でよく、その粒子形状においても、
鱗片状、球状、繊維状、塊状等、特に制限されるもので
はない。
Further, the carbon material for a negative electrode for a lithium ion battery that can be used in other than the above embodiment is not particularly limited, other than the matters described in the claims. For example,
Natural graphite, artificial graphite materials, coke, and carbonaceous materials such as amorphous carbon may be used.
The shape is not particularly limited, such as a scale, a sphere, a fiber, and a lump.

【0079】また、上記実施形態では、絶縁被覆に、基
材がポリイミドで、その片面にヘキサメタアクリレート
からなる粘着剤を塗布した粘着テープを用いた例を示し
たが、例えば、基材がポリプロピレンやポリエチレン等
のポリオレフィンで、その片面又は両面にヘキサメタア
クリレートやブチルアクリレート等のアクリル系粘着剤
を塗布した粘着テープや、粘着剤を塗布しないポリオレ
フィンやポリイミドからなるテープ等も好適に使用する
ことができる。
Further, in the above-described embodiment, an example is shown in which an adhesive tape is used in which the base material is polyimide and the adhesive agent made of hexamethacrylate is applied to one surface of the insulating coating. Or a polyolefin such as polyethylene, an adhesive tape having an acrylic adhesive such as hexamethacrylate or butyl acrylate applied to one or both surfaces thereof, or a tape made of a polyolefin or polyimide to which no adhesive is applied may be suitably used. it can.

【0080】更に、上記実施形態で用いた以外の非水電
解液としては、一般的なリチウム塩を電解質とし、これ
を有機溶媒に溶解した電解液が用いられる。用いられる
リチウム塩や有機溶媒は特に制限されない。例えば、電
解質としては、LiClO4、LiAsF6、LiP
6、LiBF4、LiB(C654、CH3SO3
i、CF3SO3Li等やこれらの混合物を用いることが
できる。非水電解液有機溶媒としては、プロピレンカー
ボネート、エチレンカーボネート、1,2−ジメトキシ
エタン、1,2−ジエトキシエタン、γ−ブチロラクト
ン、テトラヒドロフラン、1,3−ジオキソラン、4−
メチル−1,3−ジオキソラン、ジエチルエーテル、ス
ルホラン、メチルスルホラン、アセトニトリル、プロピ
オニトニル等またはこれら2種類以上の混合溶媒を用い
るようにしてもよく、混合配合比についても限定される
ものではない。
Further, as the non-aqueous electrolytic solution other than the one used in the above embodiment, an electrolytic solution obtained by dissolving a general lithium salt as an electrolyte in an organic solvent is used. The lithium salt or organic solvent used is not particularly limited. For example, as the electrolyte, LiClO 4 , LiAsF 6 , LiP
F 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 L
i, CF 3 SO 3 Li, or a mixture thereof can be used. Non-aqueous electrolyte organic solvents include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolan,
Methyl-1,3-dioxolan, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitonyl, etc., or a mixed solvent of two or more thereof may be used, and the mixing ratio is not limited.

【0081】[0081]

【発明の効果】以上説明したように、本発明の製造方法
によれば、準備ステップで正極及び/又は負極に混合・
含有させたアクリル系重合体を含むバインダにより正極
及び/又は負極中の水分を吸収し、作製ステップで電極
捲回群を作製した後に、乾燥ステップで電極捲回群を減
圧加熱下で乾燥させることで、非乾燥状態の正極及び/
又は負極のバインダに吸収された水分が除去されるの
で、水分混入による電池性能の低下を抑制することがで
きると共に、アクリル系重合体を含むバインダを用いた
正極及び/又は負極は乾燥状態では可撓性が低下するの
で、作製ステップで非乾燥状態のまま捲回して電極捲回
群を作製するため、捲回作業が容易となり、電極の損傷
を防ぐことができ、また、電極を非乾燥状態のまま電極
捲回群を作製することができるので、準備ステップや作
製ステップをコスト高となる乾燥雰囲気で行う必要がな
く、コスト低減を図ることができる、という効果を得る
ことができる。
As described above, according to the manufacturing method of the present invention, in the preparation step, the positive electrode and / or the negative electrode are mixed and mixed.
After absorbing the water in the positive electrode and / or the negative electrode with the binder containing the acrylic polymer contained therein, and preparing the electrode winding group in the manufacturing step, the electrode winding group is dried under reduced pressure heating in the drying step. And the non-dried positive electrode and / or
Alternatively, since the moisture absorbed by the binder of the negative electrode is removed, the deterioration of the battery performance due to the contamination with water can be suppressed, and the positive electrode and / or the negative electrode using the binder containing the acrylic polymer can be dried. Since the flexibility decreases, the electrode is wound in a non-dried state in the manufacturing step to form an electrode-wound group, thereby facilitating the winding operation and preventing the electrode from being damaged. Since the electrode winding group can be manufactured as it is, there is no need to perform the preparation step and the manufacturing step in a dry atmosphere that increases the cost, and the effect that the cost can be reduced can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用可能な実施形態の円筒形リチウム
イオン電池の断面図である。
FIG. 1 is a sectional view of a cylindrical lithium ion battery according to an embodiment to which the present invention can be applied.

【符号の説明】[Explanation of symbols]

1 軸芯 2 正極リード片 3 負極リード片 4 正極集電リング 5 負極集電リング 6 捲回群(電極捲回群) 7 電池容器 8 負極リード板 9 正極リード 10 ガスケット 11 開裂弁 12 蓋ケース 13 蓋キャップ 14 弁押え 20 円筒形リチウムイオン電池(非水電解液二次電
池) W1 正極集電体 W2 正極合材層 W3 負極集電体 W4 負極合材層 W5 セパレータ
DESCRIPTION OF SYMBOLS 1 Shaft core 2 Positive electrode lead piece 3 Negative electrode lead piece 4 Positive electrode current collecting ring 5 Negative current collecting ring 6 Winding group (Electrode winding group) 7 Battery container 8 Negative lead plate 9 Positive electrode lead 10 Gasket 11 Cleavage valve 12 Lid case 13 Lid cap 14 Valve holder 20 Cylindrical lithium ion battery (non-aqueous electrolyte secondary battery) W1 Positive electrode current collector W2 Positive electrode mixture layer W3 Negative electrode current collector W4 Negative electrode mixture layer W5 Separator

フロントページの続き Fターム(参考) 5H029 AJ14 AK03 AL07 AL08 AM01 BJ02 BJ14 CJ02 CJ07 CJ08 CJ22 CJ28 EJ12 HJ01 5H050 AA19 BA17 CA05 CB08 CB09 DA10 DA11 EA23 GA00 GA02 GA09 GA10 GA22 HA01 Continued on front page F term (reference) 5H029 AJ14 AK03 AL07 AL08 AM01 BJ02 BJ14 CJ02 CJ07 CJ08 CJ22 CJ28 EJ12 HJ01 5H050 AA19 BA17 CA05 CB08 CB09 DA10 DA11 EA23 GA00 GA02 GA09 GA10 GA22 HA01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 非水電解液に浸潤した電極捲回群を有す
る非水電解液二次電池の製造方法であって、 リチウム遷移金属複酸化物、導電材及びアクリル系重合
体を含むバインダを混合した正極合材を帯状集電体に塗
着した非乾燥状態の正極と、炭素材及びアクリル系重合
体を含むバインダを混合した負極合材を帯状集電体に塗
着した非乾燥状態の負極と、リチウムイオンが通過可能
な微多孔を有するセパレータとを準備し、 前記正極及び負極を、前記セパレータを介して捲回して
電極捲回群を作製し、 前記電極捲回群を減圧加熱下で乾燥させる、 ステップを含む非水電解液二次電池の製造方法。
1. A method for producing a non-aqueous electrolyte secondary battery having an electrode winding group soaked in a non-aqueous electrolyte, comprising a binder containing a lithium transition metal double oxide, a conductive material and an acrylic polymer. A positive electrode in a non-dried state in which a mixed positive electrode mixture is applied to a belt-shaped current collector, and a non-dried state in which a negative electrode mixture in which a binder containing a carbon material and an acrylic polymer is mixed is applied to a band-shaped current collector A negative electrode and a separator having microporosity through which lithium ions can pass are prepared, and the positive electrode and the negative electrode are wound through the separator to form an electrode winding group. The electrode winding group is heated under reduced pressure. Drying the non-aqueous electrolyte secondary battery.
【請求項2】 非水電解液に浸潤した電極捲回群を有す
る非水電解液二次電池の製造方法であって、 リチウム遷移金属複酸化物、導電材及びバインダを混合
した正極合材を帯状集電体に塗着した乾燥状態の正極
と、非晶質炭素及びアクリル系重合体を含むバインダを
混合した負極合材を帯状集電体に塗着した非乾燥状態の
負極と、リチウムイオンが通過可能な微多孔を有するセ
パレータとを準備し、 前記正極及び負極を、前記セパレータを介して捲回して
電極捲回群を作製し、 前記電極捲回群を減圧加熱下で乾燥させる、 ステップを含む非水電解液二次電池の製造方法。
2. A method for producing a non-aqueous electrolyte secondary battery having an electrode winding group soaked in a non-aqueous electrolyte, comprising: a positive electrode mixture obtained by mixing a lithium transition metal double oxide, a conductive material and a binder. A positive electrode in a dry state coated on a belt-shaped current collector, a negative electrode in a non-dried state coated with a negative electrode mixture obtained by mixing a binder containing amorphous carbon and an acrylic polymer, and a lithium ion Preparing a separator having a microporous through which the positive electrode and the negative electrode are wound, forming an electrode winding group by winding the positive electrode and the negative electrode through the separator, and drying the electrode winding group under reduced pressure heating, A method for producing a non-aqueous electrolyte secondary battery comprising:
【請求項3】 非水電解液に浸潤した電極捲回群を有す
る非水電解液二次電池の製造方法であって、 リチウム遷移金属複酸化物、導電材及びアクリル系重合
体を含むバインダを混合した正極合材を帯状集電体に塗
着した非乾燥状態の正極と、炭素材及びバインダを混合
した負極合材を帯状集電体に塗着した乾燥状態の負極
と、リチウムイオンが通過可能な微多孔を有するセパレ
ータとを準備し、 前記正極及び負極を、前記セパレータを介して捲回して
電極捲回群を作製し、 前記電極捲回群を減圧加熱下で乾燥させる、 ステップを含む非水電解液二次電池の製造方法。
3. A method for producing a non-aqueous electrolyte secondary battery having an electrode winding group soaked in a non-aqueous electrolyte, comprising a binder containing a lithium transition metal double oxide, a conductive material and an acrylic polymer. A non-dried positive electrode in which a mixed positive electrode mixture is applied to a belt-shaped current collector, a dry negative electrode in which a negative electrode mixture in which a carbon material and a binder are mixed is applied to a band-shaped current collector, and lithium ions pass through Preparing a separator having a possible microporosity, winding the positive electrode and the negative electrode through the separator to form an electrode winding group, and drying the electrode winding group under reduced pressure heating. A method for manufacturing a non-aqueous electrolyte secondary battery.
【請求項4】 前記準備ステップでの正極の水分含有量
が1000ppm以上であることを特徴とする請求項1
又は請求項3に記載の非水電解液二次電池の製造方法。
4. The method according to claim 1, wherein the water content of the positive electrode in the preparation step is 1000 ppm or more.
A method for producing the nonaqueous electrolyte secondary battery according to claim 3.
【請求項5】 前記準備ステップでの負極の水分含有量
が500ppm以上であることを特徴とする請求項1又
は請求項2に記載の非水電解液二次電池の製造方法。
5. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the water content of the negative electrode in the preparation step is 500 ppm or more.
【請求項6】 前記準備ステップでの正極の水分含有量
が1000ppm以上であり、かつ、前記準備ステップ
での負極の水分含有量が500ppm以上であることを
特徴とする請求項1に記載の非水電解液二次電池の製造
方法。
6. The non-aqueous battery according to claim 1, wherein the water content of the positive electrode in the preparation step is 1000 ppm or more, and the water content of the negative electrode in the preparation step is 500 ppm or more. A method for producing a water electrolyte secondary battery.
JP2001179456A 2001-06-14 2001-06-14 Method for producing non-aqueous electrolyte secondary battery Expired - Fee Related JP4904639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001179456A JP4904639B2 (en) 2001-06-14 2001-06-14 Method for producing non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001179456A JP4904639B2 (en) 2001-06-14 2001-06-14 Method for producing non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002373701A true JP2002373701A (en) 2002-12-26
JP4904639B2 JP4904639B2 (en) 2012-03-28

Family

ID=19020012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001179456A Expired - Fee Related JP4904639B2 (en) 2001-06-14 2001-06-14 Method for producing non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4904639B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327592A (en) * 2004-05-14 2005-11-24 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
WO2008087966A1 (en) * 2007-01-16 2008-07-24 Zeon Corporation Binder composition, slurry for electrode, electrode and nonaqueous electrolyte secondary battery
WO2008139578A1 (en) * 2007-05-09 2008-11-20 Panasonic Corporation Nonaqueous electrolyte secondary battery
WO2011102169A1 (en) * 2010-02-17 2011-08-25 日産自動車株式会社 Drying apparatus and drying method
JP2014006981A (en) * 2012-06-21 2014-01-16 Toyota Motor Corp Nonaqueous electrolyte secondary battery manufacturing method and inspection method
WO2015119305A1 (en) * 2014-02-04 2015-08-13 주식회사 코캄 Electrode for lithium secondary battery and lithium secondary battery comprising same
CN109565083A (en) * 2016-08-09 2019-04-02 松下知识产权经营株式会社 Non-aqueous electrolyte secondary battery
WO2019198467A1 (en) 2018-04-09 2019-10-17 日産自動車株式会社 Manufacturing method of nonaqueous electrolyte secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845499A (en) * 1994-07-29 1996-02-16 Sharp Corp Lithium secondary battery
JPH08287915A (en) * 1995-04-19 1996-11-01 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH09115504A (en) * 1995-10-17 1997-05-02 Nikkiso Co Ltd Electrode for battery and its manufacture
JPH09265990A (en) * 1996-03-29 1997-10-07 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and manufacture thereof
JPH10189054A (en) * 1996-12-26 1998-07-21 Mitsubishi Electric Corp Manufacture of lithium ion secondary battery
JPH10261402A (en) * 1997-03-18 1998-09-29 Toyobo Co Ltd Nonaque0us electrolyte secondary battery and manufacture thereof
JPH10270047A (en) * 1997-03-27 1998-10-09 Nippon Zeon Co Ltd Battery binder composition, battery electrode slurry, lithyum secondary battery electrode, lithyum secondary battery
JPH11238505A (en) * 1997-12-16 1999-08-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, negative electrode thereof, and manufacture of the negative electrode
JP2000058053A (en) * 1998-08-07 2000-02-25 Matsushita Electric Ind Co Ltd Manufacture of positive-electrode active material for nonaqueous-electrolyte secondary battery, positive- electrode active material for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845499A (en) * 1994-07-29 1996-02-16 Sharp Corp Lithium secondary battery
JPH08287915A (en) * 1995-04-19 1996-11-01 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH09115504A (en) * 1995-10-17 1997-05-02 Nikkiso Co Ltd Electrode for battery and its manufacture
JPH09265990A (en) * 1996-03-29 1997-10-07 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and manufacture thereof
JPH10189054A (en) * 1996-12-26 1998-07-21 Mitsubishi Electric Corp Manufacture of lithium ion secondary battery
JPH10261402A (en) * 1997-03-18 1998-09-29 Toyobo Co Ltd Nonaque0us electrolyte secondary battery and manufacture thereof
JPH10270047A (en) * 1997-03-27 1998-10-09 Nippon Zeon Co Ltd Battery binder composition, battery electrode slurry, lithyum secondary battery electrode, lithyum secondary battery
JPH11238505A (en) * 1997-12-16 1999-08-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, negative electrode thereof, and manufacture of the negative electrode
JP2000058053A (en) * 1998-08-07 2000-02-25 Matsushita Electric Ind Co Ltd Manufacture of positive-electrode active material for nonaqueous-electrolyte secondary battery, positive- electrode active material for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327592A (en) * 2004-05-14 2005-11-24 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
US8277977B2 (en) 2007-01-16 2012-10-02 Zeon Corporation Binder composition, slurry for electrodes, electrode and nonaqueous electrolyte secondary battery
WO2008087966A1 (en) * 2007-01-16 2008-07-24 Zeon Corporation Binder composition, slurry for electrode, electrode and nonaqueous electrolyte secondary battery
WO2008139578A1 (en) * 2007-05-09 2008-11-20 Panasonic Corporation Nonaqueous electrolyte secondary battery
CN101405898B (en) * 2007-05-09 2012-01-25 松下电器产业株式会社 Non-aqueous electrolyte secondary batteries
KR101294561B1 (en) 2010-02-17 2013-08-07 닛산 지도우샤 가부시키가이샤 Drying apparatus and drying method
WO2011102169A1 (en) * 2010-02-17 2011-08-25 日産自動車株式会社 Drying apparatus and drying method
RU2509274C1 (en) * 2010-02-17 2014-03-10 Ниссан Мотор Ко., Лтд. Drying device, and drying method
US8950083B2 (en) 2010-02-17 2015-02-10 Nissan Motor Co., Ltd. Drying device and drying method
JP2014006981A (en) * 2012-06-21 2014-01-16 Toyota Motor Corp Nonaqueous electrolyte secondary battery manufacturing method and inspection method
WO2015119305A1 (en) * 2014-02-04 2015-08-13 주식회사 코캄 Electrode for lithium secondary battery and lithium secondary battery comprising same
CN109565083A (en) * 2016-08-09 2019-04-02 松下知识产权经营株式会社 Non-aqueous electrolyte secondary battery
JPWO2018030176A1 (en) * 2016-08-09 2019-06-06 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
WO2019198467A1 (en) 2018-04-09 2019-10-17 日産自動車株式会社 Manufacturing method of nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4904639B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP3541723B2 (en) Cylindrical lithium-ion battery
US20090286139A1 (en) Lithium secondary battery
JP2003308842A (en) Nonaqueous electrolyte lithium secondary battery
JP4305035B2 (en) Winding cylindrical lithium-ion battery
JP4904639B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2003059539A (en) Cylindrical lithium ion battery
JP6457272B2 (en) Method for reducing uneven charging of secondary battery and method for manufacturing secondary battery
JP2000311677A (en) Rolled type cylindrical lithium secondary battery
JP2005071640A (en) Flat nonaqueous electrolyte secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP3988384B2 (en) Non-aqueous electrolyte secondary battery
JP4048763B2 (en) Non-aqueous electrolyte secondary battery
JP2004186130A (en) Non-aqueous lithium secondary battery
JP2003229179A (en) Nonaqueous electrolyte secondary battery
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP2005100955A (en) Winding type lithium ion battery
JP3624793B2 (en) Lithium ion battery
JP4839518B2 (en) Non-aqueous electrolyte secondary battery
WO2013069670A1 (en) Nonaqueous electrolyte secondary battery
JP2003068282A (en) Nonaqueous electrolyte secondary battery
JP3518484B2 (en) Lithium ion battery
JP3719139B2 (en) Non-aqueous electrolyte secondary battery
JP3440870B2 (en) Cylindrical lithium-ion battery
JP2005327521A (en) Manufacturing method of nonaqueous electrolyte secondary battery and using method of the same
JP4389398B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees