JP2000058053A - Manufacture of positive-electrode active material for nonaqueous-electrolyte secondary battery, positive- electrode active material for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery using the same - Google Patents

Manufacture of positive-electrode active material for nonaqueous-electrolyte secondary battery, positive- electrode active material for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery using the same

Info

Publication number
JP2000058053A
JP2000058053A JP10223935A JP22393598A JP2000058053A JP 2000058053 A JP2000058053 A JP 2000058053A JP 10223935 A JP10223935 A JP 10223935A JP 22393598 A JP22393598 A JP 22393598A JP 2000058053 A JP2000058053 A JP 2000058053A
Authority
JP
Japan
Prior art keywords
active material
secondary battery
electrolyte secondary
electrode active
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10223935A
Other languages
Japanese (ja)
Other versions
JP3539223B2 (en
Inventor
Mitsuhiro Takeno
光弘 武野
Shinji Arimoto
真司 有元
Kunio Ito
邦夫 伊藤
Akira Hashimoto
彰 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22393598A priority Critical patent/JP3539223B2/en
Publication of JP2000058053A publication Critical patent/JP2000058053A/en
Application granted granted Critical
Publication of JP3539223B2 publication Critical patent/JP3539223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide, at a low cost, a large-capacity positive electrode for a nonaqueous-electrolyte secondary battery by reducing the amount of gaseous carbon dioxide and water contained in air at synthesis. SOLUTION: A manufacturing method of a cobalt-lithium solid solution compound nickel oxide expressed by the general formula, LixNi(1-y)CoyO2, (0.9<=x<=1.2, 2.0<=y<0.5) as a positive-electrode active material for a nonaqueous- electrolyte secondary battery, has a first-stage baking process for baking within the range of 300 to 700 deg.C for 2 hours or more in air from which gaseous carbon dioxide and water are removed, followed by a pulverizing process at 100 deg.C or under, and a second-stage baking process for baking a product obtained in the processes within the range of 700 to 900 deg.C for 2 hours or more. A process for pulverizing active material is performed in an atmosphere of 0.01 vol.% or less of gaseous carbon dioxide and a water dew point of 0 deg.C or under.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池、特にその正極活物質の製造方法の改良に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in a method for producing a positive electrode active material thereof.

【0002】[0002]

【従来の技術】近年、電子機器の携帯化、ポータブル化
が急速に進み、これらの電源としての小型、軽量でさら
に高エネルギー密度を有する二次電池が望まれている。
特に、非水電解液二次電池、特にリチウム二次電池は、
高密度、高エネルギーを有する電池として注目されてい
る。従来、リチウム二次電池の正極活物質としてコバル
ト酸リチウム(LiCoO2),ニッケル酸リチウム
(LiNiO2),マンガン酸リチウム(LiMn
24)等が知られており、コバルト酸リチウムを用いる
二次電池は既に商品化されている。しかしながら、コバ
ルト酸リチウムはコバルトの資源およびコストの問題を
有しており、これに変わる正極活物質としてニッケル酸
リチウムなどが注目され、コバルト固溶リチウム複合ニ
ッケル酸化物などの開発が進められている。このニッケ
ル酸リチウムはコバルト酸リチウムに比べて低コスト、
高容量であるため、研究開発が盛んに行われている。
2. Description of the Related Art In recent years, portable and portable electronic devices have been rapidly advanced, and there is a demand for a small, lightweight, and high energy density secondary battery as a power source for these devices.
In particular, non-aqueous electrolyte secondary batteries, especially lithium secondary batteries,
It is attracting attention as a battery having high density and high energy. Conventionally, lithium cobalt oxide (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn) have been used as a positive electrode active material of a lithium secondary battery.
2 O 4 ) is known, and secondary batteries using lithium cobalt oxide have already been commercialized. However, lithium cobalt oxide has problems of resources and cost of cobalt, and lithium nickel oxide and the like are attracting attention as a positive electrode active material instead, and development of cobalt solid solution lithium composite nickel oxide and the like is being promoted. . This lithium nickelate is lower cost than lithium cobaltate,
Due to its high capacity, research and development is actively pursued.

【0003】従来、ニッケル酸リチウムはその合成方法
によって、充放電特性が大きく異なり、大きな充放電容
量を示すニッケル酸リチウムの合成は難しいとされてい
た。しかしながら、最近、合成条件の検討において、大
きな充放電容量を示すニッケル酸リチウムの合成方法が
報告されている。例えば、水酸化ニッケルと水酸化リチ
ウムを原料にニッケル酸リチウムを合成する方法(特開
平5−290851号公報)、均一に焼成させるために
一段目の焼成後、粉砕、混合し、さらに結晶化を促進さ
せるために二段目の焼成を行う方法(特開平9−251
854号公報)等がある。
Heretofore, lithium nickel oxide has greatly different charge / discharge characteristics depending on the synthesis method, and it has been considered difficult to synthesize lithium nickel oxide exhibiting a large charge / discharge capacity. However, recently, in studying synthesis conditions, a method for synthesizing lithium nickelate exhibiting a large charge / discharge capacity has been reported. For example, a method of synthesizing lithium nickelate using nickel hydroxide and lithium hydroxide as raw materials (Japanese Patent Laid-Open No. 5-290851), pulverization, mixing, and crystallization after the first baking for uniform baking. A method of performing a second-stage baking to promote the treatment (Japanese Unexamined Patent Publication No. 9-251
No. 854).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、いずれ
の合成方法においてもコバルト含有水酸化ニッケルと水
酸化リチウムを原料として、空気中で反応させリチウム
含有複合酸化物を得る方法であり、モル比で一般的にリ
チウムを過剰に用いている。また、コバルト含有水酸化
ニッケルと水酸化リチウムを混合し、焼成する段階にお
いて、ニッケル及びコバルトの原子価を2価から3価へ
と酸化するために酸化剤、主には酸素ガスを大量に必要
とし消費する。そこで、合成には空気中の酸素分圧を一
定以上に保つ必要があるため、焼成炉に空気や酸素ガス
を導入する必要がある。
However, in any of the synthesizing methods, it is a method of obtaining a lithium-containing composite oxide by reacting cobalt-containing nickel hydroxide and lithium hydroxide as raw materials in the air. Lithium is excessively used. Also, in the stage of mixing and baking cobalt-containing nickel hydroxide and lithium hydroxide, a large amount of an oxidizing agent, mainly oxygen gas, is required to oxidize the valence of nickel and cobalt from divalent to trivalent. And consume. Therefore, since it is necessary to maintain the oxygen partial pressure in the air at a certain level or more for the synthesis, it is necessary to introduce air or oxygen gas into the firing furnace.

【0005】しかし、空気をそのまま利用する際には空
気中に約0.03容量%の二酸化炭素ガスが含有されて
おり、この二酸化炭素ガスが、リチウム含有複合酸化物
を合成する原料である水酸化リチウムと容易に反応し、
炭酸リチウムを生じる。
However, when the air is used as it is, about 0.03% by volume of carbon dioxide gas is contained in the air, and the carbon dioxide gas is used as a raw material for synthesizing the lithium-containing composite oxide. Reacts easily with lithium oxide,
This produces lithium carbonate.

【0006】この生成した炭酸リチウムとコバルト含有
水酸化ニッケルは反応せず、合成が均一に行われないた
め、生成した活物質中に炭酸イオンが3%以上含まれ、
ニッケルの平均酸化数が3価に至らないという問題があ
った。また、ニッケルの平均価数が低いこれら物質を正
極活物質に用いてリチウムイオン二次電池を作成した場
合、充放電容量が低くなるという問題点を有していた。
このため、従来は酸素分圧を下げずに反応を行うため、
純酸素を用いるという方法が取られている。
The produced lithium carbonate and the cobalt-containing nickel hydroxide do not react and the synthesis is not performed uniformly, so that the produced active material contains 3% or more of carbonate ions in the produced active material.
There is a problem that the average oxidation number of nickel does not reach trivalence. In addition, when a lithium ion secondary battery is manufactured using such a material having a low average valence of nickel as a positive electrode active material, there is a problem that the charge / discharge capacity is reduced.
For this reason, conventionally, since the reaction is performed without lowering the oxygen partial pressure,
A method using pure oxygen has been adopted.

【0007】しかしながら、反応雰囲気に純酸素を用い
ると炭酸リチウムの生成は免れるが、純酸素を導入する
に当たっては高価な液体酸素ボンベや膜分離酸素発生装
置が必要となり、合成にコストがかかるという欠点を有
していた。
However, the use of pure oxygen in the reaction atmosphere avoids the production of lithium carbonate, but the introduction of pure oxygen requires expensive liquid oxygen cylinders and membrane-separated oxygen generators, which is costly for synthesis. Had.

【0008】さらに、生成したコバルト固溶リチウム複
合ニッケル酸化物および原料の水酸化リチウムは吸湿性
が高く、吸湿した条件では二酸化炭素ガスをより吸収し
やすいため、活物質の劣化が起こるという欠点も有して
いた。
Further, the produced cobalt-solid-solution lithium composite nickel oxide and the raw material lithium hydroxide have a high hygroscopicity, and the carbon dioxide gas is more easily absorbed under the hygroscopic condition, so that the active material is deteriorated. Had.

【0009】また、活物質がカールフィッシャー法で測
定した水分の含有量が1500ppm以上である条件で
は、コバルト固溶リチウム複合ニッケル酸化物が凝集し
やすく、凝集により分級を行った際の収率が低下すると
いう欠点を有していた。
On the other hand, under the condition that the water content of the active material measured by the Karl Fischer method is 1500 ppm or more, the cobalt-solid-solution lithium composite nickel oxide is liable to agglomerate, and the yield upon classification by aggregation is reduced. It had the drawback of lowering.

【0010】本発明はこのような従来の課題を解決する
ものであり、安価で性能の良いコバルト固溶リチウム複
合ニッケル酸化物を提供することを目的とするものであ
る。
An object of the present invention is to solve such a conventional problem, and an object of the present invention is to provide an inexpensive and high-performance cobalt-solid-solution lithium composite nickel oxide.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めに本発明の合成方法としては、少なくとも水酸化ニッ
ケルまたはコバルトを固溶した水酸化ニッケルとリチウ
ム塩との混合物を原料として、300〜700℃の温度
範囲で二酸化炭素ガス0.01容量%以下、水分露点0
℃以下の空気雰囲気下で2時間以上焼成する第一段階の
焼成工程、次いで100℃以下で粉砕する工程、さらに
前記工程で得られた混合物を700〜900℃の温度範
囲で2時間以上焼成する第二段階の焼成工程を有するも
のである。さらに、第二段階の焼成後、二酸化炭素ガス
0.01容量%以下、水分露点0℃以下の空気雰囲気下
で活物質を粉砕、分級する工程を有するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, a synthesis method according to the present invention comprises a method in which a mixture of at least nickel hydroxide or nickel hydroxide in which cobalt is dissolved as a solid and a lithium salt is used as a raw material. In a temperature range of 700 ° C., 0.01% by volume or less of carbon dioxide gas and a moisture dew point of 0
A first-stage baking step of baking for 2 hours or more in an air atmosphere at a temperature of not more than 100 ° C., a step of pulverizing at 100 ° C. or less, and further baking the mixture obtained in the above step in a temperature range of 700 to 900 ° C. for 2 hours or more. It has a second firing step. Further, after firing in the second stage, the method includes a step of pulverizing and classifying the active material in an air atmosphere having a carbon dioxide gas content of 0.01% by volume or less and a moisture dew point of 0 ° C. or less.

【0012】上記方法で合成することにより空気中の酸
素を有効に利用することができ、より安価なコバルト固
溶リチウム複合ニッケル酸化物の提供、さらにはより安
価な非水電解液二次電池の製造が行える。また、二酸化
炭素ガス量を減らすことにより、不要な反応である水酸
化リチウムと二酸化炭素ガスが反応することによる原料
の変質、不活性化を防ぐことができ、より高容量を出せ
る非水電解液二次電池を製造することができる。
By synthesizing by the above-mentioned method, oxygen in the air can be effectively used, and a less expensive cobalt-dissolved lithium composite nickel oxide can be provided. Further, a less expensive non-aqueous electrolyte secondary battery can be provided. Can be manufactured. In addition, by reducing the amount of carbon dioxide gas, it is possible to prevent the raw material from being altered and deactivated due to the reaction between lithium hydroxide and carbon dioxide gas, which are unnecessary reactions, and a non-aqueous electrolyte capable of producing a higher capacity. A secondary battery can be manufactured.

【0013】また、乾燥した雰囲気中で粉砕、分級工程
をおこなうことにより正極活物質の吸湿を防ぎ、吸湿に
よる正極活物質の劣化の防止、および収率の向上が実現
できる。
Further, by performing the pulverizing and classifying steps in a dry atmosphere, it is possible to prevent moisture absorption of the positive electrode active material, prevent deterioration of the positive electrode active material due to moisture absorption, and improve the yield.

【0014】本発明は、また上記の製造方法で合成され
た正極活物質と、炭素系導電材をフッ素系化合物の結着
剤を含有したN−メチルピロリドン溶液と共に混練し、
ペースト状にしてアルミニウム箔に塗行、乾燥したシー
トを正極板として用いることにより、高容量な非水電解
液二次電池をより安価に提供することができる。
According to the present invention, there is also provided a positive electrode active material synthesized by the above-described production method, and a carbon-based conductive material kneaded with an N-methylpyrrolidone solution containing a binder of a fluorine-based compound,
By using a sheet that has been made into a paste, applied to an aluminum foil, and dried as a positive electrode plate, a high-capacity nonaqueous electrolyte secondary battery can be provided at lower cost.

【0015】[0015]

【発明の実施の形態】本発明の製造方法を図1に示すフ
ローチャートを参照し説明する。本発明は、原料である
コバルト固溶水酸化ニッケルと水酸化リチウムを混合
し、第一段階の焼成工程として300〜700℃の温度
範囲で二酸化炭素ガス0.01容量%以下、水分露点0
℃以下の空気雰囲気下で2時間以上焼成し、次いで10
0℃以下で粉砕する工程を有し、さらに第二段階の焼成
工程として700〜900℃の温度範囲で2時間以上焼
成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The manufacturing method of the present invention will be described with reference to the flowchart shown in FIG. In the present invention, the raw materials of cobalt-solid-solution nickel hydroxide and lithium hydroxide are mixed, and as a first-stage calcination step, carbon dioxide gas is 0.01% by volume or less at a temperature range of 300 to 700 ° C., and a moisture dew point is 0%.
Baking for 2 hours or more in an air atmosphere at a temperature of
It has a step of pulverizing at a temperature of 0 ° C. or lower, and further, as a second-step firing step, firing at a temperature in a range of 700 to 900 ° C. for 2 hours or more.

【0016】この正極活物質の合成において、第一段階
の焼成工程により、コバルト固溶リチウム複合ニッケル
酸化物の結晶の基本構造が生成する。第一段階におい
て、焼成温度が300℃未満、あるいは焼成時間が2時
間未満であると、コバルト固溶リチウム複合ニッケル酸
化物の合成反応が十分に進まないので、焼成温度は30
0℃以上、焼成時間は2時間以上としなければならな
い。また、第一段階において、焼成雰囲気に二酸化炭素
ガスが0.01容量%より多く含まれていると、原料で
ある水酸化リチウムと二酸化炭素ガスとが反応して炭酸
リチウムを生成し、この炭酸リチウムはこれ以上反応せ
ず合成が均一に行えない。このため、焼成雰囲気中の二
酸化炭素ガスは0.01容量%以下とする。
In the synthesis of the positive electrode active material, a basic structure of crystals of the cobalt solid solution lithium composite nickel oxide is formed by the first-stage firing step. In the first stage, if the calcination temperature is less than 300 ° C. or the calcination time is less than 2 hours, the synthesis reaction of the cobalt-dissolved lithium composite nickel oxide does not proceed sufficiently.
The temperature must be at least 0 ° C. and the firing time must be at least 2 hours. In the first stage, if the firing atmosphere contains more than 0.01% by volume of carbon dioxide gas, the raw materials lithium hydroxide and carbon dioxide gas react with each other to produce lithium carbonate. Lithium does not react any more and the synthesis cannot be performed uniformly. Therefore, the content of carbon dioxide gas in the firing atmosphere is set to 0.01% by volume or less.

【0017】さらに、第二段階の焼成において、焼成温
度が700℃未満、あるいは焼成時間が2時間未満であ
ると、コバルト固溶リチウム複合ニッケル酸化物の結晶
の成長が不十分となる。このため、焼成温度は700℃
以上、焼成時間は2時間以上としなければならない。
Further, in the second stage firing, if the firing temperature is less than 700 ° C. or the firing time is less than 2 hours, the crystal growth of the cobalt-dissolved lithium composite nickel oxide becomes insufficient. For this reason, the firing temperature is 700 ° C.
As described above, the firing time must be 2 hours or more.

【0018】第一段階の焼成工程後粉砕することによ
り、第一段階の焼成により生成したコバルト固溶リチウ
ム複合ニッケル酸化物の偏析したリチウム塩を粉砕、分
散できるので、第二段階の焼成工程でこれらのリチウム
塩が十分に反応し、活物質重量当たりの利用率が増加す
る。また、コバルト固溶リチウム複合ニッケル酸化物の
偏析したリチウム塩を粉砕、分散することで、偏析した
リチウム塩が700℃程度以上の高温で焼成した際、コ
バルト固溶リチウム複合酸化物と強固に焼結することを
防ぐことができ、均一な正極活物質を得ることができ
る。また、合成完了時に粉砕した際、粒度分布のばらつ
きが小さくなり、分級効率が向上する。
By grinding after the first-stage firing step, the segregated lithium salt of the cobalt-solid-solution lithium composite nickel oxide formed by the first-stage firing can be ground and dispersed. These lithium salts react sufficiently, and the utilization rate per active material weight increases. Further, by pulverizing and dispersing the segregated lithium salt of the cobalt solid solution lithium composite nickel oxide, when the segregated lithium salt is fired at a high temperature of about 700 ° C. or more, it is strongly sintered with the cobalt solid solution lithium composite oxide. Sintering can be prevented, and a uniform positive electrode active material can be obtained. In addition, when pulverization is performed at the completion of the synthesis, variation in the particle size distribution is reduced, and the classification efficiency is improved.

【0019】さらに、本発明は第二段階の焼成工程で合
成された正極活物質を、二酸化炭素ガス0.01容量%
以下、水分露点0℃以下の雰囲気下で粉砕、分窮する工
程を有する。コバルト固溶リチウム複合ニッケル酸化物
は、吸湿により凝集が起こりやすく、分級の際、乾燥し
ていることにより分級効率が向上する。
Further, according to the present invention, the positive electrode active material synthesized in the second-stage calcination step is treated with carbon dioxide gas at 0.01% by volume.
In the following, there is a step of pulverizing and separating in an atmosphere having a moisture dew point of 0 ° C. or less. Cobalt-dissolved lithium composite nickel oxide is liable to agglomerate due to moisture absorption, and the classification efficiency is improved by drying during classification.

【0020】これらの本発明の方法により非水電解液二
次電池用正極活物質を得れば、正イオンがリチウム、コ
バルトあるいはニッケルのいずれかである炭酸化合物の
含有量が2%未満、かつ水分の含有量が1500ppm
未満となり、電池を構成したときの放電容量の大きなも
のとなる。
When a positive electrode active material for a non-aqueous electrolyte secondary battery is obtained by the method of the present invention, the content of a carbonate compound having a positive ion of either lithium, cobalt or nickel is less than 2%, and Water content is 1500ppm
, And the discharge capacity when a battery is formed is large.

【0021】以上の様に乾燥した条件でコバルト固溶リ
チウム複合ニッケル酸化物を取り扱うと、乾燥した均一
の材料が得られる。一方、吸湿した条件でペーストの作
成を行うと、結着剤の変質がおこり、ペースト塗工に支
障をきたす。よって、雰囲気の二酸化炭素ガスの濃度は
0.01容量%以下、また湿度は水分露点0℃以下が望
ましい。
When the cobalt solid solution lithium composite nickel oxide is handled under the dry conditions as described above, a dry and uniform material can be obtained. On the other hand, if the paste is prepared under the condition of absorbing moisture, the quality of the binder is changed, which hinders the paste coating. Therefore, the concentration of carbon dioxide gas in the atmosphere is desirably 0.01% by volume or less, and the humidity is desirably a moisture dew point of 0 ° C. or less.

【0022】本発明の雰囲気ガス中の二酸化炭素を除去
するには、水酸化リチウム、水酸化バリウムおよび水酸
化ナトリウムを充填したカラムに雰囲気ガスを通過させ
る方法がある。
In order to remove carbon dioxide in the atmosphere gas of the present invention, there is a method of passing the atmosphere gas through a column filled with lithium hydroxide, barium hydroxide and sodium hydroxide.

【0023】また、雰囲気ガス中の水分を除去するに
は、五酸化二リンを充填したカラムを通過させる方法、
冷却、再加温式空気乾燥機を用いる方法などがある。
In order to remove moisture in the atmospheric gas, a method of passing through a column filled with phosphorus pentoxide,
There is a method using a cooling and reheating air dryer.

【0024】[0024]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0025】(実施例1)水酸化リチウムとコバルト固
溶水酸化ニッケルを、リチウムとニッケルとコバルトの
原子比が1.0:0.8:0.2になるように混合し、
二酸化炭素ガス0.01容量%以下、水分露点0℃以下
の空気雰囲気下で、昇温速度5℃/minで500℃ま
で昇温し、同温度で7時間焼成した(第一段階の焼成工
程)。焼成後の生成物を100℃以下に冷却し、磨砕式
粉砕機で粉砕した。
Example 1 Lithium hydroxide and cobalt solid solution nickel hydroxide were mixed such that the atomic ratio of lithium, nickel and cobalt was 1.0: 0.8: 0.2.
In an air atmosphere having a carbon dioxide gas content of 0.01% by volume or less and a moisture dew point of 0 ° C. or less, the temperature was raised to 500 ° C. at a rate of 5 ° C./min, and calcination was carried out at the same temperature for 7 hours (the first stage calcination step). ). The calcined product was cooled to 100 ° C. or lower and pulverized by a grinding pulverizer.

【0026】雰囲気ガス中の二酸化炭素ガスの除去方法
としては、水酸化リチウム、水酸化バリウムおよび水酸
化ナトリウムを充填したカラムを通過させることにより
行った。また、水分除去は五酸化二リンを充填したカラ
ムを通過させることにより行った。次に、粉砕した生成
物を昇温速度5℃/minで800℃まで昇温し、同温
度で15時間焼成した(第二段階の焼成工程)。焼成後の
生成物を100℃以下に冷却し、二酸化炭素ガス0.0
1容量%以下、水分露点0℃以下の空気雰囲気下で、磨
砕式粉砕機で粉砕した。同雰囲気下で、粉砕後、ふるい
振とう機で分級した。この合成で得た化合物を活物質1
とする。
The carbon dioxide gas in the atmosphere gas was removed by passing through a column filled with lithium hydroxide, barium hydroxide and sodium hydroxide. The water was removed by passing through a column filled with diphosphorus pentoxide. Next, the pulverized product was heated to 800 ° C. at a rate of 5 ° C./min, and fired at the same temperature for 15 hours (second stage firing step). The calcined product is cooled to 100 ° C. or less,
In an air atmosphere of 1% by volume or less and a moisture dew point of 0 ° C. or less, pulverization was performed by a grinding pulverizer. After pulverization under the same atmosphere, the mixture was classified using a sieve shaker. The compound obtained in this synthesis was used as active material 1
And

【0027】次に、活物質1を用いて正極板を作成し、
図2に示す構造の円筒型電池を組み立てた。この電池の
構造を図2を用いて説明する。ステンレス鋼製の電池ケ
ース6内に、正極板と負極板とをセパレータを介して渦
巻状に巻回した極板群3が上下に絶縁板4,5を配して
収納されている。ケース6の開口部は、安全弁を有する
組立封口板7及び絶縁パッキング8により封口されてい
る。正極板、及び負極板は、以下のようにして作製し
た。
Next, a positive electrode plate is prepared using the active material 1,
A cylindrical battery having the structure shown in FIG. 2 was assembled. The structure of this battery will be described with reference to FIG. An electrode plate group 3 in which a positive electrode plate and a negative electrode plate are spirally wound via a separator is accommodated in a stainless steel battery case 6 with insulating plates 4 and 5 arranged vertically. The opening of the case 6 is closed by an assembly sealing plate 7 having a safety valve and an insulating packing 8. The positive electrode plate and the negative electrode plate were produced as follows.

【0028】正極は活物質1のコバルト固溶リチウム複
合ニッケル酸化物100重量部に対して、導電剤のアセ
チレンブラックを4重量部、および結着剤のポリフッ化
ビニリデン4重量部を溶解したN−メチルピロリドン溶
液を加え、混練してペースト状にした。このペーストを
アルミニウム箔の両面に塗行し、乾燥後、圧延して、厚
さ0.144mm,幅37mm,長さ250mmの正極
板とした。
For the positive electrode, 4 parts by weight of acetylene black as a conductive agent and 4 parts by weight of polyvinylidene fluoride as a binder were dissolved with respect to 100 parts by weight of a cobalt-solid-solution lithium composite nickel oxide as active material 1. A methylpyrrolidone solution was added and kneaded to form a paste. This paste was applied on both sides of an aluminum foil, dried, and then rolled to obtain a positive electrode plate having a thickness of 0.144 mm, a width of 37 mm, and a length of 250 mm.

【0029】一方、負極はメソフェーズ小球体を黒鉛化
したもの(以下メソフェーズ黒鉛と称す)を使用した。こ
のメソフェーズ黒鉛100重量部にスチレン/ブタジエ
ンゴム3重量部を結着剤として混合し、カルボキシメチ
ルセルロース水溶液を加えて混練し、ペースト状にし
た。そしてこのペーストを銅箔の両面に塗行し、乾燥
後、圧延して、厚さ0.21mm、幅39mm、長さ2
80mmの負極板とした。
On the other hand, as the negative electrode, one obtained by graphitizing mesophase small spheres (hereinafter referred to as mesophase graphite) was used. 100 parts by weight of the mesophase graphite was mixed with 3 parts by weight of styrene / butadiene rubber as a binder, and an aqueous carboxymethyl cellulose solution was added and kneaded to form a paste. The paste is applied to both sides of a copper foil, dried, and then rolled to a thickness of 0.21 mm, a width of 39 mm, and a length of 2 mm.
An 80 mm negative electrode plate was used.

【0030】そして、正極板にはアルミニウム製の正極
リード1、負極板にはニッケル製の負極リード2をそれ
ぞれ取りつけ、厚さ0.025mm、幅45mm、長さ
740mmのポリエチレン製のセパレーターを介して渦
巻状に巻回し極板群3とし、直径14.0mm、高さ5
0mmの電池ケースに収納した。
A positive electrode lead 1 made of aluminum is attached to the positive electrode plate, and a negative electrode lead 2 made of nickel is attached to the negative electrode plate. The separator is made of a polyethylene separator having a thickness of 0.025 mm, a width of 45 mm, and a length of 740 mm. A spirally wound electrode plate group 3 having a diameter of 14.0 mm and a height of 5
It was stored in a 0 mm battery case.

【0031】電解液としてはエチレンカーボネートとエ
チルメチルカーボネートとを20:80の体積比で混合
した溶媒に1モル/Lの六フッ化リン酸リチウムを溶解
したものを用いた。この電解液を注液後、封口し電池1
とした。
As the electrolytic solution, a solution prepared by dissolving 1 mol / L lithium hexafluorophosphate in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 20:80 was used. After injecting this electrolytic solution, sealing it,
And

【0032】第一段階の焼成雰囲気の二酸化炭素量およ
び水分量を表1に示す条件に変えた以外は上記活物質1
の方法と同様にして活物質2〜7を合成した。
The active material 1 was prepared in the same manner as above except that the amount of carbon dioxide and the amount of water in the first-stage sintering atmosphere were changed to the conditions shown in Table 1.
Active materials 2 to 7 were synthesized in the same manner as in the above method.

【0033】第二段階後の粉砕分級工程の雰囲気の二酸
化炭素量および水分量を表1に示す条件に変えた以外は
上記活物質1の方法と同様にして活物質8〜11を合成
した。
Active materials 8 to 11 were synthesized in the same manner as in the above-mentioned active material 1, except that the amount of carbon dioxide and the amount of water in the atmosphere in the pulverizing and classifying step after the second step were changed to the conditions shown in Table 1.

【0034】上記活物質1〜11について、収率、炭酸
痕含有量、水分含有量を測定し、表1に示した。
With respect to the active materials 1 to 11, the yield, the content of carbonic acid traces, and the content of water were measured, and the results are shown in Table 1.

【0035】さらに、活物質1に代えて活物質2〜11
を用いた以外は電池1と同様の方法にて円筒電池を作成
し、それぞれ電池2〜11とした。
Further, active materials 2 to 11 are used in place of active material 1.
A cylindrical battery was prepared in the same manner as the battery 1 except that was used, and batteries 2 to 11 were obtained.

【0036】以上、各電池1〜11について以下の条件
で充放電試験を行った。充電は4.2Vで2時間の定電
圧充電を行い、電池電圧が4.2Vに達するまでは42
0mAの定電流充電となるように設定した。放電は61
0mAの定電流放電で行い、充電終止電圧を3.0Vと
し、充放電の環境は20℃とした。5回充放電を繰り返
した後の電池の放電容量を表1に示す。
A charge / discharge test was performed on each of the batteries 1 to 11 under the following conditions. Charging is performed at 4.2V for 2 hours at a constant voltage, and until the battery voltage reaches 4.2V, 42 hours.
It was set so as to be a constant current charge of 0 mA. Discharge is 61
The discharge was performed at a constant current of 0 mA, the charge end voltage was set to 3.0 V, and the charge / discharge environment was set to 20 ° C. Table 1 shows the discharge capacity of the battery after repeating the charge and discharge five times.

【0037】[0037]

【表1】 [Table 1]

【0038】電池1と電池2〜7の比較により、第一段
の焼成雰囲気での二酸化炭素ガス及び水分濃度を下げれ
ば下げるほど充放電容量が増えることがわかる。ただ
し、二酸化炭素ガスが0.01容量%以下であると電池
の放電容量の差は大きくなく、二酸化炭素ガスは0.0
1容量%以下であると良い。また、第一段階での焼成雰
囲気の水分量を変化させても分級効率にはあまり影響を
与えないことがわかった。
A comparison between the battery 1 and the batteries 2 to 7 shows that the lower the carbon dioxide gas and moisture concentration in the first stage firing atmosphere, the higher the charge / discharge capacity. However, when the carbon dioxide gas content is 0.01% by volume or less, the difference in the discharge capacity of the battery is not large,
It is good that it is 1 volume% or less. It was also found that changing the amount of water in the firing atmosphere in the first stage did not significantly affect the classification efficiency.

【0039】一方、電池1と電池8〜11の比較によ
り、粉砕、分級工程においては処理雰囲気の水分量が分
級効率に大きな影響を与えることがわかった。これら
は、空気中の水分を活物質が吸湿し、凝集したため分級
効率が落ちることが直接の原因であると考えられる。
On the other hand, a comparison between the battery 1 and the batteries 8 to 11 showed that the amount of water in the treatment atmosphere had a great effect on the classification efficiency in the pulverization and classification steps. It is considered that these are directly due to the fact that the active material absorbs moisture in the air and agglomerates to lower the classification efficiency.

【0040】さらに、電池1と電池8〜11の比較によ
り水分、二酸化炭素ガスが共存する条件では、充放電容
量が著しく低下したことがわかる。これは水分の存在に
より二酸化炭素ガスの吸湿が促進されたことを示してい
る。
Further, a comparison between the battery 1 and the batteries 8 to 11 shows that the charge / discharge capacity was remarkably reduced under the condition that moisture and carbon dioxide gas coexist. This indicates that the absorption of carbon dioxide gas was promoted by the presence of water.

【0041】以上のことから本発明は、正極活物質の合
成において、その雰囲気より水分、二酸化炭素ガスを除
去することにより、合成過程における不純物の生成を防
ぐ効果があることから、充放電特性の優れた正極活物質
を提供することができる。
As described above, the present invention has the effect of preventing generation of impurities in the synthesis process by removing moisture and carbon dioxide gas from the atmosphere in the synthesis of the positive electrode active material. An excellent positive electrode active material can be provided.

【0042】なお、上記実施例においては、LiNi
0.8Co0.22について説明したが、LixNi(1-y)
y2(0.95≦x≦1.2、2.0≦y<0.5)で
表される化合物についても同様の効果が得られる。
In the above embodiment, LiNi
0.8 Co 0.2 O 2 was explained, but Li x Ni (1-y) C
similar effect on o y O 2 (0.95 ≦ x ≦ 1.2,2.0 ≦ y <0.5) the compounds represented by is obtained.

【0043】また、上記実施例においては、LiNi
0.8Co0.22の原料として水酸化リチウム、水酸化ニ
ッケル、および水酸化コバルトを用いたが、酸化リチウ
ム、CoO、Co23、Co34で表される酸化コバル
トなどのコバルト塩、及びCoを固溶した水酸化ニッケ
ルを用いても同様の効果が得られる。
Further, in the above embodiment, LiNi
Lithium hydroxide, nickel hydroxide, and cobalt hydroxide were used as raw materials for 0.8 Co 0.2 O 2 , but cobalt salts such as cobalt oxide represented by lithium oxide, CoO, Co 2 O 3 , and Co 3 O 4 ; The same effect can be obtained by using nickel hydroxide in which Co and Co are dissolved.

【0044】さらに、上記実施例においては、粉砕を研
磨式粉砕器で行ったが、他の粉砕機、例えば、乳鉢、ボ
ールミル、振動ボールミル、衛星ボールミル、チューブ
ミル、ペプシミル、コニカルミル、ロッドミル、振動ミ
ル、ピンミル、ジェットミル等を用いても同様の効果が
得られる。
Further, in the above-mentioned embodiment, the pulverization was carried out by a grinding pulverizer. The same effect can be obtained by using a pin mill, a jet mill, or the like.

【0045】また、上記実施例においては、分級をふる
い振とう機で行ったが、他の分級機、例えば、音波ふる
い機、円心ふるい機、慣性分級機、サイクロン、円心分
級機を用いても同様の効果が得られた。
In the above embodiment, the classification was carried out by a sieve shaker. However, other classifiers such as a sonic sieve, a centrifugal sieve, an inertial classifier, a cyclone, and a centroid classifier were used. A similar effect was obtained.

【0046】なお、上記実施例においては、円筒型の電
池を用いて評価したが、角型など電池形状が異なって
も、同様の効果が得られる。
In the above embodiment, evaluation was made using a cylindrical battery, but the same effect can be obtained even when the battery shape is different, such as a square battery.

【0047】さらに、上記実施例では、電解質の溶媒と
してエチレンカーボネートとエチルメチルカーボネート
の混合溶媒を用いたが、ほかの非水溶媒、例えば、プロ
ピレンカーボネート等の環状エーテル、ジメトキシエタ
ン等の鎖状エーテル、プロピオン酸メチルなどの鎖状エ
ステル等の非水溶媒や、これらの多元系混合溶媒を用い
ても同様の効果が得られる。
Further, in the above embodiment, a mixed solvent of ethylene carbonate and ethyl methyl carbonate was used as a solvent for the electrolyte. However, other non-aqueous solvents, for example, cyclic ethers such as propylene carbonate and chain ethers such as dimethoxyethane were used. The same effect can be obtained by using a non-aqueous solvent such as a chain ester such as methyl propionate or a multi-component mixed solvent thereof.

【0048】[0048]

【発明の効果】以上のように本発明によれば、コバルト
固溶リチウム複合ニッケル酸化物の合成において合成及
び、分級粉砕工程の空気雰囲気を二酸化炭素ガス0.0
1容量%以下、水分露点0℃以下にすることにより、充
放電特性の優れた正極活物質を提供することができる。
As described above, according to the present invention, in the synthesis of the cobalt-solid-solution lithium composite nickel oxide, the air atmosphere in the synthesis and classification and pulverization step is reduced to 0.02 g of carbon dioxide gas.
By setting the content to 1% by volume or less and the water dew point to 0 ° C. or less, a positive electrode active material having excellent charge / discharge characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における合成のフローチャートFIG. 1 is a flowchart of synthesis according to an embodiment of the present invention.

【図2】本発明の実施例における円筒型電池の縦断面図FIG. 2 is a longitudinal sectional view of a cylindrical battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極リード 2 負極リード 3 極板群 4,5 絶縁板 6 電池ケース 7 封口板 8 絶縁パッキング DESCRIPTION OF SYMBOLS 1 Positive electrode lead 2 Negative electrode lead 3 Electrode group 4,5 Insulating plate 6 Battery case 7 Sealing plate 8 Insulating packing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 邦夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 橋本 彰 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4G048 AA04 AB04 AB05 AB08 AC06 AE05 AE08 5H003 AA02 AA04 BA01 BA03 BA04 BB05 BC01 BD00 BD01 BD03 BD04 5H014 AA02 BB00 BB01 BB06 BB08 EE05 HH00 HH01 HH08 5H029 AJ03 AJ05 AK03 AL07 AM03 AM05 AM07 BJ02 BJ14 CJ01 CJ02 CJ08 CJ22 CJ28 DJ16 EJ01 HJ00 HJ02 HJ14  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kunio Ito 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Terms (reference) 4G048 AA04 AB04 AB05 AB08 AC06 AE05 AE08 5H003 AA02 AA04 BA01 BA03 BA04 BB05 BC01 BD00 BD01 BD03 BD04 5H014 AA02 BB00 BB01 BB06 BB08 EE05 HH00 HH01 HH08 5H029 AJ03 C07 AJ05 BJ03 C07 EJ01 HJ00 HJ02 HJ14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも水酸化ニッケルまたはコバル
トを固溶した水酸化ニッケルとリチウム塩との混合物を
原料として、一般式LixNi(1-y)Coy2(0.95
≦x≦1.2,0≦y<0.5)で表されるコバルト固
溶リチウム複合ニッケル酸化物を得る非水電解液二次電
池用正極活物質の製造方法であって、300〜700℃
の温度範囲で二酸化炭素ガス0.01容量%以下、水分
露点0℃以下の空気雰囲気下で2時間以上焼成する第一
段階の焼成工程、次いで100℃未満で、前記第一段階
の焼成工程で得られた混合物を粉砕する工程、さらに7
00〜900℃の温度範囲で2時間以上焼成する第二段
階の焼成工程を有する非水電解液二次電池用正極活物質
の製造方法。
1. Using a mixture of at least nickel hydroxide or nickel hydroxide having a solid solution of cobalt and a lithium salt as a raw material, a general formula Li x Ni (1-y) Co y O 2 (0.95
≦ x ≦ 1.2, 0 ≦ y <0.5) A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which obtains a cobalt solid solution lithium composite nickel oxide represented by the following formula: ° C
In a first stage firing step of firing for 2 hours or more in an air atmosphere having a carbon dioxide gas content of 0.01% by volume or less and a moisture dew point of 0 ° C. or less in the temperature range of Pulverizing the resulting mixture;
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a second-stage sintering step of sintering in a temperature range of 00 to 900 ° C. for 2 hours or more.
【請求項2】 前記第二段階の工程で合成された正極活
物質を二酸化炭素ガス0.01容量%以下、水分露点0
℃以下の空気雰囲気下で粉砕、分級する工程を有する請
求項1記載の非水電解液二次電池用正極活物質の製造方
法。
2. The method according to claim 1, wherein the positive electrode active material synthesized in the second step is 0.01% by volume or less of carbon dioxide gas and has a moisture dew point of 0%.
The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, further comprising a step of pulverizing and classifying in an air atmosphere at a temperature of not more than ° C.
【請求項3】 請求項1または2に記載の製造方法で合
成された正極活物質であり、正イオンがリチウム、コバ
ルト、あるいはニッケルのいずれかである炭酸化物の合
計含有量が2%未満であり、かつ水分の含有量が150
0ppm未満である非水電解液二次電池用正極活物質。
3. A positive electrode active material synthesized by the production method according to claim 1 or 2, wherein the total content of carbonates whose positive ions are lithium, cobalt, or nickel is less than 2%. Yes, and the water content is 150
A positive electrode active material for a non-aqueous electrolyte secondary battery which is less than 0 ppm.
【請求項4】 請求項1または2に記載の製造方法で合
成された正極活物質と炭素系導電材をフッ素系化合物の
結着材及びN−メチルピロリドン溶液と共に混練し、ペ
ースト状にしてアルミニウム箔に塗布、乾燥したシート
を非水電解液二次電池用正極板として用いた非水電解液
二次電池。
4. A positive electrode active material and a carbon-based conductive material synthesized by the production method according to claim 1 or 2 are kneaded together with a binder of a fluorine-based compound and an N-methylpyrrolidone solution to form a paste into aluminum. A non-aqueous electrolyte secondary battery using a sheet coated and dried on a foil as a positive electrode plate for a non-aqueous electrolyte secondary battery.
JP22393598A 1998-08-07 1998-08-07 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same Expired - Fee Related JP3539223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22393598A JP3539223B2 (en) 1998-08-07 1998-08-07 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22393598A JP3539223B2 (en) 1998-08-07 1998-08-07 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2000058053A true JP2000058053A (en) 2000-02-25
JP3539223B2 JP3539223B2 (en) 2004-07-07

Family

ID=16806020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22393598A Expired - Fee Related JP3539223B2 (en) 1998-08-07 1998-08-07 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3539223B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260655A (en) * 2001-02-28 2002-09-13 Nichia Chem Ind Ltd Manufacturing method of positive electrode material for lithium ion secondary battery
JP2002373701A (en) * 2001-06-14 2002-12-26 Shin Kobe Electric Mach Co Ltd Method of manufacturing for nonaqueous electrolyte secondary battery
JP2005150102A (en) * 2003-10-24 2005-06-09 Hitachi Metals Ltd Cathode active material for lithium secondary cell and its manufacturing mathod as well as nouaqueous lithium secondary cell
JP2005276684A (en) * 2004-03-25 2005-10-06 Mitsubishi Chemicals Corp Lithium transition metal composite oxide sealing body for nonaqueous electrolyte secondary battery active material
JP2008282613A (en) * 2007-05-09 2008-11-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
US7645542B2 (en) 2003-02-21 2010-01-12 Sumitomo Metal Mining Co., Ltd. Active material for positive electrode in non-aqueous electrolyte secondary battery having SO4 ions
WO2010089650A1 (en) * 2009-02-04 2010-08-12 Toyota Jidosha Kabushiki Kaisha Manufacturing method for electrode slurry and manufacturing system for electrode slurry
JP2011093753A (en) * 2009-10-30 2011-05-12 Murata Mfg Co Ltd Method for manufacturing lithium transition metal complex oxide
JP2011173773A (en) * 2010-02-25 2011-09-08 Sumitomo Metal Mining Co Ltd Method for producing lithium nickel composite oxide
JP2013073829A (en) * 2011-09-28 2013-04-22 Sumitomo Chemical Co Ltd Production method of micro positive electrode material powder for lithium secondary battery
WO2013073633A1 (en) * 2011-11-16 2013-05-23 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide
US8591860B2 (en) 2009-12-28 2013-11-26 Sumitomo Chemical Company, Limited Method for manufacturing a lithium complex metal oxide
US8877382B2 (en) 2010-06-13 2014-11-04 Samsung Sdi Co., Ltd. Method for manufacturing positive active material for rechargeable lithium battery and rechargeable lithium battery using same
JP2014229567A (en) * 2013-05-24 2014-12-08 日揮触媒化成株式会社 Method of manufacturing positive electrode active material
KR20150050382A (en) * 2013-10-31 2015-05-08 주식회사 엘지화학 Cathode material for lithium secondary battery and manufacturing method thereof
CN105051951A (en) * 2012-09-19 2015-11-11 Jx日矿日石金属株式会社 Positive electrode active material for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell
JP2016143527A (en) * 2015-01-30 2016-08-08 住友金属鉱山株式会社 Method for producing coated lithium-nickel complex oxide particle
JP2017017042A (en) * 2016-10-19 2017-01-19 Jx金属株式会社 Lithium ion secondary battery and method of manufacturing positive electrode active material for lithium ion secondary battery
JP6254732B1 (en) * 2017-03-13 2017-12-27 Basf戸田バッテリーマテリアルズ合同会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP2020119679A (en) * 2019-01-21 2020-08-06 Jx金属株式会社 Oxide-based positive electrode active material for all-solid lithium ion battery, production method thereof, and all-solid lithium ion battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120061943A (en) 2009-12-22 2012-06-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
CN105514420A (en) 2010-12-03 2016-04-20 Jx日矿日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
KR20120099411A (en) 2011-01-21 2012-09-10 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method of manufacturing positive electrode active material for a lithium-ion battery and a positive electrode active material for a lithium-ion battery
CN104335396B (en) 2012-09-28 2018-01-05 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260655A (en) * 2001-02-28 2002-09-13 Nichia Chem Ind Ltd Manufacturing method of positive electrode material for lithium ion secondary battery
JP2002373701A (en) * 2001-06-14 2002-12-26 Shin Kobe Electric Mach Co Ltd Method of manufacturing for nonaqueous electrolyte secondary battery
US7645542B2 (en) 2003-02-21 2010-01-12 Sumitomo Metal Mining Co., Ltd. Active material for positive electrode in non-aqueous electrolyte secondary battery having SO4 ions
JP2005150102A (en) * 2003-10-24 2005-06-09 Hitachi Metals Ltd Cathode active material for lithium secondary cell and its manufacturing mathod as well as nouaqueous lithium secondary cell
JP2005276684A (en) * 2004-03-25 2005-10-06 Mitsubishi Chemicals Corp Lithium transition metal composite oxide sealing body for nonaqueous electrolyte secondary battery active material
JP2008282613A (en) * 2007-05-09 2008-11-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
WO2010089650A1 (en) * 2009-02-04 2010-08-12 Toyota Jidosha Kabushiki Kaisha Manufacturing method for electrode slurry and manufacturing system for electrode slurry
JP2011093753A (en) * 2009-10-30 2011-05-12 Murata Mfg Co Ltd Method for manufacturing lithium transition metal complex oxide
US8591860B2 (en) 2009-12-28 2013-11-26 Sumitomo Chemical Company, Limited Method for manufacturing a lithium complex metal oxide
JP2011173773A (en) * 2010-02-25 2011-09-08 Sumitomo Metal Mining Co Ltd Method for producing lithium nickel composite oxide
US8877382B2 (en) 2010-06-13 2014-11-04 Samsung Sdi Co., Ltd. Method for manufacturing positive active material for rechargeable lithium battery and rechargeable lithium battery using same
JP2013073829A (en) * 2011-09-28 2013-04-22 Sumitomo Chemical Co Ltd Production method of micro positive electrode material powder for lithium secondary battery
WO2013073633A1 (en) * 2011-11-16 2013-05-23 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide
CN105051951A (en) * 2012-09-19 2015-11-11 Jx日矿日石金属株式会社 Positive electrode active material for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell
JP2014229567A (en) * 2013-05-24 2014-12-08 日揮触媒化成株式会社 Method of manufacturing positive electrode active material
KR20150050382A (en) * 2013-10-31 2015-05-08 주식회사 엘지화학 Cathode material for lithium secondary battery and manufacturing method thereof
KR101651336B1 (en) * 2013-10-31 2016-08-25 주식회사 엘지화학 Cathode material for lithium secondary battery and manufacturing method thereof
JP2016143527A (en) * 2015-01-30 2016-08-08 住友金属鉱山株式会社 Method for producing coated lithium-nickel complex oxide particle
JP2017017042A (en) * 2016-10-19 2017-01-19 Jx金属株式会社 Lithium ion secondary battery and method of manufacturing positive electrode active material for lithium ion secondary battery
JP6254732B1 (en) * 2017-03-13 2017-12-27 Basf戸田バッテリーマテリアルズ合同会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP2018073800A (en) * 2017-03-13 2018-05-10 Basf戸田バッテリーマテリアルズ合同会社 Nonaqueous electrolyte secondary battery cathode active material production method and nonaqueous electrolyte secondary battery production method
JP2020119679A (en) * 2019-01-21 2020-08-06 Jx金属株式会社 Oxide-based positive electrode active material for all-solid lithium ion battery, production method thereof, and all-solid lithium ion battery

Also Published As

Publication number Publication date
JP3539223B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
JP3539223B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
KR101369658B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
US9698420B2 (en) Li-Ni composite oxide particles and process for producing the same, and non-aqueous electrolyte secondary battery
US8574765B2 (en) Li-Ni composite oxide particles for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
KR101970909B1 (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
KR101787141B1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
US9466829B2 (en) Lithium—manganese-type solid solution positive electrode material
EP0929111B1 (en) Secondary cell with nonaqueous electrolyte and process for preparing positive active material therefor
JP6237331B2 (en) Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2022174097A (en) Method for manufacturing cathode active material for nonaqueous electrolyte secondary battery, and mold
JP2002313337A (en) Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it
JP2000311689A (en) Nonaqueous electrolyte secondary battery
US6756154B2 (en) Cathode active material for non-aqueous electrolyte secondary cell and process for producing the same
JP2022177291A (en) Positive electrode active material for high-strength lithium ion secondary battery, and lithium ion secondary battery employing the positive electrode active material
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR20050052266A (en) Method of preparing positive active material for rechargeable lithium battery and positive active material for rechargeable lithium battery comprising the same
WO2024095974A1 (en) Positive-electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2024095975A1 (en) Method for manufacturing positive electrode active material for lithium-ion secondary battery
WO2024095979A1 (en) Method for producing positive electrode active material for lithium ion secondary batteries
WO2024095980A1 (en) Method for manufacturing positive electrode active material for lithium-ion secondary battery
JP7159588B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and compact
KR100326456B1 (en) A positive active material for a lithium secondary battery and A method of preparing the same
JP2001302247A (en) Lithium manganese double oxide, method for producing the same and secondary battery
WO2018143273A1 (en) Lithium-manganese based compound oxide and method for manufacturing same, and cathode material using said lithium-manganese based compound oxide, cathode, and lithium ion secondary cell
JP2003002654A (en) Method for producing layered lithium manganese complex oxide and lithium secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees