JP2005327592A - Manufacturing method of nonaqueous electrolyte secondary battery - Google Patents

Manufacturing method of nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005327592A
JP2005327592A JP2004144502A JP2004144502A JP2005327592A JP 2005327592 A JP2005327592 A JP 2005327592A JP 2004144502 A JP2004144502 A JP 2004144502A JP 2004144502 A JP2004144502 A JP 2004144502A JP 2005327592 A JP2005327592 A JP 2005327592A
Authority
JP
Japan
Prior art keywords
battery
aging
positive electrode
soc
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004144502A
Other languages
Japanese (ja)
Inventor
Takeshi Hatanaka
剛 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004144502A priority Critical patent/JP2005327592A/en
Publication of JP2005327592A publication Critical patent/JP2005327592A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain increase of manufacturing cost of a battery due to the cost caused by longer hours of a drying process and cost on drying equipment, and even to the cost on manufacturing environment management, to simplify process equipment, and to shorten time taken for battery manufacture. <P>SOLUTION: The manufacturing method of the nonaqueous electrolyte secondary battery made by housing an electrode plate group made by winding around a cathode, an anode, and a separator, and a electrolyte solution comprises: a process of setting a water content of the cathode at 1,000 to 5, 000 ppm; a process of housing the electrode plate group and the electrolyte solution in the battery case; a first aging process; and a second aging process. The first aging process is carried out under conditions of SOC at 40 to 100%, a temperature at 40 to 80°C, and a time of 12 to 72 hours with the battery at a released state, and the second aging is carried out at a temperature lower than in the first aging process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、使用時のガス発生を抑制した安価なリチウム二次電池を提供するためのエージング処理方法に関する。   The present invention relates to an aging treatment method for providing an inexpensive lithium secondary battery in which gas generation during use is suppressed.

リチウム二次電池は高エネルギー密度であるという特徴から、携帯電話やパソコンなどの通信、情報機器の分野で広く普及している。さらに今日では電気自動車用としても注目されており、環境やエネルギー問題への意識の高まりから早期実用化が期待されている。   Lithium secondary batteries are widely used in the fields of communication and information devices such as mobile phones and personal computers because of their high energy density. In addition, it is also attracting attention today for electric vehicles, and is expected to be put to practical use at an early stage due to increased awareness of environmental and energy issues.

そしてリチウム二次電池には電気自動車が使用される広い温度範囲で10年以上の使用に耐える長期信頼性が要求されている。また、電気自動車の普及を促進させるためには、電池のコストは低く抑えることが重要である。   In addition, lithium secondary batteries are required to have long-term reliability that can withstand use for over 10 years in a wide temperature range in which electric vehicles are used. In order to promote the popularization of electric vehicles, it is important to keep the cost of batteries low.

現在のリチウム二次電池に使われる正極活物質としてはリチウムコバルト複合酸化物が主流であるが、コバルトは資源量が少なく、その供給能力や材料コストの問題から、ニッケルを主構成元素とするリチウムニッケル複合酸化物が正極活物質として期待されている。   Lithium cobalt composite oxide is the mainstream of the positive electrode active material used in current lithium secondary batteries, but cobalt has a small amount of resources, and because of its supply capacity and material cost, lithium is the main constituent element. Nickel composite oxide is expected as a positive electrode active material.

また、リチウム二次電池は水分が電池内に混入すると容量劣化やガス発生を招くため、通常密封構造により外部と完全に遮断されている。そのため使用中に電池内部で何らかの反応によってガス発生が起こると、そのガスが内部に留まり電池内圧の上昇につながり、場合によっては電池の外部へ排出される。しかし、上述したように電気自動車用の電池は10年を超える使用が予想されるため、このようなガス発生は最小限に抑える必要がある。   Further, since lithium secondary batteries cause capacity deterioration and gas generation when moisture is mixed in the batteries, they are usually completely cut off from the outside by a sealed structure. Therefore, if gas is generated by some reaction inside the battery during use, the gas stays inside, leading to an increase in the internal pressure of the battery, and in some cases discharged to the outside of the battery. However, as described above, since the battery for electric vehicles is expected to be used for more than 10 years, it is necessary to minimize such gas generation.

これまで、ガス発生の大きな原因の一つとして、電池構成材料に含まれる水分が考えられており、そのガス発生機構は、水分が電解液に溶け込み、負極上でリチウムと反応して水素ガスを発生することが知られている。特に正極合剤には比表面積の大きなアセチレンブラック(AB)等が導電助剤として使用されているため、負極合剤やセパレーターなどと比較して多くの水分を含みやすいものとなっている。またガス発生の別の原因としては、負極のカーボン表面でリチウムを含んだ化合物が皮膜を形成する過程でガス発生が起こることが知られている。   Until now, one of the major causes of gas generation has been water content in battery materials, and its gas generation mechanism is that water dissolves in the electrolyte and reacts with lithium on the negative electrode to generate hydrogen gas. It is known to occur. In particular, since acetylene black (AB) having a large specific surface area is used as a conductive additive in the positive electrode mixture, it is more likely to contain a lot of moisture than a negative electrode mixture or a separator. As another cause of gas generation, it is known that gas generation occurs in a process in which a compound containing lithium forms a film on the carbon surface of the negative electrode.

このようなガス発生を抑制するために、特許文献1には、リチウム二次電池のエージング方法であって、組付けられた電池をある温度範囲で保存することによって、初期充放電特性や充放電サイクル特性を改善することが記載されている。
特開2000−340262号公報
In order to suppress such gas generation, Patent Document 1 discloses an aging method for a lithium secondary battery, in which the assembled battery is stored in a certain temperature range, and thereby the initial charge / discharge characteristics and charge / discharge are determined. It is described to improve cycle characteristics.
JP 2000-340262 A

しかしながら、引用文献1に記載の事項では、正極板を乾燥しその水分含有量を正極合剤重量に対して制限しないと、充電状態での高温保存中のガス発生抑制に対して充分な効果が得られないことが、我々の検討から明らかになった。   However, in the matter described in the cited document 1, if the positive electrode plate is not dried and its water content is not limited to the weight of the positive electrode mixture, there is a sufficient effect for suppressing gas generation during high temperature storage in a charged state. It became clear from our examination that it was not possible to obtain.

そして、このように極板の水分含有量を制限するには、極板を高温あるいは高真空で長時間乾燥する必要があり、さらには乾燥後の極板の保管は、水分が充分に除去管理された環境下で行われることも必要になる。したがって乾燥工程の長時間化や乾燥設備にかかる
コスト、さらには製造環境管理にかかるコストなどによって、電池の製造コストが増大するという問題が生じている。
In order to limit the moisture content of the electrode plate as described above, it is necessary to dry the electrode plate at a high temperature or high vacuum for a long time. It is also necessary to be performed in a controlled environment. Therefore, there is a problem that the manufacturing cost of the battery increases due to the long time of the drying process, the cost of the drying equipment, the cost of managing the manufacturing environment, and the like.

本発明は上記課題を解決するものであり、正極、負極、セパレータを捲回してなる極板群と、電解液とを電池ケースに収容してなる非水電解質二次電池の製造方法であって、正極の含有水分量を1000〜5000ppmとする工程と、極板群と電解液を電池ケースに収容する工程と、第一のエージング工程と、第二のエージング工程とを有し、前記第一のエージング工程を、SOC(state of charge)を40〜100%、温度を40〜80℃、時間を12〜72時間の条件下で、かつ電池を開放状態として行い、前記第二のエージング工程を前記第一のエージング工程よりも低い温度で行うことを特徴とし、充電状態で高温の環境下にさらされたとしてもガスの発生を抑制でき、良好で安価なリチウム二次電池を提供することが可能となる。   The present invention solves the above problems, and is a method for producing a non-aqueous electrolyte secondary battery in which a positive electrode, a negative electrode, a separator and a plate group formed by winding a separator and an electrolytic solution are contained in a battery case. And a step of setting the moisture content of the positive electrode to 1000 to 5000 ppm, a step of accommodating the electrode plate group and the electrolyte in the battery case, a first aging step, and a second aging step, The second aging step is performed under the conditions of SOC (state of charge) of 40 to 100%, temperature of 40 to 80 ° C., time of 12 to 72 hours, and the battery in an open state. The present invention is characterized in that it is performed at a temperature lower than that of the first aging step, and it is possible to suppress the generation of gas even when exposed to a high temperature environment in a charged state, and to provide a good and inexpensive lithium secondary battery. Is possible.

なお、本発明では、正極含有水分量を正極合剤重量に対して1000ppm以上5000ppm以下とするが、この程度の水分量まで乾燥するためには捲回した極板群を電池容器に収容した後に、80℃で10時間から24時間真空乾燥するだけで行うことができ、一般的に正極板の塗工後に行われる100℃〜250℃での極板乾燥工程や、乾燥後の正極が水分を吸収しないようにするため、露点を一定温度以下に制限した環境下で保管する必要がないので、工程設備が簡素化できるだけでなく、電池製造にかかる時間の大幅な短縮が可能である。   In the present invention, the positive electrode-containing water content is set to 1000 ppm or more and 5000 ppm or less with respect to the weight of the positive electrode mixture. In order to dry to such a water content, the wound electrode plate group is accommodated in the battery container. It can be carried out by simply vacuum drying at 80 ° C. for 10 to 24 hours. Generally, the electrode plate drying process at 100 ° C. to 250 ° C. performed after coating of the positive electrode plate, In order not to absorb, it is not necessary to store in an environment in which the dew point is limited to a certain temperature or lower, so that not only the process equipment can be simplified, but also the time required for battery production can be greatly shortened.

本願発明は、高温で保存した場合のガス発生を少量に抑えることができ、さらに電池製造設備費用の削減、電池製造にかかる時間の削減に効果があることが明らかとなった。   It has become clear that the present invention can suppress the generation of gas when stored at a high temperature to a small amount, and is effective in reducing the cost of battery manufacturing equipment and the time required for battery manufacturing.

含有水分量が1000〜5000ppmである正極板を用いた電池の初期充放電時には比較的多くのガスが発生する。これはリチウム二次電池で一般に起こるエチレンガスなどの負極表面皮膜(SEI)の生成に伴うガスの他、電解液中に溶解した水が原因となる水素ガスである。特に含有水分が多い正極を用いた場合は水素ガスが主成分となる。水素発生のメカニズムは電極に含まれる水分が電解液に溶解し、負極カーボンにインターカレートしたリチウムと反応することによって発生する。正極中の水分が電解液に溶解するには時間が必要なため、初期充放電を終えただけの極板にはまだ水分が残存している。そこで、電池を所定のSOCと所定の温度で第一のエージングを行い、正極に含まれる水分を電解液に溶かしリチウムと反応させて水素ガスとして取り除いている。温度を40℃〜80℃に保つのは水の溶解やリチウムと水の反応を速く行わせるためであり、SOCを40%〜100%にしておくのは負極にリチウムが存在する必要があるためである。第一のエージング後に電池を開放するのはこのように発生したガスを電池外に排出するためである。   A relatively large amount of gas is generated during the initial charge / discharge of the battery using the positive electrode plate having a water content of 1000 to 5000 ppm. This is a hydrogen gas caused by water dissolved in an electrolyte solution, in addition to a gas accompanying the generation of a negative electrode surface film (SEI) such as ethylene gas, which generally occurs in a lithium secondary battery. In particular, when a positive electrode containing a large amount of moisture is used, hydrogen gas is the main component. The mechanism of hydrogen generation occurs when water contained in the electrode dissolves in the electrolyte and reacts with lithium intercalated with the negative electrode carbon. Since time is required for the water in the positive electrode to dissolve in the electrolytic solution, the water still remains on the electrode plate after the initial charge / discharge. Therefore, the battery is first aged at a predetermined SOC and a predetermined temperature, and water contained in the positive electrode is dissolved in the electrolytic solution and reacted with lithium to be removed as hydrogen gas. The reason why the temperature is kept at 40 ° C. to 80 ° C. is to make the dissolution of water and the reaction between lithium and water fast, and the reason why the SOC is made 40% to 100% is because lithium needs to exist in the negative electrode. It is. The reason why the battery is opened after the first aging is to discharge the gas thus generated out of the battery.

さらに第二のエージングでは、電池を所定のSOCにしておき、エージング期間中の電池開路電圧(open circuit voltage:OCV)の変化を測定して、内部短絡による不良品の選別を行うことを目的とする。電池の封口は第一のエージングが終了し電池内のガスを排出した後に行うことが好ましいが、第二のエージングが終了した後でも良い。   Furthermore, in the second aging, the battery is set to a predetermined SOC, the change of the open circuit voltage (OCV) during the aging period is measured, and the purpose is to select defective products due to an internal short circuit. To do. The sealing of the battery is preferably performed after the first aging is completed and the gas in the battery is discharged, but may be after the second aging is completed.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施形態を示す一例である。図1はアルミニウム製の電池ケース1を用いたリチウム二次電池の外観図である。これは、アルミニウム箔に正極活物質を塗布した
正極板と銅箔に負極活物質を塗布した負極板をセパレーターを介して捲回して構成した極板群が電池ケース1に挿入されている。電池ケース1にはアルミニウム製の蓋板5が溶接されており、極板群の正極板および負極板に接続された正極端子2および負極端子3がそれぞれ蓋板5を通して外部に導かれている。これらの電極端子はポリエチレン製の樹脂によって蓋板5とは絶縁された構造をとっている。
FIG. 1 is an example showing an embodiment of the present invention. FIG. 1 is an external view of a lithium secondary battery using an aluminum battery case 1. In this case, an electrode plate group formed by winding a positive electrode plate in which a positive electrode active material is applied to an aluminum foil and a negative electrode plate in which a negative electrode active material is applied to a copper foil via a separator is inserted into the battery case 1. An aluminum lid plate 5 is welded to the battery case 1, and the positive electrode terminal 2 and the negative electrode terminal 3 connected to the positive electrode plate and the negative electrode plate of the electrode plate group are led to the outside through the cover plate 5. These electrode terminals have a structure insulated from the cover plate 5 by a resin made of polyethylene.

上記リチウム二次電池に用いる正極活物質は、導電性を付与するためのアセチレンブラック(AB)などと混合され、さらにこの混合物をペースト状にするためにカルボキシメチルセルロース(CMC)の1%水溶液と結着性を付与するためのポリエチレンテレフタレート(PTFE)のディスパージョン(分散液)とともに練合される。この正極活物質合剤ペーストの固形分率は45%から65%になるように調整されている。このようにして作製されたペーストをアルミニウム箔の両面にダイコーターやコンマコーターなどを用いて塗工し、塗工機に隣接されている乾燥炉の中を通して乾燥することによって正極板を得る。このときの正極合剤の水分含有率は1%から5%程度である。塗工後の正極板はロール状に巻き取られており、この形態のまま80℃から120℃の範囲で8時間から16時間真空で乾燥される。なお、このときの真空度は5.0torr以下に制御されることが好ましく、この乾燥工程を経て得られた正極板の含有水分量は正極合剤重量に対して、1000ppmから5000ppmの範囲とされている。   The positive electrode active material used for the lithium secondary battery is mixed with acetylene black (AB) or the like for imparting conductivity, and further combined with a 1% aqueous solution of carboxymethyl cellulose (CMC) to form a paste. It is kneaded with a dispersion (dispersion) of polyethylene terephthalate (PTFE) for imparting adhesion. The solid content rate of this positive electrode active material mixture paste is adjusted to be 45% to 65%. The positive electrode plate is obtained by coating the paste thus prepared on both sides of the aluminum foil using a die coater, a comma coater, or the like, and drying it through a drying furnace adjacent to the coating machine. The moisture content of the positive electrode mixture at this time is about 1% to 5%. The positive electrode plate after coating is wound up in a roll shape, and is dried in vacuum in the range of 80 ° C. to 120 ° C. for 8 hours to 16 hours in this form. The degree of vacuum at this time is preferably controlled to 5.0 torr or less, and the water content of the positive electrode plate obtained through this drying step is in the range of 1000 ppm to 5000 ppm with respect to the weight of the positive electrode mixture. ing.

このようにして作製された電池に、所定量の電解液を注液し室温で初期充放電を行う。初期充放電は電池を活性化させることを目的として行われるが、このとき負極に移動したリチウムと電解液の反応により負極上に皮膜が形成されるとともにエチレンガスが発生する。また、極板に含まれた水分が電解液に溶け出し、負極上でリチウムと反応して水素ガスが発生する。このように発生したガスは注液口から電池外へ排出される。   A predetermined amount of electrolytic solution is injected into the battery thus manufactured, and initial charge / discharge is performed at room temperature. Initial charging / discharging is performed for the purpose of activating the battery. At this time, a film is formed on the negative electrode and ethylene gas is generated due to the reaction between the lithium that has moved to the negative electrode and the electrolytic solution. Also, water contained in the electrode plate dissolves in the electrolyte and reacts with lithium on the negative electrode to generate hydrogen gas. The gas thus generated is discharged out of the battery through the injection port.

次いで、初期充放電を行うことにより活性化されたリチウム二次電池をSOC60%、温度60℃の環境下で第一のエージング処理を行う。このとき注液口は復帰式の圧力弁で封をしておき、電池内圧が所定の気圧以上になった場合は弁が開き電池内部のガスを逃がす構造をとっている。第一のエージングが終了した後、電池SOCを0%から100%のいずれか所定の状態に再度調整し、25℃で72時間の第二のエージングを実施した。この第二のエージングの初期と末期の電池OCVを測定し内部短絡の発生がないことを確認している。   Next, a first aging process is performed on the lithium secondary battery activated by performing the initial charge / discharge in an environment where the SOC is 60% and the temperature is 60 ° C. At this time, the liquid injection port is sealed with a return type pressure valve, and when the internal pressure of the battery becomes a predetermined atmospheric pressure or higher, the valve opens to allow the gas inside the battery to escape. After the first aging was completed, the battery SOC was adjusted again to a predetermined state of 0% to 100%, and the second aging was performed at 25 ° C. for 72 hours. The battery OCV at the beginning and end of the second aging is measured to confirm that there is no internal short circuit.

正極活物質として組成式でLiNi0.8Co0.17Al0.032で表されるリチウムニッケル複合酸化物を用い、前記の正極活物質に導電剤としてAB、結着剤としてPTFE、溶剤としてCMCを加えて練合することでペースト状の合剤を得た。これを厚さ20μmのアルミニウム箔製正極集電体の両面に塗着・乾燥し、その後ロールプレスによって合剤層の密度が2.1g/ccになるように圧延して正極板を得た。ここで正極板のサイズは片面の合剤厚みが30μmで、幅80mm、長さ2500mmとした。 Lithium nickel composite oxide represented by the composition formula LiNi 0.8 Co 0.17 Al 0.03 O 2 is used as the positive electrode active material, AB is added as a conductive agent, PTFE as a binder, and CMC as a solvent. A paste-like mixture was obtained by kneading. This was applied to both sides of a 20 μm thick aluminum foil positive electrode current collector and dried, and then rolled by a roll press so that the density of the mixture layer was 2.1 g / cc to obtain a positive electrode plate. Here, the size of the positive electrode plate was such that the thickness of the mixture on one side was 30 μm, the width was 80 mm, and the length was 2500 mm.

一方、負極活物質として人造黒鉛(MCMB、大阪ガス(株)製)に結着剤としてポリフッ化ビニリデン(PVDF)、溶剤としてN−メチル−2−ピロリドン(NMP)を加えて練合することでペースト状の合剤を得た。これを厚さ10μmの銅箔製負極集電体の両面に塗着・乾燥し、その後ロールプレスによって合剤層の密度が1.3g/ccになるように圧延して正極板を得た。ここで負極板のサイズは片面の合剤厚みが35μmで、幅85mm、長さ2650mmとした。   On the other hand, by adding artificial graphite (MCMB, manufactured by Osaka Gas Co., Ltd.) as a negative electrode active material and adding polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent, and kneading. A pasty mixture was obtained. This was applied to both sides of a copper foil negative electrode current collector having a thickness of 10 μm and dried, and then rolled by a roll press so that the density of the mixture layer was 1.3 g / cc to obtain a positive electrode plate. Here, the size of the negative electrode plate was such that the thickness of the mixture on one side was 35 μm, the width was 85 mm, and the length was 2650 mm.

セパレータには厚さ25μmのポリプロピレン(PP)とポリエチレン(PE)製の2層多孔質フィルムを用いた。   As the separator, a two-layer porous film made of polypropylene (PP) and polyethylene (PE) having a thickness of 25 μm was used.

次いで、正極板と負極板をセパレータを介して捲回し発電部を形成し、この発電部をアルミニウム製の角形電池ケース(92mm×95mm×15mm)に挿入し、注液口を備えた電池蓋を溶接した。   Next, the positive electrode plate and the negative electrode plate are wound through a separator to form a power generation unit, and this power generation unit is inserted into an aluminum rectangular battery case (92 mm × 95 mm × 15 mm), and a battery lid having a liquid inlet is provided. Welded.

電解液には、1MのLiPF6をエチレンカーボネート(EC):ジメチルカーボネート(DMC)を4:6の体積比で混合した有機溶媒に溶解させたものを用いた。このときの電池容量は5Ahである。そして初期充放電条件として0.2C定電流で上限電圧4.1Vまで充電し、0.2C定電流で下限電圧3.0Vまで放電し、その後上限電圧4.1Vまで定電流充電した。 As the electrolytic solution, 1M LiPF 6 dissolved in an organic solvent obtained by mixing ethylene carbonate (EC): dimethyl carbonate (DMC) at a volume ratio of 4: 6 was used. The battery capacity at this time is 5 Ah. And as initial charge-and-discharge conditions, it charged to the upper limit voltage 4.1V with the 0.2C constant current, discharged to the lower limit voltage 3.0V with the 0.2C constant current, and was then constant-current charged to the upper limit voltage 4.1V.

そして、本発明の効果を確認するために、正極含有水分量が合剤重量に対して500ppmと3000ppmの2つの正極板を用いて上記の方法に従い電池を作成し初期充放電を行った。ここで、正極の含有水分量を3000ppm、第一のエージング温度を60℃とした電池を実施例1の電池、正極の含有水分量を3000ppm、第一のエージング温度を25℃とした電池を比較例1の電池、正極の含有水分量を500ppm、第一のエージング温度を60℃とした電池を参考例1の電池、正極の含有水分量を500ppm、第一のエージング温度を25℃とした電池を参考例2の電池として、第一のエージングを実施した。なお全ての電池において第二のエージングを25℃/SOC100%/7日間の条件で実施した。これらの電池を封口して、再びSOC100%に調整し、65℃の環境下に2週間放置した後に電池内部で発生したガス量を測定した。その結果を表1に示す。   And in order to confirm the effect of this invention, the battery was created according to said method using two positive electrode plates whose positive electrode containing water content is 500 ppm and 3000 ppm with respect to mixture weight, and initial charge / discharge was performed. Here, a battery having a positive electrode moisture content of 3000 ppm and a first aging temperature of 60 ° C. is compared with the battery of Example 1, a positive electrode moisture content of 3000 ppm, and a first aging temperature of 25 ° C. is compared. The battery of Example 1, the battery with a positive moisture content of 500 ppm and the first aging temperature of 60 ° C., the battery of Reference Example 1, the positive electrode with a moisture content of 500 ppm, and the first aging temperature of 25 ° C. As the battery of Reference Example 2, the first aging was performed. In all the batteries, the second aging was performed under the conditions of 25 ° C./SOC 100% / 7 days. These batteries were sealed, adjusted to SOC 100% again, and left in a 65 ° C. environment for 2 weeks, and the amount of gas generated inside the batteries was measured. The results are shown in Table 1.

Figure 2005327592
実施例1の電池と比較例1の電池から明らかなように、正極に多くの水分が含まれていても、第一のエージングを高温で実施することによって、エージング後の保存によるガス発生量は減少させることができ、実施例1の電池と参考例1、2の電池の結果からその発生量はもともと正極含有水分が少ない電池と同等であることが明らかとなった。
Figure 2005327592
As is clear from the battery of Example 1 and the battery of Comparative Example 1, even if the positive electrode contains a large amount of moisture, by performing the first aging at a high temperature, the amount of gas generated by storage after aging is From the results of the battery of Example 1 and the batteries of Reference Examples 1 and 2, it was clarified that the amount of generation was the same as that of the battery with a low positive electrode-containing water content.

次に、温度を60℃、時間を48時間に固定し、電池のSOCを0%〜100%の状態で第一のエージングを行い、次いで第二のエージングを25℃/7日間/SOC100%で行った。この後、電池を封口して再び電池をSOC100%に調整して65℃で2週間保存した。そしてこの保存によって発生したガス量をそれぞれの電池について測定した。その結果を表2に示す。   Next, the temperature is fixed at 60 ° C., the time is fixed at 48 hours, the first aging is performed with the SOC of the battery being 0% to 100%, and then the second aging is performed at 25 ° C./7 days / SOC 100%. went. Thereafter, the battery was sealed, and the battery was adjusted again to SOC 100% and stored at 65 ° C. for 2 weeks. The amount of gas generated by this storage was measured for each battery. The results are shown in Table 2.

Figure 2005327592

この結果から、第一のエージングのSOCが40%以上で保存によるガス発生量が少なくなることから、第一のエージングの条件としてはSOCが40%以上であることが好ましい。これは、SOCが低いと負極のカーボンに充電されたリチウム量が少なくなり、電解液に溶けた水とリチウムの反応が起こりにくいためと考えられる。
Figure 2005327592

From this result, since the amount of gas generated by storage decreases when the SOC of the first aging is 40% or more, the SOC is preferably 40% or more as the condition for the first aging. This is presumably because when the SOC is low, the amount of lithium charged in the carbon of the negative electrode decreases, and the reaction between water and lithium dissolved in the electrolytic solution hardly occurs.

次に第一のエージングの条件として、SOCを60%、時間を48時間に固定し、温度を20℃〜100℃までの条件で行い、次いで第二のエージングを25℃/7日間/SOC100%で行った。この後、電池を封口して再び電池をSOC100%に調整して65℃で2週間保存した。そしてこの保存によって発生したガス量をそれぞれの電池について測定した。その結果を表3に示す。   Next, as the first aging conditions, the SOC is fixed at 60%, the time is fixed at 48 hours, the temperature is set at 20 ° C. to 100 ° C., and then the second aging is performed at 25 ° C./7 days / SOC 100%. I went there. Thereafter, the battery was sealed, and the battery was adjusted again to SOC 100% and stored at 65 ° C. for 2 weeks. The amount of gas generated by this storage was measured for each battery. The results are shown in Table 3.

Figure 2005327592
この結果から、第一のエージング温度は保存によるガス発生量が少なくなる40℃以上で行うことが好ましいことがわかる。この理由としてはエージング中に起こる水素発生反応が低温ではその進行速度が遅いためと考えられる。
Figure 2005327592
From this result, it can be seen that the first aging temperature is preferably 40 ° C. or higher where the amount of gas generated by storage is reduced. This is probably because the hydrogen generation reaction that occurs during aging is slow at low temperatures.

一方、上記の条件で作成した電池の第二のエージング後の抵抗(DC−IR)を測定すると、図2に示すように第一のエージングを100℃で行った電池の値が大きくなっていることが明らかとなった。   On the other hand, when the resistance (DC-IR) after the second aging of the battery prepared under the above conditions is measured, the value of the battery obtained by performing the first aging at 100 ° C. is large as shown in FIG. It became clear.

これは、第一のエージングを100℃で行ったために、多孔質フィルムであるセパレーターが収縮してDC−IRが上昇した、あるいは正極および負極上で電解液が分解反応を起こしその生成物が極板表面を覆ってDC−IRが高くなったなどの理由が考えられる。   This is because the first aging was performed at 100 ° C., so that the separator, which is a porous film, contracted and DC-IR increased, or the electrolytic solution caused a decomposition reaction on the positive electrode and the negative electrode, and the product was extremely A possible reason is that the DC-IR is increased by covering the plate surface.

いずれにしてもこれらの結果から、第一のエージングの温度条件は40℃〜80℃の範囲で行うことが好ましい。なおエージング時のSOCを本発明の範囲内で変化させても同様の効果が得られることが明らかとなった。   In any case, from these results, the temperature condition of the first aging is preferably performed in the range of 40 ° C to 80 ° C. It has been clarified that the same effect can be obtained even if the SOC during aging is changed within the scope of the present invention.

さらに、第一のエージングの条件として、SOCを60%、温度を60℃に固定し、時間を6時間から96時間の範囲で行い、さらに、第二のエージングをSOC100%/温度25℃/7日間の条件で実施した。これらの電池を封口して、再びSOC100%に調整し、65℃の環境下に2週間放置した後に電池内部で発生したガス量を測定した。また、第二のエージング後に電池のDC−IRを測定した。その結果を図3に示す。   Furthermore, as the first aging conditions, the SOC is fixed at 60%, the temperature is fixed at 60 ° C., the time is set in the range of 6 hours to 96 hours, and the second aging is performed at 100% SOC / temperature 25 ° C./7. It was carried out under the conditions of the day. These batteries were sealed, adjusted to SOC 100% again, and left in a 65 ° C. environment for 2 weeks, and the amount of gas generated inside the batteries was measured. Further, the DC-IR of the battery was measured after the second aging. The result is shown in FIG.

この結果から、第一のエージングは12時間以上行うことによって、保存でのガス発生抑制効果が得られることが明らかとなった。一方、72時間以上エージングを行うと、電池のDC−IRが上昇するという問題が明らかとなった。   From this result, it has been clarified that the effect of suppressing gas generation during storage can be obtained by performing the first aging for 12 hours or more. On the other hand, when aging was performed for 72 hours or more, the problem that the DC-IR of the battery increased was revealed.

したがって、第一のエージング時間は12時間から72時間の範囲で行うことが好ましい。なお、長時間のエージングでDC−IRが上昇するのは、正負極板の表面での皮膜生成反応が進むためと考えられる。   Therefore, it is preferable to perform the first aging time in the range of 12 hours to 72 hours. In addition, it is thought that DC-IR rises by long-term aging because the film | membrane production | generation reaction on the surface of a positive / negative electrode plate advances.

本発明で許容される正極含有水分量の検討を行った。正極を塗工後に120℃真空乾燥を行った。このときの真空度は5.0torrである。この真空乾燥の時間を調整することで、正極含有水分量が正極合剤重量に対して1000ppmから6000ppmに調整した。含有水分量が1000ppmを下回る正極板を得るためには、正極を250℃で熱風乾燥を12時間行う必要があり、この方法にて含有水分量200ppmと500ppmの正極板を得た。これらの正極板を用いて、前記の方法にしたがって作製した電池を、第一のエージング条件を温度60℃/SOC80%/48時間、第二のエージング条件を温度25℃/SOC100%/7日間で実施し、再びSOC100%に調整して65℃の環境下に2週間放置して電池内部で発生したガス量を測定した。なお、電池封口は第二のエージングが終了した時点で行っている。この結果を図4に示す。   The amount of positive electrode-containing water allowed in the present invention was examined. After coating the positive electrode, vacuum drying was performed at 120 ° C. The degree of vacuum at this time is 5.0 torr. By adjusting the vacuum drying time, the water content of the positive electrode was adjusted from 1000 ppm to 6000 ppm with respect to the weight of the positive electrode mixture. In order to obtain a positive electrode plate having a water content of less than 1000 ppm, the positive electrode must be dried with hot air at 250 ° C. for 12 hours, and positive electrode plates having a water content of 200 ppm and 500 ppm were obtained by this method. Using these positive electrode plates, a battery manufactured according to the above method was subjected to a first aging condition at a temperature of 60 ° C./SOC 80% / 48 hours, and a second aging condition at a temperature of 25 ° C./SOC 100% / 7 days. This was adjusted again to 100% SOC and allowed to stand in an environment of 65 ° C. for 2 weeks to measure the amount of gas generated inside the battery. The battery sealing is performed when the second aging is completed. The result is shown in FIG.

この結果から、5000ppmを超えると高温エージングを行っても保存時のガス量の削減効果は少ないことがわかった。これは正極含有水分量が多いと極板から電解液中への水分の溶解に時間がかかり、エージング中に水分が消費されず電池内に残存してしまうことが原因と考えられる。エージングをさらに高温で行う、あるいは長期間行うことによって水分の除去は可能であり、高温保存時のガス発生は少量で抑えられるが、この場合は電池のエージング後に電池の内部抵抗が大きくなるという問題が生じることが明らかとなった。さらに高温制御可能なエージング槽が必要になり設備費が増大する、電池製造に長時間必要になるという欠点が生じる。   From this result, it was found that if it exceeds 5000 ppm, the effect of reducing the amount of gas during storage is small even if high temperature aging is performed. It is considered that this is because when the positive electrode-containing water content is large, it takes a long time to dissolve the water from the electrode plate into the electrolyte, and the water is not consumed during aging and remains in the battery. Moisture can be removed by performing aging at a higher temperature or for a long period of time, and gas generation during high-temperature storage can be suppressed with a small amount. In this case, however, the internal resistance of the battery increases after aging of the battery. It became clear that this occurred. Furthermore, the aging tank which can be controlled at high temperature is required, and the equipment cost is increased, and there is a disadvantage that it is necessary for battery production for a long time.

以上のような検討の結果、正極含有水分は5000ppm以下に制御し、電池性能に悪影響を及ぼさず、高温保存時にガス発生を抑制できるエージング条件は、40℃から80℃、SOC40%から100%の範囲で、その期間は12時間から72時間であることが明らかとなった。   As a result of the above studies, the moisture content of the positive electrode is controlled to 5000 ppm or less, the aging conditions that do not adversely affect the battery performance and can suppress gas generation during high temperature storage are 40 ° C. to 80 ° C., SOC 40% to 100%. In range, the period was found to be 12 to 72 hours.

一方、正極含有水分量を1000ppm未満に制御するためには、真空乾燥では不十分であり、250℃程度の熱風乾燥炉が必要になる。このレベルの水分量を維持するためには、乾燥後の極板の保管に関しては露点が少なくとも−30℃以下の環境が必要になる。これ以上の露点で保管した場合には、極板が環境中の水分を吸収し48時間以内に含有水分量が1000ppmを上回ってしまい、乾燥した意味がなくなってしまう。   On the other hand, in order to control the positive electrode-containing water content to less than 1000 ppm, vacuum drying is insufficient, and a hot air drying furnace at about 250 ° C. is required. In order to maintain this level of moisture content, an environment with a dew point of at least −30 ° C. or less is required for storage of the electrode plate after drying. When stored at a dew point higher than this, the electrode plate absorbs moisture in the environment, and the moisture content exceeds 1000 ppm within 48 hours, and the meaning of drying is lost.

これらのことから、正極含有水分量を1000ppm〜5000ppmに制御することは比較的簡単な設備で可能であり、安価な電池を供給することが可能となる。   Therefore, it is possible to control the moisture content of the positive electrode to 1000 ppm to 5000 ppm with relatively simple equipment, and it is possible to supply an inexpensive battery.

次に第二のエージングの条件であるが、第二のエージングの目的は内部短絡不良が発生した電池の排出である。その効果を確かめるために、実施例6の電池として第一のエージング条件はSOC60%/60℃/48時間、第二のエージング条件をSOC100%/25℃/7日間という条件で、比較例2の電池として第一のエージング条件のみをSOC60%/60℃/48時間という条件で行った電池をそれぞれ200個ずつ作成した。   Next, as the second aging condition, the purpose of the second aging is to discharge the battery in which the internal short circuit failure has occurred. In order to confirm the effect, in the battery of Example 6, the first aging condition was SOC 60% / 60 ° C./48 hours, and the second aging condition was SOC 100% / 25 ° C./7 days. As the batteries, 200 batteries were produced in which only the first aging condition was performed under the condition of SOC 60% / 60 ° C./48 hours.

実施例6の電池では第二のエージング前後での、比較例2の電池では第一のエージング前後でのOCVを測定し、OCV不良電池の排出を行った。OCV不良の判定は、全電池の電圧降下量を測定して標準偏差(σ)を求め、電圧降下量がその3倍を上回る電池を不良と判定した。各エージング工程で発生した電池の個数と発生率を表4に示す。   The OCV before and after the second aging was measured for the battery of Example 6, and the OCV before and after the first aging was measured for the battery of Comparative Example 2, and the OCV defective battery was discharged. The determination of the OCV failure was made by measuring the voltage drop amount of all the batteries to obtain the standard deviation (σ), and determining that the battery in which the voltage drop amount was more than three times as bad. Table 4 shows the number of batteries generated in each aging process and the generation rate.

Figure 2005327592
この結果から、第一のエージングだけではOCV不良を確実に取り除くことはできず、第二のエージングの必要性が確かめられた。ここで第二のエージングを第一のエージングと同じように高温で行うと、図2に示されるようにDC−IRの上昇が起こり得るため、20℃〜35℃の室温で行うことが好ましい。このときの電池SOCは容量変動によるOCV変化が大きいSOCに設定することが好ましいと考えられるが、SOC0%からSOC100%までで大きな違いはなく、本実施例では第二のエージング条件をSOC100%、25℃、7日間の条件で行った。また、本実施例では第二のエージングを7日間行っているが、これについても適宜設定されるものである。
Figure 2005327592
From this result, the OCV defect could not be surely removed by the first aging alone, and the necessity of the second aging was confirmed. Here, if the second aging is performed at a high temperature as in the first aging, the DC-IR may increase as shown in FIG. 2, and therefore, it is preferable to perform at a room temperature of 20 ° C. to 35 ° C. It is considered that the battery SOC at this time is preferably set to an SOC in which the OCV change due to capacity fluctuation is large, but there is no significant difference from SOC 0% to SOC 100%. The test was performed at 25 ° C. for 7 days. Further, in this embodiment, the second aging is performed for 7 days, but this is also set as appropriate.

なお、本発明の実施例においてはアルミニウム製の金属缶を用いたリチウム二次電池について説明したが、この他の形態、例を挙げるならばアルミラミネートシートを容器とした電池や、ステンレス缶を容器とした電池にも実施可能であり、これらの電池を高温で保存した場合のガス発生に伴う電池内圧の上昇による、容器の変形や破裂を防ぐことができる。   In the examples of the present invention, lithium secondary batteries using aluminum metal cans have been described. However, other forms, for example, batteries using aluminum laminate sheets as containers, and stainless steel cans as containers. The battery can be implemented, and deformation and rupture of the container due to an increase in battery internal pressure accompanying gas generation when these batteries are stored at high temperatures can be prevented.

本発明は、電気自動車用の非水電解質二次電池の製造方法として有用である。   The present invention is useful as a method for producing a non-aqueous electrolyte secondary battery for an electric vehicle.

本実施例のリチウム二次電池の外観図External view of lithium secondary battery of this example 本実施例における温度とDC−IRの関係を示す図The figure which shows the relationship between the temperature and DC-IR in a present Example. 本実施例における時間と保存ガス量の関係を示す図The figure which shows the relationship between the time and storage gas amount in a present Example 本実施例における含有水分量と発生ガス量の関係を示す図The figure which shows the relationship between the moisture content and the amount of generated gas in a present Example

符号の説明Explanation of symbols

1 電池ケース
2 正極端子
3 負極端子
4 注液口
5 蓋板
1 Battery Case 2 Positive Terminal 3 Negative Terminal 4 Injection Port 5 Lid

Claims (3)

正極、負極、セパレータを捲回してなる極板群と、電解液とを電池ケースに収容してなる非水電解質二次電池の製造方法であって、
正極の含有水分量を1000〜5000ppmとする工程と、
極板群と電解液を電池ケースに収容する工程と、
第一のエージング工程と、
第二のエージング工程とを有し、
前記第一のエージング工程を、SOCを40〜100%、温度を40〜80℃、時間を12〜72時間の条件下で、かつ電池を開放状態として行い、
前記第二のエージング工程を前記第一のエージング工程よりも低い温度で行う非水電解質二次電池の製造方法。
A method for producing a non-aqueous electrolyte secondary battery in which a positive electrode, a negative electrode, an electrode plate group formed by winding a separator, and an electrolyte solution are housed in a battery case,
A step of setting the moisture content of the positive electrode to 1000 to 5000 ppm,
Accommodating the electrode plate group and the electrolyte in the battery case;
A first aging step;
A second aging step,
The first aging step is performed under the conditions of SOC of 40 to 100%, temperature of 40 to 80 ° C., time of 12 to 72 hours, and the battery in an open state,
A method for producing a nonaqueous electrolyte secondary battery, wherein the second aging step is performed at a temperature lower than that of the first aging step.
前記第二のエージング工程を室温で行う請求項1に記載の非水電解質二次電池の製造方法。   The method for producing a nonaqueous electrolyte secondary battery according to claim 1, wherein the second aging step is performed at room temperature. 前記第一のエージング工程後または前記第二のエージング工程後のいずれかに電池を封口する工程を有する請求項1に記載の非水電解質二次電池の製造方法。

The method for producing a nonaqueous electrolyte secondary battery according to claim 1, further comprising a step of sealing the battery either after the first aging step or after the second aging step.

JP2004144502A 2004-05-14 2004-05-14 Manufacturing method of nonaqueous electrolyte secondary battery Pending JP2005327592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004144502A JP2005327592A (en) 2004-05-14 2004-05-14 Manufacturing method of nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004144502A JP2005327592A (en) 2004-05-14 2004-05-14 Manufacturing method of nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2005327592A true JP2005327592A (en) 2005-11-24

Family

ID=35473770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004144502A Pending JP2005327592A (en) 2004-05-14 2004-05-14 Manufacturing method of nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2005327592A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816218B1 (en) * 2007-05-02 2008-03-24 삼성에스디아이 주식회사 Secondary battery
JP2008198408A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008251224A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Method of manufacturing nonaqueous electrolyte secondary battery
WO2009047976A1 (en) * 2007-10-12 2009-04-16 Toyota Jidosha Kabushiki Kaisha Method for manufacturing secondary battery
JP2015095333A (en) * 2013-11-11 2015-05-18 トヨタ自動車株式会社 Method for manufacturing nonaqueous secondary battery
CN106463719A (en) * 2014-04-17 2017-02-22 雷诺两合公司 Method for forming a li-ion battery cell comprising an lnmo cathode material
JP2018067482A (en) * 2016-10-20 2018-04-26 株式会社カネカ Lithium ion secondary battery and method for manufacturing the same
JP2019532471A (en) * 2016-09-22 2019-11-07 ジーアールエスティー・インターナショナル・リミテッド Electrode assembly
US10490808B2 (en) 2011-02-18 2019-11-26 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery and production method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277144A (en) * 1999-03-25 2000-10-06 Matsushita Electric Ind Co Ltd Manufacture of battery
JP2001052749A (en) * 1999-08-06 2001-02-23 Toyota Central Res & Dev Lab Inc Manufacture of lithium secondary battery
JP2001210372A (en) * 2000-01-25 2001-08-03 Matsushita Electric Ind Co Ltd Manufacturing method of battery
JP2001313077A (en) * 2000-04-26 2001-11-09 Yuasa Corp Non-aqueous electrolyte battery and its manufacturing method
JP2002373701A (en) * 2001-06-14 2002-12-26 Shin Kobe Electric Mach Co Ltd Method of manufacturing for nonaqueous electrolyte secondary battery
JP2003234125A (en) * 2002-02-06 2003-08-22 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolytic solution secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277144A (en) * 1999-03-25 2000-10-06 Matsushita Electric Ind Co Ltd Manufacture of battery
JP2001052749A (en) * 1999-08-06 2001-02-23 Toyota Central Res & Dev Lab Inc Manufacture of lithium secondary battery
JP2001210372A (en) * 2000-01-25 2001-08-03 Matsushita Electric Ind Co Ltd Manufacturing method of battery
JP2001313077A (en) * 2000-04-26 2001-11-09 Yuasa Corp Non-aqueous electrolyte battery and its manufacturing method
JP2002373701A (en) * 2001-06-14 2002-12-26 Shin Kobe Electric Mach Co Ltd Method of manufacturing for nonaqueous electrolyte secondary battery
JP2003234125A (en) * 2002-02-06 2003-08-22 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolytic solution secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198408A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008251224A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Method of manufacturing nonaqueous electrolyte secondary battery
US8124271B2 (en) 2007-05-02 2012-02-28 Samsung Sdi Co., Ltd. Secondary battery
KR100816218B1 (en) * 2007-05-02 2008-03-24 삼성에스디아이 주식회사 Secondary battery
WO2009047976A1 (en) * 2007-10-12 2009-04-16 Toyota Jidosha Kabushiki Kaisha Method for manufacturing secondary battery
US8753769B2 (en) 2007-10-12 2014-06-17 Toyota Jidosha Kabushiki Kaisha Method for manufacturing secondary battery
US10490808B2 (en) 2011-02-18 2019-11-26 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery and production method thereof
US11139465B2 (en) 2011-02-18 2021-10-05 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery and production method thereof
JP2015095333A (en) * 2013-11-11 2015-05-18 トヨタ自動車株式会社 Method for manufacturing nonaqueous secondary battery
CN106463719B (en) * 2014-04-17 2021-06-15 雷诺两合公司 Methods of forming lithium ion battery cells including LNMO-based cathode materials
CN106463719A (en) * 2014-04-17 2017-02-22 雷诺两合公司 Method for forming a li-ion battery cell comprising an lnmo cathode material
JP2019532471A (en) * 2016-09-22 2019-11-07 ジーアールエスティー・インターナショナル・リミテッド Electrode assembly
JP2018067482A (en) * 2016-10-20 2018-04-26 株式会社カネカ Lithium ion secondary battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP6896725B2 (en) Secondary battery and its manufacturing method
JP5640546B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery
JP4625231B2 (en) Non-aqueous secondary battery
JP5749904B2 (en) Non-aqueous electrolyte secondary battery
JP6926942B2 (en) Manufacturing method of positive electrode
JP5929551B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR20130098704A (en) Non aqueous electrolyte and secondary battery comprising the same
JP2020102348A (en) Manufacturing method of lithium ion battery, and lithium ion battery
JP2005190754A (en) Nonaqueous electrolyte secondary battery
US20240120484A1 (en) Negative electrode
JP2005327592A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2001057234A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2005197073A (en) Positive electrode for lithium secondary battery
CN112490489A (en) Lithium ion secondary battery and method for manufacturing same
EP4362138A1 (en) Electrode sheet, lithium ion battery, battery module, battery pack, and electrical device
JP2015069881A (en) Electrode and battery arranged by use thereof
JP2007220455A (en) Nonaqueous electrolyte secondary battery
JP2005251614A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP2013118104A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery including the negative electrode
JP2007323827A (en) Secondary battery, electronic equipment and transport equipment using secondary battery
JP2019067513A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP7513983B2 (en) Lithium-ion secondary battery and its manufacturing method
JP2018116929A (en) Non-aqueous electrolyte secondary battery
US20240088441A1 (en) Non-aqueous electrolyte rechargeable battery and method for manufacturing non-aqueous electrolyte rechargeable battery
CN109786838B (en) Electrolyte, lithium ion secondary battery and electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070514

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207