JP2005251614A - Manufacturing method for nonaqueous electrolyte secondary battery - Google Patents

Manufacturing method for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005251614A
JP2005251614A JP2004061993A JP2004061993A JP2005251614A JP 2005251614 A JP2005251614 A JP 2005251614A JP 2004061993 A JP2004061993 A JP 2004061993A JP 2004061993 A JP2004061993 A JP 2004061993A JP 2005251614 A JP2005251614 A JP 2005251614A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
discharge
initial charge
aging treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004061993A
Other languages
Japanese (ja)
Inventor
Takeshi Hatanaka
剛 畑中
Hiroaki Ichinose
浩明 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004061993A priority Critical patent/JP2005251614A/en
Publication of JP2005251614A publication Critical patent/JP2005251614A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a nonaqueous electrolyte secondary battery that provides a high-performance and highly reliable battery by suppressing a reduction in initial capacity or an increase in internal resistance. <P>SOLUTION: The manufacturing method is to manufacture a nonaqueous electrolyte secondary battery having a power generating part made up of a positive electrode plate and a negative electrode plate that are wound via a separator, wherein initial charge/discharge and aging treatment are performed in an open state and in an atmosphere where oxygen exists. During the initial charge/discharge and/or the aging treatment, at least a negative electrode mix portion of the power generating part is immersed in an electrolyte solution. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、使用時の性能の安定した非水電解質二次電池を提供するための製造法に関する。   The present invention relates to a production method for providing a nonaqueous electrolyte secondary battery having stable performance during use.

リチウム二次電池は高エネルギー密度であるという特徴から、携帯電話やパソコンなどの通信、情報機器の分野で広く普及している。さらに今日では電気自動車用としても注目されており、環境やエネルギー問題への意識の高まりから早期実用化が期待されている。   Lithium secondary batteries are widely used in the fields of communication and information devices such as mobile phones and personal computers because of their high energy density. In addition, it is also attracting attention today for electric vehicles, and is expected to be put to practical use at an early stage due to increased awareness of environmental and energy issues.

しかし、この分野でのリチウム二次電池には電気自動車が使用される広い温度範囲で10年以上の使用に耐える長期信頼性が要求されており、電気自動車の普及を促進させるためには、価格を一般の自動車と同等程度にする必要があり、電池のコストは低く抑えることが重要である。   However, lithium secondary batteries in this field are required to have long-term reliability that can withstand use for over 10 years in a wide temperature range in which electric vehicles are used. Therefore, it is important to keep the battery cost low.

現在のリチウム二次電池に使われる正極活物質はリチウムコバルト複合酸化物が主流であるが、コバルトは資源量が少なく電気自動車が将来的に普及した場合、その供給能力や材料コストの問題から、リチウムニッケル複合酸化物が電気自動車用の正極活物質として期待されている。   The positive electrode active material used in current lithium secondary batteries is mainly lithium cobalt composite oxide, but when cobalt is low in the amount of resources and electric vehicles will become popular in the future, due to problems with its supply capacity and material costs, Lithium nickel composite oxide is expected as a positive electrode active material for electric vehicles.

通常リチウム二次電池は、正極板と負極板とセパレータからなる極板群を電池ケースに挿入する工程と、電解液を注液する工程と、電池を封口する工程と、電池を活性化させるための初期充放電を行う工程と、電池の安全性の向上や不良電池の検出などのために電池を充電状態で保存するエージング工程等を経た後、製品として完成されるが、リチウム二次電池では水分が電池内に混入すると容量劣化やガス発生を招くため、密封構造をとり外部と完全に遮断されているため使用中に電池内部で何らかの反応によってガス発生が起こると、そのガスが電池内部に留まるり電池内圧の上昇につながる。しかしながら、電気自動車用の電池は10年を超える使用が予想されるため、このようなガス発生は最小限に抑える必要がある。   Usually, a lithium secondary battery has a step of inserting an electrode plate group composed of a positive electrode plate, a negative electrode plate, and a separator into a battery case, a step of injecting an electrolytic solution, a step of sealing the battery, and activating the battery. After completing the initial charge / discharge process and the aging process for storing the battery in a charged state for the purpose of improving the safety of the battery and detecting a defective battery, the product is completed as a lithium secondary battery. If moisture enters the battery, it will cause capacity deterioration and gas generation.Therefore, it has a sealed structure and is completely shut off from the outside.If gas is generated by any reaction inside the battery during use, the gas will enter the battery. It will stay or lead to an increase in battery internal pressure. However, since the battery for electric vehicles is expected to be used for more than 10 years, it is necessary to minimize such gas generation.

ここで、ガス発生の大きな原因の一つとして、電池構成材料に含まれる水分が考えられ、この水分は電池内部で電解液に溶け込み、負極上でリチウムと反応して水素ガスを発生することが知られている。特に正極合剤には比表面積の大きなアセチレンブラック等が導電剤として使用されているため、負極合剤やセパレーターなどと比較して多くの水分を含みやすい。またガス発生の他の原因としては、負極のカーボン表面でリチウムを含んだ化合物が皮膜を形成する過程でガスを発生することが考えられ、この場合のガスは生成される皮膜によっても異なるが、主には一酸化炭素、二酸化炭素、エチレンガスなどである。
特開2000−58130号公報
Here, one of the major causes of gas generation is considered to be moisture contained in the battery constituent material. This moisture dissolves in the electrolyte inside the battery and reacts with lithium on the negative electrode to generate hydrogen gas. Are known. In particular, since acetylene black or the like having a large specific surface area is used as the conductive agent in the positive electrode mixture, it tends to contain more water than the negative electrode mixture or separator. As another cause of gas generation, it is considered that a compound containing lithium on the carbon surface of the negative electrode generates gas in the process of forming a film, and the gas in this case varies depending on the generated film, Mainly carbon monoxide, carbon dioxide, ethylene gas.
JP 2000-58130 A

特許文献1では、電池組み付け後に高温環境下で初期充電を行い、ガスを発生させた後に密封する方法が提案されているが、初期充電時では電池が開放系であるために電池内部に外部の空気が拡散し、発電要素のカーボン材料内に挿入されたリチウムと空気中の酸素が反応して酸化リチウムとなる。このとき酸素が消費されるために電池内部は負圧となり開口部分から新たな空気が流入し、さらに酸素と負極中のリチウムの反応が繰り返されることによって、電池の容量が小さくなる、あるいは電池の内部抵抗が高くなるなどの不具合が生じることになる。   Patent Document 1 proposes a method of performing initial charging in a high-temperature environment after assembly of the battery and sealing after generating gas. However, since the battery is an open system at the time of initial charging, an external device is provided inside the battery. Air diffuses and lithium inserted into the carbon material of the power generation element reacts with oxygen in the air to form lithium oxide. Since oxygen is consumed at this time, the inside of the battery has a negative pressure and new air flows from the opening, and the reaction between oxygen and lithium in the negative electrode is repeated, so that the capacity of the battery decreases or the battery Problems such as high internal resistance will occur.

本発明は、上記課題を解決し、容量の低下や抵抗の増加を抑制し、高性能かつ高信頼性の電池を供給することを目的とする。   An object of the present invention is to solve the above-described problems, to suppress a decrease in capacity and an increase in resistance, and to provide a high-performance and high-reliability battery.

上記目的を達成するために、本発明は、正極板と負極板とセパレータを介して捲回してなる発電部を有し、初期充放電およびエージング処理を開放状態かつ酸素が存在する雰囲気下で行う非水電解質二次電池の製造方法であって、前記初期充放電時および/またはエージング処理時に少なくとも前記発電部の負極合剤部を電解液に浸漬させることを特徴とするものである。なお、「開放状態」とは、常に電池内部で発生する気体が電池外部へ排出され得るとともに、電池外部の気体が電池内部へ流入し得るような状態を示し、「電解液へ浸漬させる」とは、少なくとも発電部の負極合剤部が電解液に浸り、直接酸素と接触していない状態を示すものである。   In order to achieve the above-mentioned object, the present invention has a power generation unit that is wound through a positive electrode plate, a negative electrode plate, and a separator, and performs initial charge / discharge and aging treatment in an open state and an atmosphere in which oxygen exists. A method for manufacturing a non-aqueous electrolyte secondary battery, wherein at least the negative electrode mixture portion of the power generation unit is immersed in an electrolyte during the initial charge / discharge and / or aging treatment. The “open state” means a state in which the gas generated inside the battery can always be discharged to the outside of the battery and the gas outside the battery can flow into the battery, and “soaked in the electrolyte” Shows a state where at least the negative electrode mixture part of the power generation part is immersed in the electrolytic solution and is not in direct contact with oxygen.

本発明は、開放状態かつ酸素が存在する雰囲気下で行う非水電解質二次電池の製造方法において、初期充放電やエージング処理を行う場合に少なくとも発電部の負極合剤部を電解液に浸漬させることによって、電池内部へ流入する酸素と負極カーボン材料内のリチウムとの反応を抑制し、容量の低下や抵抗の増加を低減し、高性能かつ高信頼性の電池を供給することができる。   The present invention relates to a method for producing a nonaqueous electrolyte secondary battery that is performed in an open state and in an oxygen-containing atmosphere, and at least the negative electrode mixture portion of the power generation unit is immersed in the electrolyte when performing initial charge / discharge or aging treatment. Accordingly, the reaction between oxygen flowing into the battery and lithium in the negative electrode carbon material can be suppressed, the decrease in capacity and the increase in resistance can be reduced, and a high-performance and highly reliable battery can be supplied.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本発明は、正極板と負極板とセパレータを介して捲回してなる発電部を有し、初期充放電およびエージング処理を開放状態かつ酸素が存在する雰囲気下で行う非水電解質二次電池の製造方法であって、前記初期充放電時および/またはエージング処理時に少なくとも前記発電部の負極合剤部が電解液に浸漬されていることを特徴するものであり、負極合剤部と空気中の酸素との反応に伴う容量劣化を抑制し、電池の性能劣化を抑制することができる。   The present invention has a power generation unit that is wound through a positive electrode plate, a negative electrode plate, and a separator, and manufactures a non-aqueous electrolyte secondary battery that performs initial charge / discharge and aging treatment in an open state and in an atmosphere containing oxygen The method is characterized in that at least the negative electrode mixture part of the power generation part is immersed in an electrolyte during the initial charge / discharge and / or aging treatment, and the negative electrode mixture part and oxygen in the air It is possible to suppress the capacity deterioration associated with the reaction with the battery and to suppress the battery performance deterioration.

さらに本発明は、電池を拘束板等で拘束することにより、発電部内部に含浸された電解液の一部を発電部外に押し出し、必要最小限の電解液量で確実に発電部を電解液に浸漬された状態とすることによって、電池の性能劣化を抑制することが可能となる。   Furthermore, the present invention constrains the battery with a restraining plate or the like to push out a part of the electrolyte impregnated inside the power generation unit to the outside of the power generation unit, so that the power generation unit can be reliably connected with the minimum amount of electrolyte. It is possible to suppress battery performance deterioration by being immersed in the battery.

図1はアルミニウム製の電池ケース1を用いた本発明の電池の外観図であり、図2は本発明の電池の内部構成を表す図である。   FIG. 1 is an external view of a battery of the present invention using an aluminum battery case 1, and FIG. 2 is a diagram showing an internal configuration of the battery of the present invention.

図1および図2では、アルミニウム箔に正極活物質を塗布した正極板と、銅箔に負極活物質を塗布した負極板とをセパレーターを介して捲回して構成した発電部6を電池ケース1に挿入している。電池ケース1にはアルミニウム製の蓋板5が溶接されており、発電部の正極板および負極板に接続された正極端子2および負極端子3が外部に導かれているが、この電極端子はポリエチレン製の樹脂によって蓋板5とは絶縁された構造をとっている。またこの蓋板5には電解液を注入するための注液口4が設けられている。電解液7の液面は発電部の最上端の更に上部に位置しており発電部は完全に電解液に浸漬していることを表している。   In FIG. 1 and FIG. 2, the battery case 1 includes a power generation unit 6 configured by winding a positive electrode plate coated with a positive electrode active material on an aluminum foil and a negative electrode plate coated with a negative electrode active material on a copper foil via a separator. Inserting. An aluminum lid plate 5 is welded to the battery case 1, and a positive electrode terminal 2 and a negative electrode terminal 3 connected to the positive electrode plate and the negative electrode plate of the power generation unit are led to the outside. It has a structure insulated from the cover plate 5 by a resin made of resin. The lid plate 5 is provided with a liquid injection port 4 for injecting an electrolytic solution. The liquid level of the electrolytic solution 7 is located further above the uppermost end of the power generation unit, indicating that the power generation unit is completely immersed in the electrolytic solution.

図3はこの電池を2枚の金属板8で挟み、ねじ止めすることで電池を拘束している状態を表している。   FIG. 3 shows a state in which the battery is restrained by sandwiching the battery between two metal plates 8 and screwing the battery.

上記リチウム二次電池に用いる正極活物質は、アセチレンブラック(AB)やケッチェンブラック(KB)などの導電剤、ポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVDF)などの結着剤と混合され、カルボキシメチルセルロース(CMC)やN−メチル−2−ピロリドン(NMP)などと練合される。   The positive electrode active material used for the lithium secondary battery is mixed with a conductive agent such as acetylene black (AB) or ketjen black (KB), and a binder such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF). And kneaded with carboxymethylcellulose (CMC) or N-methyl-2-pyrrolidone (NMP).

このようにして作製されたペーストをアルミニウム箔の両面にダイコーターやコンマコーターなどを用いて所定の重量に塗工し、塗工機に隣接されている乾燥炉の中を通して乾燥することによって正極板を作製する。   The paste prepared in this way is applied to both sides of the aluminum foil to a predetermined weight using a die coater or a comma coater, etc., and dried through a drying furnace adjacent to the coating machine, thereby positive electrode plate Is made.

負極活物質も同様に、CMCの1%水溶液と結着性を付与するためのスチレンブタジエンラバー(SBR)とともに練合したペーストを銅箔の両面に塗工し、乾燥することによって負極板を作製する。   Similarly, the negative electrode active material is prepared by applying a paste kneaded with 1% aqueous solution of CMC and styrene butadiene rubber (SBR) for imparting binding properties to both sides of the copper foil and drying. To do.

そしてこれらの正負極板をポリエチレン(PE)とポリプロピレン(PP)を主成分とする多孔質フィルムを介して長円形に捲回して電池の発電部を作成する。   Then, these positive and negative electrode plates are wound into an oval shape through a porous film mainly composed of polyethylene (PE) and polypropylene (PP) to form a battery power generation unit.

このようにして製造された発電部にリードを取り付け、アルミニウム製の外装ケースに挿入して上蓋を溶接する。ここで上蓋には電池に電解液を注入するための注液口と正極板および負極板からそれぞれ導かれたリードに接合される電極端子が設けられている。   A lead is attached to the power generation unit thus manufactured, inserted into an aluminum outer case, and the upper lid is welded. Here, the upper lid is provided with an injection port for injecting an electrolytic solution into the battery and electrode terminals joined to leads led from the positive electrode plate and the negative electrode plate, respectively.

さらに、この電池をSUS製の板で挟み、SUS製の板の間隔を所定の幅に調整することで拘束する。   Further, the battery is sandwiched between SUS plates, and is restrained by adjusting the interval between the SUS plates to a predetermined width.

この電池に、注液口から所定量の電解液を注入して初期充放電、エージング処理を行う。なおこの時、電池内部の気相部分と少なくとも発電部の負極合剤部が直接接することがないように、負極合剤部は電解液によって浸漬されている。また発生したガスは注液口から電池外へ排出されている。   A predetermined amount of electrolytic solution is injected into the battery from a liquid injection port, and initial charging / discharging and aging treatment are performed. At this time, the negative electrode mixture portion is immersed in the electrolytic solution so that the gas phase portion inside the battery and at least the negative electrode mixture portion of the power generation portion do not directly contact each other. Further, the generated gas is discharged from the injection port to the outside of the battery.

以下、本発明の詳細について実施例により説明する。   Hereinafter, details of the present invention will be described with reference to examples.

(実施例1)
正極活物質として組成式でLiNi0.8Co0.17Al0.032で表されるリチウムニッケル複合酸化物を用い、前記の正極活物質に導電剤としてAB、結着剤としてPVDF、溶剤としてNMPを加えて練合することでペースト状の合剤を得た。これを厚さ20μmのアルミニウム箔製正極集電体の両面に塗着・乾燥し、その後ロールプレスによって合剤層の密度が2.1g/ccになるように圧延して正極板を得た。ここで正極板のサイズは片面の合剤厚みが30μmで、幅80mm、長さ2500mmとした。
(Example 1)
Using a lithium nickel composite oxide represented by a composition formula LiNi 0.8 Co 0.17 Al 0.03 O 2 as a positive electrode active material, AB as a conductive agent, PVDF as a binder, and NMP as a solvent are added to the positive electrode active material. A paste-like mixture was obtained by kneading. This was applied to both sides of a 20 μm thick aluminum foil positive electrode current collector and dried, and then rolled by a roll press so that the density of the mixture layer was 2.1 g / cc to obtain a positive electrode plate. Here, the size of the positive electrode plate was such that the thickness of the mixture on one side was 30 μm, the width was 80 mm, and the length was 2500 mm.

一方、負極活物質として人造黒鉛(MCMB、大阪ガス(株)製)に結着剤としてPVDF、溶剤としてNMPを加えて練合することでペースト状の合剤を得た。これを厚さ10μmの銅箔製負極集電体の両面に塗着・乾燥し、その後ロールプレスによって合剤層の密度が1.3g/ccになるように圧延して正極板を得た。ここで負極板のサイズは片面の合剤厚みが35μmで、幅85mm、長さ2650mmとした。   On the other hand, a paste-like mixture was obtained by adding PVDF as a binder and NMP as a solvent to artificial graphite (MCMB, manufactured by Osaka Gas Co., Ltd.) as a negative electrode active material and kneading them. This was applied to both sides of a copper foil negative electrode current collector having a thickness of 10 μm and dried, and then rolled by a roll press so that the density of the mixture layer was 1.3 g / cc to obtain a positive electrode plate. Here, the size of the negative electrode plate was such that the thickness of the mixture on one side was 35 μm, the width was 85 mm, and the length was 2650 mm.

セパレータには厚さ25μmのPPとPE製の2層多孔質フィルムを用いた。   As the separator, a two-layer porous film made of PP and PE having a thickness of 25 μm was used.

次いで、正極板と負極板をセパレータを介して捲回し発電部を形成し、この発電部をアルミニウム製の角形電池ケース(92mm×95mm×15mm)に挿入し、注液口を備えた電池蓋を溶接した。   Next, the positive electrode plate and the negative electrode plate are wound through a separator to form a power generation unit, and this power generation unit is inserted into an aluminum rectangular battery case (92 mm × 95 mm × 15 mm), and a battery lid having a liquid inlet is provided. Welded.

電解液には、1MのLiPF6をエチレンカーボネート(EC):ジメチルカーボネート(DMC)を4:6の体積比で混合した有機溶媒に溶解させたものを用いた。この電解液45gを注液口から注入し減圧することで発電部の内部にまで電解液を浸透させるとともに、負極合剤部が完全に電解液で浸漬されるようにし、容量5Ahの電池を作製した。 As the electrolytic solution, 1M LiPF 6 dissolved in an organic solvent obtained by mixing ethylene carbonate (EC): dimethyl carbonate (DMC) at a volume ratio of 4: 6 was used. 45 g of this electrolytic solution is injected from the injection port and the pressure is reduced so that the electrolytic solution penetrates into the power generation unit and the negative electrode mixture unit is completely immersed in the electrolytic solution to produce a battery with a capacity of 5 Ah. did.

この電池に対して初期充放電を行った後、電解液を5g抜き取り、負極合剤部が完全に電解液で浸漬されていない状態としてエージング処理を行った。その後、注液栓を封止して得られた電池を電池Aとした。   After performing initial charge / discharge on this battery, 5 g of the electrolytic solution was extracted, and an aging treatment was performed in a state where the negative electrode mixture portion was not completely immersed in the electrolytic solution. Thereafter, the battery obtained by sealing the liquid injection stopper was designated as battery A.

なお、本実施例における「初期充放電」とは、0.2Cの定電流で4.1Vを上限電圧、3.0Vを下限電圧として、電池に対して充電の後放電を行い、この充放電を1サイクルとして充放電を3サイクル行い、最後に充電を行い電池を充電状態とすることであり、「エージング処理」とは、SOC(State of Charge)を60%に調整した電池に対して、60℃のドライエア雰囲気中(露点:−20℃以下)で7日間保存することである。   The “initial charge / discharge” in this example is a constant current of 0.2 C and 4.1 V as an upper limit voltage and 3.0 V as a lower limit voltage. 3 cycles of charging and discharging, and finally charging is performed to put the battery into a charged state. “Aging process” is a battery whose SOC (State of Charge) is adjusted to 60%. It is to store for 7 days in a dry air atmosphere at 60 ° C. (dew point: −20 ° C. or lower).

(実施例2)
電解液が負極合剤部の内部には浸透しているが、負極合剤部が電解液で浸漬されていない状態となるように電解液の注液量を40gとし、初期充放電を行った後、さらに電解液を5g加えて負極合剤部が完全に電解液で浸漬された状態としてエージング処理を行ったこと以外は電池Aと同様にしたものを電池Bとした。
(Example 2)
The electrolyte solution penetrated into the negative electrode mixture part, but the amount of electrolyte injected was 40 g so that the negative electrode mixture part was not immersed in the electrolyte solution, and initial charge / discharge was performed. Thereafter, a battery B was prepared in the same manner as the battery A except that 5 g of an electrolytic solution was further added and the negative electrode mixture part was completely immersed in the electrolytic solution and the aging treatment was performed.

(実施例3)
初期充放電を行った後、電解液を抜き取らず、負極合剤部が電解液で浸漬された状態としてエージング処理を行ったこと以外は電池Aと同様にした電池を電池Cとした。
(Example 3)
After the initial charge / discharge, the battery was made the same as the battery A except that the electrolyte solution was not removed and the aging treatment was performed with the negative electrode mixture part immersed in the electrolyte solution.

(比較例1)
初期充放電を行った後、電解液を加えず、負極合剤部が電解液で浸漬されていない状態としてエージング処理を行ったこと以外は電池Bと同様にした電池を電池Dとした。
(Comparative Example 1)
After performing initial charge / discharge, a battery similar to battery B was designated as battery D, except that the electrolyte solution was not added and the negative electrode mixture part was not immersed in the electrolyte solution and was subjected to an aging treatment.

上記4種類の電池A〜電池Dに対して、エージング処理終了後にそれぞれの電池の注液口をアルミニウム製の板で溶接して密閉構造とした。そしてそれぞれの電池の容量と内部抵抗(DC−IR)を測定した。その結果を表1に示す。なお、表1に示す結果は、各電池とも5個の電池を測定した平均値である。   With respect to the above four types of batteries A to D, after the aging treatment was completed, the injection port of each battery was welded with an aluminum plate to form a sealed structure. And the capacity | capacitance and internal resistance (DC-IR) of each battery were measured. The results are shown in Table 1. The results shown in Table 1 are average values obtained by measuring five batteries for each battery.

Figure 2005251614
Figure 2005251614

表1に示される結果から、電池Dの容量が小さく、内部抵抗が高いのに対して、電池Aおよび電池Bは容量、内部抵抗の数値が優れており、電池Cではさらに、容量、内部抵抗の数値が優れていることがわかる。   From the results shown in Table 1, the capacity of the battery D is small and the internal resistance is high, whereas the battery A and the battery B are excellent in capacity and internal resistance, and the battery C further has the capacity and internal resistance. It can be seen that the numerical value of is excellent.

電池Cが電池Aおよび電池Bと比較して初期容量が大きく、内部抵抗が低いという結果が得られているのは、電池内部の電解液面が高く負極合剤部がより空気にさらされていないことに起因すると考えられる。つまり負極の炭素材料にリチウムが挿入された状態で空気に触れると、リチウムと酸素が反応して酸化リチウムに変化するとともに、酸素が消費されるために電池内部が負圧となり新たな空気が流入することで、さらに酸素とリチウムの反応が進み、活物質が減少するためであると考えられる。   The result that battery C has a larger initial capacity and lower internal resistance than batteries A and B is obtained because the electrolyte surface inside the battery is high and the negative electrode mixture part is more exposed to air. This is thought to be due to the absence. In other words, if lithium is inserted into the carbon material of the negative electrode and is exposed to air, lithium and oxygen react to change to lithium oxide, and oxygen is consumed, so the inside of the battery becomes negative pressure and new air flows in. This is considered to be because the reaction between oxygen and lithium further proceeds and the active material decreases.

このことを確認するため、参考例として初期充放電およびエージング処理をアルゴンガス中で行った以外は電池Dと同じ条件で電池Eを作製したところ、電池Eの初期容量と内部抵抗は電池Cとほぼ同等の数値が得られることが確認された。   In order to confirm this, as a reference example, a battery E was prepared under the same conditions as the battery D except that initial charge / discharge and aging treatment were performed in argon gas. It was confirmed that almost equivalent numbers were obtained.

さらに参考例として、初期充放電やエージング処理の工程において、電池が密封状態であるか開放状態であるかという違いによる性能の違いを確認するために、初期充放電の前に注液口をポリプロピレン製の蓋で栓をして擬似的に密封状態とし、初期充放電を終えた後、注液口の蓋を外し電池の電解液量を電池A〜電池Cと同様に調整し、その後再び密封状態としてエージング処理を行ったこと以外は電池A〜電池Cと同様の方法で作製した電池を、それぞれ電池F〜電池Hとした。これらの電池F〜電池Hのエージング処理後の容量と内部抵抗、初期充放電後およびエージング処理後のガス量を測定した。その結果を表2に示す。   Furthermore, as a reference example, in order to confirm the difference in performance depending on whether the battery is in a sealed state or an open state in the initial charge / discharge or aging process, the liquid inlet is made of polypropylene before the initial charge / discharge. After closing the initial charge / discharge, remove the lid of the liquid inlet, adjust the amount of electrolyte in the battery in the same way as batteries A to C, and then seal again The batteries produced by the same method as Battery A to Battery C, except that the aging treatment was performed as the state, were referred to as Battery F to Battery H, respectively. The capacity and internal resistance of these batteries F to H after the aging treatment, the gas amount after the initial charge / discharge and the aging treatment were measured. The results are shown in Table 2.

Figure 2005251614
Figure 2005251614

ここで、電池A〜電池Cでは初期充放電時およびエージング処理時において開放状態であるため電池内でのガスの滞留は起こっていないが、電池F〜電池Hでは、初期充放電後およびエージング処理後に電池内にガスの滞留が起こっているため、電池の内部抵抗が高くなっているが、これらの結果は以下のような原因によるものであると考えられる。   Here, since the batteries A to C are in an open state at the time of initial charge / discharge and the aging process, no gas stays in the batteries, but in the batteries F to H, after the initial charge / discharge and the aging process Since the gas stays in the battery later, the internal resistance of the battery increases. These results are considered to be caused by the following causes.

すなわち、リチウム二次電池では初期充放電時に負極のカーボン表面に電解液との反応によって皮膜が形成され、このときガス発生が起こることが知られている。また、電池内に含まれた水分が負極カーボンにインターカレートしたリチウムと反応した場合でもガスが発生する。ここで、電池E〜電池Hでは電池が密封状態となっていることによって、電池内部に上記の理由により発生したガスが滞留している。そして発生したガスが正負極間に残留して極板の反応面積が小さくなったためにこれらの電池の内部抵抗が高くなっていると考えられる。   That is, it is known that in a lithium secondary battery, a film is formed on the carbon surface of the negative electrode by reaction with the electrolyte during initial charge and discharge, and gas is generated at this time. Further, gas is generated even when moisture contained in the battery reacts with lithium intercalated with the negative electrode carbon. Here, in the batteries E to H, since the batteries are in a sealed state, the gas generated for the above reason stays inside the batteries. The generated gas remains between the positive and negative electrodes, and the reaction area of the electrode plate is reduced. Therefore, it is considered that the internal resistance of these batteries is increased.

以上のように、電池容量の低下や内部抵抗の上昇を防ぐためには、電池の発電部、特に負極リチウムと酸素の反応を防ぐ必要がある。さらに、初期充放電やエージング処理を電池が密封された状態で行うと、発生するガスを外部に排出することができず、その結果電池の内圧が非常に高くなり、電池の安全性や信頼性を低下させることから、初期充放電およびエージング処理は開放状態で行うのが好ましい。
(実施例4)
電池を拘束板で拘束し発電部が完全に電解液で浸漬された状態としてエージング処理を行ったこと以外は電池Aと同様にした電池を電池Iとした。電池Iの初期容量と内部抵抗
を測定すると、表3に示されるように電池Cとほぼ同等の数値が得られた。
As described above, in order to prevent a decrease in battery capacity and an increase in internal resistance, it is necessary to prevent a reaction between the power generation unit of the battery, particularly the negative electrode lithium and oxygen. In addition, if the initial charge / discharge and aging treatment are performed with the battery sealed, the generated gas cannot be discharged to the outside, resulting in a very high internal pressure of the battery, and the safety and reliability of the battery. Therefore, it is preferable to perform the initial charging / discharging and the aging treatment in an open state.
Example 4
A battery similar to battery A was designated as battery I except that the battery was restrained with a restraining plate and the aging treatment was performed with the power generation unit completely immersed in the electrolyte. When the initial capacity and internal resistance of the battery I were measured, as shown in Table 3, a value almost equivalent to that of the battery C was obtained.

Figure 2005251614
Figure 2005251614

したがって、液面の調整は電解液量で行うだけでなく、本実施例のように拘束板で電池を拘束し、その拘束圧力によって液面を調整することも可能であることが明らかとなった。   Therefore, it was clarified that the liquid level can be adjusted not only by the amount of the electrolytic solution but also by restraining the battery with a restraint plate as in this embodiment and adjusting the liquid level by the restraint pressure. .

なお、本実施例ではアルミニウム製の金属缶を用いたリチウム二次電池について説明したが、本発明はこの他の形態、例を挙げるならばアルミラミネートシートを容器とした電池や、ステンレス缶を容器とした電池にも実施可能であり、高性能で信頼性の高いリチウム二次電池を供給することが可能である。   In this embodiment, a lithium secondary battery using a metal can made of aluminum has been described. However, the present invention is not limited to this embodiment. For example, a battery using an aluminum laminate sheet as a container, or a stainless steel can as a container. Therefore, it is possible to supply a lithium secondary battery with high performance and high reliability.

本発明は高性能な非水電解質二次電池の製造方法として有用である。   The present invention is useful as a method for producing a high-performance nonaqueous electrolyte secondary battery.

本発明の実施例の電池の外観図External view of a battery according to an embodiment of the present invention 本発明の実施例の電池の断面図Sectional view of the battery of the embodiment of the present invention 本発明の実施例の電池を拘束板で拘束した状態図The state figure which restrained the battery of the Example of this invention with the restraint board

符号の説明Explanation of symbols

1 電池ケース
2 正極端子
3 負極端子
4 注液口
5 蓋板
6 発電部
7 電解液
8 拘束板
DESCRIPTION OF SYMBOLS 1 Battery case 2 Positive electrode terminal 3 Negative electrode terminal 4 Injection hole 5 Lid plate 6 Power generation part 7 Electrolyte solution 8 Restraint plate

Claims (2)

正極板と負極板とセパレータを介して捲回してなる発電部を有し、初期充放電およびエージング処理を開放状態かつ酸素が存在する雰囲気下で行う非水電解質二次電池の製造方法であって、前記初期充放電時および/またはエージング処理時に少なくとも前記発電部の負極合剤部が電解液に浸漬されている非水電解質二次電池の製造方法。 A method for producing a non-aqueous electrolyte secondary battery having a power generation section wound through a positive electrode plate, a negative electrode plate, and a separator, and performing initial charge / discharge and aging treatment in an open state and in an atmosphere containing oxygen A method for producing a non-aqueous electrolyte secondary battery in which at least the negative electrode mixture portion of the power generation unit is immersed in an electrolytic solution during the initial charge / discharge and / or aging treatment. 初期充放電時および/またはエージング処理時に電池を拘束部材で拘束する請求項1に記載の非水電解質二次電池の製造方法。
The manufacturing method of the nonaqueous electrolyte secondary battery according to claim 1, wherein the battery is restrained by a restraining member during initial charge / discharge and / or aging treatment.
JP2004061993A 2004-03-05 2004-03-05 Manufacturing method for nonaqueous electrolyte secondary battery Pending JP2005251614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004061993A JP2005251614A (en) 2004-03-05 2004-03-05 Manufacturing method for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004061993A JP2005251614A (en) 2004-03-05 2004-03-05 Manufacturing method for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2005251614A true JP2005251614A (en) 2005-09-15

Family

ID=35031870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004061993A Pending JP2005251614A (en) 2004-03-05 2004-03-05 Manufacturing method for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2005251614A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021104A (en) * 2008-07-14 2010-01-28 Toyota Motor Corp Method of manufacturing secondary battery
JP2014116179A (en) * 2012-12-10 2014-06-26 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery
JP2014116180A (en) * 2012-12-10 2014-06-26 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery
JP2015103479A (en) * 2013-11-27 2015-06-04 トヨタ自動車株式会社 Lithium ion secondary battery
CN112272880A (en) * 2018-11-20 2021-01-26 株式会社Lg化学 Method for activating secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021104A (en) * 2008-07-14 2010-01-28 Toyota Motor Corp Method of manufacturing secondary battery
JP2014116179A (en) * 2012-12-10 2014-06-26 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery
JP2014116180A (en) * 2012-12-10 2014-06-26 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery
JP2015103479A (en) * 2013-11-27 2015-06-04 トヨタ自動車株式会社 Lithium ion secondary battery
CN112272880A (en) * 2018-11-20 2021-01-26 株式会社Lg化学 Method for activating secondary battery
EP3783727A4 (en) * 2018-11-20 2021-08-18 Lg Chem, Ltd. Method for activating secondary battery
US11876191B2 (en) 2018-11-20 2024-01-16 Lg Energy Solution, Ltd. Method for activating secondary battery

Similar Documents

Publication Publication Date Title
CN100502139C (en) Cylindrical lithium secondary battery
JP7096973B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and manufacturing system
JP4433329B2 (en) Positive electrode of lithium secondary battery and method for producing the same
CN110518293B (en) Preparation method of solid-state lithium ion battery
JP5818078B2 (en) Method for producing non-aqueous electrolyte secondary battery
CN107565170B (en) A kind of chemical synthesizing method of lithium ion battery
JP2009081103A (en) Positive electrode active material, and lithium secondary battery
JP5929551B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2010108732A (en) Lithium secondary battery
JP2012009276A (en) Lithium ion secondary battery and manufacturing method therefor
JP2016004657A (en) Positive electrode, method of manufacturing positive electrode, and nonaqueous electrolyte secondary battery
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP5260857B2 (en) Square non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6102494B2 (en) Non-aqueous electrolyte and lithium ion secondary battery
JP2016062872A (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
CN103794794B (en) Lithium battery anode and preparation method thereof, lithium battery and preparation method and application
JP2013145712A (en) Nonaqueous electrolyte secondary battery
JP5296971B2 (en) Method for producing negative electrode for secondary battery
CN113270571A (en) Method for manufacturing lithium ion secondary battery and negative electrode material
JP2005327592A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP6457272B2 (en) Method for reducing uneven charging of secondary battery and method for manufacturing secondary battery
JP6738865B2 (en) Lithium ion secondary battery
JP2005251614A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP2005222757A (en) Finishing charge/discharge gas exhaustion method of lithium-ion secondary battery
JP4561034B2 (en) Manufacturing method of non-aqueous electrolyte battery