JP2005222757A - Finishing charge/discharge gas exhaustion method of lithium-ion secondary battery - Google Patents

Finishing charge/discharge gas exhaustion method of lithium-ion secondary battery Download PDF

Info

Publication number
JP2005222757A
JP2005222757A JP2004027657A JP2004027657A JP2005222757A JP 2005222757 A JP2005222757 A JP 2005222757A JP 2004027657 A JP2004027657 A JP 2004027657A JP 2004027657 A JP2004027657 A JP 2004027657A JP 2005222757 A JP2005222757 A JP 2005222757A
Authority
JP
Japan
Prior art keywords
battery
charge
ion secondary
discharge
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004027657A
Other languages
Japanese (ja)
Inventor
Masatomo Hase
昌朋 長谷
Tatsuya Hashimoto
達也 橋本
Takafumi Fujii
▲隆▼文 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004027657A priority Critical patent/JP2005222757A/en
Publication of JP2005222757A publication Critical patent/JP2005222757A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charge/discharge gas exhaustion method preventing moisture and oxygen in the atmosphere from infiltrating into a battery and without fear of electrolyte solution scattering in a battery case. <P>SOLUTION: The finishing charge/discharge gas exhaustion method of a lithium-ion secondary battery consists of a process of injecting electrolyte solution into the battery before injection provided with an injection inlet, a process of mounting an external restoring gas exhaust valve on the injection inlet, a process of carrying out the finishing charge and discharge, and a process of sealing the injection inlet, where the process of the finishing charge and discharge includes a process of carrying out gas exhaustion until an inner pressure of the battery exceeding a given value gets down to a given inner pressure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明はリチウムイオン二次電池の仕上げ充放電時に発生するガスの排出方法に関するものである。   The present invention relates to a method for discharging a gas generated during finish charge / discharge of a lithium ion secondary battery.

リチウムイオン二次電池は、従来のニッケル水素電池や鉛蓄電池といった二次電池に比べ、高エネルギー密度で電池電圧が高く自己放電も少ないといった各種優れた特徴を備え、最近ではノート型パソコンや携帯電話といった小型電子機器用などに広く活用されている。   Lithium ion secondary batteries have various features such as high energy density, high battery voltage and low self-discharge compared to conventional secondary batteries such as nickel metal hydride batteries and lead acid batteries. It is widely used for small electronic devices.

リチウムイオン二次電池では、電極や電解液などが空気中の水分や酸素と触れると電池性能が劣化することから、性能劣化を防止するためにカシメ、レーザー溶接などで電池を封口し、外気との接触を絶つ密閉構造とするのが一般的である。しかし、過充電や短絡などにより電池内部でガス発生が起こる場合には、密閉型であるが故に、電池内圧は著しく上昇することがある。かかる現象を回避するために、リチウムイオン二次電池には、通常彫り込みやエッチング溝を有する金属薄膜等の内圧開放用の安全弁を付帯する。   In lithium-ion secondary batteries, battery performance deteriorates when electrodes or electrolytes come into contact with moisture or oxygen in the air.To prevent performance deterioration, the battery is sealed with caulking, laser welding, etc. It is common to have a sealed structure that cuts off the contact. However, when gas is generated inside the battery due to overcharge or short circuit, the internal pressure of the battery may increase significantly due to the sealed type. In order to avoid such a phenomenon, the lithium ion secondary battery is usually provided with a safety valve for releasing the internal pressure such as a metal thin film having a carved or etched groove.

ところで、リチウムイオン二次電池では、電圧を安定させる理由により出荷前に充放電を行うことが一般的であり、この充放電を行うことで電圧を安定させることが可能となる。この充放電を仕上げ充放電と称するが、仕上げ充放電時には電解液に起因して起こる副反応によってガスが発生することがある。このような場合には、安全弁とは別にガス抜き孔を設けることが難しく、彫り込みやエッチング溝を形成した金属薄膜安全弁などの非復帰式安全弁は一度作動してしまうと再び封口することができず、商品価値を失ってしまうので、上蓋を外装缶にカシメたり溶接する前に、電池に初充電を行う充電工程を設け、その後電池缶を封口する封口工程などの複数の工程を踏む必要があった。
特開2000−353547号公報 特開平11−250887号公報
By the way, in a lithium ion secondary battery, it is common to perform charging / discharging before shipment for the reason of stabilizing a voltage, and it becomes possible to stabilize a voltage by performing this charging / discharging. This charging / discharging is called finish charging / discharging, but gas may be generated by a side reaction caused by the electrolyte during finishing charging / discharging. In such a case, it is difficult to provide a vent hole separately from the safety valve, and once a non-returnable safety valve such as a metal thin film safety valve with an engraved or etched groove is activated, it cannot be sealed again. Therefore, before the upper lid is caulked or welded to the outer can, there is a need to set up a charging process to charge the battery for the first time, and then to perform multiple steps such as a sealing process to seal the battery can. It was.
JP 2000-353547 A JP-A-11-250887

ところで、リチウムイオン二次電池は、その発電要素の性質上、仕上げ充放電の際に電池缶内にガスが発生し、そのガスが蓄積され内圧が上昇し、その内圧により電池缶が変形してしまうことがあり、中でも角形リチウムイオン二次電池は特に変形を起こしやすいことが知られている。そのため、従来から角形リチウムイオン二次電池の製造に際しては、上蓋を外装缶にカシメや溶接により接合する前に、電池に初充電を行う工程の際にガス抜き工程を行い、その後で電池缶を封口する封口工程を行うようにしている。このような工程を行うと電極や電解液などが空気中の水分や酸素と触れる時間が長いため、電池性能を劣化させる可能性もある。   By the way, the lithium ion secondary battery, due to the nature of its power generation element, gas is generated in the battery can during finish charge / discharge, the gas is accumulated and the internal pressure rises, and the battery can be deformed by the internal pressure. In particular, it is known that prismatic lithium ion secondary batteries are particularly susceptible to deformation. Therefore, when manufacturing a square lithium ion secondary battery, a degassing process is performed during the initial charging process before the upper lid is joined to the outer can by caulking or welding, and then the battery can is removed. A sealing step for sealing is performed. When such a process is performed, the battery performance may be deteriorated because the electrode, the electrolyte, and the like are in contact with moisture and oxygen in the air for a long time.

また、ガスの排出とともに電解液が飛散することがあり、外装缶、上蓋に電解液が飛散すると封口不良を招く恐れがある。それにより外装缶などに飛散した電解液をふき取るためのクリーニング工程を設けなければならず、この工程が電池の製造効率を低下させる要因となっている。   In addition, the electrolyte solution may scatter as the gas is discharged. If the electrolyte solution scatters on the outer can and the upper lid, there is a risk of causing a sealing failure. Accordingly, it is necessary to provide a cleaning process for wiping off the electrolytic solution scattered on the outer can and the like, and this process is a factor for reducing the manufacturing efficiency of the battery.

特許文献1には、ゴムからなる仮封口栓を装着した状態で充放電を行い、この充放電後にシリンジ等の容器に連通する中空針の先端を前記仮封口栓の上方から刺通して電池ケース内のガスを回収し、前記仮封口栓を除去した後にガス抜き孔を封口するが、この方法を
行うと、充放電中にはガスを排出できないため、電池ケースを変形させてしまう可能性がある。
In Patent Document 1, charging / discharging is performed in a state where a temporary sealing plug made of rubber is attached, and the tip of a hollow needle communicating with a container such as a syringe is pierced from above the temporary sealing plug after charging / discharging. After removing the temporary sealing plug, the gas vent hole is sealed. However, if this method is used, the gas cannot be discharged during charging / discharging, which may deform the battery case. .

また特許文献2には、電池ケースの内圧が設定圧以上に達した時に開放して排出するリリーフ弁を電池ケースの外壁に設ける記載があるが、この構造にすると、コストが上がり、電池構造が複雑となる課題がある。更に、リリーフ弁の動作不良が発生した場合、外気と電解液が接触してしまい性能劣化を引き起こす恐れがある。   Patent Document 2 describes that a relief valve is provided on the outer wall of the battery case that opens and discharges when the internal pressure of the battery case reaches a set pressure or higher. However, this structure increases the cost and the battery structure. There is a complicated problem. Furthermore, when a malfunction of the relief valve occurs, the outside air may come into contact with the electrolytic solution, which may cause performance deterioration.

上記課題を解決するために本発明は、リチウムイオン二次電池の仕上げ充放電ガス排出方法であって、注液口を設けた注液前の電池に電解液を注液する工程と、注液口に外付けの復帰式ガス排出弁を装着する工程と、仕上げ充放電を行う工程と、仕上げ充放電後注液口から復帰式ガス排出弁を外す工程と、注液口を封止する工程を有し、前記仕上げ充放電を行う工程において、電池の内圧が所定の圧力を超えた場合に所定の内圧以下になるまでガスの排出を行う工程を有することを特徴とする。   In order to solve the above problems, the present invention is a method for finishing charge / discharge gas discharge of a lithium ion secondary battery, the step of injecting an electrolyte into a battery before injection provided with an injection port, The process of attaching an external return type gas discharge valve to the mouth, the process of finishing charge / discharge, the process of removing the return type gas discharge valve from the liquid inlet after finish charge / discharge, and the process of sealing the liquid inlet And the step of performing the finish charge / discharge includes a step of discharging gas until the internal pressure of the battery exceeds a predetermined pressure until it becomes a predetermined internal pressure or less.

本発明のガス排出方法によれば、電池内に外気の侵入をさせることなく電池を作製することができ、復帰式ガス排出弁を注液口に脱着できるようにすることにより電池構造の簡素化が出来る。また、電池缶に電解液が飛散することも無いので付着した電解液を拭き取るためのクリーニング工程も必要なく製造効率の大幅な向上を図ることができる。   According to the gas discharge method of the present invention, the battery can be manufactured without allowing outside air to enter the battery, and the battery structure can be simplified by allowing the resettable gas discharge valve to be attached to and detached from the liquid injection port. I can do it. Further, since the electrolytic solution does not scatter on the battery can, a cleaning process for wiping off the attached electrolytic solution is not necessary, and the production efficiency can be greatly improved.

本発明は低圧かつ緩慢な内圧上昇に対して所定作動圧で開口して電池外部にガスを排出し、外圧との差が小さくなると閉塞する復帰式ガス排出弁を用いる。この復帰式ガス排出弁は注液口を利用し、脱着が可能なものとし、初充電後は注液口を封口することにより、密閉型のリチウムイオン二次電池にすることが出来る。脱着式の復帰式ガス排出弁を用いることにより、上蓋と外装缶は仕上げ充電前には本封口を行うことが出来、外気との接触も最小限にすることが可能となる。   The present invention uses a return-type gas discharge valve that opens at a predetermined operating pressure against a slow increase in internal pressure and discharges gas to the outside of the battery, and closes when the difference from the external pressure becomes small. This return-type gas discharge valve uses a liquid injection port and can be detached, and after the first charge, the liquid injection port is sealed to make a sealed lithium ion secondary battery. By using a detachable return-type gas discharge valve, the upper lid and the outer can can be fully sealed before finishing charging, and contact with the outside air can be minimized.

以下、本発明の実施形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示されるように、横断面形状が長円形状に成型された外装缶3に、正極、負極、セパレータを捲回した電極体を収容し上蓋4をレーザー溶接により封口し、上蓋4に設けた注液口6より電解液を充填し、電池を完成させる。このときは注液口6以外の部分は密閉された状態である。   As shown in FIG. 1, an outer can 3 whose cross-sectional shape is formed into an oval shape is housed with an electrode body wound with a positive electrode, a negative electrode, and a separator, and the upper lid 4 is sealed by laser welding. The electrolytic solution is filled from the provided injection port 6 to complete the battery. At this time, portions other than the liquid injection port 6 are in a sealed state.

図2(a)〜(e)を用いて本発明における復帰式ガス排出弁の装着から取り外しまでの説明を行う。注液工程により電解液の充填を行った電池に、注液工程で用いた注液口6に復帰式ガス排出弁の挿入を行う(図2(a))。この際に復帰式ガス排出弁2の弁ケース受け8と注液口6とが接触を行う面には、隙間が生じていると、その隙間から電解液が漏れてくるため、電解液の漏れを防止する為にゴムライニング11を施してある。このゴムライニング11は電解液と接触があるため、耐電解液の高いエチレン−プロピレン共重合体(EPDM)等を用いる(図2(e))。   2A to 2E, description will be made from the installation to the removal of the resettable gas discharge valve in the present invention. A return-type gas discharge valve is inserted into the liquid injection port 6 used in the liquid injection process in the battery filled with the electrolytic solution in the liquid injection process (FIG. 2A). At this time, if there is a gap on the surface where the valve case receiver 8 and the liquid injection port 6 of the resettable gas discharge valve 2 come into contact with each other, the electrolyte leaks from the gap. In order to prevent this, a rubber lining 11 is applied. Since the rubber lining 11 is in contact with the electrolytic solution, an ethylene-propylene copolymer (EPDM) having a high electrolytic resistance is used (FIG. 2 (e)).

復帰式ガス排出弁2が装着されたリチウムイオン二次電池1は、発生するガスの排出がなされながら、仕上げ充放電が行われる(図2(b))。   The lithium ion secondary battery 1 equipped with the resettable gas discharge valve 2 is subjected to finish charging / discharging while discharging the generated gas (FIG. 2B).

仕上げ充放電を行った電池は注液口6から復帰式ガス排出弁2を外し(図(c))、注液口6に注液栓12の接合を行うことにより電池を密閉して完成をさせる(図(d))。   The battery that has been subjected to the final charge / discharge is completed by removing the return-type gas discharge valve 2 from the injection port 6 (FIG. (C)) and sealing the battery by joining the injection plug 12 to the injection port 6. (Figure (d)).

次いで、復帰式ガス排出弁2の内部構成を図3により説明する。弁ケース7の内空間には圧縮状態のスプリング9が配設してあり、スプリング9は弁ケース7内を下方に延びてその下端は弁ケース受け8の開口を閉鎖する弾性体10を押圧している。そして弾性体10は弁ケース受け8開口の開口縁に密接するようになっている。このときに使用をする弁ケース7、弁ケース受け8、スプリング9は、電解液による腐食が起こらないステンレス系の材料を使用することが好ましく、弾性体10は、EPDMなどのゴムや、エンジニアリングプラスチックなどの材料が好ましい。   Next, the internal configuration of the resettable gas discharge valve 2 will be described with reference to FIG. A compressed spring 9 is disposed in the inner space of the valve case 7. The spring 9 extends downward in the valve case 7, and its lower end presses the elastic body 10 that closes the opening of the valve case receiver 8. ing. The elastic body 10 is in close contact with the opening edge of the valve case receiver 8 opening. The valve case 7, the valve case receiver 8 and the spring 9 used at this time are preferably made of a stainless steel material that does not corrode by the electrolyte, and the elastic body 10 is made of rubber such as EPDM or engineering plastic. A material such as is preferable.

本実施形態の復帰式ガス排出弁2は、仕上げ充電時が行われる場合のガス発生で緩慢な速度での内圧上昇が起こった場合に、電池缶内のガス圧で弾性体10を上部方向に押し上げスプリング9を圧縮して開口し、ガスを排出する。なお、ガスの排出経路としては図3に矢印で示されるように、ガス導入口13,弾性体10と弁ケース7内面の隙間、スプリング9の間を通過し、ガス排出口14より外部へガスの排出を行う。そして、ガスを排出することにより電池缶内部のガス圧と外気との圧力差が小さくなると、スプリング9が再び伸びて弾性体10により弁ケース受け8の開口部を閉塞する。これによりリチウムイオン二次電池1は密閉状態を再現させることが出来る。この復帰式のガス排出弁の作動圧、すなわちスプリングのゴム板を弁ケース受け8の開口部を密着させることの出来る圧縮力は、電池性能の劣化を防止すると共に、電池缶内の低圧かつ緩慢な内圧上昇が生じた場合でもガスが外部へ排出できるように設定される。   When the internal pressure rises at a slow rate due to gas generation when finishing charging is performed, the resettable gas discharge valve 2 of the present embodiment moves the elastic body 10 upward by the gas pressure in the battery can. The push-up spring 9 is compressed and opened, and the gas is discharged. As shown in FIG. 3, the gas discharge path passes through the gas introduction port 13, the gap between the elastic body 10 and the inner surface of the valve case 7, the spring 9, and the gas is discharged from the gas discharge port 14 to the outside. Discharge. When the pressure difference between the gas pressure inside the battery can and the outside air is reduced by discharging the gas, the spring 9 extends again and the opening of the valve case receiver 8 is closed by the elastic body 10. Thereby, the lithium ion secondary battery 1 can reproduce a sealed state. The operating pressure of the return-type gas discharge valve, that is, the compressive force capable of bringing the spring rubber plate into close contact with the opening of the valve case receiver 8 prevents deterioration of the battery performance and reduces the pressure in the battery can. It is set so that the gas can be discharged to the outside even when a significant increase in internal pressure occurs.

実際の製造工程では、仕上げ充放電を終了した時点で復帰式ガス排出弁2を取り外し、注液口6を封口する。また取り外した復帰式ガス排出弁2は洗浄を行った後、次のリチウムイオン二次電池の仕上げ充放電に用いることが可能である。   In the actual manufacturing process, when the finish charging / discharging is finished, the resettable gas discharge valve 2 is removed and the liquid injection port 6 is sealed. Further, the removed return type gas discharge valve 2 can be used for finishing charge / discharge of the next lithium ion secondary battery after cleaning.

以下、リチウムイオン二次電池の構成要素について説明する。   Hereinafter, components of the lithium ion secondary battery will be described.

正極は集電体であるアルミ箔上に正極活物質、導電材および結着剤などの正極合剤層を設けることによって構成されている。まず正極活物質、導電材、結着剤さらには粘度調整等の目的で溶媒を混練して正極合剤ペーストを作製し、その正極合剤ペーストを、アルミニウム箔の集電体に塗布、乾燥させる。その後必要に応じてプレス、スリット加工することにより所定の寸法に加工し、シート状の正極を作製する。   The positive electrode is configured by providing a positive electrode mixture layer such as a positive electrode active material, a conductive material, and a binder on an aluminum foil as a current collector. First, a positive electrode active material, a conductive material, a binder, and a solvent are kneaded for the purpose of adjusting viscosity to produce a positive electrode mixture paste, and the positive electrode mixture paste is applied to an aluminum foil current collector and dried. . Thereafter, the sheet is processed into a predetermined size by pressing and slitting as necessary to produce a sheet-like positive electrode.

正極活物質にはLiCoO2、LiNiO2、Li2MnO4などのリチウム金属複合酸化物が使用されるが、上記Co、NiまたはMnの一部をさらにCo、Mn、Al等で置換したもの、Liで置換したものなど、他元素置換タイプのものをも使用することが可能であり、これら正極活物質はリチウムを吸蔵、放出可能であって、充放電反応が可能である活物質であれば上記に限定されるものではない。 Lithium metal composite oxides such as LiCoO 2 , LiNiO 2 , Li 2 MnO 4 are used for the positive electrode active material, but a part of the above Co, Ni or Mn is further substituted with Co, Mn, Al, etc. Other element substitution types such as those substituted with Li can also be used, and these positive electrode active materials can be used as long as they are active materials capable of occluding and releasing lithium and capable of charge / discharge reactions. It is not limited to the above.

また、導電材は正極合剤の充放電反応を効率的に行うために電気伝導性を高めるためのものであり、例えば、アセチレンブラック(AB)、ケッチェンブラック(KB)、または黒鉛等の炭素材料を単体、もしくは複合して用いることができる。   The conductive material is for increasing electrical conductivity in order to efficiently perform the charge / discharge reaction of the positive electrode mixture. For example, carbon such as acetylene black (AB), ketjen black (KB), or graphite. Materials can be used alone or in combination.

また、結着剤は合剤同士の接着、および合剤と芯材の間の接着機能を持たせるものであり、例えば、ポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVdF)などを用いる。水を溶媒とする場合にはPTFEの水溶性ディスパージョンが特に用いられる。増粘剤としては例えばカルボキシメチルセルロース(CMC)等の水溶性高分子を用いることができる。   In addition, the binder has a bonding function between the mixture and an adhesion function between the mixture and the core material. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), or the like is used. When water is used as a solvent, a water-soluble dispersion of PTFE is particularly used. As the thickener, for example, a water-soluble polymer such as carboxymethyl cellulose (CMC) can be used.

また、これらの材料を混練して合剤ペーストを作製するが、合剤混合比は電池の使用適
性に応じて任意に調整することが可能である。
In addition, a mixture paste is prepared by kneading these materials, and the mixture mixture ratio can be arbitrarily adjusted according to the suitability of the battery.

一方、負極は集電体である銅箔上に負極活物質と結着剤などの負極合剤層によって構成されており、正極と同様に合剤ペーストを作製し、その合剤ペーストを銅箔に塗布、乾燥させ、その後必要に応じてプレス、スリット加工することにより所定の寸法に加工し、シート状の負極を得る。   On the other hand, the negative electrode is composed of a negative electrode active material and a negative electrode mixture layer such as a binder on a copper foil as a current collector, and a mixture paste is prepared in the same manner as the positive electrode. Then, it is processed into a predetermined size by pressing and slitting as necessary to obtain a sheet-like negative electrode.

負極活物質にはリチウムイオンを吸蔵、放出可能な材料が用いられ、例えば、天然黒鉛、人造黒鉛、コークス等の炭素材料を用いることができる。金属リチウムを用いることも可能であるが充放電効率が悪いなどの問題がある。結着剤としては、PVdFやスチレンブタジエンゴム(SBR)等を用い、これら活物質および結着剤を分散させる溶媒にはN−メチル−2−ピロリドン(NMP)等の有機溶媒もしくは水を用いることができる。   As the negative electrode active material, a material capable of inserting and extracting lithium ions is used. For example, a carbon material such as natural graphite, artificial graphite, or coke can be used. Although metallic lithium can be used, there are problems such as poor charge / discharge efficiency. As the binder, PVdF, styrene butadiene rubber (SBR) or the like is used, and an organic solvent such as N-methyl-2-pyrrolidone (NMP) or water is used as a solvent for dispersing these active materials and the binder. Can do.

セパレータは正極と負極間の絶縁、さらには電解液を保持するなどの機能を持つものであり、このセパレータにはポリエチレン(PE)、ポリプロピレン(PP)、あるいはそれら積層品等の薄い微多孔膜を用いることができ、その必要機能を得るものであればこれらに限定されるものではない。   The separator has a function of insulating between the positive electrode and the negative electrode and further holding an electrolyte solution. The separator is made of a thin microporous film such as polyethylene (PE), polypropylene (PP), or a laminate thereof. However, the present invention is not limited to these as long as the necessary functions can be obtained.

電解液はリチウム塩を有機溶媒に溶解したものであり、有機溶媒としては、エチレンカーボネート(EC)やプロピレンカーボネート(PC)等の環状カーボネート、また、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等の鎖状カーボネートなどの単独もしくは混合系を用いる。また、リチウム塩としては、LiPF6、LiBF4、LiClO4等を用いることができる。 The electrolytic solution is obtained by dissolving a lithium salt in an organic solvent. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), A single or mixed system of a chain carbonate such as ethyl methyl carbonate (EMC) is used. As the lithium salt, LiPF 6 , LiBF 4 , LiClO 4 or the like can be used.

そして、正極および負極をセパレータを介して捲回した電極体を作製し、正極集電体および負極集電体に外部への集電端子を接続して、外装缶3に挿入し、電解液を注入し、密閉してリチウムイオン二次電池を作製する。   Then, an electrode body in which the positive electrode and the negative electrode are wound through a separator is prepared, and a current collector terminal is connected to the positive electrode current collector and the negative electrode current collector, and is inserted into the outer can 3. The lithium ion secondary battery is manufactured by pouring and sealing.

本実施例に用いるリチウムイオン二次電池の構成について説明する。正極は活物質にLiNi0.7Co0.2Al0.12、導電材にAB、結着剤にPTFE水溶性ディスパージョン液、増粘剤にCMCを用い、合剤混合比が88:9:2:1%となる正極ペーストを混練して作製する。混練時に使用する溶媒としては水を使用する。この正極ペーストを集電体となるアルミ箔上に塗布、乾燥をさせる。その後必要に応じてプレス、スリット加工をすることにより所定の寸法に加工しシート状の正極を作製する。 The configuration of the lithium ion secondary battery used in this example will be described. The positive electrode uses LiNi 0.7 Co 0.2 Al 0.1 O 2 as the active material, AB as the conductive material, PTFE water-soluble dispersion liquid as the binder, and CMC as the thickener, and the mixture ratio is 88: 9: 2: 1. % Positive electrode paste is prepared by kneading. Water is used as a solvent used during kneading. This positive electrode paste is applied on an aluminum foil serving as a current collector and dried. Thereafter, the sheet is processed into a predetermined size by pressing and slitting as necessary to produce a sheet-like positive electrode.

負極は活物質に人造黒鉛、結着剤にSBR水溶性ディスパージョン、増粘剤にCMCを用い、合剤混合比96:3:1となる負極ペーストを混練して作製する。混練時に使用する溶媒としては水を使用する。この負極ペーストを集電体となる銅箔上に塗布、乾燥をさせる。その後必要に応じてプレス、スリット加工をすることにより所定の寸法に加工しシート状にする。   The negative electrode is prepared by kneading a negative electrode paste with a mixture ratio of 96: 3: 1 using artificial graphite as the active material, SBR water-soluble dispersion as the binder, and CMC as the thickener. Water is used as a solvent used during kneading. This negative electrode paste is applied onto a copper foil serving as a current collector and dried. After that, the sheet is processed into a predetermined size by pressing and slitting as necessary.

セパレータは正極、負極間の絶縁、さらには電解液を保持する機能を持つものであり、本実施例ではPP、PE、PPの三層からなるセパレータを使用した。   The separator has a function of insulating between the positive electrode and the negative electrode and further holding the electrolytic solution. In this example, a separator composed of three layers of PP, PE, and PP was used.

電解液はリチウム塩を有機溶媒に溶解したものであり、有機溶媒としてEC、EMC、DMCを3:3:4の混合比率からなる溶媒を使用する。リチウム塩としては、LiPF6を用いた。 The electrolytic solution is obtained by dissolving a lithium salt in an organic solvent, and a solvent having a mixing ratio of EC, EMC, and DMC in a 3: 3: 4 ratio is used as the organic solvent. LiPF 6 was used as the lithium salt.

以上のように、正極、負極、セパレータを介して捲回し電極体の作製を行う工程、正極
集電体及び負極集電体に外部へ通じる集電端子の接合を行う工程と、電解液を注液する工程、外装缶3と上蓋4を接合することにより封口する工程によってリチウムイオン二次電池の作製を行った。
As described above, a step of winding an electrode body through a positive electrode, a negative electrode, and a separator, a step of bonding a positive electrode current collector and a negative electrode current collector to a current collector terminal, and an electrolyte The lithium ion secondary battery was produced by the step of sealing, the step of sealing by joining the outer can 3 and the upper lid 4 together.

本実施形態に従い、復帰式ガス排出弁2の作動圧を0.5kgf/cm2に設定し、復帰式ガス排出弁内の弾性体10をEPDMからなるゴム板としたものを使用した上で、この復帰式ガス抜き弁を注液工程後の電池の注液口に装着し、仕上げ充放電を行った。この際に、電池の内圧変化と外装缶3の変形をノギスで測定する。なお、ノギスで外装缶3の測定を行うときは、外装缶3の中央部分で行う。 According to the present embodiment, the operating pressure of the resettable gas discharge valve 2 is set to 0.5 kgf / cm 2, and the elastic body 10 in the resettable gas discharge valve is a rubber plate made of EPDM. This return-type gas vent valve was attached to the liquid injection port of the battery after the liquid injection process, and finish charge / discharge was performed. At this time, the change in the internal pressure of the battery and the deformation of the outer can 3 are measured with a caliper. In addition, when measuring the outer can 3 with a caliper, it is performed at the center of the outer can 3.

ここで仕上げ充放電の条件について説明する。電解液の注液を行い、密閉状態にした電池に対して、0.25Cで4.1Vまで充電を行い、放電を1Cで3V行う工程、1Cで4.1Vまで充電を行い、放電を1Cで3Vまで行う工程、1Cで3.7Vまで充電を行う工程によって仕上げ充放電を行う。   Here, the condition of finish charge / discharge will be described. The process of injecting the electrolyte solution and charging the battery in a sealed state to 4.1 V at 0.25 C and discharging to 3 V at 1 C, charging to 4.1 V at 1 C and discharging to 1 C Finish charging / discharging is performed by the process of charging up to 3V at 1C and the process of charging up to 3.7V at 1C.

実施例の電池は電池内圧が上昇し復帰式ガス排出弁2の作動圧に達すると、電池内部で発生したガスの排出を行い、電池内圧が0.5kgf/cm2以上に変動することが無く、その上、電池内圧を0.5kgf/cm2に設定した為、外装缶3の変形も見られなかった
一方、比較例として、極板構成、構造部品構成が実施例と同等の電池を作製し、実施例では注液口部分に復帰式ガス抜き弁2の装着を行ったのに対し、比較例はゴム栓を用いて電池を密閉状態にして、実施例と同等の仕上げ充放電を行い、電池内部の内圧変化、外装缶3の中央部厚みの測定を行った。
In the battery of the example, when the internal pressure of the battery rises and reaches the operating pressure of the resettable gas discharge valve 2, the gas generated inside the battery is discharged, and the internal pressure of the battery does not change to 0.5 kgf / cm 2 or more. In addition, since the internal pressure of the battery was set to 0.5 kgf / cm 2 , the outer can 3 was not deformed. On the other hand, as a comparative example, a battery having the same electrode plate configuration and structural component configuration as that of the example was manufactured. In the example, the return-type gas vent valve 2 was attached to the liquid injection port portion, whereas in the comparative example, the battery was sealed using a rubber plug, and finish charge / discharge equivalent to the example was performed. The internal pressure change inside the battery and the thickness of the central part of the outer can 3 were measured.

比較例の電池は、内圧が上昇するのに伴い、外装缶3が変形され、更に電池内部の内圧が上昇するとゴム栓が外れ、電池内部に蓄積されたガスと一緒に電解液が外部へ飛散させる結果となった。また電解液の飛散による外装缶の汚れを拭き取るクリーニング工程と電解液の飛散の為、電解液重量が減少しているため、電解液の補填工程が必要となってしまった。   In the battery of the comparative example, as the internal pressure rises, the outer can 3 is deformed, and when the internal pressure inside the battery rises further, the rubber plug is removed, and the electrolyte is scattered outside together with the gas accumulated in the battery. As a result. In addition, since the weight of the electrolytic solution is reduced due to the cleaning process of wiping off dirt on the outer can due to the scattering of the electrolytic solution and the scattering of the electrolytic solution, an electrolytic solution supplementing process is necessary.

以上の結果から、復帰式ガス排出弁2を有する実施例の電池は、仕上げ充放電のガス発生による内圧上昇に対してガスを電池外部へ排出することができ、外装缶3の変形も見られず、電解液の飛散も発生しなかったため、クリーニング工程、電解液補填工程を必要としないため電池製造効率を向上することが図れる。   From the above results, the battery of the embodiment having the resettable gas discharge valve 2 can discharge the gas to the outside of the battery in response to the increase in internal pressure due to the generation of the finish charge / discharge gas, and deformation of the outer can 3 is also seen. In addition, since the electrolytic solution was not scattered, the cleaning process and the electrolytic solution supplementing process are not required, so that the battery manufacturing efficiency can be improved.

本発明のリチウムイオン二次電池の復帰式ガス排出弁2は初充電時に発生するガスを排出させることにより電池缶を変形させること無く初充電を行えるようになる。そして、電極体、電解液を空気中の酸素や水分に接触させることが無い為、電池性能を劣化させることがない。また、電解液の飛散も起きないため、電解液を拭き取るクリーニング工程を省くことができ製造効率を高めることができ有用である。   The resettable gas discharge valve 2 of the lithium ion secondary battery according to the present invention can perform the initial charge without deforming the battery can by discharging the gas generated during the initial charge. And since an electrode body and electrolyte solution are not made to contact oxygen and moisture in air, battery performance is not deteriorated. Further, since the electrolytic solution does not scatter, the cleaning step of wiping off the electrolytic solution can be omitted, and the production efficiency can be increased, which is useful.

本発明の実施形態におけるリチウムイオン電池の斜視図The perspective view of the lithium ion battery in embodiment of this invention (a)本実施例の電池の復帰式ガス排気弁の装着時の図(b)本実施例の電池の仕上げ充放電時の図(c)本実施例の電池の仕上げ充放電後の図(d)本実施例の電池の封口後の図(e)本実施例の電池の復帰式ガス排出弁装着時の断面図(A) Diagram of the battery of this embodiment when the return-type gas exhaust valve is mounted (b) Diagram of the battery of this embodiment at the time of final charge / discharge (c) Diagram after finish charge / discharge of the battery of this embodiment ( d) Drawing after sealing the battery of this embodiment (e) Cross-sectional view of the battery of this embodiment when the return type gas discharge valve is mounted 本実施例の復帰式ガス排出弁の断面図Cross-sectional view of the resettable gas discharge valve of this example 従来のリチウムイオン二次電池の斜視図A perspective view of a conventional lithium ion secondary battery

符号の説明Explanation of symbols

1 リチウムイオン二次電池
2 復帰式ガス排出弁
3 外装缶
4 上蓋
5 安全弁
6 注液口
7 弁ケース
8 弁ケース受け
9 スプリング
10 弾性体
11 ゴムライニング
12 注液栓
13 ガス導入口
14 ガス排出口

DESCRIPTION OF SYMBOLS 1 Lithium ion secondary battery 2 Resettable gas discharge valve 3 Exterior can 4 Top cover 5 Safety valve 6 Injection port 7 Valve case 8 Valve case receptacle 9 Spring 10 Elastic body 11 Rubber lining 12 Injection plug 13 Gas introduction port 14 Gas discharge port

Claims (2)

リチウムイオン二次電池の仕上げ充放電ガス排出方法であって、注液口を設けた注液前の電池に電解液を注液する工程と、注液口に外付けの復帰式ガス排出弁を装着する工程と、仕上げ充放電を行う工程と、仕上げ充放電後注液口から復帰式ガス排出弁を外す工程と、注液口を封止する工程を有し、前記仕上げ充放電を行う工程において、電池の内圧が所定の圧力を超えた場合に所定の内圧以下になるまでガスの排出を行う工程を有するリチウムイオン二次電池の仕上げ充放電ガス排出方法。 A method for finishing charge / discharge gas discharge of a lithium ion secondary battery, comprising a step of injecting an electrolyte into a pre-injection battery provided with an injection port, and an external resettable gas discharge valve at the injection port. A step of performing the finishing charge / discharge, including a step of mounting, a step of performing finish charging / discharging, a step of removing the returnable gas discharge valve from the injection port after finishing charging / discharging, and a step of sealing the injection port A method of discharging and discharging a finish charge / discharge gas of a lithium ion secondary battery comprising a step of discharging gas until the internal pressure of the battery exceeds a predetermined pressure when the internal pressure of the battery exceeds a predetermined pressure. 前記注液口の端部が封口板から突出している注液口を用いる請求項1に記載のリチウムイオン二次電池の仕上げ充放電ガス排出方法。

The finishing charge / discharge gas discharging method of a lithium ion secondary battery according to claim 1, wherein an injection port in which an end portion of the injection port protrudes from a sealing plate is used.

JP2004027657A 2004-02-04 2004-02-04 Finishing charge/discharge gas exhaustion method of lithium-ion secondary battery Pending JP2005222757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004027657A JP2005222757A (en) 2004-02-04 2004-02-04 Finishing charge/discharge gas exhaustion method of lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027657A JP2005222757A (en) 2004-02-04 2004-02-04 Finishing charge/discharge gas exhaustion method of lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
JP2005222757A true JP2005222757A (en) 2005-08-18

Family

ID=34998232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027657A Pending JP2005222757A (en) 2004-02-04 2004-02-04 Finishing charge/discharge gas exhaustion method of lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP2005222757A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048970A (en) * 2007-08-23 2009-03-05 Toyota Motor Corp Method for manufacturing enclosed battery
JP2009187759A (en) * 2008-02-05 2009-08-20 Toyota Motor Corp Safety device and sealed storage battery
WO2013136445A1 (en) * 2012-03-13 2013-09-19 株式会社 東芝 Battery manufacturing method
JPWO2013136445A1 (en) * 2012-03-13 2015-08-03 株式会社東芝 Battery manufacturing method
KR20160150460A (en) * 2015-06-22 2016-12-30 주식회사 엘지화학 Secondary battery
CN106848146A (en) * 2017-03-13 2017-06-13 欣旺达电子股份有限公司 Lithium battery liquid injection hole closed exhaust device and lithium battery core producing method
KR101831004B1 (en) 2013-11-29 2018-02-21 주식회사 엘지화학 Exhaust device for gas in cylindrical secondary battery and exhaust method for gas using the same
CN108461688A (en) * 2018-03-20 2018-08-28 安徽天康(集团)股份有限公司 Soft Roll lithium titanate battery automatic exhaust steam valve
WO2019013574A1 (en) * 2017-07-13 2019-01-17 주식회사 엘지화학 Secondary battery and method for manufacturing secondary battery
JP2021089830A (en) * 2019-12-03 2021-06-10 株式会社Gsユアサ Power storage element and manufacturing method thereof
JP2022079235A (en) * 2020-11-16 2022-05-26 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method of sealed battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443554A (en) * 1990-06-11 1992-02-13 Matsushita Electric Ind Co Ltd Manufacture of sealed lead-acid battery
JPH11250887A (en) * 1998-02-28 1999-09-17 Toyota Central Res & Dev Lab Inc Pressure release structure for battery
JP2000067838A (en) * 1998-08-19 2000-03-03 Shin Kobe Electric Mach Co Ltd Manufacture of sealed lead-acid battery
JP2000353547A (en) * 1999-06-08 2000-12-19 Fuji Elelctrochem Co Ltd Degassing method for square lithium ion secondary battery
JP2001126696A (en) * 1999-10-25 2001-05-11 Nec Mobile Energy Kk Sealed battery
JP2002289162A (en) * 2001-02-16 2002-10-04 Wilson Greatbatch Ltd Apparatus for releasing gas from rechargeable lithium electrochemical cell during formation stage in its manufacturing
JP2003229112A (en) * 2002-02-04 2003-08-15 Mitsubishi Heavy Ind Ltd Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443554A (en) * 1990-06-11 1992-02-13 Matsushita Electric Ind Co Ltd Manufacture of sealed lead-acid battery
JPH11250887A (en) * 1998-02-28 1999-09-17 Toyota Central Res & Dev Lab Inc Pressure release structure for battery
JP2000067838A (en) * 1998-08-19 2000-03-03 Shin Kobe Electric Mach Co Ltd Manufacture of sealed lead-acid battery
JP2000353547A (en) * 1999-06-08 2000-12-19 Fuji Elelctrochem Co Ltd Degassing method for square lithium ion secondary battery
JP2001126696A (en) * 1999-10-25 2001-05-11 Nec Mobile Energy Kk Sealed battery
JP2002289162A (en) * 2001-02-16 2002-10-04 Wilson Greatbatch Ltd Apparatus for releasing gas from rechargeable lithium electrochemical cell during formation stage in its manufacturing
JP2003229112A (en) * 2002-02-04 2003-08-15 Mitsubishi Heavy Ind Ltd Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048970A (en) * 2007-08-23 2009-03-05 Toyota Motor Corp Method for manufacturing enclosed battery
JP2009187759A (en) * 2008-02-05 2009-08-20 Toyota Motor Corp Safety device and sealed storage battery
WO2013136445A1 (en) * 2012-03-13 2013-09-19 株式会社 東芝 Battery manufacturing method
CN104170154A (en) * 2012-03-13 2014-11-26 株式会社东芝 Battery manufacturing method
JPWO2013136445A1 (en) * 2012-03-13 2015-08-03 株式会社東芝 Battery manufacturing method
KR101831004B1 (en) 2013-11-29 2018-02-21 주식회사 엘지화학 Exhaust device for gas in cylindrical secondary battery and exhaust method for gas using the same
KR101963835B1 (en) * 2015-06-22 2019-04-01 주식회사 엘지화학 Secondary battery
KR20160150460A (en) * 2015-06-22 2016-12-30 주식회사 엘지화학 Secondary battery
CN106848146A (en) * 2017-03-13 2017-06-13 欣旺达电子股份有限公司 Lithium battery liquid injection hole closed exhaust device and lithium battery core producing method
WO2019013574A1 (en) * 2017-07-13 2019-01-17 주식회사 엘지화학 Secondary battery and method for manufacturing secondary battery
US11056749B2 (en) 2017-07-13 2021-07-06 Lg Chem, Ltd. Secondary battery and method for manufacturing the same
CN108461688A (en) * 2018-03-20 2018-08-28 安徽天康(集团)股份有限公司 Soft Roll lithium titanate battery automatic exhaust steam valve
JP2021089830A (en) * 2019-12-03 2021-06-10 株式会社Gsユアサ Power storage element and manufacturing method thereof
JP2022079235A (en) * 2020-11-16 2022-05-26 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method of sealed battery
JP7249983B2 (en) 2020-11-16 2023-03-31 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing sealed battery

Similar Documents

Publication Publication Date Title
JP5046352B2 (en) Method for producing lithium ion secondary battery
CN100502139C (en) Cylindrical lithium secondary battery
WO2014119368A1 (en) Method for manufacturing lithium ion secondary battery
JP2019016483A (en) Nonaqueous electrolyte secondary battery
JP5173095B2 (en) Sealed battery
JP3732945B2 (en) Sealed battery
KR20160027088A (en) Nonaqueous electrolyte secondary cell and method for producing same
CN106486637B (en) Nonaqueous electrolyte secondary battery
JP2006260864A (en) Manufacturing method of lithium secondary battery
JP2005222757A (en) Finishing charge/discharge gas exhaustion method of lithium-ion secondary battery
JP5843107B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4304924B2 (en) battery
JP4984359B2 (en) Sealed battery and its sealing plate
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
KR101877601B1 (en) A Cap Assembly of Novel Structure and Cylindrical Battery Comprising the Same
JPWO2020137817A1 (en) Non-aqueous electrolyte secondary battery
KR101914746B1 (en) Cylindrical Battery Including Pressuring Part and Manufacturing Method for the Same
JP2003243038A (en) Positive electrode plate and lithium secondary battery using it
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP2009302019A (en) Sealed battery
US10741826B2 (en) Method for manufacturing electrode plate and method for manufacturing secondary battery
WO2020137818A1 (en) Non-aqueous electrolyte secondary battery and method for manufacturing same
JP5720411B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2004241222A (en) Manufacturing method of nonaqueous electrolytic solution battery
KR101307772B1 (en) Method for Manufacturing Secondary Battery and Secondary Battery Manufactured thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061206

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817