JP2003243038A - Positive electrode plate and lithium secondary battery using it - Google Patents

Positive electrode plate and lithium secondary battery using it

Info

Publication number
JP2003243038A
JP2003243038A JP2002041071A JP2002041071A JP2003243038A JP 2003243038 A JP2003243038 A JP 2003243038A JP 2002041071 A JP2002041071 A JP 2002041071A JP 2002041071 A JP2002041071 A JP 2002041071A JP 2003243038 A JP2003243038 A JP 2003243038A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
thin film
current collector
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002041071A
Other languages
Japanese (ja)
Inventor
Yasuhiko Takeuchi
靖彦 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002041071A priority Critical patent/JP2003243038A/en
Publication of JP2003243038A publication Critical patent/JP2003243038A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery accomplishing a thin construction and a higher capacity without dropping the discharging rate characteristic and excellent in the safety in the event of shortcircuiting. <P>SOLUTION: An electricity collector consisting of a positive electrode black mix layer and an aluminum thin film having a thin film resistivity of 2-20 mΩ.cm is formed on a separator by means of evaporation, sputtering, or CVD. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、正極板およびこれ
を用いたリチウム二次電池に関し、正極板の集電体にア
ルミニウム薄膜を用いることによって安全性を確保する
リチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode plate and a lithium secondary battery using the same, and more particularly to a lithium secondary battery ensuring safety by using an aluminum thin film as a current collector of the positive electrode plate.

【0002】[0002]

【従来の技術】近年では、AV機器、ノート型パソコ
ン、携帯型通信機器などの民生用電子機器のポータブル
化、コードレス化が急速に促進されており、これら電子
機器の駆動用電源として従来は、ニッケルカドミウム蓄
電池やニッケル水素蓄電池が主に用いられていたが、電
子機器のポータブル化やコードレス化が進展して定着す
るに伴って、駆動用電源となる二次電池の高エネルギ密
度化や小型軽量化の要望が益々強くなっている。
2. Description of the Related Art In recent years, portable electronic devices such as AV devices, notebook type personal computers, and portable communication devices have been rapidly made portable and cordless. Conventionally, power sources for driving these electronic devices have been Nickel-cadmium storage batteries and nickel-hydrogen storage batteries were mainly used, but with the progress of portable and cordless electronic devices and its establishment, high energy density and small size and lightweight of secondary batteries as driving power sources have been established. The demand for conversion is becoming stronger.

【0003】このような状況から、リチウムイオンの吸
蔵・放出が可能な炭素材料を負極活物質とし、高い充放
電電圧を示すリチウム含有複合酸化物、例えばLiCo
2を正極活物質に用いてリチウムイオンの挿入、離脱
を利用したリチウムイオン二次電池に代表されるリチウ
ム二次電池が主流になりつつある。このリチウム二次電
池は、小型および軽量でありながら急速充電が可能で、
高エネルギ密度を有するという極めて顕著な特長を有し
ている。
Under such circumstances, a carbon material capable of inserting and extracting lithium ions is used as a negative electrode active material, and a lithium-containing composite oxide showing a high charge / discharge voltage, such as LiCo.
A lithium secondary battery represented by a lithium ion secondary battery using O 2 as a positive electrode active material and utilizing insertion and removal of lithium ions is becoming mainstream. This lithium secondary battery is small and lightweight, yet it can be charged quickly,
It has a very remarkable feature of having a high energy density.

【0004】しかしながら、さらなる薄型化と高容量化
の要望に応えるには、箔やラス加工された集電体の厚み
を薄くし、質量を下げる必要があるが、活物質と結着材
を含むペーストを塗布、乾燥、圧延するときの安定走行
や圧延時の負荷により、ある程度の強度が必要であり、
限界があった。
However, in order to meet the demand for further thinning and higher capacity, it is necessary to reduce the thickness of the foil or the lathed current collector and reduce the mass thereof, but the active material and the binder are included. Some strength is required due to stable running when applying, drying, and rolling the paste, and the load during rolling,
There was a limit.

【0005】[0005]

【発明が解決しようとする課題】そこで、薄型化と高容
量化の要望に応える電池を得る方法として、樹脂フィル
ムに導電性薄膜を形成した集電体を用いる方法が提案さ
れている。特開平9−120818号公報には5〜20
μmの樹脂シートに導電性金属膜(銅、ニッケル、アル
ミニウム)を形成した集電体を用いる方法が、特開平9
−213338号公報には樹脂製フィルムまたは樹脂製
シートの表面に蒸着による導電性薄膜(アルミニウム、
銅)を形成した集電体を用いる方法が、特開平9−25
9891号公報には金属薄膜(アルミニウム、銅)を成
膜したプラスチックフィルムを集電体とする方法が、特
開平11−102711号公報には融点が130〜17
0℃の低融点のポリオレフィン樹脂からなるフィルムに
0.5〜3μmの金属層(アルミニウム、銅)を形成し
た集電体を用いる方法が提案されている。
Therefore, as a method of obtaining a battery that meets the demand for thinning and high capacity, there has been proposed a method using a current collector in which a conductive thin film is formed on a resin film. Japanese Unexamined Patent Publication No. 9-120818 discloses 5 to 20.
A method of using a current collector in which a conductive metal film (copper, nickel, aluminum) is formed on a resin sheet having a thickness of μm is disclosed in Japanese Patent Application Laid-Open No. H9-90187
No. 213338 discloses that a conductive thin film (aluminum,
A method using a current collector having copper) is disclosed in JP-A-9-25.
Japanese Patent No. 9891 discloses a method of using a plastic film on which a metal thin film (aluminum, copper) is formed as a current collector, and Japanese Patent Application Laid-Open No. 11-102711 discloses a melting point of 130 to 17
A method of using a current collector in which a metal layer (aluminum, copper) of 0.5 to 3 μm is formed on a film made of a polyolefin resin having a low melting point of 0 ° C. has been proposed.

【0006】しかしながらこれらの方法は、樹脂フィル
ムに導電性薄膜を形成した集電体上に合剤層を形成して
おり、導電性薄膜はその表面が平滑な為、合剤中の結着
剤を多くしないと剥れやすい上、合剤を樹脂フィルムの
耐熱温度以下で乾燥させる必要があるといった課題があ
った。
However, in these methods, the mixture layer is formed on the current collector in which the conductive thin film is formed on the resin film, and since the surface of the conductive thin film is smooth, the binder in the mixture is formed. If the amount is not increased, it is easy to peel off, and it is necessary to dry the mixture at a temperature not higher than the heat resistant temperature of the resin film.

【0007】また、極板バリによる内部短絡や、正負極
の外部接続端子間や釘さし等による外部短絡時の安全性
を確保する為に、PTC素子、温度ヒューズ、電流遮断
機能などの安全機能を備えたリチウム二次電池が開発さ
れているが、これらの安全機能を備えたリチウム二次電
池は、内部抵抗が高くなる上、高価なものになってい
た。
Further, in order to ensure the safety at the time of internal short circuit due to the burr of the electrode plate, external short circuit between the positive and negative external connection terminals, and nailing, the safety of the PTC element, the thermal fuse, the current interruption function, etc. Although a lithium secondary battery having a function has been developed, the lithium secondary battery having these safety functions has a high internal resistance and is expensive.

【0008】本発明は、このような課題に鑑みてなされ
たもので、放電率特性を低下させることなく、薄型化と
高容量化を実現すると共に、短絡時の安全性に優れたリ
チウム二次電池を提供することを主たる目的とする。
The present invention has been made in view of the above problems, and realizes a thin lithium secondary battery having a high capacity without deteriorating discharge rate characteristics, and a lithium secondary battery excellent in safety at the time of short circuit. The main purpose is to provide a battery.

【0009】[0009]

【課題を解決するための手段】上記のような課題を解決
するための本発明は、セパレータ上に正極合剤層、アル
ミニウム薄膜からなる集電体が一体化形成されているこ
とを特徴とする正極板であり、この集電体の薄膜抵抗率
が2mΩ・cm〜20mΩ・cmであることが好まし
く、集電体が蒸着、スパッタリング、CVD(Chem
ical Vapor Deposition)から選
ばれた少なくとも一つの手段によって形成された集電体
であることが好ましい。
The present invention for solving the above problems is characterized in that a positive electrode material mixture layer and a current collector made of an aluminum thin film are integrally formed on a separator. It is a positive electrode plate, and the thin film resistivity of the current collector is preferably 2 mΩ · cm to 20 mΩ · cm, and the current collector is vapor deposition, sputtering, CVD (Chem).
It is preferable that the current collector is formed by at least one means selected from the chemical vapor deposition).

【0010】薄膜抵抗率は正極合剤層上に形成するアル
ミニウム薄膜の厚みや、コバルト、クロム、マンガンな
どの異種金属をドープすることによって、その抵抗率を
変えることができる。
The thin film resistivity can be changed by the thickness of the aluminum thin film formed on the positive electrode mixture layer or by doping with a different metal such as cobalt, chromium or manganese.

【0011】また、このアルミニウム集電体を含む正極
板と負極板からなる極板群をケースに収納したリチウム
二次電池である。
Further, the present invention is a lithium secondary battery in which a positive electrode plate including the aluminum current collector and a negative electrode plate group are housed in a case.

【0012】セパレータ上に正極合剤層、薄膜抵抗率が
2mΩ・cm〜20mΩ・cmのアルミニウム薄膜から
なる集電体が一体化形成されているので、放電率特性を
低下することなく、正極板の厚み、質量を軽減すること
ができる。また集電体の薄膜抵抗率が2mΩ・cm〜2
0mΩ・cmなので、短絡時の短絡電流によってこの薄
膜が発熱し飛散することによって絶縁を回復させ、電池
の異常発熱を抑え安全性を確保することができる。
Since the positive electrode mixture layer and the current collector made of an aluminum thin film having a thin film resistivity of 2 mΩ · cm to 20 mΩ · cm are integrally formed on the separator, the positive electrode plate can be formed without lowering the discharge rate characteristics. The thickness and mass of the can be reduced. Further, the thin film resistivity of the current collector is 2 mΩ · cm to 2
Since it is 0 mΩ · cm, the thin film generates heat due to the short circuit current at the time of short circuit and scatters to recover the insulation, thereby suppressing abnormal heat generation of the battery and ensuring safety.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1にリチウムポリマー電池の断面図、図
2に角形リチウムイオン電池の断面図を示す。
FIG. 1 shows a sectional view of a lithium polymer battery, and FIG. 2 shows a sectional view of a prismatic lithium ion battery.

【0015】図1に示すリチウムポリマー電池は、耐熱
フィルム上に正極活物質と結着材を含むペーストを塗
布、乾燥、圧延することにより正極活物質層4を作製し
た後、蒸着、スパッタリング、CVDから選ばれた一つ
の手段によって集電体を形成し、正極板を作製する。次
に、負極集電体7に負極活物質と結着材を含むペースト
を塗布、乾燥、圧延することによって負極活物質層6を
有する負極板を作製する。
In the lithium polymer battery shown in FIG. 1, a positive electrode active material layer 4 is produced by applying a paste containing a positive electrode active material and a binder on a heat-resistant film, drying and rolling, and then vapor deposition, sputtering, and CVD. A current collector is formed by one means selected from the above to prepare a positive electrode plate. Next, a paste containing a negative electrode active material and a binder is applied to the negative electrode current collector 7, dried, and rolled to produce a negative electrode plate having the negative electrode active material layer 6.

【0016】このようにして作製した正極板と負極板と
を非水電解液を吸収、保持するセパレータ5を介して積
層した極板群を、ラミネート製の袋状ケース1内に収納
し、非水電解液を注液し袋状ケースの溶着シール部2で
封口した後、エージングして非水電解液をゲル化させ、
充放電することによって作製することができる。
The positive electrode plate and the negative electrode plate thus produced are stacked via a separator 5 which absorbs and holds a non-aqueous electrolyte, and the electrode plate group is housed in a laminated bag-like case 1 and After pouring the water electrolyte and sealing it with the welded seal part 2 of the bag-shaped case, it is aged to gelate the non-aqueous electrolyte,
It can be manufactured by charging and discharging.

【0017】正極集電体3は、蒸着、スパッタリング、
CVDから選ばれた少なくとも一つの手段により形成さ
れたアルミニウム層からなり、薄膜抵抗率を2mΩ・c
m〜20mΩ・cmとする。
The positive electrode current collector 3 is formed by vapor deposition, sputtering,
It consists of an aluminum layer formed by at least one means selected from CVD and has a thin film resistivity of 2 mΩ · c.
m to 20 mΩ · cm.

【0018】薄膜抵抗率が20mΩ・cmを超える薄膜
は均一な薄膜でないので、薄膜抵抗率が安定せず、電池
の内部抵抗も高くなり、放電率特性が低下するので好ま
しくない。逆に、薄膜抵抗率が2mΩ・cm未満にして
も放電率特性はほとんど変わらないが、短絡時の短絡電
流によってこの薄膜を発熱させ飛散させて絶縁を回復さ
せ、電池の異常発熱を抑え安全性を確保することが困難
となるので好ましくない。
Since a thin film having a thin film resistivity of more than 20 mΩ · cm is not a uniform thin film, the thin film resistivity is not stable, the internal resistance of the battery is increased, and the discharge rate characteristic is deteriorated, which is not preferable. On the other hand, even if the thin film resistivity is less than 2 mΩ · cm, the discharge rate characteristics hardly change, but the short circuit current at the time of short circuit causes the thin film to generate heat and scatter to recover the insulation, suppressing abnormal heat generation of the battery and ensuring safety. Is difficult to secure, which is not preferable.

【0019】正極活物質層4は、正極活物質と結着材、
必要に応じて導電材、増粘材、可塑剤を加え、溶剤に混
練分散させたペーストをポリエチレンテレフタレート
(PET)樹脂やポリイミド(PI)樹脂、ポリエステ
ル樹脂、ポリフェニレンサルファイド(PPS)樹脂な
どの耐熱フィルム上に塗着、乾燥、圧延して作製され
る。
The positive electrode active material layer 4 comprises a positive electrode active material and a binder,
A conductive film, a thickener, and a plasticizer are added if necessary, and a paste prepared by kneading and dispersing in a solvent is a heat-resistant film such as polyethylene terephthalate (PET) resin, polyimide (PI) resin, polyester resin, or polyphenylene sulfide (PPS) resin. It is prepared by applying it on top, drying and rolling.

【0020】正極活物質としては、リチウムイオンをゲ
ストとして受け入れ得るリチウム含有遷移金属化合物が
使用される。例えば、コバルト、マンガン、ニッケル、
クロム、鉄及びバナジウムから選ばれる少なくとも1種
類の金属とリチウムの複合金属酸化物、LiCoO2
LiMoO2、LiNiO2、LiCoxNi(1-x)
2(0<x<1)LiCrO2、αLiFeO2、LiV
2等が好ましい。
As the positive electrode active material, a lithium-containing transition metal compound capable of accepting lithium ions as a guest is used. For example, cobalt, manganese, nickel,
LiCoO 2 , a composite metal oxide of at least one metal selected from chromium, iron and vanadium and lithium, LiCoO 2 ,
LiMoO 2 , LiNiO 2 , LiCo x Ni (1-x) O
2 (0 <x <1) LiCrO 2 , αLiFeO 2 , LiV
O 2 and the like are preferable.

【0021】結着材としては、溶剤に混練分散できるも
のであれば特に限定されるものではないが、例えば、フ
ッ素系結着材やアクリルゴム、変性アクリルゴム、スチ
レン−ブタジエンゴム(SBR)、アクリル系重合体、
ビニル系重合体等を単独、或いは二種類以上の混合物ま
たは共重合体として用いることができる。フッ素系結着
材としては、例えば、ポリフッ化ビニリデン(PVD
F)、フッ化ビニリデン(VDF)と六フッ化プロピレ
ン(HFP)の共重合体(P(VDF−HFP))やポ
リテトラフルオロエチレン(PTFE)樹脂のディスパ
ージョンが好ましい。
The binder is not particularly limited as long as it can be kneaded and dispersed in a solvent. For example, a fluorine-based binder, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber (SBR), Acrylic polymer,
A vinyl polymer or the like can be used alone, or as a mixture or copolymer of two or more kinds. As the fluorine-based binder, for example, polyvinylidene fluoride (PVD)
F), a copolymer of vinylidene fluoride (VDF) and propylene hexafluoride (HFP) (P (VDF-HFP)) or a dispersion of polytetrafluoroethylene (PTFE) resin is preferable.

【0022】必要に応じて加えることができる導電材と
してはアセチレンブラック、グラファイト、炭素繊維等
を単独、或いは二種類以上の混合物が好ましく、増粘材
としてはエチレン−ビニルアルコール共重合体、カルボ
キシメチルセルロース、メチルセルロースなどが好まし
く、可塑剤としては、フタル酸ジイソブチル、フタル酸
ジエチル、フタル酸ジ−n−ブチル、フタル酸ジプロピ
ル、フタル酸ジヘキシルなどのフタル酸エステルが好ま
しい。
As the conductive material which can be added if necessary, acetylene black, graphite, carbon fiber or the like is preferable, or a mixture of two or more kinds is preferable, and the thickening agent is ethylene-vinyl alcohol copolymer, carboxymethyl cellulose. , Methyl cellulose and the like are preferable, and as the plasticizer, phthalic acid esters such as diisobutyl phthalate, diethyl phthalate, di-n-butyl phthalate, dipropyl phthalate and dihexyl phthalate are preferable.

【0023】溶剤としては、結着材が溶解可能な溶剤が
適切で、有機系結着材の場合は、N−メチル−2−ピロ
リドン、N,N−ジメチルホルムアミド、テトラヒドロ
フラン、ジメチルアセトアミド、ジメチルスルホキシ
ド、ヘキサメチルスルホルアミド、テトラメチル尿素、
アセトン、メチルエチルケトン等の有機溶剤を単独また
はこれらを混合した混合溶剤が好ましく、水系結着材の
場合は水や温水が好ましい。
As the solvent, a solvent capable of dissolving the binder is suitable, and in the case of an organic binder, N-methyl-2-pyrrolidone, N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, dimethylsulfoxide. , Hexamethylsulforamide, tetramethylurea,
An organic solvent such as acetone or methyl ethyl ketone is preferably used alone or as a mixed solvent in which these are mixed, and in the case of an aqueous binder, water or warm water is preferable.

【0024】また、上記スラリー状合剤の混練分散時
に、各種分散剤、界面活性剤、安定剤等を必要に応じて
添加することも可能である。
It is also possible to add various dispersants, surfactants, stabilizers, etc., if necessary, at the time of kneading and dispersing the above-mentioned slurry mixture.

【0025】負極活物質層6は、負極活物質と結着材、
必要に応じて導電材、可塑剤を加え、溶剤に混練分散さ
せたペーストを負極集電体7上に塗着、乾燥、圧延して
作製することができる。
The negative electrode active material layer 6 comprises a negative electrode active material and a binder,
If necessary, a conductive material and a plasticizer may be added, and a paste prepared by kneading and dispersing in a solvent may be applied on the negative electrode current collector 7, dried, and rolled to prepare.

【0026】負極集電体としては、銅製の箔、ラス加工
を施した箔、またはエッチング加工を施した箔からな
り、厚みは10μm〜50μmの範囲が好ましい。
The negative electrode current collector is made of copper foil, lath-processed foil, or etching-processed foil, and preferably has a thickness of 10 μm to 50 μm.

【0027】負極活物質としては、黒鉛、活性炭、ある
いはフェノール樹脂やピッチ等を焼成炭化したものがあ
げられるが、特に、安全性や充放電サイクル特性等の観
点から、格子面(002)の面間隔(d002)が3.3
50〜3.400Åである黒鉛型結晶構造を有する炭素
材料が好ましい。
Examples of the negative electrode active material include graphite, activated carbon, and a material obtained by firing and carbonizing phenol resin, pitch, or the like. Particularly, from the viewpoint of safety, charge / discharge cycle characteristics, etc., the lattice plane (002) plane The interval (d 002 ) is 3.3
A carbon material having a graphite type crystal structure of 50 to 3.400Å is preferable.

【0028】結着材、必要に応じて添加することができ
る導電材、増粘材、可塑剤は正極と同じものを用いるこ
とができる。
The same binder, a conductive material that can be added if necessary, a thickening material, and a plasticizer can be the same as those used for the positive electrode.

【0029】塗着乾燥は、特に限定されるものではな
く、上記のように混練分散させたスラリー状合剤を、例
えば、スリットダイコーター、リバースロールコータ
ー、リップコーター、ブレードコーター、ナイフコータ
ー、グラビアコーター、ディップコーター等を用いて、
容易に塗着することができ、自然乾燥に近い乾燥が好ま
しいが、生産性を考慮すると70℃〜200℃の温度で
5時間〜10分間乾燥させるのが好ましい。
The coating and drying is not particularly limited, and the slurry mixture prepared by kneading and dispersing as described above can be used, for example, in a slit die coater, reverse roll coater, lip coater, blade coater, knife coater, gravure. Using a coater, dip coater, etc.
It can be easily applied, and drying close to natural drying is preferable, but in consideration of productivity, it is preferable to dry at a temperature of 70 ° C to 200 ° C for 5 hours to 10 minutes.

【0030】圧延は、ロールプレス機や平板プレス機を
用いて所定の厚みになるまで、線圧1000〜2000
kg/cmで数回圧延を行うか、線圧を変えて圧延する
のが好ましい。
Rolling is carried out by using a roll press machine or a flat plate press machine to a linear pressure of 1000 to 2000 until a predetermined thickness is obtained.
It is preferable to carry out rolling several times at kg / cm or to carry out rolling while changing the linear pressure.

【0031】セパレータ5は、結着材と同様のポリマー
を用いて、前記溶媒に溶解または分散させたポリマーペ
ーストをポリエチレンテレフタレート(PET)樹脂や
ポリイミド(PI)樹脂、ポリエステル樹脂、ポリフェ
ニレンサルファイド(PPS)樹脂などの耐熱フィルム
上に製膜し、乾燥させることによって作製するか、この
セパレータと微多孔性ポリオレフィン樹脂製の不織布か
らなるセパレータとを積層し、このセパレータ5を介し
て正極と負極とを温度と圧力をかけて積層して極板群を
作製する。このときの温度は、40℃から極板群中の結
着材の軟化点以下の温度に加温した状態で、0.2MP
a〜5.0MPaの圧力にてプレスすることが好まし
い。
For the separator 5, a polymer similar to the binder is used and a polymer paste obtained by dissolving or dispersing it in the solvent is polyethylene terephthalate (PET) resin, polyimide (PI) resin, polyester resin, polyphenylene sulfide (PPS). It is produced by forming a film on a heat resistant film such as a resin and drying it, or by laminating this separator and a separator made of a non-woven fabric made of a microporous polyolefin resin, the positive electrode and the negative electrode are heated via this separator 5. By applying pressure and laminating, the electrode plate group is manufactured. The temperature at this time is 0.2MPa while being heated from 40 ° C. to a temperature below the softening point of the binder in the electrode plate group.
It is preferable to press at a pressure of a to 5.0 MPa.

【0032】ラミネート製の袋状ケース1は、ポリオレ
フィン樹脂製のフィルムの間に金属箔を配して全体を積
層一体化したラミネートシートで、積層した極板群に接
する内側から接着層、金属箔、絶縁層が順次積層されて
いる。接着層はリードとの接着性に優れた酸変性のポリ
オレフィン樹脂、金属層はガスバリアー性や光遮断性に
優れたアルミニウム金属箔、絶縁層は機械的強度に優れ
たポリアミド樹脂が好ましい。
The laminated bag-shaped case 1 is a laminated sheet in which a metal foil is placed between films of a polyolefin resin and the whole is laminated and integrated. The adhesive layer and the metal foil are in contact with the laminated electrode plates from the inside. , Insulating layers are sequentially stacked. The adhesive layer is preferably an acid-modified polyolefin resin having excellent adhesiveness to leads, the metal layer is preferably an aluminum metal foil having excellent gas barrier properties and light shielding properties, and the insulating layer is preferably a polyamide resin having excellent mechanical strength.

【0033】非水電解液としては、非水溶媒と電解質か
らなり、非水溶媒としては、主成分として環状カーボネ
ートおよび鎖状カーボネートが含有される。前記環状カ
ーボネートとしては、エチレンカーボネート(EC)、
プロピレンカーボネート(PC)、およびブチレンカー
ボネート(BC)から選ばれる少なくとも一種以上であ
ることが好ましい。また、前記鎖状カーボネートとして
は、ジメチルカーボネート(DMC)、ジエチルカーボ
ネート(DEC)、およびエチルメチルカーボネート
(EMC)等から選ばれる少なくとも一種以上であるこ
とが好ましい。
The non-aqueous electrolytic solution is composed of a non-aqueous solvent and an electrolyte, and the non-aqueous solvent contains a cyclic carbonate and a chain carbonate as main components. As the cyclic carbonate, ethylene carbonate (EC),
At least one selected from propylene carbonate (PC) and butylene carbonate (BC) is preferable. The chain carbonate is preferably at least one selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and the like.

【0034】電解質としては、例えば、電子吸引性の強
いリチウム塩を使用し、例えば、LiPF6、LiB
4、LiClO4、LiAsF6、LiCF3SO3、L
iN(SO2CF32、LiN(SO2252、Li
C(SO2CF33等が挙げられる。これらの電解質
は、一種類で使用しても良く、二種類以上組み合わせて
使用しても良い。これらの電解質は、前記非水溶媒に対
して0.5〜1.5Mの濃度で溶解させることが好まし
い。
As the electrolyte, for example, a lithium salt having a strong electron-withdrawing property is used, and for example, LiPF 6 or LiB is used.
F 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , L
iN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , Li
C (SO 2 CF 3) 3 and the like. These electrolytes may be used alone or in combination of two or more. These electrolytes are preferably dissolved in the non-aqueous solvent at a concentration of 0.5 to 1.5M.

【0035】袋状ケース1の溶着シール部2は、熱溶着
にて封口される。
The welded seal portion 2 of the bag-shaped case 1 is sealed by heat welding.

【0036】エージングは、45℃〜90℃の温度で、
0.5時間〜3時間エージングして、ポリマーをゲル化
させるのが好ましい。
Aging is carried out at a temperature of 45 ° C to 90 ° C.
The polymer is preferably gelled by aging for 0.5 to 3 hours.

【0037】充放電は、常温にて電池容量の95%〜1
05%の電気容量まで充電するのが好ましい。
Charge / discharge is 95% to 1% of battery capacity at room temperature.
It is preferable to charge to an electric capacity of 05%.

【0038】図2に示す角形リチウムイオン電池は、微
多孔性ポリオレフィン樹脂からなり非水電解液を吸収、
保持するセパレータ15に正極活物質と結着材を含むペ
ーストを塗布、乾燥、圧延することにより正極活物質層
14を作製し、蒸着、スパッタリング、CVDから選ば
れた少なくとも一つの手段により正極集電体13を形成
する。次に、負極集電体17に負極活物質と結着材を含
むペーストを塗布、乾燥、圧延することによって負極活
物質層16を有する負極板を作製する。
The prismatic lithium ion battery shown in FIG. 2 is made of a microporous polyolefin resin and absorbs a non-aqueous electrolyte,
A positive electrode active material layer 14 is produced by applying a paste containing a positive electrode active material and a binder to the separator 15 to be held, drying and rolling, and collecting the positive electrode current by at least one means selected from vapor deposition, sputtering, and CVD. Form body 13. Next, a paste containing a negative electrode active material and a binder is applied to the negative electrode current collector 17, dried and rolled to produce a negative electrode plate having the negative electrode active material layer 16.

【0039】そして、このようにして作製した正極板と
負極板とをセパレータ15を介して非真円形の渦巻形状
に巻回した極板群に温度と圧力をかけて、金属ケース1
5に挿入しやすい長円状の極板群にした後、金属製ケー
ス11内に収納し、封口板12と金属ケース11とを溶
接した後、封口板12に設けた注液孔から非水電解液を
注液した後、注液栓をレーザーで封口する。さらに、充
放電し、エージングすることによって、角形リチウムイ
オン電池を作製することができる。
Then, the positive electrode plate and the negative electrode plate thus produced are wound through the separator 15 on the electrode plate group wound in a non-circular spiral shape by applying temperature and pressure to the metal case 1.
5 is made into an elliptical electrode plate group that is easy to insert into 5, and is then housed in a metal case 11 and the sealing plate 12 and the metal case 11 are welded together. After injecting the electrolytic solution, the injection stopper is sealed with a laser. Furthermore, by charging and discharging and aging, a prismatic lithium ion battery can be manufactured.

【0040】正極活物質層14、負極集電体17、負極
活物質層16は、それぞれ正極活物質層4、負極集電体
7、負極活物質層6と同様のものが使用でき、非水電解
液も同様である。
As the positive electrode active material layer 14, the negative electrode current collector 17, and the negative electrode active material layer 16, the same materials as those of the positive electrode active material layer 4, the negative electrode current collector 7, and the negative electrode active material layer 6 can be used, respectively. The same applies to the electrolytic solution.

【0041】セパレータ15としては、ポリエチレン樹
脂、ポリプロピレン樹脂およびこれらの樹脂の積層タイ
プなどの微多孔性ポリオレフイン系樹脂が好ましい。
The separator 15 is preferably made of a microporous polyolefin resin such as polyethylene resin, polypropylene resin and a laminated type of these resins.

【0042】金属製ケース11は上端が開口している有
底の角形扁平状ケースであり、その材質はアルミニウム
またはアルミニウム合金からなり、耐圧強度の観点から
マンガン、銅等の金属を微量含有するアルミニウムが好
ましく、合金No.3000系のアルミニウム合金が最
適である。
The metal case 11 is a bottomed rectangular flat case having an open upper end, and is made of aluminum or an aluminum alloy, and from the viewpoint of pressure resistance, aluminum containing a trace amount of a metal such as manganese or copper. Alloy No. The 3000 series aluminum alloy is most suitable.

【0043】充放電は、常温にて電池容量の95%〜1
05%の電気容量まで充電するのが好ましい。
Charge / discharge is 95% to 1% of battery capacity at room temperature.
It is preferable to charge to an electric capacity of 05%.

【0044】エージングは、常温から60℃の温度で、
3時間〜10時間エージングして、電池特性を安定化さ
せるのが好ましい。
Aging is performed at room temperature to 60 ° C.
Aging for 3 to 10 hours is preferable to stabilize the battery characteristics.

【0045】[0045]

【実施例】本発明を実施例と比較例を用いて詳細に説明
するが、これらは、本発明を何ら限定するものではな
い。
EXAMPLES The present invention will be described in detail with reference to Examples and Comparative Examples, but these do not limit the present invention in any way.

【0046】(実施例1)正極板は、正極活物質として
LiCoO2100重量部、導電材としてアセチレンブ
ラック5重量部、結着材としてフッ化ビニリデンとヘキ
サフルオロプロピレンの共重合体(P(VDF−HF
P))8重量部、可塑剤としてフタル酸−n−ジブチル
(DBP)10重量部を溶剤としてN−メチルー2−ピ
ロリドン(NMP)に混練分散させた正極ペーストを、
厚さ50μmのPETフィルム上に塗着乾燥させた後、
圧延することにより正極活物質層4を作製した。
Example 1 A positive electrode plate was prepared by using 100 parts by weight of LiCoO 2 as a positive electrode active material, 5 parts by weight of acetylene black as a conductive material, and a copolymer (P (VDFF) of vinylidene fluoride and hexafluoropropylene as a binder. -HF
P)) 8 parts by weight and 10 parts by weight of phthalate-n-dibutyl phthalate (DBP) as a plasticizer are kneaded and dispersed in N-methyl-2-pyrrolidone (NMP) as a solvent,
After coating and drying on a PET film having a thickness of 50 μm,
The positive electrode active material layer 4 was produced by rolling.

【0047】次に、厚さが50nmになるようにアルミ
ニウムをスパッタリングして、薄膜抵抗率が5.4mΩ
・cmの集電体3を有する正極板を作製した。
Next, aluminum is sputtered so that the thickness becomes 50 nm, and the thin film resistivity is 5.4 mΩ.
A positive electrode plate having a current collector 3 of cm was produced.

【0048】負極板は、負極活物質として球状黒鉛10
0重量部、導電材として気相成長炭素繊維2重量部、結
着材として(P(VDF−HFP))15重量部、可塑
剤としてフタル酸−n−ジブチル(DBP)30重量部
を溶剤としてアセトンに混練分散させた負極ペースト
を、厚さ50μm、開口率50%である銅箔をラス加工
した集電体7の両面に塗着乾燥させた後、圧延すること
によって負極活物質層6を有する負極板を作製した。
The negative electrode plate is made of spherical graphite 10 as a negative electrode active material.
0 parts by weight, 2 parts by weight of vapor grown carbon fiber as a conductive material, 15 parts by weight of (P (VDF-HFP)) as a binder, and 30 parts by weight of n-dibutyl phthalate (DBP) as a plasticizer as a solvent The negative electrode paste kneaded and dispersed in acetone was applied on both sides of a current collector 7 which was lathed with a copper foil having a thickness of 50 μm and an aperture ratio of 50%, and dried, and then rolled to form the negative electrode active material layer 6. Was prepared.

【0049】セパレータは、(P(VDF−HFP))
樹脂を溶剤としてアセトンとシクロヘキサノンからなる
混合溶剤に溶解させた溶液をPETフィルムの基材上に
製膜し、80℃の温度で乾燥させ混合溶剤を除去するこ
とによって厚さ25μmのセパレータ5を作製した。
The separator is (P (VDF-HFP))
A solution prepared by dissolving a resin in a mixed solvent consisting of acetone and cyclohexanone is formed on a PET film substrate and dried at a temperature of 80 ° C. to remove the mixed solvent to produce a separator 5 having a thickness of 25 μm. did.

【0050】このようにして得られた正極板からPET
フィルムの基材を剥離した集電体を有する正極活物質層
と負極板とを、セパレータからPETフィルムを剥離し
たP(VDF−HFP)樹脂層を介して積層した後、1
30℃の温度で0.4MPaの圧力条件で1.5秒間熱
圧着することにより積層一体化した極板群を作製した
後、この極板群を60℃の温度で20分間キシレン溶液
中に浸漬し、可塑剤のDBPを除去した。
From the positive electrode plate thus obtained, PET
After laminating the positive electrode active material layer having a current collector obtained by peeling the base material of the film and the negative electrode plate via the P (VDF-HFP) resin layer obtained by peeling the PET film from the separator, 1
A laminated electrode plate group was prepared by thermocompression bonding at a temperature of 30 ° C. and a pressure condition of 0.4 MPa for 1.5 seconds, and then this electrode plate group was immersed in a xylene solution at a temperature of 60 ° C. for 20 minutes. Then, the plasticizer DBP was removed.

【0051】次に、内側から厚さ30μmの酸変性した
ポリプロピレン樹脂層、厚さ50μmのアルミニウム箔
層、厚さ20μmのポリアミド樹脂層からなるラミネー
ト構造の袋状ケース1内に、極板群を収納した後、エチ
レンカーボネート(EC)とエチルメチルカーボネート
(EMC)を2:1で混合した混合溶媒に、LiPF 6
を1.0Mの濃度で溶解させた非水電解液を注液した。
Next, an acid modification with a thickness of 30 μm was performed from the inside.
Polypropylene resin layer, 50 μm thick aluminum foil
Layer consisting of a polyamide resin layer with a thickness of 20 μm
After storing the electrode plate group in the bag-shaped case 1 of
Ren carbonate (EC) and ethyl methyl carbonate
(EMC) in a mixed solvent of 2: 1 and LiPF 6
Was injected at a concentration of 1.0 M to inject a non-aqueous electrolyte solution.

【0052】そして、230℃の温度で0.3MPaの
圧力条件で2.0秒間熱圧着して溶着シール部2で封口
したが、正極板および負極板に対する温度上昇は無視で
きる範囲であった。
Then, thermocompression bonding was performed for 2.0 seconds at a temperature of 230 ° C. under a pressure of 0.3 MPa, and sealing was performed at the welded seal portion 2. However, the temperature rise on the positive electrode plate and the negative electrode plate was in a negligible range.

【0053】最後に、60℃の温度で3時間エージング
して、正極板及び負極板中のポリマー及びセパレータを
ゲル化させ、非水電解液を保持させた後、常温で電池容
量の10%の電流値で電池容量の100%まで充電した
後、電池容量の20%の電流値で3.0Vの電圧まで放
電した。
Finally, after aging at a temperature of 60 ° C. for 3 hours to gel the polymer and the separator in the positive electrode plate and the negative electrode plate and hold the non-aqueous electrolytic solution, 10% of the battery capacity is kept at room temperature. After the battery was charged to 100% of the battery capacity at the current value, it was discharged to the voltage of 3.0 V at the current value of 20% of the battery capacity.

【0054】このようにして、n=5の平均値で、縦寸
法が35.2mm、横寸法が61.8mm、厚みが3.
32mmで、電池容量が700mAhのリチウム二次電
池を作製した。
Thus, with an average value of n = 5, the longitudinal dimension is 35.2 mm, the lateral dimension is 61.8 mm, and the thickness is 3.
A lithium secondary battery having a size of 32 mm and a battery capacity of 700 mAh was produced.

【0055】(実施例2)正極板は、厚さ25μmの微
多孔性ポリエチレン樹脂からなるセパレータ15上に正
極活物質としてLiCoO2100重量部、導電材とし
てアセチレンブラック3重量部、結着材としてポリフッ
化ビニリデン(PVDF)のN−メチルー2−ピロリド
ン(NMP)溶液(固形分12%)30重量部に混練分
散させた正極ペーストを塗着乾燥、圧延することによっ
て正極活物質層14を作製した。
Example 2 A positive electrode plate was prepared by placing 100 parts by weight of LiCoO 2 as a positive electrode active material, 3 parts by weight of acetylene black as a conductive material, and 3 parts by weight as a binder on a separator 15 made of microporous polyethylene resin having a thickness of 25 μm. The positive electrode active material layer 14 was prepared by coating, drying, and rolling the positive electrode paste kneaded and dispersed in 30 parts by weight of an N-methyl-2-pyrrolidone (NMP) solution of polyvinylidene fluoride (PVDF) (solid content 12%). .

【0056】次に、実施例1と同様にして、薄膜抵抗率
が2mΩ・cmになるようにアルミニウムを蒸着して集
電体13を有するセパレータ付き正極板を作製した。こ
のときの薄膜の厚みは、135nmであった。
Next, in the same manner as in Example 1, aluminum was vapor-deposited so that the thin film resistivity was 2 mΩ · cm, and a positive electrode plate with a separator having a current collector 13 was produced. The thickness of the thin film at this time was 135 nm.

【0057】負極板は、負極活物質として人造塊状黒鉛
100重量部、結着材としてスチレン−ブタジエンゴム
(SBR)のディスパージョン(固形分50%)4重量
部、増粘材としてカルボキシメチルセルロース水溶液
(固形分1%)140重量部を混練分散させた負極ペー
ストを、厚さ15μmの銅箔からなる集電体17の片面
に塗着乾燥させた後、圧延することにより負極活物質層
16を有する負極板を作製した。
The negative electrode plate contained 100 parts by weight of artificial lump graphite as a negative electrode active material, 4 parts by weight of styrene-butadiene rubber (SBR) dispersion (solid content 50%) as a binder, and a carboxymethyl cellulose aqueous solution (as a thickener). A negative electrode paste prepared by kneading and dispersing 140 parts by weight of solid content (1%) is applied to one surface of a current collector 17 made of a copper foil having a thickness of 15 μm, dried, and then rolled to have a negative electrode active material layer 16. A negative electrode plate was produced.

【0058】このようにして得られたセパレータ付き正
極板と負極板とを非真円形の渦巻形状に巻回した極板群
を、長辺面から60℃の温度で4.5MPaの圧力条件
にて30秒間プレスことにより長円状の極板群を作製し
た。
The electrode plate group obtained by winding the positive electrode plate with separator and the negative electrode plate thus obtained in a non-circular spiral shape was subjected to a pressure condition of 4.5 MPa at a temperature of 60 ° C. from the long side surface. For 30 seconds to produce an elliptical electrode plate group.

【0059】この長円状の極板群を幅寸法が30.0m
m、高さ寸法が48.0mm、厚さ5.30mm、肉厚
0.20mmの形状にプレス成型により作製した300
0系のアルミニウム合金からなる角形の金属ケース11
内に収納し、金属ケース11と封口板12とをレーザー
溶接にて封口した後、封口板12に設けた注液孔より、
エチレンカーボネート(EC)とエチルメチルカーボネ
ート(EMC)を2:1で混合した混合溶媒に、LiP
6を1.0Mの濃度で溶解させた非水電解液を注液し
た後、この注液孔をレーザー溶接して封口した。
The width of this elliptical electrode group was 30.0 m.
m, the height dimension is 48.0 mm, the thickness is 5.30 mm, and the wall thickness is 0.20 mm.
Square metal case made of 0 series aluminum alloy 11
After being housed inside and sealing the metal case 11 and the sealing plate 12 by laser welding, from the liquid injection hole provided in the sealing plate 12,
A mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a ratio of 2: 1 was added to LiP.
After injecting a non-aqueous electrolyte solution in which F 6 was dissolved at a concentration of 1.0 M, the injection hole was laser-welded and sealed.

【0060】最後に、45℃の温度で6時間エージング
して、電池特性を安定化させた後、実施例1と同様に、
常温で電池容量の10%の電流値で電池容量の100%
まで充電した後、電池容量の20%の電流値で3.0V
の電圧まで放電した。このようにして、電池容量が70
0mAhのリチウム二次電池を作製した。
Finally, after aging at a temperature of 45 ° C. for 6 hours to stabilize the battery characteristics, as in Example 1,
100% of battery capacity at current value of 10% of battery capacity at room temperature
After charging up to 3.0V at a current value of 20% of the battery capacity
Discharged to a voltage of. In this way, the battery capacity is 70
A 0 mAh lithium secondary battery was produced.

【0061】(実施例3)実施例2と同様にして、正極
活物質層4を作製した後、薄膜抵抗率が20mΩ・cm
になるようにアルミニウムを蒸着して集電体3を有する
正極板を作製した以外は、実施例2と同様にして電池容
量が700mAhのリチウム二次電池を作製した。この
ときの薄膜の厚みは、14nmであった。
Example 3 After the positive electrode active material layer 4 was prepared in the same manner as in Example 2, the thin film resistivity was 20 mΩ · cm.
A lithium secondary battery having a battery capacity of 700 mAh was manufactured in the same manner as in Example 2 except that aluminum was vapor-deposited to form a positive electrode plate having the current collector 3. The thickness of the thin film at this time was 14 nm.

【0062】(実施例4)実施例2と同様にして、正極
活物質層4を作製した後、厚みが65nmになるように
マンガンをドープしたアルミニウムを蒸着して、薄膜抵
抗率が5.1Ω・cmの集電体3を有する正極板を作製
した以外は、実施例2と同様にして電池容量が700m
Ahのリチウム二次電池を作製した。
(Example 4) After the positive electrode active material layer 4 was prepared in the same manner as in Example 2, manganese-doped aluminum was vapor-deposited so that the thickness was 65 nm, and the thin film resistivity was 5.1 Ω. The battery capacity was 700 m in the same manner as in Example 2 except that a positive electrode plate having a current collector 3 of cm was produced.
A lithium secondary battery of Ah was produced.

【0063】(比較例1)実施例1と同様の正極ペース
トを、厚さ50μm、開口率50%、抵抗率が0.00
1mΩ・cm未満であるアルミニウム箔をラス加工した
集電体3の両面に塗着乾燥させた後、圧延することによ
り、正極活物質層4を有する正極板を作製した以外は実
施例1と同様にして電池容量が700mAhのリチウム
二次電池を作製した。得られた寸法は、n=5の平均値
で、縦寸法が35.2mm、横寸法が61.8mm、厚
みが3.55mmであり、実施例1より厚みが0.23
mm増加した。 (比較例2)実施例2と同様にして、正極活物質層4を
作製した後、薄膜抵抗率が30mΩ・cmになるように
アルミニウムを蒸着して、の集電体3を含む正極板を作
製した以外は、実施例2と同様にして電池容量が700
mAhのリチウム二次電池を作製した。このときの薄膜
の厚みは、9nmであった。
Comparative Example 1 The same positive electrode paste as in Example 1 was used, with a thickness of 50 μm, an aperture ratio of 50% and a resistivity of 0.00.
The same as Example 1 except that the positive electrode plate having the positive electrode active material layer 4 was produced by applying aluminum foil having a thickness of less than 1 mΩ · cm to both sides of the lathed current collector 3 and drying and then rolling. Then, a lithium secondary battery having a battery capacity of 700 mAh was produced. The obtained dimension is an average value of n = 5, the longitudinal dimension is 35.2 mm, the lateral dimension is 61.8 mm, the thickness is 3.55 mm, and the thickness is 0.23 from Example 1.
mm increased. (Comparative Example 2) A positive electrode active material layer 4 was prepared in the same manner as in Example 2, and then aluminum was vapor-deposited so that the thin film resistivity was 30 mΩ · cm to obtain a positive electrode plate including the current collector 3. The battery capacity is 700 in the same manner as in Example 2 except that the battery is manufactured.
A mAh lithium secondary battery was produced. The thickness of the thin film at this time was 9 nm.

【0064】(比較例3)実施例2と同様にして、正極
活物質層4を作製した後、薄膜抵抗率が1mΩ・cmに
なるようにアルミニウムを蒸着して集電体3を含む正極
板を作製した以外は、実施例2と同様にして電池容量が
700mAhのリチウム二次電池を作製した。このとき
の薄膜の厚みは、270nmであった。
(Comparative Example 3) A positive electrode active material layer 4 was prepared in the same manner as in Example 2, and then aluminum was vapor-deposited so that the thin film resistivity was 1 mΩ · cm, and the positive electrode plate including the current collector 3 was prepared. A lithium secondary battery having a battery capacity of 700 mAh was manufactured in the same manner as in Example 2 except for manufacturing. The thickness of the thin film at this time was 270 nm.

【0065】このようにして作製した実施例1〜実施例
4、比較例1〜比較例3のリチウム二次電池について、
放電率特性と釘刺し試験を実施した。
With respect to the lithium secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 3 thus produced,
The discharge rate characteristics and nail penetration test were conducted.

【0066】放電率特性は、各10個の電池を用い20
℃の環境下において、電池電圧が4.2Vに達するまで
は490mA(0.7CmA)の定電流充電を行った
後、さらに電流値が減衰して35mA(0.05Cm
A)になるまで充電した後、140mA(0.2Cm
A)の定電流で3.0Vの放電終止電圧まで放電する充
放電条件にて充放電を3サイクル行なったときの電池容
量を初期容量とした。次に、上記と同じ充電条件にて充
電後、700mA(1.0CmA)及び1400mA
(2.0CmA)の定電流で3.0Vの放電終止電圧ま
で放電した場合の電池容量を測定し、初期容量に対する
それぞれの放電率を求めた結果を表1に示す。
The discharge rate characteristics were measured using 10 batteries for each 20
In the environment of ℃, after constant current charging of 490mA (0.7CmA) until the battery voltage reaches 4.2V, the current value further attenuates to 35mA (0.05Cm).
After charging until A), 140mA (0.2Cm
The battery capacity after three cycles of charging / discharging under the charging / discharging conditions of discharging to the discharge end voltage of 3.0 V with the constant current of A) was taken as the initial capacity. Next, after charging under the same charging conditions as above, 700 mA (1.0 CmA) and 1400 mA
Table 1 shows the results of measuring the battery capacity when discharged to a discharge end voltage of 3.0 V at a constant current of (2.0 CmA) and determining the respective discharge rates with respect to the initial capacity.

【0067】釘刺し試験は、各5個の電池を用い20℃
の環境下において、上記充電条件にて充電した後、室温
にて直径2.5mmの太さの釘を電池の極板群面に対し
て垂直方向に貫通させ、破裂、発火の有無を評価する方
法で実施し、その結果を表1に示す。
The nail penetration test was carried out at 20 ° C. using 5 batteries each.
After charging under the above-mentioned charging conditions under the above environment, a nail having a diameter of 2.5 mm is penetrated in a direction perpendicular to the electrode plate group surface of the battery at room temperature to evaluate the presence or absence of rupture or ignition. The method was performed and the results are shown in Table 1.

【0068】[0068]

【表1】 [Table 1]

【0069】表1より明らかなように、実施例1〜実施
例4の場合は、薄膜抵抗率が2mΩ・cm〜20mΩ・
cmのアルミニウム薄膜からなる集電体が一体化形成さ
れており、集電体と正極合剤層との密着性に優れている
ので、放電率特性を低下することなく、正極板の厚み、
質量を軽減することができ、釘刺し試験によって強制的
に内部短絡をさせても、薄膜抵抗率が2mΩ・cm〜2
0mΩ・cmなので薄膜が発熱し、飛散することによっ
て絶縁を回復させることができ、発熱が僅かに認められ
るのみで、安全性を確保できることがわかった。しかし
ながら、比較例1の場合は、アルミニウムからなる集電
体の厚みが50μmと厚いので、内部短絡させても短絡
電流が流れ続け、電池が発熱し、破裂することがわかっ
た。
As is clear from Table 1, in the case of Examples 1 to 4, the thin film resistivity was 2 mΩ · cm to 20 mΩ ·.
cm current collector made of an aluminum thin film is integrally formed, and since the current collector and the positive electrode mixture layer have excellent adhesiveness, the thickness of the positive electrode plate without decreasing the discharge rate characteristics,
The mass can be reduced, and even if an internal short circuit is forced by the nail penetration test, the thin film resistivity is 2 mΩ · cm to 2
It was found that since the thin film generates heat because it is 0 mΩ · cm and the insulation can be recovered by scattering, and only a slight amount of heat generation is observed, and safety can be secured. However, in the case of Comparative Example 1, since the thickness of the current collector made of aluminum was as thick as 50 μm, it was found that the short circuit current continued to flow even if an internal short circuit was made, and the battery generated heat and exploded.

【0070】また、比較例2の場合は、薄膜抵抗率が3
0mΩ・cmと高いので、放電率特性が悪く、比較例3
の場合は、薄膜抵抗率が1mΩ・cmと低いので薄膜が
すぐに飛散して絶縁を回復させることができずに安全性
を確保できない場合があることがわかった。
In the case of Comparative Example 2, the thin film resistivity is 3
Since it is as high as 0 mΩ · cm, the discharge rate characteristic is poor, and Comparative Example 3
In this case, since the thin film resistivity was as low as 1 mΩ · cm, it was found that the thin film could not be immediately scattered to restore the insulation and safety could not be ensured.

【0071】[0071]

【発明の効果】以上説明したように、本発明の正極板に
よれば、放電率特性を低下させることなく、薄型化と高
容量化を実現すると共に、短絡時の安全性に優れたリチ
ウム二次電池を提供することができた。
As described above, according to the positive electrode plate of the present invention, it is possible to realize a thinner lithium battery and a higher capacity without lowering the discharge rate characteristics, and to provide a lithium secondary battery which is excellent in safety during a short circuit. We were able to provide the next battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係るリチウムポリマー電
池の断面図
FIG. 1 is a cross-sectional view of a lithium polymer battery according to an embodiment of the present invention.

【図2】本発明の一実施形態に係る角形リチウムイオン
電池の断面図
FIG. 2 is a sectional view of a prismatic lithium-ion battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 袋状ケース 2 溶着シール部 3、13 正極集電体 4、14 正極活物質層 5、15 セパレータ 6、16 負極活物質層 7、17 負極集電体 11 金属ケース 12 封口板 1 bag case 2 Welding seal part 3, 13 Positive electrode current collector 4, 14 Positive electrode active material layer 5, 15 separator 6, 16 Negative electrode active material layer 7, 17 Negative electrode current collector 11 metal cases 12 Seal plate

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H017 AA03 AS02 AS10 BB00 BB16 BB17 CC01 DD05 EE05 EE08 HH05 HH10 5H029 AJ02 AJ03 AJ12 AK03 AL07 AM03 AM07 BJ02 BJ04 BJ12 BJ14 CJ03 CJ06 CJ24 DJ04 DJ07 DJ17 EJ01 HJ12 HJ20 5H050 AA02 AA08 AA15 BA17 CA07 CA08 CA09 CB08 DA02 DA08 DA19 FA02 FA04 FA18 GA03 GA08 GA24 HA12 HA17    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H017 AA03 AS02 AS10 BB00 BB16                       BB17 CC01 DD05 EE05 EE08                       HH05 HH10                 5H029 AJ02 AJ03 AJ12 AK03 AL07                       AM03 AM07 BJ02 BJ04 BJ12                       BJ14 CJ03 CJ06 CJ24 DJ04                       DJ07 DJ17 EJ01 HJ12 HJ20                 5H050 AA02 AA08 AA15 BA17 CA07                       CA08 CA09 CB08 DA02 DA08                       DA19 FA02 FA04 FA18 GA03                       GA08 GA24 HA12 HA17

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 セパレータ上に、極合剤層、アルミニウ
ム薄膜からなる集電体が一体化形成されていることを特
徴とする正極板。
1. A positive electrode plate, characterized in that a current collector comprising an electrode mixture layer and an aluminum thin film is integrally formed on a separator.
【請求項2】 前記集電体の薄膜抵抗率が2mΩ・cm
〜20mΩ・cmである請求項1記載の正極板。
2. The thin film resistivity of the current collector is 2 mΩ · cm
The positive electrode plate according to claim 1, wherein the positive electrode plate has a resistance of about 20 mΩ · cm.
【請求項3】 前記集電体が蒸着、スパッタリング、C
VDから選ばれた少なくとも一つの手段によって形成さ
れた集電体である請求項1または請求項2記載の正極
板。
3. The current collector is vapor deposition, sputtering, C
The positive electrode plate according to claim 1 or 2, which is a current collector formed by at least one means selected from VD.
【請求項4】 請求項1〜請求項3のいずれか記載の正
極板、負極板からなる極板群をケースに収納したリチウ
ム二次電池。
4. A lithium secondary battery containing a positive electrode plate and a negative electrode plate group according to any one of claims 1 to 3 in a case.
JP2002041071A 2002-02-19 2002-02-19 Positive electrode plate and lithium secondary battery using it Pending JP2003243038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002041071A JP2003243038A (en) 2002-02-19 2002-02-19 Positive electrode plate and lithium secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002041071A JP2003243038A (en) 2002-02-19 2002-02-19 Positive electrode plate and lithium secondary battery using it

Publications (1)

Publication Number Publication Date
JP2003243038A true JP2003243038A (en) 2003-08-29

Family

ID=27781581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002041071A Pending JP2003243038A (en) 2002-02-19 2002-02-19 Positive electrode plate and lithium secondary battery using it

Country Status (1)

Country Link
JP (1) JP2003243038A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005506677A (en) * 2001-10-22 2005-03-03 コミサリア、ア、レネルジ、アトミク Manufacturing method of micro battery
JP2006196235A (en) * 2005-01-12 2006-07-27 Hitachi Ltd Battery-capacitor composite element
WO2007072833A1 (en) * 2005-12-19 2007-06-28 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
EP2026403A2 (en) 2007-08-15 2009-02-18 Nissan Motor Co., Ltd. Cell and battery incorporating the cell
US8076027B2 (en) 2005-01-26 2011-12-13 Panasonic Corporation Negative electrode for lithium secondary battery, lithium secondary battery using same, and methods for manufacturing those
US8715861B2 (en) 2008-10-20 2014-05-06 Nissan Motor Co., Ltd. Bipolar second battery with terminal plate including current suppressing device, battery pack and vehicle equipped with the same
US9368776B2 (en) 2010-06-28 2016-06-14 Murata Manufacturing Co., Ltd. Power storage device and manufacturing method therefor
JP2016134296A (en) * 2015-01-20 2016-07-25 株式会社カネカ Separator integral type electrode, manufacturing method for the same and lithium ion secondary battery using the same
WO2021238857A1 (en) * 2020-05-29 2021-12-02 比亚迪股份有限公司 Lithium-ion battery, power battery module, battery pack, electric vehicle, and energy storage device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005506677A (en) * 2001-10-22 2005-03-03 コミサリア、ア、レネルジ、アトミク Manufacturing method of micro battery
JP2006196235A (en) * 2005-01-12 2006-07-27 Hitachi Ltd Battery-capacitor composite element
US8076027B2 (en) 2005-01-26 2011-12-13 Panasonic Corporation Negative electrode for lithium secondary battery, lithium secondary battery using same, and methods for manufacturing those
WO2007072833A1 (en) * 2005-12-19 2007-06-28 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
US7968221B2 (en) 2005-12-19 2011-06-28 Panasonic Corporation Lithium ion secondary battery
EP2026403A2 (en) 2007-08-15 2009-02-18 Nissan Motor Co., Ltd. Cell and battery incorporating the cell
US8663832B2 (en) 2007-08-15 2014-03-04 Nissan Motor Co., Ltd. Cell for reducing short circuit and battery incorporating the cell
US8715861B2 (en) 2008-10-20 2014-05-06 Nissan Motor Co., Ltd. Bipolar second battery with terminal plate including current suppressing device, battery pack and vehicle equipped with the same
US9368776B2 (en) 2010-06-28 2016-06-14 Murata Manufacturing Co., Ltd. Power storage device and manufacturing method therefor
JP2016134296A (en) * 2015-01-20 2016-07-25 株式会社カネカ Separator integral type electrode, manufacturing method for the same and lithium ion secondary battery using the same
WO2021238857A1 (en) * 2020-05-29 2021-12-02 比亚迪股份有限公司 Lithium-ion battery, power battery module, battery pack, electric vehicle, and energy storage device

Similar Documents

Publication Publication Date Title
CN104241680B (en) Electrode, secondary cell, battery pack, electric vehicle and power storage system
US20100119940A1 (en) Secondary battery
US9225037B2 (en) Lithium secondary battery using ionic liquid
JP3980505B2 (en) Thin lithium ion secondary battery
EP2575201A1 (en) Non-aqueous electrolyte secondary battery comprising lithium vanadium phosphate and lithium nickel composite oxide as positive electrode active material
JP2010267475A (en) Lithium ion secondary battery
JP5412843B2 (en) battery
JP6305961B2 (en) Lithium ion secondary battery
EP3076458A1 (en) Lithium ion secondary battery
KR20170003392A (en) Lithium ion secondary battery
JP2010123331A (en) Nonaqueous electrolyte secondary battery
US8455053B2 (en) Separator, battery using the same, and method for manufacturing separator
JP2008041504A (en) Nonaqueous electrolyte battery
JP2011048990A (en) Nonaqueous electrolyte battery
JP4815845B2 (en) Polymer battery
JP4551539B2 (en) Nonaqueous electrolyte secondary battery
JP3501113B2 (en) Non-aqueous secondary battery and method of manufacturing the same
JP4802217B2 (en) Nonaqueous electrolyte secondary battery
JP2003243038A (en) Positive electrode plate and lithium secondary battery using it
JP4455008B2 (en) Nonaqueous electrolyte secondary battery
JP2004158213A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP6738865B2 (en) Lithium ion secondary battery
JP3700683B2 (en) Non-aqueous electrolyte secondary battery
JP2006024392A (en) Charging method of lithium-ion secondary battery
JP2004030939A (en) Manufacturing method of lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930