JP3700683B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3700683B2
JP3700683B2 JP2002180987A JP2002180987A JP3700683B2 JP 3700683 B2 JP3700683 B2 JP 3700683B2 JP 2002180987 A JP2002180987 A JP 2002180987A JP 2002180987 A JP2002180987 A JP 2002180987A JP 3700683 B2 JP3700683 B2 JP 3700683B2
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
negative electrode
current collector
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002180987A
Other languages
Japanese (ja)
Other versions
JP2004030938A (en
Inventor
敦 大塚
始 小西
正明 金田
周作 後藤
順哉 西森
照久 石川
勝久 和田崎
喜治 小柿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002180987A priority Critical patent/JP3700683B2/en
Publication of JP2004030938A publication Critical patent/JP2004030938A/en
Application granted granted Critical
Publication of JP3700683B2 publication Critical patent/JP3700683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解液二次電池に関し、特に安全性に優れた非水電解液二次電池に関する。
【0002】
【従来の技術】
従来、AV機器、ノート型パソコン、或いは携帯型通信機器などの駆動用電源として、ニッケルカドミウム蓄電池やニッケル水素蓄電池が主に用いられていたが、近年では、電子機器のポータブル化やコードレス化が進展して定着するに従って、駆動用電源となる二次電池の高エネルギー密度化や小型軽量化の要望が、ますます強くなっている。このような要望に応える電池として、小型・軽量でありながら急速充電が可能で、高エネルギー密度を有するという極めて顕著な特徴を有するリチウムイオン二次電池に代表される非水電解液二次電池が、開発され主流になっている。
【0003】
この非水電解液二次電池は、図3(a)に示すように、アルミニウム製の集電体にリチウム含有遷移金属化合物、例えばLiCoO2を正極活物質とする正極合剤層を形成した正極板11と、銅製の集電体に炭素材料を負極活物質とする負極合剤層を形成した負極板12とをセパレータ13を介して絶縁した状態で捲回してなる極板群、非水電解液、ならびに前記極板群と非水電解液とを電池ケース14に収納し、リチウムイオンの挿入、離脱を利用した電池であり、効率充放電を可能にするため、正極板11と負極板12とを電池ケース14内において化学反応に寄与する電極板の面積を可及的に大きくする工夫がなされている。
【0004】
しかしながら、電子機器の高機能化等に伴う消費電力の増加に伴い、さらなる高容量化、高エネルギー密度化が強く要望されており、容量に寄与しないセパレータや集電体を薄くし、極板の充填密度を上げているため正負極間の距離が狭くなり、電池内の空間体積も減少している。また、電子機器の小型化に伴い各構成要素が高密度で実装されていることから、発熱が大きく電池が使用される使用環境は60℃程度の過酷な条件になることがある。このような現状において、ファンヒーター、ストーブ等の暖房器具、ホットプレート等の発熱器具の上や近傍に置かれ高温加熱状態に陥った場合の電池の安全性を確保することが重要になっている。
【0005】
高温加熱時の安全性を向上させることを目的として、セパレータのシャットダウン機能を用いる方法があり、高温加熱状態が進んでセパレータが所定の温度に達すると、セパレータが溶融して微孔を閉塞する。これによって電池内部の異常反応を抑制し、電池の急速な温度上昇を防ぎ、安全性を確保するものである。
【0006】
円筒形電池ケースを用いた場合、高温加熱時の温度上昇による電池内圧は均等にかかり、変形しにくい上、通常電池ケースにはステンレス鋼鈑を用い負極板と同電位になる為、負極板より幅寸法が短い正極板と電池ケースが短絡する可能性が低い。
【0007】
ところが、長辺と短辺を有する角形や扁平形の電池ケース、特にアルミニウム合金製等を用い、正極と同電位となる場合、図3(b)に示すように、電池ケース14の長辺側の側面が膨れやすく、負極板12と正極板11および電池ケース14とを絶縁しているセパレータ13がシャットダウンする前にセパレータが収縮し、内部短絡が発生し、正極板11から放出されるリチウムイオンの受け入れ性を良くする為に、幅方向(捲回方向と垂直)の寸法が正極板11の寸法より、数mm程度大きくなるように設定されている負極板12の上端部と電池ケース14との短絡を招き電池の発火に至る場合があった。
【0008】
【発明が解決しようとする課題】
このような問題点を解決するために、例えば、特開平8−87995号公報、特開平8−250097号公報、特開平11−144697号公報には、シャットダウン機能を有する低融点のポリオレフィン樹脂製のセパレータの片側または両側に耐熱性のあるポリフェニレンサルファイド樹脂、高融点のポリオレフィン樹脂、ポリイミド樹脂等を積層したセパレータを用いる提案や、特開2000−251866号公報には、外装缶と発電要素の間にセパレータよりも耐熱温度の高い絶縁部材を介挿し、セパレータが熱収縮しても内部短絡の発生を抑制する方法が提案されているが、最外周の負極板と正極合剤層が無く正極集電体とが対抗している領域では、負極板と正極集電体が短絡し、電池の発火に至る場合があった。
【0009】
本発明はこのような課題に鑑みなされたもので、高温加熱状態に陥り、セパレータが熱収縮しても、正極板と負極板とが内部短絡するのを防止し、電池の安全性を確保することが可能な非水電解液二次電池を提供することを主たる目的とする。
【0010】
【課題を解決するための手段】
上記のような課題を解決するための本発明は、正極板と負極板とをセパレータを介して絶縁した状態で捲回してなる極板群、非水電解液、ならびに前記極板群と非水電解液とを収納する電池ケースからなる非水電解液二次電池であって、少なくとも前記負極板の上端部より突出した絶縁部材が、前記負極板の最外周と前記正極板の正極合剤層とが対向する領域では前記電池ケースと正極板との間に配設されていると共に、前記負極板の最外周と前記正極板の正極合剤層が無く正極集電体とが対向する領域では負極板と正極集電体との間に配設されていることを特徴とする非水電解液二次電池であり、前記絶縁部材は前記セパレータよりも耐熱温度が高い基材と糊剤からなる絶縁テープが好ましい。
【0011】
この絶縁テープを正極板と電池ケースとの間に配設する場合は、正極板に貼着し、負極板と正極集電体との間に配設する場合は、正極集電体またはセパレータに貼着するのが好ましい。
【0012】
絶縁テープをこれらに貼着する位置は、上端部から5〜10mmの範囲に貼着し、その幅は負極上端部からの突出量が0.5〜5mmになる長さで、貼着部分以外には絶縁テープの糊剤がないものが作業性の観点から好ましい。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
【0014】
図1に角形の非水電解液二次電池の主要構成を示す概略構成図、図2(a)、(b)、(c)にその一部縦断面図を示す。正極板1と負極板2とがセパレータ3を介して絶縁された状態で捲回してなる極板群と非水電解液(図示せず)とが電池ケース4に収納されている。
【0015】
正極板1は、アルミニウム製の箔やラス加工やエッチング処理された箔からなる集電体の片側または両面に正極活物質、結着剤、導電剤、必要に応じて増粘剤を溶剤に混練分散させたペースト状の正極合剤を塗布、乾燥、圧延して正極合剤層を形成することができ、その厚みは100μm〜200μmの厚みで、柔軟性があることが好ましい。
【0016】
正極活物質としては、例えば、リチウムイオンをゲストとして受け入れ得るリチウム含有遷移金属化合物が使用される。例えば、コバルト、マンガン、ニッケル、クロム、鉄およびバナジウムから選ばれる少なくとも一種類の金属とリチウムとの複合金属酸化物、LiCoO2、LiMnO2、LiNiO2、LiCoxNi(1-x)2(0<x<1)、LiCrO2、αLiFeO2、LiVO2等が好ましい。
【0017】
結着剤としては、使用する溶剤や電解液に対して安定な材料であれば、特に限定されないが、例えば、フッ素系結着材やアクリルゴム、変性アクリルゴム、スチレンーブタジエンゴム(SBR)、イソプロピレンゴム、ブタジエンゴム、アクリル系重合体、ビニル系重合体等を単独、或いは二種類以上の混合物または共重合体として用いることができる。フッ素系結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン(VDF)とヘキサフルオロプロピレン(HFP)の共重合体(P(VDF−HFP))やポリテトラフルオロエチレン樹脂のディスパージョン等が好ましい。
【0018】
増粘剤としては、カルボシキメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、ガゼイン等が好ましい。
【0019】
導電剤としては、アセチレンブラック、グラファイト、黒鉛、炭素繊維等を単独、或いは二種類以上の混合物が好ましい。
【0020】
溶剤としては、結着剤が溶解可能な溶剤が適切で、有機系結着剤の場合は、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアミド、テトラヒドロフラン、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルスルホルアミド、テトラメチル尿素、アセトン、メチルエチルケトン等の有機溶剤を単独またはこれらを混合した混合溶剤が好ましく、水系結着剤の場合は水や温水が好ましい。
【0021】
また、負極板2は、集電体の片側または両面に負極活物質と結着剤、必要に応じて増粘剤、導電助剤を溶剤に混練分散させたペースト状の負極合剤を塗布、乾燥、圧延して負極合剤層を形成することができ、その厚みは100μm〜210μmの厚みで、柔軟性があることが好ましい。
【0022】
負極活物質としては、特に限定されるものではないが、例えば、有機高分子化合物(フェノール樹脂、ポリアクリロニトリル、セルロース等)を焼成することにより得られる炭素材料、コークスやピッチを焼成することにより得られる炭素材料、或いは人造グラファイト、天然グラファイト等が好ましく、その形状としては、球状、鱗片状、塊状のものを用いることができる。
【0023】
負極集電体として用いる銅または銅合金は、特に限定されるものではなく、圧延箔、電解箔などが挙げられ、その形状も箔、孔開き箔、エキスパンド材、ラス材等であっても構わないが、その厚みは引張り強度が強いほど好ましいが、厚くなると電池内部の空隙体積が少なくなり、エネルギー密度が低下するので20μm以下が好ましく、8〜15μmの範囲がより好ましい。
【0024】
結着剤、溶剤および必要に応じて加えることができる導電助剤は正極の導電剤と同様のものを使用することができる。
【0025】
ところで、正極および負極の活物質、結着剤、必要に応じて加える導電剤、導電助剤を溶剤に混練分散させてペースト状合剤を作製する方法は、特に限定されるものではなく、例えば、プラネタリーミキサー、ホモミキサー、ピンミキサー、ニーダー、ホモジナイザー等を用いることができる。これらを単独、或いは組み合わせて使用することも可能である。
【0026】
また、上記ペースト状合剤の混練分散時に、各種分散剤、界面活性剤、安定剤等を必要に応じて添加することも可能である。
【0027】
塗着乾燥は、特に限定されるものではなく、上記のように混錬分散させたペースト状の合剤を、例えば、スリットダイコーター、リバースロールコーター、リップコーター、ブレードコーター、ナイフコーター、グラビアコーター、ディップコーター等を用いて、容易に塗着することができ、自然乾燥に近い乾燥が好ましいが、生産性を考慮すると70℃〜200℃の温度で乾燥させるのが好ましい。
【0028】
圧延は、ロールプレス機によって所定の厚みになるまで、線圧1000〜2000kg/cmで数回圧延を行うか、線圧を変えて圧延するのが好ましい。
【0029】
セパレータ3としては、ポリエチレン樹脂、ポリプロピレン樹脂などのポリオレフィン樹脂の微多孔膜や不織布からなる単層または多層構造で構成されており、ポリエチレン樹脂とポリプロピレン樹脂の2層または両端がポリプロピレン樹脂で中間層がポリエチレン樹脂の3層構造でシャットダウン機能を有するセパレータが好ましく、セパレータの厚みは10〜30μmの範囲が好ましい。
【0030】
このようにして得られる正極1と負極2とをセパレータ3を介して絶縁された状態で捲回して作製する極板群の最外周に絶縁部材を配設する位置が重要である。
【0031】
すなわち、図1に示す負極板2の最外周と正極板1の正極合剤層とが対向する領域Aでは、図2(a)に示す電池ケース4と正極板1との間に少なくとも負極板2の上端部より突出した絶縁部材5aを配設することにより、セパレータ3が熱収縮しても負極板2が正極板1と同電位である電池ケース4と短絡することを防止できる。図1に示す負極板2の最外周と正極板1の正極合剤層が無く正極集電体とが対向する領域Bでは、図2(b)に示す負極板2と正極集電体との間に少なくとも負極板2の上端部より突出した絶縁部材5bを配設することにより、セパレータ3が熱収縮しても負極板2が正極集電体と短絡することを防止できる。
【0032】
ここで、負極板2の最外周と正極板1の正極合剤層が無く正極集電体とが対向する領域Bでは、負極板2と正極集電体との間に少なくとも負極板2の上端部より突出した絶縁部材5を配設することが重要であり、電池ケース4と正極板1の正極合剤がなく正極集電体との間に配設した場合には、セパレータ3が熱収縮すると、負極板2と正極集電体とが短絡し、電池の発火に至ることがある。
【0033】
この理由は、負極板2と正極板1の正極合剤層とが短絡した場合の短絡電流よりも、負極板2と正極集電体または正極板1と同電位である電池ケース4が短絡した場合の短絡電流は、正極集電体または正極板1と同電位である電池ケース4の抵抗が非常に低い為に、はるかに大きな短絡電流が流れ、ジュール熱による温度上昇により、電池の発火に至る為である。
【0034】
なお、図1に示す最外周の負極板2がなく、正極板1と対向しない領域、すなわち、負極板2の捲回が終わり、正極合剤層が無く正極集電体とセパレータ3または正極集電体のみの領域cでは、隣接する極板が同極の正極板の為、セパレータが熱収縮しても短絡の危険性は低いが、この領域に絶縁テープで被覆された正極リードが溶接されており、図2(c)に示す正極集電体とセパレータ3の間に図2(b)と同じ絶縁部材5bを配設することにより、正極リード6と負極板との短絡をより防止することができる。
【0035】
絶縁部材としては、セパレータよりも耐熱温度が高い基材と糊剤からなる絶縁テープを用いる。ここでいうセパレータよりも耐熱温度が高いとは、セパレータより軟化点の高い材料だけでなく、同様の軟化点の材料であっても、微多孔性を付与する為に延伸しているセパレータが熱収縮しても、緻密構造の材料は熱収縮しないので用いることができる。
【0036】
基材の厚みとしては、20μm〜60μmの範囲、糊剤の厚みとしては20μm〜80μmの範囲が、絶縁性、貼着性、作業性の観点から好ましい。
【0037】
そして、基材の材質としては、ポリエチレン樹脂、ポリプロピレン樹脂などのポリオレフィン樹脂、ポリエチレンテレフタレート樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、ポリアリレート樹脂、ポリアミド樹脂、ポリイミド樹脂、フッ素樹脂などを挙げることができ、これらを単独またはブレンドした樹脂、変性した樹脂を用いることができる。そして、ガラス繊維、タルク、シリカなどの充填材を添加しても良い。
【0038】
糊剤としては、天然ゴム、イソブチルゴム、スチレンブタジエンゴム、シリコンゴム、ウレタンゴム、アクリル樹脂などを挙げることができる。これらを単独や積層したものや、変性したものを用いることができる。
【0039】
ところで、正負極板と一体化されていないセパレータが熱収縮した場合、高温加熱下でガス発生し、これによる内圧上昇によって電池ケースに膨れが生じるが、この膨れは電池ケースの端部程小さく、中央部が最も大きくなる。一方、極板群は、リードが接続されている方を上側にした場合、電池ケースに対し下側に寄った状態で収納されているので、極板群の下側の方が電池ケースの膨れは小さく、内圧が極板群にかかっている為、セパレータの収縮は抑制される。従って、極板群の下端部は従来から用いられている極板群の最外周に保護テープを貼着する方法を採用しても良いが、この保護テープも上記の本発明による領域毎に保護部材を配設する位置を変える方法を用いることにより、さらに安全性の高い電池を得ることができる。この保護テープも上記絶縁部材と同様の基材と糊剤を用いることができる。
【0040】
電池ケース4としては、上部が開放している有底の円筒形や角形および長円状のものを挙げることができるが、高温加熱時の温度上昇によりガス発生しても、電池内圧が均等にかからない為に膨れやすい角形や扁平形の電池ケースで、正極板から放出されるリチウムイオンの受け入れ性を良くする為に、幅方向の寸法が正極板の寸法より、数mm程度大きくなるように設定されている負極板と電池ケースとの極性が異なるアルミニウム合金製の場合に、本発明は顕著な効果を発揮することができる。
【0041】
非水電解液としては、非水溶媒と電解質からなり、非水溶媒としては、主成分として環状カーボネートおよび鎖状カーボネートが含有される。前記環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、およびブチレンカーボネート(BC)から選ばれる少なくとも一種であることが好ましい。また、前記鎖状カーボネートとしては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、およびエチルメチルカーボネート(EMC)等から選ばれる少なくとも一種であることが好ましい。
【0042】
電解質としては、例えば、電子吸引性の強いリチウム塩を使用し、例えば、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33等が挙げられる。これらの電解質は、一種類で使用しても良く、二種類以上組み合わせて使用しても良い。これらの電解質は、前記非水溶媒に対して0.5〜1.5Mの濃度で溶解させることが好ましい。
【0043】
【実施例】
以下、実施例および比較例を用いて詳細に説明するが、これらは、本発明を何ら限定するものではない。
【0044】
(実施例1)
正極板1は、正極活物質としてコバルト酸リチウムを100重量部、導電剤としてアセチレンブラックの炭素粉末を3重量部、結着剤としてポリテトラフルオロエチレン(PTFE)樹脂ディスパージョンを固形分で4重量部、増粘剤としてカルボキシメチルセルロース水溶液を固形分で0.8重量部を混練分散させてペースト状合剤を作製した。このペースト状合剤を、厚さ20μmの帯状のアルミニウム箔からなる正極集電体に連続的に間欠塗着を行い乾燥して、厚み290μmの正極板1を作製し、線圧1000Kg/cmで3回圧延を行うことにより、正極板厚みを180μmに圧延した。この正極板1の最外周で正極合剤層が無く正極集電体が露出している部分に正極リード6をスポット溶接して取り付けた後、120℃で15分間の正極板乾燥を行った。
【0045】
次に、負極板は負極活物質としてリチウム箔を吸蔵、放出可能な鱗片状黒鉛100重量部、結着剤としてスチレンブタジエンゴム(SBR)の水溶性ディスパージョンを固形分として4重量部、増粘剤としてカルボキシメチルセルロース水溶液を0.8重量部を混練分散させて、ペースト状合剤を作製した。このペースト状合剤を厚さ14μmの帯状の銅箔からなる負極集電体に連続的に間欠塗着を行い乾燥して、厚さ300μmの負極板2を作製し、線圧110Kg/cmで3回圧延を行うことにより、負極板厚みを196μmに圧延した。この負極板3の最内周で負極合剤層が無く負極集電体が露出している部分にスポット溶接して負極リード7を取り付けた後、110℃で10分間の負極板乾燥を行った。
【0046】
このようにして得られた正極板1と負極板2とを耐熱温度が138℃で、厚さ20μmのポリプロピレン製セパレータ3を介して絶縁した状態で長円状に捲回してなる極板群を作製した。
【0047】
この極板群の図1に示す負極板2の最外周と正極板1の正極合剤層とが対向する領域Aでは、図2(a)に示す電池ケース4と正極板1との間に少なくとも負極板2の上端部より5mm突出するように絶縁部材5aを正極板の上端部10mmの範囲で貼着して配設した。図1に示す負極板2の最外周と正極板1の正極合剤層が無く正極集電体とが対向する領域Bでは、図2(b)に示す負極板2と正極集電体との間に少なくとも負極板2の上端部より5mm突出するように絶縁部材5bを正極集電体の上端部10mmの範囲で貼着して配設した。図1に示す負極板がなく、正極板と対向しない領域、すなわち、負極板2の捲回が終わり、正極合剤層が無く正極集電体とセパレータ3または正極集電体のみの領域cでは、図2(c)に示す正極集電体とセパレータ3の間に少なくとも負極板2の上端部より5mm突出するように絶縁部材5bを正極集電体の上端部10mmの範囲で貼着して配設した。
【0048】
なお、この絶縁部材5aは耐熱温度が200℃で厚さ40μmのポリフェニレンサルファイド樹脂の基材と厚さ20μmのウレタン樹脂の糊剤からなる絶縁テープを用い、絶縁部材5bは厚さ40μmのポリエチレンテレフタレート樹脂の基材と厚さ20μmのシリコーン樹脂の糊剤からなる絶縁テープを用い、貼着部分以外には糊剤がないものを用い、領域Aと領域B及び領域Aと領域Cの境界では隙間が生じないようにオーバーラップさせた。
【0049】
また、この極板群の下端部も同様に耐熱温度が140℃で厚さ35μmのポリポロピレン樹脂の基材と厚さ20μmのスチレンブタジエンゴムの糊剤からなる保護テープを配設した。図1に示す領域Aでは、図2(d)に示す電池ケース4と正極板1との間に少なくとも負極板2の下端部より3mm突出するように保護テープ8aを正極板の下端部5mmの範囲で貼着して配設した。図1に示す領域Bでは、図2(e)に示す負極板2と正極集電体との間に少なくとも負極板2の下端部より3mm突出するように保護テープ8bを正極集電体の下端部5mmの範囲で貼着して配設した。図1に示す領域cでは、図2(f)に示す正極集電体とセパレータ3の間に少なくとも負極板2の下端部より8mm突出するように保護テープ8bを正極集電体の下端部5mmの範囲で貼着して配設した。
【0050】
この極板群の長辺側を0.4MPaの圧力条件で1.5秒間熱プレスして扁平形にした後、厚みが0.20mmでマンガン、銅を微量含有する合金No.3000系のアルミニウム合金からなる角形電池ケース4内に収容し、正極板1に接続された正極リード6の他端部を防爆機構を有する封口板に接続し、負極板2に接続された負極リード7の他端部を、封口板の負極端子に接続した後、封口板と電池ケース4とをレーザー溶接した。
【0051】
さらに、封口板の注液孔から電池ケース4内に、エチレンカーボネート、エチルメチルカーボネートの混合溶媒中に、電解質としてヘキサフルオロリン酸リチウム(LiPF6)を1.25モル/l溶かした電解液を所定量注液した後、この注液孔に封栓を挿入し、封栓の周囲と封口板とをレーザー溶接することによって、幅10.5mm、長さ34mm、総高50mmで、電池容量1800mAhの角形リチウムイオン二次電池を作製した。
【0052】
(実施例2)
実施例1と同様にして作製した極板群の図1に示す領域Aでは、図2(a)に示す電池ケース4と正極板1との間に少なくとも負極板2の上端部より5mm突出するように絶縁部材5aを正極板の上端部5mmの範囲で貼着して配設した。領域Bでは、図2(b)に示す負極板2と正極集電体との間に少なくとも負極板2の上端部より0.5mm突出するように絶縁部材5bをセパレータ3の上端部10mmの範囲で貼着して配設した。領域cでは、図2(c)に示す正極集電体とセパレータ3の間に少なくとも負極板2の上端部より5mm突出するように絶縁部材5bをセパレータ3の上端部5mmの範囲で貼着して配設した。
【0053】
なお、絶縁部材5aは耐熱温度が200℃で厚さ40μmのポリフェニレンサルファイド樹脂の基材と厚さ20μmのウレタン樹脂の糊剤からなる絶縁テープを用い、絶縁部材5bは厚さ40μmのポリエチレンテレフタレート樹脂の基材と厚さ20μmのシリコーン樹脂の糊剤からなる絶縁テープを用い、貼着部分以外には糊剤がないものを用い、領域Aと領域B及び領域Aと領域Cの境界では隙間が生じないようにオーバーラップさせた。
【0054】
極板群の下端部には、極板群の最外周である正極板に耐熱温度が200℃で厚さ20μmのポリイミド樹脂の基材と厚さ40μmのイソブチルゴムの糊剤からなる保護テープを貼着した。
【0055】
これ以外は実施例1と同様にして幅10.5mm、長さ34mm、総高50mmで、電池容量1800mAhの角形リチウムイオン二次電池を作製した。
【0056】
(比較例1)
実施例1と同様にして作製した極板群の図1に示す領域A、領域B、領域Cの全周に渡って、図2(a)に示す電池ケース4と正極板1との間に少なくとも負極板2の上端部より5mm突出するように絶縁部材5aを正極板の上端部5mmの範囲で貼着して配設した。なお、絶縁部材5aは耐熱温度が180℃で厚さ30μmのフッ素樹脂の基材と厚さ25μmのシリコンゴムの糊剤からなる絶縁テープを用い、貼着部分以外には糊剤がないものを用い、領域Aと領域Cの境界では隙間が生じないようにオーバーラップさせた。
【0057】
これ以外は実施例2と同様にして幅10.5mm、長さ34mm、総高50mmで、電池容量1800mAhの角形リチウムイオン二次電池を作製した。
【0058】
(比較例2)
実施例1と同様にして作製した極板群の上端部には何も絶縁部材を貼着せず、極板群の下端部のみに実施例2と同様の保護テープを貼着した以外は、実施例2と同様にして幅10.5mm、長さ34mm、総高50mmで、電池容量1800mAhの角形リチウムイオン二次電池を作製した。
【0059】
このようにして得られた実施例1〜実施例2、比較例1〜比較例2の電池各20個について、高温加熱試験を行い、評価した結果を表1に示す。
【0060】
高温加熱試験は、20℃の環境下で3.0Vの終止電圧まで1800mA(1.0ItA)の定電流で残存放電した後、電池電圧が4.2Vに達するまで1260mA(0.7ItA)の定電流充電を行なった満充電状態の電池を、5℃/minの昇温速度で150℃まで昇温させ、150℃で30分間保持させた場合、電池が発火する発生率を調べた。
【0061】
【表1】

Figure 0003700683
【0062】
表1より、実施例の電池は、負極板2の最外周と正極板1の正極合剤層とが対向する領域Aでは、電池ケース4と正極板1との間に少なくとも負極板2の上端部より突出した絶縁部材5aを配設することにより、セパレータ3が熱収縮しても負極板2が正極板1と同電位である電池ケース4と短絡することを防止でき、負極板2の最外周と正極板1の正極合剤層が無く正極集電体とが対向する領域Bでは、負極板2と正極集電体との間に少なくとも負極板2の上端部より突出した絶縁部材5bを配設することにより、セパレータ3が熱収縮しても負極板2が正極集電体と短絡することを防止できるので、発火することのない安全性に優れた電池が得られることがわかった。
【0063】
これに対して、負極板2の最外周と正極板1の正極合剤層が無く正極集電体とが対向する領域Bにおいて、電池ケース4と正極板1との間に配設した比較例1の場合には、負極板2と正極集電体とが短絡し、電池の発火に至る場合があることがわかった。
【0064】
そして、極板群の上端部には何も絶縁部材を貼着せず、極板群の下端部のみに実施例2と同様の保護テープを貼着した比較例2の場合には、極板群の上端部で短絡し、電池の発火に至る割合が非常に高いことがわかった。
【0065】
【発明の効果】
以上の説明から明らかのように、本発明によれば、極板群の最外周に絶縁部材を配設する位置を最適化することにより、高温加熱状態に陥った場合でも非水電解液二次電池の信頼性を大幅に向上させることができ、その工業的価値は極めて高い。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る主要構成を示す概略構成図
【図2】本発明の極板群に係る一部縦断面図
(a)電池ケースと正極板との間に絶縁部材を配設した極板群上端部の一部縦断面図
(b)負極板と正極集電体との間に絶縁部材を配設した極板群上端部の一部縦断面図
(c)セパレータと正極集電体との間に絶縁部材を配設した極板群上端部の一部縦断面図
(d)電池ケースと正極板との間に絶縁部材を配設した極板群下端部の一部縦断面図
(e)負極板と正極集電体との間に絶縁部材を配設した極板群下端部の一部縦断面図
(f)セパレータと正極集電体との間に絶縁部材を配設した極板群下端部の一部縦断面図
【図3】従来の極板群に係る一部縦断面図
(a)高温加熱試験前の極板群の一部縦断面図
(b)高温加熱試験後の極板群の一部縦断面図
【符号の説明】
1,11 正極板
2,12 負極板
3,13 セパレータ
4,14 電池ケース
5a 電池ケースと正極板との間に配設した絶縁部材
5b 正極集電体と負極板およびセパレータとの間に配設した絶縁部材
A 負極板と正極板の正極合剤層とが対向する領域
B 負極板と正極板の正極集電体とが対向する領域
C 負極板がなく、正極板と対向しない領域[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery, and particularly to a non-aqueous electrolyte secondary battery excellent in safety.
[0002]
[Prior art]
Conventionally, nickel cadmium storage batteries and nickel metal hydride storage batteries have been mainly used as driving power sources for AV equipment, notebook computers, portable communication equipment, etc., but in recent years, electronic devices have become more portable and cordless. As it has become established, the demand for higher energy density and smaller size and weight of the secondary battery as the driving power source has become stronger. Non-aqueous electrolyte secondary batteries typified by lithium ion secondary batteries, which have extremely remarkable characteristics of being capable of rapid charging while having a small size and light weight and having a high energy density as a battery that meets such demands. Developed and mainstream.
[0003]
As shown in FIG. 3 (a), this non-aqueous electrolyte secondary battery includes an aluminum current collector and a lithium-containing transition metal compound such as LiCoO. 2 A separator 13 is used to insulate a positive electrode plate 11 in which a positive electrode mixture layer having a positive electrode active material as a positive electrode active material is formed and a negative electrode plate 12 in which a negative electrode mixture layer having a carbon material as a negative electrode active material is formed on a copper current collector. The electrode plate group, the non-aqueous electrolyte solution, and the electrode plate group and the non-aqueous electrolyte solution wound in the above-described state are accommodated in the battery case 14, and the battery utilizes the insertion and removal of lithium ions. In order to make discharge possible, the positive electrode plate 11 and the negative electrode plate 12 are devised to increase the area of the electrode plate that contributes to the chemical reaction in the battery case 14 as much as possible.
[0004]
However, with the increase in power consumption due to the higher functionality of electronic devices, there is a strong demand for higher capacity and higher energy density. Thin separators and current collectors that do not contribute to capacity have been reduced. Since the packing density is increased, the distance between the positive and negative electrodes is reduced, and the space volume in the battery is also reduced. Moreover, since each component is mounted with high density with the miniaturization of an electronic device, the usage environment in which a battery is used with large heat generation may be a severe condition of about 60 ° C. Under such circumstances, it is important to ensure the safety of the battery when it is placed on or near a heating device such as a fan heater or a stove, or a heating device such as a hot plate, and falls into a high temperature heating state. .
[0005]
For the purpose of improving safety during high-temperature heating, there is a method of using a shutdown function of the separator. When the high-temperature heating state advances and the separator reaches a predetermined temperature, the separator melts and closes the micropores. This suppresses an abnormal reaction inside the battery, prevents a rapid temperature rise of the battery, and ensures safety.
[0006]
When a cylindrical battery case is used, the internal pressure of the battery due to temperature rise during high temperature heating is evenly applied and is not easily deformed. In addition, the battery case is usually made of stainless steel and has the same potential as the negative electrode plate. The possibility that the positive electrode plate having a short width dimension and the battery case are short-circuited is low.
[0007]
However, when a rectangular or flat battery case having a long side and a short side, in particular, an aluminum alloy or the like is used and the potential is the same as that of the positive electrode, as shown in FIG. The side surface of the battery plate swells easily, and the separator shrinks before the separator 13 that insulates the negative electrode plate 12 from the positive electrode plate 11 and the battery case 14 shuts down, an internal short circuit occurs, and the lithium ions released from the positive electrode plate 11 In order to improve the acceptability of the battery, the width direction (perpendicular to the winding direction) dimension of the negative electrode plate 12 and the battery case 14 are set so that the dimension of the positive electrode plate 11 is several mm larger than the dimension of the positive electrode plate 11. In some cases, the battery was ignited.
[0008]
[Problems to be solved by the invention]
In order to solve such problems, for example, in Japanese Patent Application Laid-Open Nos. 8-87995, 8-250097, and 11-144597, a low melting point polyolefin resin having a shutdown function is disclosed. A proposal using a separator in which a heat-resistant polyphenylene sulfide resin, a high-melting-point polyolefin resin, a polyimide resin, or the like is laminated on one side or both sides of the separator, or JP 2000-251866 A, between A method has been proposed in which an insulating member having a higher heat resistance than the separator is inserted to suppress the occurrence of an internal short circuit even when the separator is thermally contracted. However, there is no positive electrode current collector layer and positive electrode current collector layer without the outermost negative electrode plate. In the region where the body is opposed, the negative electrode plate and the positive electrode current collector may be short-circuited, resulting in ignition of the battery.
[0009]
The present invention has been made in view of such a problem. Even when the separator falls into a high-temperature heating state and the separator is thermally contracted, the positive electrode plate and the negative electrode plate are prevented from being internally short-circuited to ensure the safety of the battery. It is a main object to provide a non-aqueous electrolyte secondary battery that can be used.
[0010]
[Means for Solving the Problems]
The present invention for solving the above-mentioned problems includes an electrode plate group formed by winding a positive electrode plate and a negative electrode plate with a separator interposed therebetween, a non-aqueous electrolyte, and the electrode plate group and the non-aqueous solution. A non-aqueous electrolyte secondary battery comprising a battery case for storing an electrolyte solution, At least an insulating member protruding from the upper end of the negative electrode plate, The outermost periphery of the negative electrode plate And before In the region where the positive electrode mixture layer of the positive electrode plate faces, the space between the battery case and the positive electrode plate And the outermost periphery of the negative electrode plate In the region where the positive electrode mixture layer of the positive electrode plate is not opposed to the positive electrode current collector, the positive electrode plate is disposed between the negative electrode plate and the positive electrode current collector. Arranged Preferably, the insulating member is a non-aqueous electrolyte secondary battery, and the insulating member is preferably an insulating tape made of a base material having a heat resistant temperature higher than that of the separator and a paste.
[0011]
When this insulating tape is disposed between the positive electrode plate and the battery case, it is adhered to the positive electrode plate, and when it is disposed between the negative electrode plate and the positive electrode current collector, the positive electrode current collector or separator is applied. It is preferable to stick.
[0012]
The position where the insulating tape is attached to these is attached within a range of 5 to 10 mm from the upper end, and the width is a length that the protrusion from the upper end of the negative electrode is 0.5 to 5 mm, other than the attached part From the viewpoint of workability, it is preferable to use an insulating tape that does not have an adhesive tape.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
FIG. 1 is a schematic configuration diagram showing a main configuration of a rectangular nonaqueous electrolyte secondary battery, and FIGS. 2A, 2B, and 2C are partial longitudinal sectional views thereof. A battery plate 4 and a non-aqueous electrolyte solution (not shown) formed by winding the positive electrode plate 1 and the negative electrode plate 2 with the separator 3 interposed therebetween are housed in the battery case 4.
[0015]
The positive electrode plate 1 is prepared by kneading a positive electrode active material, a binder, a conductive agent, and, if necessary, a thickener with a solvent on one or both sides of a current collector made of an aluminum foil, a lathed or etched foil. The dispersed paste-like positive electrode mixture can be applied, dried and rolled to form a positive electrode mixture layer, and the thickness is preferably 100 μm to 200 μm and preferably flexible.
[0016]
As the positive electrode active material, for example, a lithium-containing transition metal compound that can accept lithium ions as a guest is used. For example, a composite metal oxide of at least one metal selected from cobalt, manganese, nickel, chromium, iron and vanadium and lithium, LiCoO 2 LiMnO 2 , LiNiO 2 LiCo x Ni (1-x) O 2 (0 <x <1), LiCrO 2 , ΑLiFeO 2 , LiVO 2 Etc. are preferred.
[0017]
The binder is not particularly limited as long as it is a material that is stable with respect to the solvent or electrolyte used. For example, a fluorine-based binder, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber (SBR), Isopropylene rubber, butadiene rubber, acrylic polymer, vinyl polymer and the like can be used alone or as a mixture or copolymer of two or more kinds. Examples of the fluorine-based binder include polyvinylidene fluoride (PVDF), a copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) (P (VDF-HFP)), and a polytetrafluoroethylene resin disperser. John and the like are preferable.
[0018]
As the thickener, carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein and the like are preferable.
[0019]
As the conductive agent, acetylene black, graphite, graphite, carbon fiber or the like is used alone, or a mixture of two or more kinds is preferable.
[0020]
As the solvent, a solvent capable of dissolving the binder is suitable, and in the case of an organic binder, N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, dimethylsulfoxide. In addition, an organic solvent such as hexamethylsulfuramide, tetramethylurea, acetone, methylethylketone or the like is preferably used alone or a mixed solvent thereof. In the case of an aqueous binder, water or warm water is preferable.
[0021]
The negative electrode plate 2 is coated with a paste-like negative electrode mixture in which a negative electrode active material and a binder, if necessary, a thickener and a conductive assistant are kneaded and dispersed in a solvent, on one side or both sides of the current collector, The negative electrode mixture layer can be formed by drying and rolling, and the thickness is preferably 100 μm to 210 μm and preferably flexible.
[0022]
Although it does not specifically limit as a negative electrode active material, For example, it obtains by baking the carbon material obtained by baking organic polymer compounds (Phenol resin, polyacrylonitrile, cellulose, etc.), coke, and pitch. The carbon material to be used, or artificial graphite, natural graphite or the like is preferable. As the shape thereof, a spherical shape, a scale shape or a lump shape can be used.
[0023]
The copper or copper alloy used as the negative electrode current collector is not particularly limited, and examples thereof include rolled foil, electrolytic foil, and the shape thereof may be foil, perforated foil, expanded material, lath material, and the like. Although the thickness is preferably as the tensile strength is strong, the thickness is preferably 20 μm or less, more preferably in the range of 8 to 15 μm because the void volume inside the battery decreases and the energy density decreases as the thickness increases.
[0024]
As the binder, the solvent, and the conductive auxiliary agent that can be added as necessary, the same conductive agent as that of the positive electrode can be used.
[0025]
By the way, the method of preparing a paste mixture by kneading and dispersing a positive electrode and negative electrode active material, a binder, a conductive agent to be added as necessary, and a conductive auxiliary in a solvent is not particularly limited. A planetary mixer, a homomixer, a pin mixer, a kneader, a homogenizer, or the like can be used. These can be used alone or in combination.
[0026]
In addition, various dispersants, surfactants, stabilizers, and the like can be added as needed during the kneading and dispersing of the paste mixture.
[0027]
The coating and drying is not particularly limited, and the paste-like mixture kneaded and dispersed as described above, for example, slit die coater, reverse roll coater, lip coater, blade coater, knife coater, gravure coater. It can be applied easily using a dip coater or the like, and drying close to natural drying is preferred, but drying is preferably performed at a temperature of 70 ° C. to 200 ° C. in consideration of productivity.
[0028]
Rolling is preferably performed several times at a linear pressure of 1000 to 2000 kg / cm or by changing the linear pressure until a predetermined thickness is reached by a roll press.
[0029]
The separator 3 is composed of a single layer or a multilayer structure made of a polyolefin resin microporous film such as polyethylene resin or polypropylene resin or a non-woven fabric. Two or both layers of polyethylene resin and polypropylene resin are polypropylene resin and an intermediate layer is formed. A separator having a shutdown function with a three-layer structure of polyethylene resin is preferable, and the thickness of the separator is preferably in the range of 10 to 30 μm.
[0030]
The position at which the insulating member is disposed on the outermost periphery of the electrode plate group produced by winding the positive electrode 1 and the negative electrode 2 obtained in this manner while being insulated via the separator 3 is important.
[0031]
That is, in the region A where the outermost periphery of the negative electrode plate 2 shown in FIG. 1 and the positive electrode mixture layer of the positive electrode plate 1 face each other, at least the negative electrode plate is interposed between the battery case 4 and the positive electrode plate 1 shown in FIG. By disposing the insulating member 5a protruding from the upper end portion of 2, the negative electrode plate 2 can be prevented from being short-circuited with the battery case 4 having the same potential as the positive electrode plate 1 even when the separator 3 is thermally contracted. In the region B where the outermost periphery of the negative electrode plate 2 shown in FIG. 1 and the positive electrode plate 1 have no positive electrode mixture layer and face the positive electrode current collector, the negative electrode plate 2 and the positive electrode current collector shown in FIG. By disposing at least the insulating member 5b protruding from the upper end of the negative electrode plate 2, it is possible to prevent the negative electrode plate 2 from being short-circuited with the positive electrode current collector even if the separator 3 is thermally contracted.
[0032]
Here, in the region B where the outermost periphery of the negative electrode plate 2 and the positive electrode mixture layer of the positive electrode plate 1 do not have a positive electrode current collector face each other, at least the upper end of the negative electrode plate 2 is between the negative electrode plate 2 and the positive electrode current collector. It is important to dispose the insulating member 5 protruding from the portion, and the battery case 4 and the positive electrode plate 1 Positive electrode current collector without positive electrode mixture When placed between When the separator 3 heat shrinks, The negative electrode plate 2 and the positive electrode current collector may be short-circuited, resulting in battery ignition.
[0033]
The reason is that the negative electrode plate 2 and the positive electrode plate 1 Positive electrode mixture layer And short circuit current than When the battery case 4 having the same potential as the negative electrode plate 2 and the positive electrode current collector or the positive electrode plate 1 is short-circuited, the resistance of the battery case 4 having the same potential as the positive electrode current collector or the positive electrode plate 1 is extremely low. This is because a much larger short-circuit current flows and the battery rises due to a temperature rise caused by Joule heat.
[0034]
In addition, there is no outermost negative electrode plate 2 shown in FIG. 1 and the region not facing the positive electrode plate 1, that is, the winding of the negative electrode plate 2 is finished, there is no positive electrode mixture layer, and the positive electrode current collector and separator 3 or positive electrode collector. In the area c where only the electric body is present, since the adjacent electrode plate is a positive electrode having the same polarity, the risk of a short circuit is low even if the separator is thermally contracted. In addition, by disposing the same insulating member 5b as in FIG. 2B between the positive electrode current collector shown in FIG. 2C and the separator 3, a short circuit between the positive electrode lead 6 and the negative electrode plate is further prevented. be able to.
[0035]
As the insulating member, an insulating tape made of a base material having a heat resistant temperature higher than that of the separator and a paste is used. Here, the heat resistant temperature is higher than that of a separator, not only a material having a softening point higher than that of a separator but also a material having a similar softening point is heated by a separator that is stretched to give microporosity. Even when contracted, a material having a dense structure can be used because it does not thermally contract.
[0036]
The thickness of the substrate is preferably in the range of 20 μm to 60 μm, and the thickness of the paste is preferably in the range of 20 μm to 80 μm from the viewpoints of insulation, sticking properties, and workability.
[0037]
Examples of the material of the base material include polyolefin resins such as polyethylene resin and polypropylene resin, polyethylene terephthalate resin, polyether ether ketone resin, polyphenylene sulfide resin, polyarylate resin, polyamide resin, polyimide resin, and fluorine resin. Resins obtained by singly or blending these, or modified resins can be used. And you may add fillers, such as glass fiber, a talc, and a silica.
[0038]
Examples of the paste include natural rubber, isobutyl rubber, styrene butadiene rubber, silicon rubber, urethane rubber, and acrylic resin. These can be used alone, laminated or modified.
[0039]
By the way, when the separator that is not integrated with the positive and negative electrode plates is thermally contracted, gas is generated under high-temperature heating, and the battery case is swollen due to an increase in internal pressure. The center is the largest. On the other hand, the electrode plate group is housed in a state of being closer to the lower side with respect to the battery case when the lead is connected to the upper side. Is small and the internal pressure is applied to the electrode plate group, so that the shrinkage of the separator is suppressed. Accordingly, the lower end portion of the electrode plate group may adopt a method of sticking a protective tape on the outermost periphery of the electrode plate group conventionally used. This protective tape is also protected for each region according to the present invention. By using a method of changing the position where the member is disposed, a battery with higher safety can be obtained. This protective tape can also use the same base material and paste as the insulating member.
[0040]
Examples of the battery case 4 include a bottomed cylindrical shape with an open top, a rectangular shape, and an oval shape. Even if gas is generated due to a temperature rise during high-temperature heating, the internal pressure of the battery is uniform. In order to improve the acceptability of lithium ions released from the positive electrode plate, it is set so that the dimension in the width direction is several mm larger than the dimension of the positive electrode plate. In the case where the negative electrode plate and the battery case are made of aluminum alloys having different polarities, the present invention can exert a remarkable effect.
[0041]
The non-aqueous electrolyte is composed of a non-aqueous solvent and an electrolyte, and the non-aqueous solvent contains a cyclic carbonate and a chain carbonate as main components. The cyclic carbonate is preferably at least one selected from ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). The chain carbonate is preferably at least one selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and the like.
[0042]
As the electrolyte, for example, a lithium salt having a strong electron withdrawing property is used, for example, LiPF. 6 , LiBF Four LiClO Four , LiAsF 6 , LiCF Three SO Three , LiN (SO 2 CF Three ) 2 , LiN (SO 2 C 2 F Five ) 2 , LiC (SO 2 CF Three ) Three Etc. These electrolytes may be used alone or in combination of two or more. These electrolytes are preferably dissolved at a concentration of 0.5 to 1.5 M in the non-aqueous solvent.
[0043]
【Example】
Hereinafter, although it demonstrates in detail using an Example and a comparative example, these do not limit this invention at all.
[0044]
(Example 1)
The positive electrode plate 1 has 100 parts by weight of lithium cobaltate as a positive electrode active material, 3 parts by weight of acetylene black carbon powder as a conductive agent, and 4% by weight of polytetrafluoroethylene (PTFE) resin dispersion as a binder. As a thickener, 0.8 parts by weight of a carboxymethyl cellulose aqueous solution as a thickener was kneaded and dispersed to prepare a paste mixture. The paste mixture was applied intermittently to a positive electrode current collector made of a strip-shaped aluminum foil having a thickness of 20 μm and dried to produce a positive electrode plate 1 having a thickness of 290 μm, and a linear pressure of 1000 kg / cm. The positive electrode plate was rolled to 180 μm by rolling three times. The positive electrode lead 6 was spot welded and attached to the portion of the positive electrode plate 1 where the positive electrode mixture layer was absent and the positive electrode current collector was exposed, and then the positive electrode plate was dried at 120 ° C. for 15 minutes.
[0045]
Next, the negative electrode plate has 100 parts by weight of scaly graphite capable of occluding and releasing lithium foil as a negative electrode active material, 4 parts by weight of a water-soluble dispersion of styrene butadiene rubber (SBR) as a binder, and thickened. As an agent, 0.8 parts by weight of a carboxymethyl cellulose aqueous solution was kneaded and dispersed to prepare a paste-like mixture. This paste-like mixture is continuously applied intermittently to a negative electrode current collector made of a strip-shaped copper foil having a thickness of 14 μm and dried to produce a negative electrode plate 2 having a thickness of 300 μm, and a linear pressure of 110 kg / cm. The negative electrode plate was rolled to 196 μm by rolling three times. The negative electrode plate 3 was spot welded to the portion where the negative electrode mixture layer was not present on the innermost periphery of the negative electrode plate 3 and the negative electrode current collector was exposed, and then the negative electrode plate 7 was dried at 110 ° C. for 10 minutes. .
[0046]
An electrode plate group obtained by winding the positive electrode plate 1 and the negative electrode plate 2 thus obtained in an oval shape with a heat-resistant temperature of 138 ° C. and insulated through a polypropylene separator 3 having a thickness of 20 μm. Produced.
[0047]
In the region A where the outermost periphery of the negative electrode plate 2 shown in FIG. 1 of this electrode plate group and the positive electrode mixture layer of the positive electrode plate 1 face each other, it is between the battery case 4 and the positive electrode plate 1 shown in FIG. The insulating member 5a was adhered and disposed within the range of the upper end portion 10 mm of the positive electrode plate so as to protrude at least 5 mm from the upper end portion of the negative electrode plate 2. In the region B where the outermost periphery of the negative electrode plate 2 shown in FIG. 1 and the positive electrode plate 1 have no positive electrode mixture layer and face the positive electrode current collector, the negative electrode plate 2 and the positive electrode current collector shown in FIG. The insulating member 5b was adhered and disposed in the range of the upper end portion 10 mm of the positive electrode current collector so as to protrude at least 5 mm from the upper end portion of the negative electrode plate 2 therebetween. In the region where there is no negative electrode plate and does not face the positive electrode plate shown in FIG. 1, that is, in the region c where the negative electrode plate 2 has been wound and there is no positive electrode mixture layer and only the positive electrode current collector and separator 3 or positive electrode current collector. The insulating member 5b is stuck between the positive electrode current collector shown in FIG. 2 (c) and the separator 3 so as to protrude at least 5 mm from the upper end portion of the negative electrode plate 2 in the range of the upper end portion 10 mm of the positive electrode current collector. Arranged.
[0048]
The insulating member 5a uses an insulating tape composed of a base material of polyphenylene sulfide resin having a heat resistance of 200 ° C. and a thickness of 40 μm and a urethane resin having a thickness of 20 μm, and the insulating member 5b is a polyethylene terephthalate having a thickness of 40 μm. Using an insulating tape made of a resin base material and a 20 μm-thick silicone resin glue, and having no glue other than the pasted part, there is a gap at the boundary between region A and region B and region A and region C. It overlapped so that it might not occur.
[0049]
Similarly, a protective tape made of a base material of a polypropylene resin having a heat resistance of 140 ° C. and a thickness of 35 μm and a styrene butadiene rubber having a thickness of 20 μm was disposed at the lower end of the electrode plate group. In the region A shown in FIG. 1, the protective tape 8a is placed between the battery case 4 and the positive electrode plate 1 shown in FIG. Affixed in a range and arranged. In the region B shown in FIG. 1, the protective tape 8b is placed at the lower end of the positive electrode current collector so as to protrude at least 3 mm from the lower end portion of the negative electrode plate 2 between the negative electrode plate 2 and the positive electrode current collector shown in FIG. The part was attached within a range of 5 mm. In the region c shown in FIG. 1, the protective tape 8 b is placed between the positive electrode current collector shown in FIG. 2 (f) and the separator 3 so that it protrudes at least 8 mm from the lower end part of the negative electrode plate 2, and the lower end part 5 mm of the positive electrode current collector. It was stuck and arranged in the range.
[0050]
The long plate side of the electrode plate group was hot-pressed for 1.5 seconds under a pressure condition of 0.4 MPa to make it flat, and then alloy No. 1 having a thickness of 0.20 mm and containing a small amount of manganese and copper was used. A negative electrode lead housed in a rectangular battery case 4 made of 3000 series aluminum alloy, connected to the sealing plate having an explosion-proof mechanism, and connected to the negative electrode plate 2 at the other end of the positive electrode lead 6 connected to the positive electrode plate 1 After connecting the other end of 7 to the negative electrode terminal of the sealing plate, the sealing plate and the battery case 4 were laser welded.
[0051]
Furthermore, lithium hexafluorophosphate (LiPF) as an electrolyte in a mixed solvent of ethylene carbonate and ethyl methyl carbonate from the injection hole of the sealing plate into the battery case 4 6 After pouring a predetermined amount of an electrolyte solution in which 1.25 mol / l is dissolved, a plug is inserted into the injection hole, and the periphery of the plug and the sealing plate are laser welded to obtain a width of 10.5 mm. A square lithium ion secondary battery having a length of 34 mm and a total height of 50 mm and a battery capacity of 1800 mAh was produced.
[0052]
(Example 2)
In the region A shown in FIG. 1 of the electrode plate group produced in the same manner as in Example 1, at least 5 mm protrudes from the upper end portion of the negative electrode plate 2 between the battery case 4 and the positive electrode plate 1 shown in FIG. In this way, the insulating member 5a was adhered and disposed within the range of the upper end portion 5 mm of the positive electrode plate. In the region B, the insulating member 5b is arranged in a range of 10 mm at the upper end of the separator 3 so that it protrudes at least 0.5 mm from the upper end of the negative electrode 2 between the negative electrode 2 and the positive electrode current collector shown in FIG. It was stuck and arranged with. In the region c, the insulating member 5b is pasted between the positive electrode current collector shown in FIG. 2C and the separator 3 so as to protrude at least 5 mm from the upper end portion of the negative electrode plate 2 in the range of the upper end portion 5 mm of the separator 3. Arranged.
[0053]
The insulating member 5a uses an insulating tape composed of a base material of polyphenylene sulfide resin having a heat resistant temperature of 200 ° C. and a thickness of 40 μm and a urethane resin having a thickness of 20 μm, and the insulating member 5b is a polyethylene terephthalate resin having a thickness of 40 μm. Insulating tape composed of a base material of 20 μm and a silicone resin glue, and a paste having no glue other than the pasted part, and there is a gap at the boundary between area A and area B and area A and area C. It overlapped so that it might not occur.
[0054]
At the lower end of the electrode plate group, a positive electrode plate, which is the outermost periphery of the electrode plate group, is provided with a protective tape comprising a base material of polyimide resin having a heat resistance of 200 ° C. and a thickness of 20 μm and isobutyl rubber having a thickness of 40 μm. Sticked.
[0055]
Except this, a rectangular lithium ion secondary battery having a width of 10.5 mm, a length of 34 mm, a total height of 50 mm and a battery capacity of 1800 mAh was produced in the same manner as in Example 1.
[0056]
(Comparative Example 1)
The electrode plate group produced in the same manner as in Example 1 is placed between the battery case 4 and the positive electrode plate 1 shown in FIG. 2A over the entire circumference of the region A, region B, and region C shown in FIG. The insulating member 5a was adhered and disposed within the range of the upper end portion of the positive electrode plate of 5 mm so as to protrude at least 5 mm from the upper end portion of the negative electrode plate 2. The insulating member 5a is made of an insulating tape made of a fluororesin base material having a heat resistant temperature of 180 ° C. and a thickness of 30 μm and a silicone rubber paste having a thickness of 25 μm, and having no glue other than the pasted portion. It was overlapped so that there was no gap at the boundary between the region A and the region C.
[0057]
Except for this, a rectangular lithium ion secondary battery having a width of 10.5 mm, a length of 34 mm, a total height of 50 mm and a battery capacity of 1800 mAh was produced in the same manner as in Example 2.
[0058]
(Comparative Example 2)
Except that no insulating member was attached to the upper end of the electrode plate group produced in the same manner as in Example 1, and the same protective tape as in Example 2 was attached only to the lower end of the electrode plate group. A rectangular lithium ion secondary battery having a width of 10.5 mm, a length of 34 mm, a total height of 50 mm and a battery capacity of 1800 mAh was produced in the same manner as in Example 2.
[0059]
Table 1 shows the results obtained by conducting a high-temperature heating test on each of the 20 batteries of Examples 1 to 2 and Comparative Examples 1 to 2 thus obtained.
[0060]
In the high-temperature heating test, after a residual discharge at a constant current of 1800 mA (1.0 ItA) to an end voltage of 3.0 V in an environment of 20 ° C., a constant voltage of 1260 mA (0.7 ItA) is reached until the battery voltage reaches 4.2 V. When the fully charged battery that had been charged with current was heated to 150 ° C. at a temperature rising rate of 5 ° C./min and held at 150 ° C. for 30 minutes, the rate of occurrence of battery ignition was examined.
[0061]
[Table 1]
Figure 0003700683
[0062]
From Table 1, in the region A where the outermost periphery of the negative electrode plate 2 and the positive electrode mixture layer of the positive electrode plate 1 face each other, the battery of the example is at least the upper end of the negative electrode plate 2 between the battery case 4 and the positive electrode plate 1. By disposing the insulating member 5a protruding from the portion, it is possible to prevent the negative electrode plate 2 from being short-circuited with the battery case 4 having the same potential as the positive electrode plate 1 even when the separator 3 is thermally contracted. In a region B where the outer periphery and the positive electrode mixture layer of the positive electrode plate 1 do not exist and the positive electrode current collector faces each other, an insulating member 5b protruding at least from the upper end of the negative electrode plate 2 is interposed between the negative electrode plate 2 and the positive electrode current collector. By disposing, it is possible to prevent the negative electrode plate 2 from being short-circuited with the positive electrode current collector even when the separator 3 is thermally contracted, and thus it was found that a battery having excellent safety that does not ignite can be obtained.
[0063]
On the other hand, the comparative example which was arrange | positioned between the battery case 4 and the positive electrode plate 1 in the area | region B where the positive electrode mixture layer of the positive electrode plate 1 and the outermost periphery of the negative electrode plate 2 does not exist. In the case of 1, it was found that the negative electrode plate 2 and the positive electrode current collector could be short-circuited, resulting in ignition of the battery.
[0064]
And in the case of the comparative example 2 which stuck no insulating member to the upper end part of an electrode group, and stuck the protective tape similar to Example 2 only to the lower part of an electrode group, an electrode group It was found that the rate of battery short-circuiting at the upper end of the battery and the ignition of the battery was very high.
[0065]
【The invention's effect】
As is clear from the above description, according to the present invention, by optimizing the position where the insulating member is disposed on the outermost periphery of the electrode plate group, the non-aqueous electrolyte secondary can be obtained even in a high temperature heating state. The reliability of the battery can be greatly improved, and its industrial value is extremely high.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a main configuration according to an embodiment of the present invention.
FIG. 2 is a partial longitudinal sectional view according to the electrode plate group of the present invention.
(A) Partial longitudinal sectional view of the upper end portion of the electrode plate group in which an insulating member is disposed between the battery case and the positive electrode plate
(B) Partial longitudinal sectional view of the upper end of the electrode plate group in which an insulating member is disposed between the negative electrode plate and the positive electrode current collector.
(C) Partial longitudinal sectional view of the upper end of the electrode plate group in which an insulating member is disposed between the separator and the positive electrode current collector
(D) Partial longitudinal sectional view of the lower end portion of the electrode plate group in which an insulating member is disposed between the battery case and the positive electrode plate.
(E) Partial longitudinal sectional view of the lower end of the electrode plate group in which an insulating member is disposed between the negative electrode plate and the positive electrode current collector.
(F) Partial longitudinal sectional view of the lower end portion of the electrode plate group in which an insulating member is disposed between the separator and the positive electrode current collector
FIG. 3 is a partial longitudinal sectional view of a conventional electrode plate group.
(A) Partial longitudinal sectional view of the electrode plate group before the high-temperature heating test
(B) Partial longitudinal sectional view of the electrode plate group after the high-temperature heating test
[Explanation of symbols]
1,11 Positive electrode plate
2,12 Negative electrode plate
3,13 Separator
4,14 Battery case
5a Insulating member disposed between the battery case and the positive electrode plate
5b Insulating member disposed between positive electrode current collector, negative electrode plate and separator
A Region where the negative electrode plate and the positive electrode mixture layer of the positive electrode plate face each other
B Area where the negative electrode plate and the positive electrode current collector of the positive electrode plate face each other
C Area without the negative electrode plate and not facing the positive electrode plate

Claims (7)

正極板と負極板とをセパレータを介して絶縁した状態で捲回してなる極板群、非水電解液、ならびに前記極板群と非水電解液とを収納する電池ケースからなる非水電解液二次電池であって、
少なくとも前記負極板の上端部より突出した絶縁部材が、前記負極板の最外周と前記正極板の正極合剤層とが対向する領域では前記電池ケースと正極板との間に配設されていると共に、前記負極板の最外周と前記正極板の正極合剤層が無く正極集電体とが対向する領域では負極板と正極集電体との間に配設されていることを特徴とする非水電解液二次電池。
Non-aqueous electrolyte comprising electrode plate group formed by winding positive electrode plate and negative electrode plate with separator interposed therebetween, non-aqueous electrolyte, and battery case housing said electrode plate group and non-aqueous electrolyte solution A secondary battery,
At least the insulating member protruding from the upper end portion of the negative electrode plate, wherein in a region where the positive electrode mixture layer is opposed outermost and the previous SL positive electrode plate of the negative electrode plate are disposed between the battery case and the positive electrode plate together are a feature that it is arranged between the negative electrode plate outermost and the positive electrode plate of the positive electrode mixture layer without negative electrode plate in the region where the positive electrode current collector faces the positive electrode current collector Non-aqueous electrolyte secondary battery.
前記絶縁部材は、前記セパレータよりも耐熱温度が高い請求項1に記載の非水電解液二次電池。  The non-aqueous electrolyte secondary battery according to claim 1, wherein the insulating member has a heat resistant temperature higher than that of the separator. 前記電池ケースと正極板との間に配設されている絶縁部材が正極板に貼着されている請求項1または請求項2のいずれかに記載の非水電解液二次電池。  The non-aqueous electrolyte secondary battery according to claim 1, wherein an insulating member disposed between the battery case and the positive electrode plate is attached to the positive electrode plate. 前記負極板と正極集電体との間に配設されている絶縁部材が正極集電体に貼着されている請求項1または請求項2のいずれかに記載の非水電解液二次電池。  The non-aqueous electrolyte secondary battery according to claim 1, wherein an insulating member disposed between the negative electrode plate and the positive electrode current collector is attached to the positive electrode current collector. . 前記負極板と正極集電体との間に配設されている絶縁部材が前記セパレータに貼着されている請求項1または請求項2のいずれかに記載の非水電解液二次電池。  The nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein an insulating member disposed between the negative electrode plate and the positive electrode current collector is attached to the separator. 前記絶縁部材は基材と糊剤からなる絶縁テープであり、貼着部分以外には糊剤がない絶縁テープである請求項1〜請求項5のいずれかに記載の非水電解液二次電池。  The non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the insulating member is an insulating tape made of a base material and a paste, and is an insulating tape having no paste other than an attached portion. . 前記電池ケースが角形または扁平形の電池ケースである請求項1または請求項3のいずれかに記載の非水電解液二次電池。  The non-aqueous electrolyte secondary battery according to claim 1, wherein the battery case is a square or flat battery case.
JP2002180987A 2002-06-21 2002-06-21 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3700683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180987A JP3700683B2 (en) 2002-06-21 2002-06-21 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180987A JP3700683B2 (en) 2002-06-21 2002-06-21 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004030938A JP2004030938A (en) 2004-01-29
JP3700683B2 true JP3700683B2 (en) 2005-09-28

Family

ID=31177932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180987A Expired - Fee Related JP3700683B2 (en) 2002-06-21 2002-06-21 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3700683B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107851769A (en) * 2015-08-31 2018-03-27 松下知识产权经营株式会社 Rechargeable nonaqueous electrolytic battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000080B2 (en) * 2004-02-25 2012-08-15 三洋電機株式会社 Battery with spiral electrode group
KR100686812B1 (en) 2005-04-26 2007-02-26 삼성에스디아이 주식회사 Secondary battery
JP6493949B2 (en) * 2014-06-19 2019-04-03 日立オートモティブシステムズ株式会社 Lithium ion secondary battery
JP7374204B2 (en) * 2019-03-01 2023-11-06 青▲海▼▲時▼代新能源科技有限公司 secondary battery
JP7383034B2 (en) * 2020-04-30 2023-11-17 寧徳時代新能源科技股▲分▼有限公司 Electrode assemblies, secondary batteries, battery packs and devices
KR20230081691A (en) * 2021-11-30 2023-06-07 주식회사 엘지에너지솔루션 Electrode assembly, cylindrical battery cell, and battery pack and vehicle including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107851769A (en) * 2015-08-31 2018-03-27 松下知识产权经营株式会社 Rechargeable nonaqueous electrolytic battery

Also Published As

Publication number Publication date
JP2004030938A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP5954674B2 (en) Battery and battery manufacturing method
JP5420888B2 (en) battery
WO2009144919A1 (en) Cylindrical nonaqueous electrolytic secondary battery
WO2012042830A1 (en) Nonaqueous electrolyte secondary battery
JP2007103356A (en) Non-aqueous secondary battery
JP2001176497A (en) Nonaqueous electrolyte secondary battery
JP3554155B2 (en) Lithium secondary battery and method of manufacturing the same
JP4439226B2 (en) Nonaqueous electrolyte secondary battery
JP2005285691A (en) Nonaqueous secondary battery
JP2016004657A (en) Positive electrode, method of manufacturing positive electrode, and nonaqueous electrolyte secondary battery
JP5213003B2 (en) Nonaqueous electrolyte secondary battery
JP2000173657A (en) Solid electrolyte battery
JP3700683B2 (en) Non-aqueous electrolyte secondary battery
JP4984359B2 (en) Sealed battery and its sealing plate
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP2003243038A (en) Positive electrode plate and lithium secondary battery using it
JP2000357505A (en) Nonaqueous electrolyte secondary battery
JP2004186117A (en) Sealed type rechargeable battery
JP2004253159A (en) Nonaqueous electrolyte secondary battery
JP2004241222A (en) Manufacturing method of nonaqueous electrolytic solution battery
JP4135353B2 (en) Non-aqueous electrolyte secondary battery using laminate sheet for exterior case and device incorporating the same
JPH1197064A (en) Polymer electrolyte secondary battery
JP5639903B2 (en) Lithium ion secondary battery
JP4228665B2 (en) Non-aqueous electrolyte secondary battery
JP2005093077A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees